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WEB SiTE FOR OPERATING SYSTEMS: INTERNALS
AND DESIGN PRINCIPLES, SIXTH EDITION

The Web site at WilliamStallings.com/OS/OS6e.html provides support for instructors and
students using the book. It includes the following elements.

arrp) Course Support Materials
The course support materials include

* Copies of figures from the book in PDF format.

e Copies of tables from the book in PDF format.

* A set of PowerPoint slides for use as lecture aids.

e Lecture notes in HTML that can serve as a useful study aid.

¢ Computer Science Student Resource Site: contains a number of links and docu-
ments that students may find useful in their ongoing computer science education.
The site includes a review of basic, relevant mathematics; advice on research, writ-
ing, and doing homework problems; links to computer science research resources,
such as report repositories and bibliographies; and other useful links.

e An errata sheet for the book, updated at most monthly.

%ﬁ Supplemental Documents
= The supplemental documents include

¢ A set of supplemental homework problems with solutions. Students can en-
hance their understanding of the material by working out the solutions to
these problems and then checking their answers.

¢ Tutorial documents on C, including C for Java programmers.

¢ Two online chapters: networking and distributed process management

¢ Six online appendices that expand on the treatment in the book. Topics in-
clude complexity of algorithms, Internet standards, and Sockets

e A PDF copy of all the algorithms in the book in an easy-to-read Pascal-like
pseudocode.

e All of the Windows, UNIX, and Linux material from the book reproduced in
three PDF documents for easy reference.

“ OS Courses

— The Web site includes links to Web sites for courses taught using the book. These
sites can provide useful ideas about scheduling and topic ordering, as well as a num-
ber of useful handouts and other materials.

Useful Web Sites
The Web site includes links to relevant Web sites. The links cover a broad spectrum
of topics and will enable students to explore timely issues in greater depth.

qej Internet Mailing List
®  An Internet mailing list is maintained so that instructors using this book can ex-

change information, suggestions, and questions with each other and the author. Sub-
scription information is provided at the book’s Web site.

@ Operating System Projects
The Web site includes links to the Nachos and BACI web sites. These are two software

packages that serve as frameworks for project implementation. Each site includes down-
loadable software and background information. See Appendix C for more information.
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PREFACE

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems. Its purpose
is to present, as clearly and completely as possible, the nature and characteristics of modern-
day operating systems.

This task is challenging for several reasons. First, there is a tremendous range and vari-
ety of computer systems for which operating systems are designed. These include single-user
workstations and personal computers, medium-sized shared systems, large mainframe and
supercomputers, and specialized machines such as real-time systems. The variety is not just
in the capacity and speed of machines, but in applications and system support requirements.
Second, the rapid pace of change that has always characterized computer systems continues
with no letup. A number of key areas in operating system design are of recent origin, and re-
search into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply consis-
tently throughout. To be sure, the application of these concepts depends on the current state
of technology and the particular application requirements. The intent of this book is to pro-
vide a thorough discussion of the fundamentals of operating system design and to relate
these to contemporary design issues and to current directions in the development of operat-
ing systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implementation is-
sues of contemporary operating systems. Accordingly, a purely conceptual or theoretical
treatment would be inadequate. To illustrate the concepts and to tie them to real-world design
choices that must be made, three operating systems have been chosen as running examples:

Windows Vista: A multitasking operating system for personal computers, workstations,
and servers. This operating system incorporates many of the latest developments in op-
erating system technology. In addition, Windows is one of the first important commer-
cial operating systems to rely heavily on object-oriented design principles. This book
covers the technology used in the most recent versions of Windows, known as Vista.

UNIX: A multiuser operating system, originally intended for minicomputers, but im-
plemented on a wide range of machines from powerful microcomputers to supercom-
puters. Several flavors of UNIX are included. FreeBSD is a widely used system that
incorporates many state-of-the-art features. Solaris is a widely used commercial ver-
sion of UNIX.

Linux: An open-source version of UNIX that is now widely used.

These systems were chosen because of their relevance and representativeness. The dis-
cussion of the example systems is distributed throughout the text rather than assembled as a
single chapter or appendix. Thus, during the discussion of concurrency, the concurrency

X111



Xiv PREFACE

mechanisms of each example system are described, and the motivation for the individual de-
sign choices is discussed. With this approach, the design concepts discussed in a given chap-
ter are immediately reinforced with real-world examples.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a textbook, it is
intended as a one-semester undergraduate course in operating systems for computer sci-
ence, computer engineering, and electrical engineering majors. It covers the topics recom-
mended in Computer Curricula 2001, from the Joint Task Force on Computing Curricula of
the IEEE Computer Society and the ACM, for the Undergraduate Program in Computer
Science. The book also covers the operating systems topics recommended in the Guidelines
for Associate-Degree Curricula in Computer Science 2002, also from the Joint Task Force on
Computing Curricula of the IEEE Computer Society and the ACM. The book also serves as
a basic reference volume and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into eight parts (see Chapter 0 for an overview):

e Background

* Processes

e Memory

¢ Scheduling

* Input/output and files
* Embedded systems

e Security

e Distributed systems

The book includes a number of pedagogic features, including the use of animation and
numerous figures and tables to clarify the discussion. Each chapter includes a list of key
words, review questions, homework problems, suggestions for further reading, and recom-
mended Web sites. In addition, a test bank is available to instructors.

INSTRUCTIONAL SUPPORT MATERIALS

The following instructor materials can be accessed at the password protected Instructor
Resources area of the Pearson web site via www.prenhall.com/stallings.

* Solutions manual: Solutions to end-of-chapter Review Questions and Problems

* PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing

* PDF files: Reproductions of all figures and tables from the book

* Projects manual: Suggested project assignments for all of the project categories listed
below

* GOAL: In addition, instructors should examine GOAL (Gradiance Online Accelerated
Learning), Pearson’s premier online homework and assessment system. GOAL is



PREFACE XV

designed to minimize student frustration while providing an interactive teaching expe-
rience outside the classroom. With GOAL’s immediate feedback, hints, and pointers
that map back to the textbook, students will have a more efficient and effective learn-
ing experience. GOAL delivers immediate assessment and feedback via two kinds of
assignments: multiple choice Homework exercises and interactive Lab work.

All of these support materials are available at the Instructor Resource Center (IRC) for
this textbook. To gain access to the IRC, please contact your local Prentice Hall sales repre-
sentative via prenhall.com/replocator or call Prentice Hall Faculty Services at 1-800-526-0485.

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web site for this book that provides support for students and instructors. The site
includes links to other relevant sites and a set of useful documents. See the section, “Web
Site for Operating Systems: Internals and Design Principles,” preceding this Preface, for
more information. The Web page is at http://williamstallings.com/OS/OS6e.html

New to this edition is a set of homework problems with solutions publicly available at
this Web site. Students can enhance their understanding of the material by working out the
solutions to these problems and then checking their answers.

An Internet mailing list has been set up so that instructors using this book can ex-
change information, suggestions, and questions with each other and with the author. As soon
as typos or other errors are discovered, an errata list for this book will be available at
WilliamStallings.com. Finally, I maintain the Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of an OS course is a project or set of projects
by which the student gets hands-on experience to reinforce concepts from the text. This
book provides an unparalleled degree of support for including a projects component in the
course. In the body of the text, two major programming projects are defined. The instructor’s
support materials available through Prentice Hall not only includes guidance on how to as-
sign and structure the projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can assign
work in the following areas:

* Animations: Described below.

* Simulation projects: Described below.

* Programming projects: Described below.

* Research projects: A series of research assignments that instruct the student to re-
search a particular topic on the Internet and write a report.

* Reading/report assignments: A list of papers that can be assigned for reading and
writing a report, plus suggested assignment wording.

° Writing assignments: A list of writing assignments to facilitate learning the material.

e Discussion topics: These topics can be used in a classroom, chat room, or message board
environment to explore certain areas in greater depth and to foster student collaboration.
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In addition, information is provided on two software packages that serve as frameworks for
project implementation: Nachos for developing components of an OS, and BACI for study-
ing concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix C in this book
for detalils.

ANIMATIONS AND SIMULATIONS

New to this edition is the incorporation of animations and simulations. The animations are
set off by this icon %. Animations provide a powerful tool for understanding the complex
mechanisms of a modern OS. A total of 16 animations are used to illustrate key functions
and algorithms in OS design. At the relevant point in the book, an icon indicates that a rele-
vant animation is available online for student use.

The IRC also provides support for assigning projects based on a set of seven
simulations that cover key areas of OS design. The student can use a set of simulation
packages to analyze OS design features. The simulators are all written in Java and can be
run either locally as a Java application or online through a browser. The IRC includes spe-
cific assignments to give to students, telling them specifically what they are to do and what
results are expected.

PROGRAMMING PROJECTS

This new edition provides expanded support for programming projects. Two major pro-
gramming projects, one to build a shell, or command line interpreter, and one to build a
process dispatcher are described in the textbook, after Chapter 3 and after Chapter 9. The
IRC provides further information and step-by-step exercises for developing the pro-
grams.

As an alternative, the instructor can assign a more extensive series of projects that
cover many of the principles in the book. The student is provided with detailed instructions
for doing each of the projects. In addition, there is a set of homework problems, which in-
volve questions related to each project for the student to answer.

Finally, the project manual provided at the IRC includes a series of programming pro-
jects that cover a broad range of topics and that can be implemented in any suitable lan-
guage on any platform.

WHAT’S NEW IN THE SIXTH EDITION

In the four years since the fifth edition of this book was published, the field has seen contin-
ued innovations and improvements. In this new edition, I try to capture these changes while
maintaining a broad and comprehensive coverage of the entire field. To begin the process of
revision, the fifth edition of this book was extensively reviewed by a number of professors
who teach the subject and by professionals working in the field. The result is that, in many
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places, the narrative has been clarified and tightened, and illustrations have been improved.
Also, a number of new “field-tested” homework problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, the technical
content of the book has been updated throughout, to reflect the ongoing changes in this ex-
citing field. The most noteworthy changes are as follows:

* Animation: Animation provides a powerful tool for understanding the complex mech-
anisms of a modern OS. The sixth edition incorporates 16 separate animations covering
such areas as scheduling, concurrency control, cache coherency, and process life cycle.
At appropriate places in the book, the animations are highlighted so that the student
can invoke the animation at the proper point in studying the book.

* Windows Vista: Vista is Microsoft’s latest OS offering for PCs, workstations, and
servers. The sixth edition provides details on Vista internals in all of the key technology
areas covered in this book, including process/thread management, scheduling, memory
management, security, file systems, and I/O.

* Vista/Linux comparison: Throughout the book, Vista and Linux are used as examples
of various aspects of OS internals. New to the sixth edition, each chapter that covers an
aspect of Vista and Linux includes a sidebar comparing the technical approaches taken
by these two operating systems.

* Expanded coverage of security: Part Seven, Security, has been completely rewritten
and expanded to two chapters. It is more detailed, covering a number of new topics. In
addition, at key points in the book (Chapters 3,7, and 12) there is an overview of secu-
rity for the relevant topic.

* Embedded operating systems: The sixth edition includes a new chapter on embedded
operating systems. Embedded systems far outnumber general-purpose computing sys-
tems and present of number of unique OS challenges. The chapter includes a discus-
sion of common principles plus coverage of two example systems: TinyOS and eCos.

* Concurrency: The material on concurrency has been expanded and revised for greater
clarity.

° Multiprocessor scheduling: A detailed real-world example of the design issues in mul-
tiprocessor scheduling for game software has been added.

With each new edition it is a struggle to maintain a reasonable page count while adding
new material. In part this objective is realized by eliminating obsolete material and tighten-
ing the narrative. For this edition, chapters and appendices that are of less general interest
have been moved online, as individual PDF files. This has allowed an expansion of material
without the corresponding increase in size and price.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously of
their time and expertise. These include Archana Chidanandan (Rose-Hulman), Scott Stoller
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GA), Tom Easton (Thomas College, ME), Che Dunren (Southern Illinois University), Dean
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2 CHAPTER 0 / READER’S GUIDE

This book, with its accompanying Web site, covers a lot of material. Here we give the
reader an overview.

0.1 OUTLINE OF THIS BOOK

The book is organized in seven parts:

Part One. Background: Provides an overview of computer architecture and or-
ganization, with emphasis on topics that relate to operating system design, plus
an overview of the operating system (OS) topics in remainder of the book.

Part Two. Processes: Presents a detailed analysis of processes, multithreading,
symmetric multiprocessing (SMP), and microkernels. This part also examines
the key aspects of concurrency on a single system, with emphasis on issues of
mutual exclusion and deadlock.

Part Three. Memory: Provides a comprehensive survey of techniques for
memory management, including virtual memory.

Part Four. Scheduling: Provides a comparative discussion of various approaches
to process scheduling. Thread scheduling, SMP scheduling, and real-time sched-
uling are also examined.

Part Five. Input/Output and Files: Examines the issues involved in OS control
of the I/O function. Special attention is devoted to disk I/O, which is the key to
system performance. Also provides an overview of file management.

Part Six. Embedded Systems: Embedded systems far outnumber general-
purpose computing systems and present of number of unique OS challenges.
The chapter includes a discussion of common principles plus coverage of two
example systems: TinyOS and eCos.

Part Seven. Security: Provides a survey of threats and mechanisms for provid-
ing computer and network security.

Part Eight. Distributed Systems: Examines the major trends in the networking
of computer systems, including TCP/IP, client/server computing, and clusters.
Also describes some of the key design areas in the development of distributed
operating systems.

This text is intended to acquaint you with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie
them to real-world design choices that must be made, two operating systems have
been chosen as running examples:

* Windows Vista: A multitasking operating system designed to run on a variety
of PCs, workstations, and servers. It is one of the few recent commercial oper-
ating systems that have essentially been designed from scratch. As such, it is in
a position to incorporate in a clean fashion the latest developments in operat-
ing system technology.

e UNIX: A multitasking operating system originally intended for minicomputers
but implemented on a wide range of machines from powerful microcomputers
to supercomputers. Included under this topic is Linux.
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The discussion of the example systems is distributed throughout the text
rather than assembled as a single chapter or appendix. Thus, during the discussion of
concurrency, the concurrency mechanisms of each example system are described,
and the motivation for the individual design choices is discussed. With this ap-
proach, the design concepts discussed in a given chapter are immediately reinforced
with real-world examples.

0.2 A ROADMAP FOR READERS AND INSTRUCTORS

It would be natural for the reader to question the particular ordering of topics pre-
sented in this book. For example, the topic of scheduling (Chapters 9 and 10) is
closely related to those of concurrency (Chapters 5 and 6) and the general topic of
processes (Chapter 3) and might reasonably be covered immediately after those
topics.

The difficulty is that the various topics are highly interrelated. For example, in
discussing virtual memory, it is useful to refer to the scheduling issues related to a page
fault. Of course, it is also useful to refer to some memory management issues when dis-
cussing scheduling decisions. This type of example can be repeated endlessly: A discus-
sion of scheduling requires some understanding of I/O management and vice versa.

Figure 0.1 suggests some of the important interrelationships between topics.
The bold lines indicate very strong relationships, from the point of view of design
and implementation decisions. Based on this diagram, it makes sense to begin with a

Process
description

Scheduling

Figure 0.1 OS Topics
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basic discussion of processes, which we do in Chapter 3. After that, the order is
somewhat arbitrary. Many treatments of operating systems bunch all of the material
on processes at the beginning and then deal with other topics. This is certainly valid.
However, the central significance of memory management, which I believe is of
equal importance to process management, has led to a decision to present this mate-
rial prior to an in-depth look at scheduling.

The ideal solution is for the student, after completing chapters 1 through 3 in
series, to read and absorb the following chapters in parallel: 4 followed by (optional)
5; 6 followed by 7; 8 followed by (optional) 9; 10. The remaining Parts can be done in
any order. However, although the human brain may engage in parallel processing,
the human student finds it impossible (and expensive) to work successfully with
four copies of the same book simultaneously open to four different chapters. Given
the necessity for a linear ordering, I think that the ordering used in this book is the
most effective.

A final word. Chapter 2, especially Section 2.3, provides a top-level view of
all of the key concepts covered in later chapters. Thus, after reading Chapter 2,
there is considerable flexibility in choosing the order in which to read the remaining
chapters.

0.3 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support
this book and to help one keep up with developments in this field.

Web Sites for This Book

A special Web page has been set up for this book at WilliamStallings.com/
0S/0S6e.html. See the layout at the beginning of this book for a detailed descrip-
tion of that site. Of particular note are online documents available at the Web site for
the student:

¢ Pseudocode: For those readers not comfortable with C, all of the algorithms
are also reproduced in a Pascal-like pseudocode. This pseudocode language is
intuitive and particularly easy to follow.

e Vista, UNIX, and Linux descriptions: As was mentioned, Windows and
various flavors of UNIX are used as running case studies, with the discus-
sion distributed throughout the text rather than assembled as a single
chapter or appendix. Some readers would like to have all of this material
in one place as a reference. Accordingly, all of the Windows, UNIX, and
Linux material from the book is reproduced in three documents at the
Web site.

As soon as any typos or other errors are discovered, an errata list for this book
will be available at the Web site. Please report any errors that you spot. Errata
sheets for my other books are at WilliamStallings.com.

I also maintain the Computer Science Student Resource Site, at WilliamStallings.
com/StudentSupport.html. The purpose of this site is to provide documents, infor-
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mation, and links for computer science students and professionals. Links and docu-
ments are organized into six categories:

e Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites.

¢ How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

e Research resources: Links to important collections of papers, technical re-
ports, and bibliographies.

e Miscellaneous: A variety of useful documents and links.

e Computer science careers: Useful links and documents for those considering a
career in computer science.

¢ Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

There are numerous Web sites that provide information related to the topics of this
book. In subsequent chapters, pointers to specific Web sites can be found in the
Recommended Reading and Web Sites section. Because the URL for a particular
Web site may change, I have not included URLs in the book. For all of the Web sites
listed in the book, the appropriate link can be found at this book’s Web site. Other
links not mentioned in this book will be added to the Web site over time.

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of operating sys-
tems or to a particular operating system. As with virtually all USENET groups,
there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet
your needs. The most relevant are as follows:

e comp.os.research: The best group to follow. This is a moderated newsgroup
that deals with research topics.

e comp.os.misc: A general discussion of OS topics.

e comp.unix.internals

e comp.os.linux.development.system



PART ONE

Background

art One provides a background and context for the remainder of this book.
This part presents the fundamental concepts of computer architecture and
operating system internals.

ROAD MAP FOR PART ONE

Chapter 1 Computer System Overview

An operating system mediates among application programs, utilities, and users, on
the one hand, and the computer system hardware on the other. To appreciate the
functionality of the operating system and the design issues involved, one must have
some appreciation for computer organization and architecture. Chapter 1 provides
a brief survey of the processor, memory, and Input/Output (I/O) elements of a com-
puter system.

Chapter 2 Operating System Overview

The topic of operating system (OS) design covers a huge territory, and it is easy to
get lost in the details and lose the context of a discussion of a particular issue.
Chapter 2 provides an overview to which the reader can return at any point in the
book for context. We begin with a statement of the objectives and functions of an
operating system. Then some historically important systems and OS functions are
described. This discussion allows us to present some fundamental OS design princi-
ples in a simple environment so that the relationship among various OS functions is
clear. The chapter next highlights important characteristics of modern operating sys-
tems. Throughout the book, as various topics are discussed, it is necessary to talk
about both fundamental, well-established principles as well as more recent innova-
tions in OS design. The discussion in this chapter alerts the reader to this blend of
established and recent design approaches that must be addressed. Finally, we pre-
sent an overview of Windows, UNIX, and Linux; this discussion establishes the gen-
eral architecture of these systems, providing context for the detailed discussions to
follow.



COMPUTER SYSTEM OVERVIEW

1.1 Basic Elements

1.2 Processor Registers
User-Visible Registers
Control and Status Registers

1.3 Instruction Execution
Instruction Fetch and Execute
I/O Function

1.4 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts
Multiprogramming

1.5 The Memory Hierarchy

1.6 Cache Memory
Motivation
Cache Principles
Cache Design

1.7 1/0 Communication Techniques
Programmed I/O
Interrupt-Driven I/O
Direct Memory Access

1.8 Recommended Reading and Web Sites
1.9 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristicd of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

APPENDIX 1B Procedure Control
Stack Implementation
Procedure Calls and Returns
Reentrant Procedures



8 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

An operating system (OS) exploits the hardware resources of one or more processors
to provide a set of services to system users. The OS also manages secondary memory
and I/O (input/output) devices on behalf of its users. Accordingly, it is important to
have some understanding of the underlying computer system hardware before we begin
our examination of operating systems.

This chapter provides an overview of computer system hardware. In most areas,
the survey is brief, as it is assumed that the reader is familiar with this subject. However,
several areas are covered in some detail because of their importance to topics covered
later in the book.

1.1 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

¢ Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).

° Main memory: Stores data and programs. This memory is typically volatile;
that is, when the computer is shut down, the contents of the memory are lost.
In contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

¢ I/0 modules: Move data between the computer and its external environ-
ment. The external environment consists of a variety of devices, including
secondary memory devices (e. g., disks), communications equipment, and
terminals.

* System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives
the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as ei-
ther an instruction or data. An I/O module transfers data from external devices to
processor and memory, and vice versa. It contains internal buffers for temporarily
holding data until they can be sent on.
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PC =
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MAR =
MBR =
/O AR =
I/OBR =

Figure 1.1 Computer Components: Top-Level View

1.2 PROCESSOR REGISTERS

A processor includes a set of registers that provide memory that is faster and smaller

Main memory

Instruction

e o 0 O — O

Instruction

Instruction

Data
Data
Data
Data

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

than main memory. Processor registers serve two functions:

e User-visible registers: Enable the machine or assembly language programmer
to minimize main memory references by optimizing register use. For high-
level languages, an optimizing compiler will attempt to make intelligent
choices of which variables to assign to registers and which to main memory
locations. Some high-level languages, such as C, allow the programmer to sug-

gest to the compiler which variables should be held in registers.

* Control and status registers: Used by the processor to control the operation
of the processor and by privileged OS routines to control the execution of

programs.

9
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There is not a clean separation of registers into these two categories. For
example, on some processors, the program counter is user visible, but on many it
is not. For purposes of the following discussion, however, it is convenient to use these
categories.

User-Visible Registers

A user-visible register may be referenced by means of the machine language that the
processor executes and is generally available to all programs, including application
programs as well as system programs. Types of registers that are typically available
are data, address, and condition code registers.

Data registers can be assigned to a variety of functions by the programmer. In
some cases, they are general purpose in nature and can be used with any machine in-
struction that performs operations on data. Often, however, there are restrictions.
For example, there may be dedicated registers for floating-point operations and oth-
ers for integer operations.

Address registers contain main memory addresses of data and instructions, or
they contain a portion of the address that is used in the calculation of the complete
or effective address. These registers may themselves be general purpose, or may be
devoted to a particular way, or mode, of addressing memory. Examples include the
following:

¢ Index register: Indexed addressing is a common mode of addressing that in-
volves adding an index to a base value to get the effective address.

* Segment pointer: With segmented addressing, memory is divided into segments,
which are variable-length blocks of words.! A memory reference consists of a
reference to a particular segment and an offset within the segment; this mode of
addressing is important in our discussion of memory management in Chapter 7.
In this mode of addressing, a register is used to hold the base address (starting
location) of the segment. There may be multiple registers; for example, one for
the OS (i.e., when OS code is executing on the processor) and one for the cur-
rently executing application.

e Stack pointer: If there is user-visible stack? addressing, then there is a dedi-
cated register that points to the top of the stack. This allows the use of instruc-
tions that contain no address field, such as push and pop.

For some processors, a procedure call will result in automatic saving of all user-
visible registers, to be restored on return. Saving and restoring is performed by the
processor as part of the execution of the call and return instructions. This allows each

!There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits that
is the normal unit in which information may be stored, transmitted, or operated on within a given com-
puter. Typically, if a processor has a fixed-length instruction set, then the instruction length equals the
word length.

2A stack is located in main memory and is a sequential set of locations that are referenced similarly to a
physical stack of papers, by putting on and taking away from the top. See Appendix 1B for a discussion of
stack processing.
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procedure to use these registers independently. On other processors, the program-
mer must save the contents of the relevant user-visible registers prior to a procedure
call, by including instructions for this purpose in the program. Thus, the saving and
restoring functions may be performed in either hardware or software, depending on
the processor.

Control and Status Registers

A variety of processor registers are employed to control the operation of the
processor. On most processors, most of these are not visible to the user. Some of
them may be accessible by machine instructions executed in what is referred to as a
control or kernel mode.

Of course, different processors will have different register organizations and
use different terminology. We provide here a reasonably complete list of register
types, with a brief description. In addition to the MAR, MBR, [/OAR, and I/OBR
registers mentioned earlier (Figure 1.1), the following are essential to instruction
execution:

* Program counter (PC): Contains the address of the next instruction to be fetched
¢ Instruction register (IR): Contains the instruction most recently fetched

All processor designs also include a register or set of registers, often known as
the program status word (PSW), that contains status information. The PSW typically
contains condition codes plus other status information, such as an interrupt
enable/disable bit and a kernel/user mode bit.

Condition codes (also referred to as flags) are bits typically set by the proces-
sor hardware as the result of operations. For example, an arithmetic operation may
produce a positive, negative, zero, or overflow result. In addition to the result itself
being stored in a register or memory, a condition code is also set following the exe-
cution of the arithmetic instruction. The condition code may subsequently be tested
as part of a conditional branch operation. Condition code bits are collected into one
or more registers. Usually, they form part of a control register. Generally, machine
instructions allow these bits to be read by implicit reference, but they cannot be al-
tered by explicit reference because they are intended for feedback regarding the re-
sults of instruction execution.

In processors with multiple types of interrupts, a set of interrupt registers
may be provided, with one pointer to each interrupt-handling routine. If a stack is
used to implement certain functions (e. g., procedure call), then a stack pointer is
needed (see Appendix 1B). Memory management hardware, discussed in Chapter 7,
requires dedicated registers. Finally, registers may be used in the control of I/O
operations.

A number of factors go into the design of the control and status register orga-
nization. One key issue is OS support. Certain types of control information are of
specific utility to the OS. If the processor designer has a functional understanding of
the OS to be used, then the register organization can be designed to provide hardware
support for particular features such as memory protection and switching between
user programs.
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Another key design decision is the allocation of control information between
registers and memory. It is common to dedicate the first (lowest) few hundred or
thousand words of memory for control purposes. The designer must decide how
much control information should be in more expensive, faster registers and how
much in less expensive, slower main memory.

1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored in
memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch
and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2.
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from
memory. Typically, the program counter (PC) holds the address of the next instruc-
tion to be fetched. Unless instructed otherwise, the processor always increments the
PC after each instruction fetch so that it will fetch the next instruction in sequence
(i.e., the instruction located at the next higher memory address). For example, con-
sider a simplified computer in which each instruction occupies one 16-bit word of
memory. Assume that the program counter is set to location 300. The processor will
next fetch the instruction at location 300. On succeeding instruction cycles, it will
fetch instructions from locations 301, 302, 303, and so on. This sequence may be al-
tered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The in-
struction contains bits that specify the action the processor is to take. The processor
interprets the instruction and performs the required action. In general, these actions
fall into four categories:

¢ Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

Fetch stage Execute stage

START Fetch next Execute HALT
instruction instruction

Figure 1.2 Basic Instruction Cycle
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0 3 4 15
Opcode | Address |

(a) Instruction format

0 1 15
| S | Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

e Processor-1/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

e Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

e Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor sets the
program counter to 182. Thus, on the next fetch stage, the instruction will be
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical processor that includes the
characteristics listed in Figure 1.3. The processor contains a single data register,
called the accumulator (AC). Both instructions and data are 16 bits long, and
memory is organized as a sequence of 16-bit words. The instruction format pro-
vides 4 bits for the opcode, allowing as many as 2* = 16 different opcodes (repre-
sented by a single hexadecimal® digit). The opcode defines the operation the
processor is to perform. With the remaining 12 bits of the instruction format, up to
212 = 4096 (4 K) words of memory (denoted by three hexadecimal digits) can be
directly addressed.

3A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer Sci-
ence Student Resource Site at WilliamStallings. com/StudentSupport.html.
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Fetch stage Execute stage
Memory CPU registers Memory CPU registers
30011 9 40 3 0 0]PC |300[1 9 40 3 0 1|PC
30159411> AC|301{5 9 4 1 000 3/AC
302(2 9 41 19401R3022941j194OIR
94010 0 0 3 940(0 0 0 3
94110 0 0 2 941(0 0 0 2
Step 1 Step 2
Memory CPU registers Memory CPU registers
30011 9 40 30 1|]PC |300[1 9 4 0 3 0 2|PC
301(5 9 41 000 3[/AC[301(59 41 000 5[AC
3022941-\>59411R3022941(5941_)IR
94000'03 94000'03 3+2=5
941[0 0 0 2 941[0 0 0 2}—"
Step 3 Step 4
Memory CPU registers Memory CPU registers
30011 9 40 3 0 2]|PC |300[1 9 40 3 0 3]PC
301(5 9 4 1 000 5[/AC[301|59 41 000 5/AC
302(2 9 41 2 9 4 1|IR|302{2 9 4 1 294 1|IR
94010 0 0 3 940(0 0 0 3
94110 0 0 2 941(0 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution (contents of memory
and registers in hexadecimal)

Figure 1.4 illustrates a partial program execution, showing the relevant por-

tions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

1.

6.

The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR) and
a memory buffer register (MBR). For simplicity, these intermediate registers are
not shown.

The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

The next instruction (5941) is fetched from location 301 and the PC is incremented.

The old contents of the AC and the contents of location 941 are added and the result
is stored in the AC.

The next instruction (2941) is fetched from location 302 and the PC is incremented.
The contents of the AC are stored in location 941.
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In this example, three instruction cycles, each consisting of a fetch stage and an
execute stage, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer instruction cycles would be needed.
Most modern processors include instructions that contain more than one address.
Thus the execution stage for a particular instruction may involve more than one ref-
erence to memory. Also, instead of memory references, an instruction may specify
an I/O operation.

I/0 Function

Data can be exchanged directly between an I/O module (e. g., a disk controller) and
the processor. Just as the processor can initiate a read or write with memory, speci-
fying the address of a memory location, the processor can also read data from or
write data to an I/O module. In this latter case, the processor identifies a specific de-
vice that is controlled by a particular I/O module. Thus, an instruction sequence sim-
ilar in form to that of Figure 1.4 could occur, with I/O instructions rather than
memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with main
memory to relieve the processor of the I/O task. In such a case, the processor grants
to an I/O module the authority to read from or write to memory, so that the I/O-
memory transfer can occur without tying up the processor. During such a transfer,
the I/O module issues read or write commands to memory, relieving the processor
of responsibility for the exchange. This operation, known as direct memory access
(DMA), is examined later in this chapter.

1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal sequencing of the processor. Table 1.1 lists the most com-
mon classes of interrupts.

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that the
processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such as
arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

/0 Generated by an I/O controller, to signal normal completion of an operation or to signal
a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.
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(a) No interrupts (b) Interrupts; short I/O wait (c) Interrupts; long I/0 wait
Figure 1.5 Program Flow of Control without and with Interrupts

until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use of

the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10° instructions per second.* A typical hard disk has a rotational speed
of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is 4 million
times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1,2, and 3 refer to sequences of instruc-
tions that do not involve I/O. The WRITE calls are to an I/O routine that is a system
utility and that will perform the actual I/O operation. The I/O program consists of

three sections:

* A sequence of instructions, labeled 4 in the figure, to prepare for the actual /O
operation. This may include copying the data to be output into a special buffer
and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command is
issued, the program must wait for the I/O device to perform the requested

4A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at WilliamStallings. com/StudentSupport.html.
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function (or periodically check the status, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the 1/O operation is done.

* A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

The dashed line represents the path of execution followed by the processor; that
is, this line shows the sequence in which instructions are executed. Thus, after the first
WRITE instruction is encountered, the user program is interrupted and execution
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.

Because the I/O operation may take a relatively long time to complete, the
I/O program is hung up waiting for the operation to complete; hence, the user
program is stopped at the point of the WRITE call for some considerable period
of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions
while an I/O operation is in progress. Consider the flow of control in Figure 1.5b.
As before, the user program reaches a point at which it makes a system call in the
form of a WRITE call. The I/O program that is invoked in this case consists only
of the preparation code and the actual I/O command. After these few instructions
have been executed, control returns to the user program. Meanwhile, the external
device is busy accepting data from computer memory and printing it. This I/O op-
eration is conducted concurrently with the execution of instructions in the user
program.

When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external de-
vice sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service
that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by X in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction
cycle, as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the
processor checks to see if any interrupts have occurred, indicated by the presence
of an interrupt signal. If no interrupts are pending, the processor proceeds to the
fetch stage and fetches the next instruction of the current program. If an interrupt
is pending, the processor suspends execution of the current program and executes
an interrupt-handler routine. The interrupt-handler routine is generally part of the
OS. Typically, this routine determines the nature of the interrupt and performs
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whatever actions are needed. In the example we have been using, the handler de-
termines which I/O module generated the interrupt and may branch to a program
that will write more data out to that I/O module. When the interrupt-handler rou-
tine is completed, the processor can resume execution of the user program at the

point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt
and to decide on the appropriate action. Nevertheless, because of the relatively large
amount of time that would be wasted by simply waiting on an I/O operation, the
processor can be employed much more efficiently with the use of interrupts.
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Figure 1.7 Instruction Cycle with Interrupts
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Figure 1.8 Program Timing: Short I/O Wait

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5 a and 1.5b. Figures 1.5b and 1.8 as-
sume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is that
the I/O operation will take much more time than executing a sequence of user in-
structions. Figure 1.5 c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency be-
cause part of the time during which the I/O operation is underway overlaps with the
execution of user instructions.
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Figure 1.9 Program Timing: Long I/0 Wait

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an
1/O operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to
the interrupt, as indicated in Figure 1.7.

3. The processor tests for a pending interrupt request, determines that there is one,
and sends an acknowledgment signal to the device that issued the interrupt. The
acknowledgment allows the device to remove its interrupt signal.
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4. The processor next needs to prepare to transfer control to the interrupt routine.
To begin, it saves information needed to resume the current program at the
point of interrupt. The minimum information required is the program status
word (PSW) and the location of the next instruction to be executed, which is
contained in the program counter. These can be pushed onto a control stack (see
Appendix 1B).

5. The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program,
one for each type of interrupt, or one for each device and each type of inter-
rupt. If there is more than one interrupt-handling routine, the processor
must determine which one to invoke. This information may have been in-
cluded in the original interrupt signal, or the processor may have to issue a
request to the device that issued the interrupt to get a response that contains
the needed information.

Once the program counter has been loaded, the processor proceeds to the next
instruction cycle, which begins with an instruction fetch. Because the instruction
fetch is determined by the contents of the program counter, control is transferred to
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the interrupt-handler program. The execution of this program results in the following
operations:

6. At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the control stack. However, there is other informa-
tion that is considered part of the state of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3. Figure 1.11 a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction (N + 1), a total of M words, are pushed onto the control
stack. The stack pointer is updated to point to the new top of stack, and the
program counter is updated to point to the beginning of the interrupt service
routine.

7. The interrupt handler may now proceed to process the interrupt. This includes an
examination of status information relating to the I/O operation or other event
that caused an interrupt. It may also involve sending additional commands or ac-
knowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e. g., see Figure 1.11b).

9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously inter-
rupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that
one or more interrupts can occur while an interrupt is being processed. For example, a
program may be receiving data from a communications line and printing results at the
same time. The printer will generate an interrupt every time that it completes a print
operation. The communication line controller will generate an interrupt every time a
unit of data arrives. The unit could either be a single character or a block, depending
on the nature of the communications discipline. In any case, it is possible for a commu-
nications interrupt to occur while a printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to
disable interrupts while an interrupt is being processed. A disabled interrupt simply
means that the processor ignores any new interrupt request signal. If an interrupt
occurs during this time, it generally remains pending and will be checked by the
processor after the processor has reenabled interrupts. Thus, when a user program is
executing and an interrupt occurs, interrupts are disabled immediately. After the
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Figure 1.11  Changes in Memory and Registers for an Interrupt

interrupt-handler routine completes, interrupts are reenabled before resuming the
user program, and the processor checks to see if additional interrupts have oc-
curred. This approach is simple, as interrupts are handled in strict sequential order
(Figure 1.12a).

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch ar-
rives, data may be lost because the buffer on the I/O device may fill and overflow.
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Figure 1.12 Transfer of Control with Multiple Interrupts

A second approach is to define priorities for interrupts and to allow an interrupt
of higher priority to cause a lower-priority interrupt handler to be interrupted (Figure
1.12b). As an example of this second approach, consider a system with three I/O de-
vices: a printer, a disk, and a communications line, with increasing priorities of 2,4, and
5, respectively. Figure 1.13, based on an example in [TANEOQ6], illustrates a possible se-
quence. A user program begins at ¢t = 0. At t = 10, a printer interrupt occurs; user infor-
mation is placed on the control stack and execution continues at the printer interrupt
service routine (ISR). While this routine is still executing, at = 15 a communications
interrupt occurs. Because the communications line has higher priority than the
printer, the interrupt request is honored. The printer ISR is interrupted, its state is
pushed onto the stack, and execution continues at the communications ISR. While this
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routine is executing, a disk interrupt occurs (¢ = 20). Because this interrupt is of lower
priority, it is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (¢t = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine
is complete (1 = 35) is the printer ISR resumed. When that routine completes (¢ = 40),
control finally returns to the user program.

Multiprogramming

Even with the use of interrupts, a processor may not be used very efficiently. For
example, refer to Figure 1.9b, which demonstrates utilization of the processor with
long I/O waits. If the time required to complete an I/O operation is much greater
than the user code between 1/O calls (a common situation), then the processor will
be idle much of the time. A solution to this problem is to allow multiple user pro-
grams to be active at the same time.

Suppose, for example, that the processor has two programs to execute. One is
a program for reading data from memory and putting it out on an external device;
the other is an application that involves a lot of calculation. The processor can begin
the output program, issue a write command to the external device, and then proceed
to begin execution of the other application. When the processor is dealing with a
number of programs, the sequence with which programs are executed will depend
on their relative priority as well as whether they are waiting for I/O. When a pro-
gram has been interrupted and control transfers to an interrupt handler, once the in-
terrupt-handler routine has completed, control may not necessarily immediately be
returned to the user program that was in execution at the time. Instead, control may
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pass to some other pending program with a higher priority. Eventually, the user pro-
gram that was interrupted will be resumed, when it has the highest priority. This con-
cept of multiple programs taking turns in execution is known as multiprogramming
and is discussed further in Chapter 2.

1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,

applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would
not want it to have to pause waiting for instructions or operands. The final question
must also be considered. For a practical system, the cost of memory must be reason-
able in relationship to other components.

As might be expected, there is a tradeoff among the three key characteristics

of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

e Faster access time, greater cost per bit

e QGreater capacity, smaller cost per bit

e Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-

ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance re-
quirements, the designer needs to use expensive, relatively lower-capacity memories
with fast access times.

The way out of this dilemma is to not rely on a single memory component or

technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

80

a. Decreasing cost per bit
b.

Increasing capacity
Increasing access time

Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,

cheaper, slower memories. The key to the success of this organization decreasing
frequency of access at lower levels. We will examine this concept in greater detail
later in this chapter, when we discuss the cache, and when we discuss virtual memory
later in this book. A brief explanation is provided at this point.

Suppose that the processor has access to two levels of memory. Level 1 con-

tains 1000 bytes and has an access time of 0.1 ps; level 2 contains 100,000 bytes and
has an access time of 1 ps. Assume that if a byte to be accessed is in level 1, then the
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Figure 1.14 The Memory Hierarchy

processor accesses it directly. If it is in level 2, then the byte is first transferred to level
1 and then accessed by the processor. For simplicity, we ignore the time required for
the processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows
the general shape of the curve that models this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined
as the fraction of all memory accesses that are found in the faster memory (e. g., the
cache), T} is the access time to level 1, and 7, is the access time to level 2.° As can be
seen, for high percentages of level 1 access, the average total access time is much
closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache
(H = 0.95). Then the average time to access a byte can be expressed as

(0.95) (0.1 ps) + (0.05) (0.1 ps + 1 ps) = 0.095 + 0.055 = 0.15 ps

SIf the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.
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The result is close to the access time of the faster memory. So the strategy of
using two memory levels works in principle, but only if conditions (a) through (d) in
the preceding list apply. By employing a variety of technologies, a spectrum of mem-
ory systems exists that satisfies conditions (a) through (c). Fortunately, condition (d) is
also generally valid.

The basis for the validity of condition (d) is a principle known as locality of ref-
erence [DENNG68]. During the course of execution of a program, memory references
by the processor, for both instructions and data, tend to cluster. Programs typically
contain a number of iterative loops and subroutines. Once a loop or subroutine is en-
tered, there are repeated references to a small set of instructions. Similarly, opera-
tions on tables and arrays involve access to a clustered set of data bytes. Over a long
period of time, the clusters in use change, but over a short period of time, the proces-
sor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2
memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory. The
fastest, smallest, and most expensive type of memory consists of the registers internal
to the processor. Typically, a processor will contain a few dozen such registers, al-
though some processors contain hundreds of registers. Skipping down two levels, main
memory is the principal internal memory system of the computer. Each location in
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main memory has a unique address, and most machine instructions refer to one or
more main memory addresses. Main memory is usually extended with a higher-speed,
smaller cache. The cache is not usually visible to the programmer or, indeed, to the
processor. It is a device for staging the movement of data between main memory and
processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semiconduc-
tor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical
storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files and are usually
visible to the programmer only in terms of files and records, as opposed to individ-
ual bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For ex-
ample, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (examined in detail in Chapter 11), improves performance in two ways:

e Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

e Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 1 A examines the performance implications of multilevel memory
structures.

1.6 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch the
instruction, and often one or more additional times, to fetch operands and/or store
results. The rate at which the processor can execute instructions is clearly limited by
the memory cycle time (the time it takes to read one word from or write one word
to memory). This limitation has been a significant problem because of the persistent
mismatch between processor and main memory speeds: Over the years, processor
speed has consistently increased more rapidly than memory access speed. We are
faced with a tradeoff among speed, cost, and size. Ideally, main memory should be
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built with the same technology as that of the processor registers, giving memory
cycle times comparable to processor cycle times. This has always been too expensive
a strategy. The solution is to exploit the principle of locality by providing a small, fast
memory between the processor and main memory, namely the cache.

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available and at the same time support a large memory size that has
the price of less expensive types of semiconductor memories. The concept is illus-
trated in Figure 1.16. There is a relatively large and slow main memory together with
a smaller, faster cache memory. The cache contains a copy of a portion of main mem-
ory. When the processor attempts to read a byte or word of memory, a check is made
to determine if the byte or word is in the cache. If so, the byte or word is delivered to
the processor. If not, a block of main memory, consisting of some fixed number of
bytes, is read into the cache and then the byte or word is delivered to the processor.
Because of the phenomenon of locality of reference, when a block of data is fetched
into the cache to satisfy a single memory reference, it is likely that many of the near-
future memory references will be to other bytes in the block.

Figure 1.17 depicts the structure of a cache/main memory system. Main memory
consists of up to 2" addressable words, with each word having a unique r-bit address.
For mapping purposes, this memory is considered to consist of a number of fixed-
length blocks of K words each. That is, there are M = 2"/K blocks. Cache consists of C
slots (also referred to as lines) of K words each, and the number of slots is consider-
ably less than the number of main memory blocks (C << M).® Some subset of the
blocks of main memory resides in the slots of the cache. If a word in a block of mem-
ory that is not in the cache is read, that block is transferred to one of the slots of the
cache. Because there are more blocks than slots, an individual slot cannot be uniquely
and permanently dedicated to a particular block. Therefore, each slot includes a tag
that identifies which particular block is currently being stored. The tag is usually some
number of higher-order bits of the address and refers to all addresses that begin with
that sequence of bits.

As a simple example, suppose that we have a 6-bit address and a 2-bit tag. The
tag 01 refers to the block of locations with the following addresses: 010000, 010001,
010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011,
011100,011101,011110,011111.

The symbol << means much less than. Similarly, the symbol >> means much greater than.
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Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache and
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key ele-
ments are briefly summarized here. We will see that similar design issues must be
addressed in dealing with virtual memory and disk cache design. They fall into the
following categories:

e Cache size

Block size

Mapping function

Replacement algorithm

Write policy
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We have already dealt with the issue of cache size. It turns out that reasonably
small caches can have a significant impact on performance. Another size issue is that
of block size: the unit of data exchanged between cache and main memory. As the
block size increases from very small to larger sizes, the hit ratio will at first increase
because of the principle of locality: the high probability that data in the vicinity of a
referenced word are likely to be referenced in the near future. As the block size in-
creases, more useful data are brought into the cache. The hit ratio will begin to de-
crease, however, as the block becomes even bigger and the probability of using the
newly fetched data becomes less than the probability of reusing the data that have
to be moved out of the cache to make room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design of
the mapping function. First, when one block is read in, another may have to be re-
placed. We would like to do this in such a way as to minimize the probability that we
will replace a block that will be needed in the near future. The more flexible the map-
ping function, the more scope we have to design a replacement algorithm to maximize
the hit ratio. Second, the more flexible the mapping function, the more complex is the
circuitry required to search the cache to determine if a given block is in the cache.
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The replacement algorithm chooses, within the constraints of the mapping
function, which block to replace when a new block is to be loaded into the cache and
the cache already has all slots filled with other blocks. We would like to replace the
block that is least likely to be needed again in the near future. Although it is impos-
sible to identify such a block, a reasonably effective strategy is to replace the block
that has been in the cache longest with no reference to it. This policy is referred to as
the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write
it back to main memory before replacing it. The write policy dictates when the mem-
ory write operation takes place. At one extreme, the writing can occur every time
that the block is updated. At the other extreme, the writing occurs only when the
block is replaced. The latter policy minimizes memory write operations but leaves
main memory in an obsolete state. This can interfere with multiple-processor opera-
tion and with direct memory access by I/O hardware modules.

1.7 I/O COMMUNICATION TECHNIQUES

Three techniques are possible for I/O operations:

* Programmed I/O
e Interrupt-driven I/O

e Direct memory access (DMA)

Programmed I/0

When the processor is executing a program and encounters an instruction relating to
/O, it executes that instruction by issuing a command to the appropriate I/O module.
In the case of programmed I/O, the I/O module performs the requested action and
then sets the appropriate bits in the I/O status register but takes no further action to
alert the processor. In particular, it does not interrupt the processor. Thus, after the
I/O instruction is invoked, the processor must take some active role in determining
when the I/O instruction is completed. For this purpose, the processor periodically
checks the status of the I/O module until it finds that the operation is complete.

With this technique, the processor is responsible for extracting data from main
memory for output and storing data in main memory for input. I/O software is writ-
ten in such a way that the processor executes instructions that give it direct control
of the I/O operation, including sensing device status, sending a read or write com-
mand, and transferring the data. Thus, the instruction set includes I/O instructions in
the following categories:

e Control: Used to activate an external device and tell it what to do. For example, a
magnetic-tape unit may be instructed to rewind or to move forward one record.

e Status: Used to test various status conditions associated with an I/O module
and its peripherals.

e Transfer: Used to read and/or write data between processor registers and external
devices.
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Figure 1.19 Three Techniques for Input of a Block of Data

Figure 1.19a gives an example of the use of programmed I/O to read in a block
of data from an external device (e. g.,a record from tape) into memory. Data are read
in one word (e. g., 16 bits) at a time. For each word that is read in, the processor must
remain in a status-checking loop until it determines that the word is available in the
I/O module’s data register. This flowchart highlights the main disadvantage of this
technique: It is a time-consuming process that keeps the processor busy needlessly.

Interrupt-Driven I/0

With programmed I/O, the processor has to wait a long time for the I/O module of
concern to be ready for either reception or transmission of more data. The proces-
sor, while waiting, must repeatedly interrogate the status of the I/O module. As a re-
sult, the performance level of the entire system is severely degraded.

An alternative is for the processor to issue an I/O command to a module and then
go on to do some other useful work. The I/O module will then interrupt the processor to
request service when it is ready to exchange data with the processor. The processor then
executes the data transfer, as before, and then resumes its former processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the I/O module receives a READ command from the processor. The I/O
module then proceeds to read data in from an associated peripheral. Once the data



1.7 / 1/0 COMMUNICATION TECHNIQUES 35

are in the module’s data register, the module signals an interrupt to the processor over
a control line. The module then waits until its data are requested by the processor.
When the request is made, the module places its data on the data bus and is then ready
for another I/O operation.

From the processor’s point of view, the action for input is as follows. The
processor issues a READ command. It then saves the context (e. g., program
counter and processor registers) of the current program and goes off and does
something else (e. g., the processor may be working on several different programs at
the same time). At the end of each instruction cycle, the processor checks for inter-
rupts (Figure 1.7). When the interrupt from the I/O module occurs, the processor
saves the context of the program it is currently executing and begins to execute an
interrupt-handling program that processes the interrupt. In this case, the processor
reads the word of data from the I/O module and stores it in memory. It then restores
the context of the program that had issued the I/O command (or some other program)
and resumes execution.

Figure 1.19b shows the use of interrupt-driven I/O for reading in a block of
data. Interrupt-driven I/O is more efficient than programmed I/O because it elimi-
nates needless waiting. However, interrupt-driven I/O still consumes a lot of proces-
sor time, because every word of data that goes from memory to I/O module or from
I/O module to memory must pass through the processor.

Almost invariably, there will be multiple I/O modules in a computer system, so
mechanisms are needed to enable the processor to determine which device caused
the interrupt and to decide, in the case of multiple interrupts, which one to handle
first. In some systems, there are multiple interrupt lines, so that each I/O module sig-
nals on a different line. Each line will have a different priority. Alternatively, there
can be a single interrupt line, but additional lines are used to hold a device address.
Again, different devices are assigned different priorities.

Direct Memory Access

Interrupt-driven I/O, though more efficient than simple programmed I/O, still re-
quires the active intervention of the processor to transfer data between memory and
an I/O module, and any data transfer must traverse a path through the processor.
Thus both of these forms of I/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2. The processor is tied up in managing an 1I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is re-
quired: direct memory access (DMA). The DMA function can be performed by a
separate module on the system bus or it can be incorporated into an I/O module. In
either case, the technique works as follows. When the processor wishes to read or
write a block of data, it issues a command to the DMA module, by sending to the
DMA module the following information:

* Whether a read or write is requested
e The address of the I/O device involved
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e The starting location in memory to read data from or write data to
¢ The number of words to be read or written

The processor then continues with other work. It has delegated this I/O oper-
ation to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DM A mod-
ule sends an interrupt signal to the processor. Thus the processor is involved only at
the beginning and end of the transfer (Figure 1.19c¢).

The DMA module needs to take control of the bus to transfer data to and
from memory. Because of this competition for bus usage, there may be times when
the processor needs the bus and must wait for the DMA module. Note that this is
not an interrupt; the processor does not save a context and do something else.
Rather, the processor pauses for one bus cycle (the time it takes to transfer one
word across the bus). The overall effect is to cause the processor to execute more
slowly during a DMA transfer when processor access to the bus is required. Never-
theless, for a multiple-word I/O transfer, DMA is far more efficient than interrupt-
driven or programmed I/O.

1.8 RECOMMENDED READING AND WEB SITES

[STALO6] covers the topics of this chapter in detail. In addition, there are many other
texts on computer organization and architecture. Among the more worthwhile texts
are the following. [PATTO7] is a comprehensive survey; [HENNO7], by the same au-
thors, is a more advanced text that emphasizes quantitative aspects of design.

[DENNOS] looks at the history of the development and application of the lo-
cality principle, making for fascinating reading.

DENNOS Denning, P. “The Locality Principle” Communications of the ACM, July 2005.

HENNO07 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann, 2007.

PATTO07 Patterson, D., and Hennessy, J. Computer Organization and Design: The Hardware/
Software Interface. San Mateo, CA: Morgan Kaufmann, 2007.

STALO06 Stallings, W. Computer Organization and Architecture, 7th ed. Upper Saddle
River, NJ: Prentice Hall, 2006.

Recommended Web sites:

* WWW Computer Architecture Home Page: A comprehensive index to information
relevant to computer architecture researchers, including architecture groups and pro-
jects, technical organizations, literature, employment, and commercial information
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* CPU Info Center: Information on specific processors, including technical papers, prod-

uct information, and latest announcements

1.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
address register instruction cycle reentrant procedure
cache memory instruction register register
cache slot interrupt secondary memory
central processing unit (CPU) interrupt-driven I/O segment pointer
condition code I/O module spatial locality
data register locality stack
direct memory access (DMA) main memory stack frame
hit ratio multiprogramming stack pointer
index register processor system bus
input/output (I/O) program counter temporal locality
instruction programmed I/O

Review Questions

1.1 List and briefly define the four main elements of a computer.
1.2 Define the two main categories of processor registers.
1.3 Ingeneral terms, what are the four distinct actions that a machine instruction can specify?
1.4 What is an interrupt?
1.5 How are multiple interrupts dealt with?
1.6 What characteristics distinguish the various elements of a memory hierarchy?
1.7  What is cache memory?
1.8 List and briefly define three techniques for I/O operations.
1.9  What is the distinction between spatial locality and temporal locality?
1.10 In general, what are the strategies for exploiting spatial locality and temporal locality?
Problems
1.1  Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from I/O
0111 = Store AC to I/O
In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using format of Figure 1.4) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.
Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.
1.2 The program execution of Figure 1.4 is described in the text using six steps. Expand

this description to show the use of the MAR and MBR.
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1.3

1.4

1.5

1.6

1.7

1.8

1.9

Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields. The first byte contains the opcode and the remainder an immediate
operand or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has

1. a 32-bit local address bus and a 16-bit local data bus, or

2. a 16-bit local address bus and a 16-bit local data bus.
c¢. How many bits are needed for the program counter and the instruction register?

Consider a hypothetical microprocessor generating a 16-bit address (for example, as-

sume that the program counter and the address registers are 16 bits wide) and having

a 16-bit data bus.

a. What is the maximum memory address space that the processor can access directly
if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

c. What architectural features will allow this microprocessor to access a separate
“I/O space”?

d. If an input and an output instruction can specify an 8-bit I/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum duration
equals four input clock cycles. What is the maximum data transfer rate across the bus
that this microprocessor can sustain in bytes/s? To increase its performance, would it
be better to make its external data bus 32 bits or to double the external clock fre-
quency supplied to the microprocessor? State any other assumptions you make and
explain. Hint: Determine the number of bytes that can be transferred per bus cycle.

Consider a computer system that contains an I/O module controlling a simple keyboard/
printer Teletype. The following registers are contained in the CPU and connected directly
to the system bus:

INPR: Input Register, 8 bits

OUTR: Output Register, 8 bits

FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the Teletype and output to the printer are controlled by the I/O
module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and
decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit
word enters the input register from the Teletype. The Output flag is set when a word
is printed.

a. Describe how the CPU, using the first four registers listed in this problem, can

achieve I/0O with the Teletype.
b. Describe how the function can be performed more efficiently by also employing IEN.

In virtually all systems that include DMA modules, DMA access to main memory is
given higher priority than processor access to main memory. Why?

A DMA module is transferring characters to main memory from an external device
transmitting at 9600 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

A computer consists of a CPU and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The CPU can execute a maximum of
106 instructions per second. An average instruction requires five processor cycles,
three of which use the memory bus. A memory read or write operation uses one
processor cycle. Suppose that the CPU is continuously executing “background”
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programs that require 95% of its instruction execution rate but not any I/O instruc-

tions. Assume that one processor cycle equals one bus cycle. Now suppose that very

large blocks of data are to be transferred between M and D.

a. If programmed I/O is used and each one-word I/O transfer requires the CPU to
execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.

1.10  Consider the following code:
for (i = 0;i < 20;i++)
for (j = 0;j <10;j++)
ali] = afi] *j
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

1.11  Generalize Equations (1.1) and (1.2) in Appendix 1 A to n-level memory hierarchies.
1.12  Consider a memory system with the following parameters:

T, =100 ns C. = 0.01 cents/bit
T,, = 1200 ns C,, = 0.001 cents/bit

What is the cost of 1 MByte of main memory?

What is the cost of 1 MByte of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

1.13 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache (this includes the time to
originally check the cache), and then the reference is started again. If the word is not
in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9
and the main-memory hit ratio is 0.6. What is the average time in ns required to access
a referenced word on this system?

TP

1.14  Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program
counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS OF

TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main mem-
ory and processor, creating a two-level internal memory. This two-level architecture
exploits a property known as locality to provide improved performance over a com-
parable one-level memory.

The main memory cache mechanism is part of the computer architecture, im-
plemented in hardware and typically invisible to the OS. Accordingly, this mechanism
is not pursued in this book. However, there are two other instances of a two-level
memory approach that also exploit the property of locality and that are, at least par-
tially, implemented in the OS: virtual memory and the disk cache (Table 1.2). These
two topics are explored in Chapters 8 and 11, respectively. In this appendix, we look
at some of the performance characteristics of two-level memories that are common to
all three approaches.
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Table 1.2 Characteristics of Two-Level Memories

system
Typical block size

Access of processor to
second level

special hardware
4 to 128 bytes
Direct access

and system software
64 to 4096 bytes
Indirect access

Main Memory Virtual Memory
Cache (Paging) Disk Cache
Typical access time ratios 5:1 10°:1 10:1
Memory management Implemented by Combination of hardware System software

64 to 4096 bytes
Indirect access

Locality

The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5. This principle states that memory references
tend to cluster. Over a long period of time, the clusters in use change, but over a
short period of time, the processor is primarily working with fixed clusters of
memory references.

Intuitively, the principle of locality makes sense. Consider the following line of
reasoning:

1. Except for branch and call instructions, which constitute only a small fraction of all
program instructions, program execution is sequential. Hence, in most cases, the
next instruction to be fetched immediately follows the last instruction fetched.

2. It is rare to have a long uninterrupted sequence of procedure calls followed by
the corresponding sequence of returns. Rather, a program remains confined to a
rather narrow window of procedure-invocation depth. Thus, over a short period
of time references to instructions tend to be localized to a few procedures.

3. Most iterative constructs consist of a relatively small number of instructions re-
peated many times. For the duration of the iteration, computation is therefore
confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data structures,
such as arrays or sequences of records. In many cases, successive references to
these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language pro-
grams. Table 1.3 includes key results, measuring the appearance of various statement
types during execution, from the following studies. The earliest study of program-
ming language behavior, performed by Knuth [KNUT71], examined a collection of
FORTRAN programs used as student exercises. Tanenbaum [TANE78] published
measurements collected from over 300 procedures used in OS programs and written
in a language that supports structured programming (SAL). Patterson and Sequin
[PATTS2] analyzed a set of measurements taken from compilers and programs for
typesetting, computer-aided design (CAD), sorting, and file comparison. The pro-
gramming languages C and Pascal were studied. Huck [HUCKS83] analyzed four pro-
grams intended to represent a mix of general-purpose scientific computing, including
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Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

Study [HUCKS3] [KNUT71] [PATTS2] [TANE78]
Language Pascal FORTRAN Pascal C SAL
Workload Scientific Student System System System

Assign 74 67 45 38 42

Loop 4 3 5 3 4

Call 1 3 15 12 12

IF 20 11 29 43 36

GOTO 2 — 3 —

Other — 6 6
fast Fourier transform and the integration of systems of differential equations. There
is good agreement in the results of this mixture of languages and applications that
branching and call instructions represent only a fraction of statements executed
during the lifetime of a program. Thus, these studies confirm assertion (1), from the
preceding list.

With respect to assertion (2), studies reported in [PATTS85] provide confirma-
tion. This is illustrated in Figure 1.20, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 would only need to shift on
less than 1% of the calls or returns [TAMI83].

The principle of locality of reference continues to be validated in more recent
studies. For example, Figure 1.21 illustrates the results of a study of Web page access
patterns at a single site [BAEN97].

Time
(in units of calls/returns)

| |

] L ! r=133 !

T | |
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Figure 1.20 Example Call-Return Behavior of a Program
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Figure 1.21 Locality of Reference for Web Pages

A distinction is made in the literature between spatial locality and temporal locality.
Spatial locality refers to the tendency of execution to involve a number of memory loca-
tions that are clustered. This reflects the tendency of a processor to access instructions
sequentially. Spatial location also reflects the tendency of a program to access data loca-
tions sequentially, such as when processing a table of data. Temporal locality refers to
the tendency for a processor to access memory locations that have been used recently.
For example, when an iteration loop is executed, the processor executes the same set of
instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruction
and data values in cache memory and by exploiting a cache hierarchy. Spatial locality
is generally exploited by using larger cache blocks and by incorporating prefetching
mechanisms (fetching items whose use is expected) into the cache control logic.
Recently, there has been considerable research on refining these techniques to achieve
greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of ac-
cesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

T,=HXT,+(1—H X(T, +T))
=T, +(1-H)XT, 1.1)
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where

T, = average (system) access time

T, = access time of M1 (e. g., cache, disk cache)

T, = access time of M2 (e. g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First consider cost. We have

LGS+ G,

- 1.2
s S+ S, 12)

where

C, = average cost per bit for the combined two-level memory
C, = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

S, = size of M1

S, = size of M2

We would like C; = C,. Given that C; >> C,, this requires S; << S,. Figure 1.22
shows the relationship.’

Next, consider access time. For a two-level memory to provide a significant per-
formance improvement, we need to have T, approximately equal to 7} (T, = T)).
Given that T} is much less than T, (T} << T5), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both re-
quirements to a reasonable extent? We can answer this question with a series of
subquestions:

° What value of hit ratio is needed to satisfy the performance requirement?
* What size of M1 will assure the needed hit ratio?
* Does this size satisfy the cost requirement?
To get at this, consider the quantity 77/7;, which is referred to as the access efficiency.

It is a measure of how close average access time (7) is to M1 access time (7). From
Equation (1.1),

4 - (1.3)

"Note that both axes use a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at WilliamStallings. com/StudentSupport.html.
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Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level

Memory

In Figure 1.23, we plot T7/T; as a function of the hit ratio H, with the quantity 7,/T}
as a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to sat-
isfy the performance requirement.

We can now phrase the question about relative memory size more exactly. Is a
hit ratio of 0.8 or better reasonable for §; << S,? This will depend on a number of
factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of lo-
cality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is the
same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always
stored also in M1. Now suppose that there is no locality; that is, references are com-
pletely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half
of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, how-
ever, there is some degree of locality in the references. The effects of moderate and
strong locality are indicated in the figure.

So if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e. g.,|[AGAR89],[PRZYS8S8], [STRES3], and [SMIT82]).
A cache in the range of 1 K to 128 K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual memory
and disk cache, we will cite other studies that confirm the same phenomenon,
namely that a relatively small M1 yields a high value of hit ratio because of locality.
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looks at their use in procedure control.

Stack Implementation

This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.

APPENDIX 1B PROCEDURE CONTROL

A common technique for controlling the execution of procedure calls and returns
makes use of a stack. This appendix summarizes the basic properties of stacks and

A stack is an ordered set of elements, only one of which (the most recently added) can
be accessed at a time. The point of access is called the top of the stack. The number of
elements in the stack, or length of the stack, is variable. Items may only be added to or
deleted from the top of the stack. For this reason, a stack is also known as a pushdown
list or a last-in-first-out (LIFO) list.
The implementation of a stack requires that there be some set of locations
used to store the stack elements. A typical approach is illustrated in Figure 1.25. A
contiguous block of locations is reserved in main memory (or virtual memory) for
the stack. Most of the time, the block is partially filled with stack elements and the

Stack
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Stack
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CPU
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Main
memory

Free
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remainder is available for stack growth. Three addresses are needed for proper op-
eration, and these are often stored in processor registers:

e Stack pointer: Contains the address of the current top of the stack. If an item
is appended to (PUSH) or deleted from (POP) the stack, the pointer is decre-
mented or incremented to contain the address of the new top of the stack.

e Stack base: Contains the address of the bottom location in the reserved block.
This is the first location to be used when an item is added to an empty stack. If an
attempt is made to POP an element when the stack is empty, an error is reported.

e Stack limit: Contains the address of the other end, or top, of the reserved block.
If an attempt is made to PUSH an element when the stack is full, an error is re-
ported.

Traditionally, and on most processors today, the base of the stack is at the high-
address end of the reserved stack block, and the limit is at the low-address end.
Thus, the stack grows from higher addresses to lower addresses.

Procedure Calls and Returns

A common technique for managing procedure calls and returns makes use of a
stack. When the processor executes a call, it places (pushes) the return address on
the stack. When it executes a return, it uses the address on top of the stack and re-
moves (pops) that address from the stack. For the nested procedures of Figure 1.26,
Figure 1.27 illustrates the use of a stack.

Addresses Main memory
4000
Main
3%8(1) CALL Procl program [ -
4500 >
4600 CALL Proc2 ( -
4601 Procedure
4650 CALL Proc2 Procl
4651 (
/ \
RETURN /]
4800
Procedure
Proc2
RETURN A
(a) Calls and returns (b) Execution sequence

Figure 1.26 Nested Procedures
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4601 4651
4101 4101 4101 4101 4101
° ° ° ° ° ° °
(a) Initial stack (b) After (c) Initial (d) After (e) After (f) After (g) After
contents CALL Procl CALL Proc2 RETURN CALL Proc2 RETURN RETURN

Figure 1.27 Use of Stack to Implement Nested Procedures of figure 1.26

It is also often necessary to pass parameters with a procedure call. These could
be passed in registers. Another possibility is to store the parameters in memory just
after the Call instruction. In this case, the return must be to the location following
the parameters. Both of these approaches have drawbacks. If registers are used, the
called program and the calling program must be written to assure that the registers
are used properly. The storing of parameters in memory makes it difficult to ex-
change a variable number of parameters.

A more flexible approach to parameter passing is the stack. When the proces-
sor executes a call, it not only stacks the return address, it stacks parameters to be
passed to the called procedure. The called procedure can access the parameters
from the stack. Upon return, return parameters can also be placed on the stack,
under the return address. The entire set of parameters, including return address, that
is stored for a procedure invocation is referred to as a stack frame.

An example is provided in Figure 1.28. The example refers to procedure P in
which the local variables x1 and x2 are declared, and procedure Q, which can be

Top of

2 stack pointer

yl

Return address

) Previous frame = —+— Current
Q pointer frame
- Top of 5 pointer
stack pointer *
xl x1
Return address Return address
- Current -
) Previous frame frame p: Previous frame
P pointer pointer pointer
(a) P is active (b) P has called Q

Figure 1.28 Stack Frame Growth Using Sample Procedures P and Q
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called by P and in which the local variables y1 and y2 are declared. The first item
stored in each stack frame is a pointer to the beginning of the previous frame. This
is needed if the number or length of parameters to be stacked is variable. Next is
stored the return point for the procedure that corresponds to this stack frame. Fi-
nally, space is allocated at the top of the stack frame for local variables. These local
variables can be used for parameter passing. For example, suppose that when P
calls Q, it passes one parameter value. This value could be stored in variable yl.
Thus, in a high-level language, there would be an instruction in the P routine that
looks like this:

CALL Q(y1)

When this call is executed, a new stack frame is created for Q (Figure 1.28b),
which includes a pointer to the stack frame for P, the return address to P, and two
local variables for Q, one of which is initialized to the passed parameter value from
P. The other local variable, y2, is simply a local variable used by Q in its calculations.
The need to include such local variables in the stack frame is discussed in the next
subsection.

Reentrant Procedures

A useful concept, particularly in a system that supports multiple users at the same
time, is that of the reentrant procedure. A reentrant procedure is one in which a sin-
gle copy of the program code can be shared by multiple users during the same pe-
riod of time. Reentrancy has two key aspects: The program code cannot modify
itself and the local data for each user must be stored separately. A reentrant proce-
dure can be interrupted and called by an interrupting program and still execute cor-
rectly upon return to the procedure. In a shared system, reentrancy allows more
efficient use of main memory: One copy of the program code is kept in main mem-
ory, but more than one application can call the procedure.

Thus, a reentrant procedure must have a permanent part (the instructions that
make up the procedure) and a temporary part (a pointer back to the calling pro-
gram as well as memory for local variables used by the program). Each execution in-
stance, called activation, of a procedure will execute the code in the permanent part
but must have its own copy of local variables and parameters. The temporary part
associated with a particular activation is referred to as an activation record.

The most convenient way to support reentrant procedures is by means of a
stack. When a reentrant procedure is called, the activation record of the procedure
can be stored on the stack. Thus, the activation record becomes part of the stack
frame that is created on procedure call.
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We begin our study of operating systems (OSs) with a brief history. This history is it-
self interesting and also serves the purpose of providing an overview of OS princi-
ples. The first section examines the objectives and functions of operating systems.
Then we look at how operating systems have evolved from primitive batch systems
to sophisticated multitasking, multiuser systems. The remainder of the chapter looks
at the history and general characteristics of the two operating systems that serve as
examples throughout this book. All of the material in this chapter is covered in
greater depth later in the book.

OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

¢ Convenience: An OS makes a computer more convenient to use.

 Efficiency: An OS allows the computer system resources to be used in an ef-
ficient manner.

e Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed in
a layered or hierarchical fashion, as depicted in Figure 2.1. The user of those applica-
tions, the end user, generally is not concerned with the details of computer hardware.
Thus, the end user views a computer system in terms of a set of applications. An ap-
plication can be expressed in a programming language and is developed by an appli-
cation programmer. If one were to develop an application program as a set of
machine instructions that is completely responsible for controlling the computer
hardware, one would be faced with an overwhelmingly complex undertaking. To ease
this chore, a set of system programs is provided. Some of these programs are referred
to as utilities. These implement frequently used functions that assist in program cre-
ation, the management of files, and the control of I/O devices. A programmer will
make use of these facilities in developing an application, and the application, while it
is running, will invoke the utilities to perform certain functions. The most important
collection of system programs comprises the OS. The OS masks the details of the
hardware from the programmer and provides the programmer with a convenient in-
terface for using the system. It acts as mediator, making it easier for the programmer
and for application programs to access and use those facilities and services.
Briefly, the OS typically provides services in the following areas:

* Program development: The OS provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that, while not
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Figure 2.1 Layers and Views of a Computer System

strictly part of the core of the OS, are supplied with the OS and are referred to
as application program development tools.

* Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles these scheduling duties for the user.

* Access to I/O devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface that
hides these details so that programmers can access such devices using simple
reads and writes.

* Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the structure of the data contained in the files on the storage medium. In
the case of a system with multiple users, the OS may provide protection mech-
anisms to control access to the files.

* System access: For shared or public systems, the OS controls access to the sys-
tem as a whole and to specific system resources. The access function must pro-
vide protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.

¢ Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such as
a memory error, or a device failure or malfunction; and various software
errors, such as division by zero, attempt to access forbidden memory location,
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and inability of the OS to grant the request of an application. In each case, the
OS must provide a response that clears the error condition with the least im-
pact on running applications. The response may range from ending the pro-
gram that caused the error, to retrying the operation, to simply reporting the
error to the application.

* Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

The Operating System as Resource Manager

A computer is a set of resources for the movement, storage, and processing of data and
for the control of these functions. The OS is responsible for managing these resources.

Can we say that it is the OS that controls the movement, storage, and process-
ing of data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system
is controlled by a thermostat, which is separate from the heat-generation and heat-
distribution apparatus.) This is not the case with the OS, which as a control mecha-
nism is unusual in two respects:

e The OS functions in the same way as ordinary computer software; that is, it is a
program or suite of programs executed by the processor.

e The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the processor.
The key difference is in the intent of the program. The OS directs the processor in
the use of the other system resources and in the timing of its execution of other pro-
grams. But in order for the processor to do any of these things, it must cease execut-
ing the OS program and execute other programs. Thus, the OS relinquishes control
for the processor to do some “useful” work and then resumes control long enough
to prepare the processor to do the next piece of work. The mechanisms involved in
all this should become clear as the chapter proceeds.

Figure 2.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains the
most frequently used functions in the OS and, at a given time, other portions of the
OS currently in use. The remainder of main memory contains user programs and
data. The allocation of this resource (main memory) is controlled jointly by the OS
and memory management hardware in the processor, as we shall see. The OS decides
when an I/O device can be used by a program in execution and controls access to and
use of files. The processor itself is a resource, and the OS must determine how much
processor time is to be devoted to the execution of a particular user program. In the
case of a multiple-processor system, this decision must span all of the processors.
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Figure 2.2 The Operating System as Resource Manager

Ease of Evolution of an Operating System
A major operating system will evolve over time for a number of reasons:

e Hardware upgrades plus new types of hardware: For example, early versions
of UNIX and the Macintosh operating system did not employ a paging mech-
anism because they were run on processors without paging hardware.! Subse-
quent versions of these operating systems were modified to exploit paging
capabilities. Also, the use of graphics terminals and page-mode terminals in-
stead of line-at-a-time scroll mode terminals affects OS design. For example, a
graphics terminal typically allows the user to view several applications at the
same time through “windows” on the screen. This requires more sophisticated
support in the OS.

¢ New services: In response to user demand or in response to the needs of sys-
tem managers, the OS expands to offer new services. For example, if it is found
to be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

* Fixes: Any OS has faults. These are discovered over the course of time and
fixes are made. Of course, the fix may introduce new faults.

!Paging is introduced briefly later in this chapter and is discussed in detail in Chapter 7.
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The need to change an OS regularly places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be re-
ferred to as straightforward modularization is inadequate [DENN80a]. That is, much
more must be done than simply partitioning a program into modules. We return to
this topic later in this chapter.

2.2 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance of
the major features of a contemporary OS, it is useful to consider how operating sys-
tems have evolved over the years.

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the programmer inter-

acted directly with the computer hardware; there was no OS.These computers were run

from a console consisting of display lights, toggle switches, some form of input device,

and a printer. Programs in machine code were loaded via the input device (e.g., a card

reader). If an error halted the program, the error condition was indicated by the lights. If

the program proceeded to a normal completion, the output appeared on the printer.
These early systems presented two main problems:

* Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

e Setup time: A single program, called a job, could involve loading the compiler
plus the high-level language program (source program) into memory, saving the
compiled program (object program) and then loading and linking together the
object program and common functions. Each of these steps could involve mount-
ing or dismounting tapes or setting up card decks. If an error occurred, the hap-
less user typically had to go back to the beginning of the setup sequence. Thus, a
considerable amount of time was spent just in setting up the program to run.

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These in-
clude libraries of common functions, linkers, loaders, debuggers, and I/O driver rou-
tines that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.
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To improve utilization, the concept of a batch operating system was developed.
It appears that the first batch operating system (and the first OS of any kind) was de-
veloped in the mid-1950s by General Motors for use on an IBM 701 [WEIZS81]. The
concept was subsequently refined and implemented on the IBM 704 by a number of
IBM customers. By the early 1960s, a number of vendors had developed batch oper-
ating systems for their computer systems. IBSYS, the IBM operating system for the
7090/7094 computers, is particularly notable because of its widespread influence on
other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a
computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the monitor
automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of view:
that of the monitor and that of the processor.

* Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (Figure 2.3). That portion is referred to as the resident monitor.
The rest of the monitor consists of utilities and common functions that are
loaded as subroutines to the user program at the beginning of any job that re-
quires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads in
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Control language
interpreter
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program
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Figure 2.3 Memory Layout for a
Resident Monitor
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the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

¢ Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These instruc-
tions cause the next job to be read into another portion of main memory. Once
a job has been read in, the processor will encounter a branch instruction in the
monitor that instructs the processor to continue execution at the start of the
user program. The processor will then execute the instructions in the user pro-
gram until it encounters an ending or error condition. Either event causes the
processor to fetch its next instruction from the monitor program. Thus the
phrase “control is passed to a job” simply means that the processor is now
fetching and executing instructions in a user program, and “control is returned
to the monitor” means that the processor is now fetching and executing in-
structions from the monitor program.

The monitor performs a scheduling function: A batch of jobs is queued up, and
jobs are executed as rapidly as possible, with no intervening idle time. The monitor
improves job setup time as well. With each job, instructions are included in a primi-
tive form of job control language (JCL). This is a special type of programming lan-
guage used to provide instructions to the monitor. A simple example is that of a user
submitting a program written in the programming language FORTRAN plus some
data to be used by the program. All FORTRAN instructions and data are on a sep-
arate punched card or a separate record on tape. In addition to FORTRAN and
data lines, the job includes job control instructions, which are denoted by the begin-
ning $. The overall format of the job looks like this:

$JOB
$FTN

° FORTRAN instructions

$LOAD
$RUN

° Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropriate
language compiler from its mass storage (usually tape). The compiler translates the
user’s program into object code, which is stored in memory or mass storage. If it is
stored in memory, the operation is referred to as “compile, load, and go.” If it is
stored on tape, then the $LOAD instruction is required. This instruction is read by
the monitor, which regains control after the compile operation. The monitor invokes
the loader, which loads the object program into memory (in place of the compiler)
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and transfers control to it. In this manner, a large segment of main memory can be
shared among different subsystems, although only one such subsystem could be ex-
ecuting at a time.

During the execution of the user program, any input instruction causes one
line of data to be read. The input instruction in the user program causes an input
routine that is part of the OS to be invoked. The input routine checks to make sure
that the program does not accidentally read in a JCL line. If this happens, an error
occurs and control transfers to the monitor. At the completion of the user job, the
monitor will scan the input lines until it encounters the next JCL instruction. Thus,
the system is protected against a program with too many or too few data lines.

The monitor, or batch operating system, is simply a computer program. It re-
lies on the ability of the processor to fetch instructions from various portions of
main memory to alternately seize and relinquish control. Certain other hardware
features are also desirable:

* Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the processor
hardware should detect an error and transfer control to the monitor. The monitor
would then abort the job, print out an error message, and load in the next job.

e Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

e Privileged instructions: Certain machine level instructions are designated
privileged and can be executed only by the monitor. If the processor encoun-
ters such an instruction while executing a user program, an error Occurs caus-
ing control to be transferred to the monitor. Among the privileged instructions
are I/O instructions, so that the monitor retains control of all I/O devices. This
prevents, for example, a user program from accidentally reading job control in-
structions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it.

e Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use and in which certain in-
structions may not be executed. The monitor executes in a system mode, or what has
come to be called kernel mode, in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch operating system, processor time alternates between execution
of user programs and execution of the monitor. There have been two sacrifices:
Some main memory is now given over to the monitor and some processor time is
consumed by the monitor. Both of these are forms of overhead. Despite this over-
head, the simple batch system improves utilization of the computer.



2.2 / THE EVOLUTION OF OPERATING SYSTEMS 59

Read one record from file
Execute 100 instructions
Write one record to file

Total

1
Percent CPU Ultilization = 31 =0.032 =32%

15 ws
1 s
15 ws

31 s

Multiprogrammed Batch Systems

Figure 2.4 System Ultilization Example

Even with the automatic job sequencing provided by a simple batch operating sys-
tem, the processor is often idle. The problem is that I/O devices are slow compared
to the processor. Figure 2.4 details a representative calculation. The calculation
concerns a program that processes a file of records and performs, on average, 100
machine instructions per record. In this example the computer spends over 96%
of its time waiting for I/O devices to finish transferring data to and from the file.
Figure 2.5a illustrates this situation, where we have a single program, referred to
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Table 2.1  Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M S M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

as uniprogramming. The processor spends a certain amount of time executing,
until it reaches an I/O instruction. It must then wait until that I/O instruction con-
cludes before proceeding.

This inefficiency is not necessary. We know that there must be enough memory
to hold the OS (resident monitor) and one user program. Suppose that there is room
for the OS and two user programs. When one job needs to wait for I/O, the processor
can switch to the other job, which is likely not waiting for I/O (Figure 2.5b). Further-
more, we might expand memory to hold three, four, or more programs and switch
among all of them (Figure 2.5c). The approach is known as multiprogramming, or
multitasking. It is the central theme of modern operating systems.

To illustrate the benefit of multiprogramming, we give a simple example. Con-
sider a computer with 250 Mbytes of available memory (not used by the OS), a disk,
a terminal, and a printer. Three programs, JOB1,JOB2, and JOB3, are submitted for
execution at the same time, with the attributes listed in Table 2.1. We assume mini-
mal processor requirements for JOB2 and JOB3 and continuous disk and printer
use by JOB3. For a simple batch environment, these jobs will be executed in se-
quence. Thus, JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes are
over and then completes 15 minutes after that. JOB3 begins after 20 minutes and
completes at 30 minutes from the time it was initially submitted. The average re-
source utilization, throughput, and response times are shown in the uniprogram-
ming column of Table 2.2. Device-by-device utilization is illustrated in Figure 2.6a.
It is evident that there is gross underutilization for all resources when averaged over
the required 30-minute time period.

Table 2.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%
Memory use 339% 67%

Disk use 339, 67%

Printer use 339%, 67%

Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min
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Now suppose that the jobs are run concurrently under a multiprogramming
operating system. Because there is little resource contention between the jobs, all
three can run in nearly minimum time while coexisting with the others in the com-
puter (assuming that JOB2 and JOB3 are allotted enough processor time to keep
their input and output operations active). JOB1 will still require 5 minutes to com-
plete, but at the end of that time, JOB2 will be one-third finished and JOB3 half fin-
ished. All three jobs will have finished within 15 minutes. The improvement is
evident when examining the multiprogramming column of Table 2.2, obtained from
the histogram shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely on
certain computer hardware features. The most notable additional feature that is use-
ful for multiprogramming is the hardware that supports I/O interrupts and DMA
(direct memory access). With interrupt-driven I/O or DMA, the processor can issue
an I/O command for one job and proceed with the execution of another job while
the I/O is carried out by the device controller. When the I/O operation is complete,
the processor is interrupted and control is passed to an interrupt-handling program
in the OS. The OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run, they
must be kept in main memory, requiring some form of memory management. In ad-
dition, if several jobs are ready to run, the processor must decide which one to run,
this decision requires an algorithm for scheduling. These concepts are discussed
later in this chapter.

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient. How-
ever, for many jobs, it is desirable to provide a mode in which the user interacts di-
rectly with the computer. Indeed, for some jobs, such as transaction processing, an
interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch
jobs at a time, multiprogramming can also be used to handle multiple interactive
jobs. In this latter case, the technique is referred to as time sharing, because
processor time is shared among multiple users. In a time-sharing system, multiple
users simultaneously access the system through terminals, with the OS interleav-
ing the execution of each user program in a short burst or quantum of computa-
tion. Thus, if there are n users actively requesting service at one time, each user
will only see on the average 1/n of the effective computer capacity, not counting
OS overhead. However, given the relatively slow human reaction time, the re-
sponse time on a properly designed system should be similar to that on a dedi-
cated computer.

Both batch processing and time sharing use multiprogramming. The key dif-
ferences are listed in Table 2.3.
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Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at the
operating system provided with the job terminal

One of the first time-sharing operating systems to be developed was the
Compatible Time-Sharing System (CTSS) [CORB62], developed at MIT by a group
known as Project MAC (Machine-Aided Cognition, or Multiple-Access Computers).
The system was first developed for the IBM 709 in 1961 and later transferred to an
IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming
5000 of that. When control was to be assigned to an interactive user, the user’s pro-
gram and data were loaded into the remaining 27,000 words of main memory. A
program was always loaded to start at the location of the 5000th word; this simpli-
fied both the monitor and memory management. A system clock generated inter-
rupts at a rate of approximately one every 0.2 seconds. At each clock interrupt, the
OS regained control and could assign the processor to another user. This tech-
nique is known as time slicing. Thus, at regular time intervals, the current user
would be preempted and another user loaded in. To preserve the old user program
status for later resumption, the old user programs and data were written out to
disk before the new user programs and data were read in. Subsequently, the old
user program code and data were restored in main memory when that program
was next given a turn.

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7. Assume that
there are four interactive users with the following memory requirements, in words:

 JOBI1: 15,000
« JOB2:20,000
« JOB3: 5000

 JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (a). Later, the mon-
itor decides to transfer control to JOB2. Because JOB2 requires more memory than
JOB1,JOB1 must be written out first, and then JOB2 can be loaded (b). Next, JOB3
is loaded in to be run. However, because JOB3 is smaller than JOB2, a portion of
JOB2 can remain in memory, reducing disk write time (c). Later, the monitor decides
to transfer control back to JOB1. An additional portion of JOB2 must be written out
when JOBI is loaded back into memory (d). When JOB4 is loaded, part of JOB1 and
the portion of JOB2 remaining in memory are retained (e). At this point, if either
JOB1 or JOB2 is activated, only a partial load will be required. In this example, it
is JOB2 that runs next. This requires that JOB4 and the remaining resident portion
of JOB1 be written out and that the missing portion of JOB2 be read in (f).
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Figure 2.7 CTSS Operation

The CTSS approach is primitive compared to present-day time sharing, but it
worked. It was extremely simple, which minimized the size of the monitor. Because
a job was always loaded into the same locations in memory, there was no need for
relocation techniques at load time (discussed subsequently). The technique of only
writing out what was necessary minimized disk activity. Running on the 7094, CTSS
supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS.
If multiple jobs are in memory, then they must be protected from interfering with
each other by, for example, modifying each other’s data. With multiple interactive
users, the file system must be protected so that only authorized users have access to
a particular file. The contention for resources, such as printers and mass storage de-
vices, must be handled. These and other problems, with possible solutions, will be en-
countered throughout this text.

2.3 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever developed.
This reflects the challenge of trying to meet the difficult and in some cases compet-
ing objectives of convenience, efficiency, and ability to evolve. [DENN80a] proposes
that there have been five major theoretical advances in the development of operat-
ing systems:

* Processes

° Memory management



2.3 / MAJOR ACHIEVEMENTS 65

e Information protection and security
e Scheduling and resource management
e System structure
Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these five areas span many of the
key design and implementation issues of modern operating systems. The brief re-

view of these five areas in this section serves as an overview of much of the rest of
the text.

The Process

The concept of process is fundamental to the structure of operating systems. This
term was first used by the designers of Multics in the 1960s [DALEG68]. It is a some-
what more general term than job. Many definitions have been given for the term
process, including

e A program in execution

* An instance of a program running on a computer

¢ The entity that can be assigned to and executed on a processor

A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

This concept should become clearer as we proceed.

Three major lines of computer system development created problems in tim-
ing and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor
and I/O devices, including storage devices, simultaneously busy to achieve maxi-
mum efficiency. The key mechanism is this: In response to signals indicating the
completion of I/O transactions, the processor is switched among the various pro-
grams residing in main memory.

A second line of development was general-purpose time sharing. Here, the
key design objective is to be responsive to the needs of the individual user and yet,
for cost reasons, be able to support many users simultaneously. These goals are com-
patible because of the relatively slow reaction time of the user. For example, if a typ-
ical user needs an average of 2 seconds of processing time per minute, then close to
30 such users should be able to share the same system without noticeable interfer-
ence. Of course, OS overhead must be factored into such calculations.

Another important line of development has been real-time transaction pro-
cessing systems. In this case, a number of users are entering queries or updates
against a database. An example is an airline reservation system. The key difference
between the transaction processing system and the time-sharing system is that the
former is limited to one or a few applications, whereas users of a time-sharing sys-
tem can engage in program development, job execution, and the use of various ap-
plications. In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
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of any job could be suspended by the occurrence of a defined event, such as an 1/O
completion. The processor would save some sort of context (e. g., program counter
and other registers) and branch to an interrupt-handling routine, which would de-
termine the nature of the interrupt, process the interrupt, and then resume user pro-
cessing with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming er-
rors whose effects could be observed only when certain relatively rare sequences of
actions occurred. These errors were difficult to diagnose because they needed to be
distinguished from application software errors and hardware errors. Even when the
error was detected, it was difficult to determine the cause, because the precise con-
ditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENN80a]:

e Improper synchronization: It is often the case that a routine must be sus-
pended awaiting an event elsewhere in the system. For example, a program
that initiates an I/O read must wait until the data are available in a buffer be-
fore proceeding. In such cases, a signal from some other routine is required.
Improper design of the signaling mechanism can result in signals being lost or
duplicate signals being received.

¢ Failed mutual exclusion: It is often the case that more than one user or pro-
gram will attempt to make use of a shared resource at the same time. For ex-
ample, two users may attempt to edit the same file at the same time. If these
accesses are not controlled, an error can occur. There must be some sort of mu-
tual exclusion mechanism that permits only one routine at a time to perform
an update against the file. The implementation of such mutual exclusion is dif-
ficult to verify as being correct under all possible sequences of events.

* Nondeterminate program operation: The results of a particular program nor-
mally should depend only on the input to that program and not on the activi-
ties of other programs in a shared system. But when programs share memory,
and their execution is interleaved by the processor, they may interfere with
each other by overwriting common memory areas in unpredictable ways. Thus,
the order in which various programs are scheduled may affect the outcome of
any particular program.

¢ Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to
perform some operation (e.g., disk to tape copy). One of the programs has
seized control of one of the devices and the other program has control of the
other device. Each is waiting for the other program to release the desired re-
source. Such a deadlock may depend on the chance timing of resource alloca-
tion and release.
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What is needed to tackle these problems is a systematic way to monitor and
control the various programs executing on the processor. The concept of the
process provides the foundation. We can think of a process as consisting of three
components:

e An executable program
e The associated data needed by the program (variables, work space, buffers, etc.)
e The execution context of the program

This last element is essential. The execution context, or process state, is the in-
ternal data by which the OS is able to supervise and control the process. This inter-
nal information is separated from the process, because the OS has information not
permitted to the process. The context includes all of the information that the OS
needs to manage the process and that the processor needs to execute the process
properly. The context includes the contents of the various processor registers, such
as the program counter and data registers. It also includes information of use to the
OS, such as the priority of the process and whether the process is waiting for the
completion of a particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two processes,
A and B, exist in portions of main memory. That is, a block of memory is allocated to
each process that contains the program, data, and context information. Each process
is recorded in a process list built and maintained by the OS.The process list contains
one entry for each process, which includes a pointer to the location of the block of
memory that contains the process. The entry may also include part or all of the exe-
cution context of the process. The remainder of the execution context is stored else-
where, perhaps with the process itself (as indicated in Figure 2.8) or frequently in a
separate region of memory. The process index register contains the index into the
process list of the process currently controlling the processor. The program counter
points to the next instruction in that process to be executed. The base and limit reg-
isters define the region in memory occupied by the process: The base register is the
starting address of the region of memory and the limit is the size of the region
(in bytes or words). The program counter and all data references are interpreted rel-
ative to the base register and must not exceed the value in the limit register. This
prevents interprocess interference.

In Figure 2.8, the process index register indicates that process B is executing.
Process A was previously executing but has been temporarily interrupted. The con-
tents of all the registers at the moment of A’s interruption were recorded in its exe-
cution context. Later, the OS can perform a process switch and resume execution of
process A. The process switch consists of storing the context of B and restoring the
context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be execut-
ing or awaiting execution. The entire state of the process at any instant is contained
in its context. This structure allows the development of powerful techniques for en-
suring coordination and cooperation among processes. New features can be de-
signed and incorporated into the OS (e.g., priority) by expanding the context to
include any new information needed to support the feature. Throughout this book,
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Figure 2.8 Typical Process Implementation

we will see a number of examples where this process structure is employed to solve
the problems raised by multiprogramming and resource sharing.

Memory Management

The needs of users can be met best by a computing environment that supports mod-
ular programming and the flexible use of data. System managers need efficient and
orderly control of storage allocation. The OS, to satisfy these requirements, has five
principal storage management responsibilities:

* Process isolation: The OS must prevent independent processes from interfer-
ing with each other’s memory, both data and instructions.

° Automatic allocation and management: Programs should be dynamically allo-
cated across the memory hierarchy as required. Allocation should be transpar-
ent to the programmer. Thus, the programmer is relieved of concerns relating
to memory limitations, and the OS can achieve efficiency by assigning memory
to jobs only as needed.
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* Support of modular programming: Programmers should be able to define
program modules, and to create, destroy, and alter the size of modules
dynamically.

* Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

* Long-term storage: Many application programs require means for storing in-
formation for extended periods of time, after the computer has been powered
down.

Typically, operating systems meet these requirements with virtual memory and
file system facilities. The file system implements a long-term store, with information
stored in named objects, called files. The file is a convenient concept for the pro-
grammer and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from a
logical point of view, without regard to the amount of main memory physically
available. Virtual memory was conceived to meet the requirement of having multi-
ple user jobs reside in main memory concurrently, so that there would not be a hia-
tus between the execution of successive processes while one process was written
out to secondary store and the successor process was read in. Because processes
vary in size, if the processor switches among a number of processes, it is difficult to
pack them compactly into main memory. Paging systems were introduced, which
allow processes to be comprised of a number of fixed-size blocks, called pages. A
program references a word by means of a virtual address consisting of a page num-
ber and an offset within the page. Each page of a process may be located anywhere
in main memory. The paging system provides for a dynamic mapping between the
virtual address used in the program and a real address, or physical address, in main
memory.

With dynamic mapping hardware available, the next logical step was to elimi-
nate the requirement that all pages of a process reside in main memory simultane-
ously. All the pages of a process are maintained on disk. When a process is
executing, some of its pages are in main memory. If reference is made to a page that
is not in main memory, the memory management hardware detects this and
arranges for the missing page to be loaded. Such a scheme is referred to as virtual
memory and is depicted in Figure 2.9.

The processor hardware, together with the OS, provides the user with a “virtual
processor” that has access to a virtual memory. This memory may be a linear address
space or a collection of segments, which are variable-length blocks of contiguous ad-
dresses. In either case, programming language instructions can reference program
and data locations in the virtual memory area. Process isolation can be achieved by
giving each process a unique, nonoverlapping virtual memory. Memory sharing can
be achieved by overlapping portions of two virtual memory spaces. Files are main-
tained in a long-term store. Files and portions of files may be copied into the virtual
memory for manipulation by programs.
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Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory
and lower-speed auxiliary memory that is accessed indirectly by loading blocks into
main memory. Address translation hardware (memory management unit) is inter-
posed between the processor and memory. Programs reference locations using vir-
tual addresses, which are mapped into real main memory addresses. If a reference is
made to a virtual address not in real memory, then a portion of the contents of real
memory is swapped out to auxiliary memory and the desired block of data is
swapped in. During this activity, the process that generated the address reference
must be suspended. The OS designer needs to develop an address translation mech-
anism that generates little overhead and a storage allocation policy that minimizes

the traffic between memory levels.

—
v

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 User

3 pro%rarn

9

10

User
program

A

v
Disk

Secondary memory (disk) can

hold many fixed-length pages. A
user program consists of some
number of pages. Pages for all
programs plus the operating system
are on disk, as are files.



2.3 / MAJOR ACHIEVEMENTS 71

Real
Memory- address
Processor management
Virtual unit
address .
Main
memory
Disk
address
Secondary

memory

Figure 2.10  Virtual Memory Addressing

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information.
The nature of the threat that concerns an organization will vary greatly depending
on the circumstances. However, there are some general-purpose tools that can be
built into computers and operating systems that support a variety of protection and
security mechanisms. In general, we are concerned with the problem of controlling
access to computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

* Availability: Concerned with protecting the system against interruption

¢ Confidentiality: Assures that users cannot read data for which access is
unauthorized

e Data integrity: Protection of data from unauthorized modification

* Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it
(main memory space, I/O devices, processors) and to schedule their use by the vari-
ous active processes. Any resource allocation and scheduling policy must consider
three factors:

¢ Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
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resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.

¢ Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The
OS should attempt to make allocation and scheduling decisions to meet the
total set of requirements. The OS should also make these decisions dynami-
cally. For example, if a process is waiting for the use of an I/O device, the OS
may wish to schedule that process for execution as soon as possible to free up
the device for later demands from other processes.

¢ Efficiency: The OS should attempt to maximize throughput, minimize re-
sponse time, and, in the case of time sharing, accommodate as many users as
possible. These criteria conflict; finding the right balance for a particular situa-
tion is an ongoing problem for operating system research.

Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling of
processes and the allocation of resources in a multiprogramming environment. The
OS maintains a number of queues, each of which is simply a list of processes waiting
for some resource. The short-term queue consists of processes that are in main mem-
ory (or at least an essential minimum portion of each is in main memory) and are
ready to run as soon as the processor is made available. Any one of these processes
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Figure 2.11 Key Elements of an Operating System for Multiprogramming
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could use the processor next. It is up to the short-term scheduler, or dispatcher, to
pick one. A common strategy is to give each process in the queue some time in turn;
this is referred to as a round-robin technique. In effect, the round-robin technique
employs a circular queue. Another strategy is to assign priority levels to the various
processes, with the scheduler selecting processes in priority order.

The long-term queue is a list of new jobs waiting to use the processor. The
OS adds jobs to the system by transferring a process from the long-term queue to
the short-term queue. At that time, a portion of main memory must be allocated to
the incoming process. Thus, the OS must be sure that it does not overcommit
memory or processing time by admitting too many processes to the system. There
is an I/O queue for each I/O device. More than one process may request the use of
the same I/O device. All processes waiting to use each device are lined up in that
device’s queue. Again, the OS must determine which process to assign to an avail-
able I/O device.

The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some operating system service, such
as an I/O device handler by means of a service call. In this case, a service call handler
is the entry point into the OS. In any case, once the interrupt or service call is han-
dled, the short-term scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

System Structure

As more and more features have been added to operating systems, and as the un-
derlying hardware has become more capable and versatile, the size and complexity
of operating systems has grown. CTSS, put into operation at MIT in 1963, consisted
of approximately 32,000 36-bit words of storage. OS/360, introduced a year later by
IBM, had more than a million machine instructions. By 1975, the Multics system, de-
veloped by MIT and Bell Laboratories, had grown to more than 20 million instruc-
tions. It is true that more recently, some simpler operating systems have been
introduced for smaller systems, but these have inevitably grown more complex as
the underlying hardware and user requirements have grown. Thus, the UNIX of
today is far more complex than the almost toy system put together by a few talented
programmers in the early 1970s, and the simple MS-DOS has given way to the rich
and complex power of OS/2 and Windows. For example, Windows NT 4.0 contains
16 million lines of code, and Windows 2000 has well over twice that number.

The size of a full-featured OS, and the difficulty of the problem it addresses, has
led to four unfortunate but all-too-common problems. First, operating systems are
chronically late in being delivered. This goes for new operating systems and upgrades
to older systems. Second, the systems have latent bugs that show up in the field and
must be fixed and reworked. Third, performance is often not what was expected.
Fourth, it has proved impossible to deploy a complex OS that is not vulnerable to a
variety of security attacks, including viruses, worms, and unauthorized access.
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To manage the complexity of operating systems and to overcome these prob-
lems, there has been much focus over the years on the software structure of the OS.
Certain points seem obvious. The software must be modular. This will help organize
the software development process and limit the effort of diagnosing and fixing er-
rors. The modules must have well-defined interfaces to each other, and the inter-
faces must be as simple as possible. Again, this eases the programming burden. It
also facilitates system evolution. With clean, minimal interfaces between modules,
one module can be changed with minimal impact on other modules.

For large operating systems, which run from millions to tens of millions of lines
of code, modular programming alone has not been found to be sufficient. Instead
there has been increasing use of the concepts of hierarchical layers and information
abstraction. The hierarchical structure of a modern OS separates its functions ac-
cording to their characteristic time scale and their level of abstraction. We can view
the system as a series of levels. Each level performs a related subset of the functions
required of the OS. It relies on the next lower level to perform more primitive func-
tions and to conceal the details of those functions. It provides services to the next
higher layer. Ideally, the levels should be defined so that changes in one level do not
require changes in other levels. Thus, we have decomposed one problem into a num-
ber of more manageable subproblems.

In general, lower layers deal with a far shorter time scale. Some parts of the OS
must interact directly with the computer hardware, where events can have a time
scale as brief as a few billionths of a second. At the other end of the spectrum, parts
of the OS communicate with the user, who issues commands at a much more
leisurely pace, perhaps one every few seconds. The use of a set of levels conforms
nicely to this environment.

The way in which these principles are applied varies greatly among contempo-
rary operating systems. However, it is useful at this point, for the purpose of gaining
an overview of operating systems, to present a model of a hierarchical OS. Let us
consider the model proposed in [BROWS84] and [DENNS84]. Although it does not
correspond to any particular OS, this model provides a useful high-level view of OS
structure. The model is defined in Table 2.4 and consists of the following levels:

e Level 1: Consists of electronic circuits, where the objects that are dealt with
are registers, memory cells, and logic gates. The operations defined on these
objects are actions, such as clearing a register or reading a memory location.

e Level 2: The processor’s instruction set. The operations at this level are those
allowed in the machine language instruction set, such as add, subtract, load,
and store.

¢ Level 3: Adds the concept of a procedure or subroutine, plus the call/return
operations.

e Level 4: Introduces interrupts, which cause the processor to save the current
context and invoke an interrupt-handling routine.

These first four levels are not part of the OS but constitute the processor hard-
ware. However, some elements of the OS begin to appear at these levels, such as the
interrupt-handling routines. It is at level 5 that we begin to reach the OS proper and
that the concepts associated with multiprogramming begin to appear.
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Level | Name Objects Example Operations
13 Shell User programming environment Statements in shell language
12 User processes User processes Quit, kill, suspend, resume
11 Directories Directories Create, destroy, attach, detach,
search, list
10 Devices External devices, such as printers, Open, close, read, write
displays, and keyboards
9 File system Files Create, destroy, open, close, read,
write
8 Communications Pipes Create, destroy, open, close, read,
write
Virtual memory Segments, pages Read, write, fetch
Local secondary Blocks of data, device channels Read, write, allocate, free
store
5 Primitive Primitive processes, semaphores, Suspend, resume, wait, signal
processes ready list
Interrupts Interrupt-handling programs Invoke, mask, unmask, retry
Procedures Procedures, call stack, display Mark stack, call, return
Instruction set Evaluation stack, microprogram Load, store, add, subtract, branch
interpreter, scalar and array data
1 Electronic Registers, gates, buses, etc. Clear, transfer, activate,
circuits complement

Gray shaded area represents hardware.

¢ Level 5: The notion of a process as a program in execution is introduced at this

level. The fundamental requirements on the OS to support multiple processes
include the ability to suspend and resume processes. This requires saving hard-
ware registers so that execution can be switched from one process to another.
In addition, if processes need to cooperate, then some method of synchroniza-
tion is needed. One of the simplest techniques, and an important concept in
OS design, is the semaphore, a simple signaling technique that is explored in
Chapter 5.

Level 6: Deals with the secondary storage devices of the computer. At this
level, the functions of positioning the read/write heads and the actual transfer
of blocks of data occur. Level 6 relies on level 5 to schedule the operation and
to notify the requesting process of completion of an operation. Higher levels
are concerned with the address of the needed data on the disk and provide a
request for the appropriate block to a device driver at level 5.

Level 7: Creates a logical address space for processes. This level organizes the
virtual address space into blocks that can be moved between main memory
and secondary memory. Three schemes are in common use: those using fixed-
size pages, those using variable-length segments, and those using both. When a
needed block is not in main memory, logic at this level requests a transfer from
level 6.



76 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Up to this point, the OS deals with the resources of a single processor. Begin-
ning with level 8, the OS deals with external objects such as peripheral devices and
possibly networks and computers attached to the network. The objects at these
upper levels are logical, named objects that can be shared among processes on the
same computer or on multiple computers.

¢ Level 8: Deals with the communication of information and messages between
processes. Whereas level 5 provided a primitive signal mechanism that allowed
for the synchronization of processes, this level deals with a richer sharing of in-
formation. One of the most powerful tools for this purpose is the pipe, which is
a logical channel for the flow of data between processes. A pipe is defined with
its output from one process and its input into another process. It can also be
used to link external devices or files to processes. The concept is discussed in
Chapter 6.

¢ Level 9: Supports the long-term storage of named files. At this level, the data
on secondary storage are viewed in terms of abstract, variable-length entities.
This is in contrast to the hardware-oriented view of secondary storage in terms
of tracks, sectors, and fixed-size blocks at level 6.

e Level 10: Provides access to external devices using standardized interfaces.

e Level 11: Is responsible for maintaining the association between the external
and internal identifiers of the system’s resources and objects. The external
identifier is a name that can be employed by an application or user. The inter-
nal identifier is an address or other indicator that can be used by lower levels
of the OS to locate and control an object. These associations are maintained in
a directory. Entries include not only external/internal mapping, but also char-
acteristics such as access rights.

¢ Level 12: Provides a full-featured facility for the support of processes. This
goes far beyond what is provided at level 5. At level 5, only the processor reg-
ister contents associated with a process are maintained, plus the logic for dis-
patching processes. At level 12, all of the information needed for the orderly
management of processes is supported. This includes the virtual address space
of the process, a list of objects and processes with which it may interact and the
constraints of that interaction, parameters passed to the process upon cre-
ation, and any other characteristics of the process that might be used by the
OS to control the process.

e Level 13: Provides an interface to the OS for the user. It is referred to as the
shell because it separates the user from OS details and presents the OS simply
as a collection of services. The shell accepts user commands or job control
statements, interprets these, and creates and controls processes as needed. For
example, the interface at this level could be implemented in a graphical man-
ner, providing the user with commands through a list presented as a menu and
displaying results using graphical output to a specific device such as a screen.

This hypothetical model of an OS provides a useful descriptive structure and
serves as an implementation guideline. The reader may refer back to this structure
during the course of the book to observe the context of any particular design issue
under discussion.
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2.4 DEVELOPMENTS LEADING TO MODERN
OPERATING SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabili-
ties. However, in recent years a number of new design elements have been intro-
duced into both new operating systems and new releases of existing operating
systems that create a major change in the nature of operating systems. These
modern operating systems respond to new developments in hardware, new appli-
cations, and new security threats. Among the key hardware drivers are multi-
processor systems, greatly increased processor speed, high-speed network
attachments, and increasing size and variety of memory storage devices. In the
application arena, multimedia applications, Internet and Web access, and
client/server computing have influenced OS design. With respect to security, In-
ternet access to computers has greatly increased the potential threat and increas-
ingly sophisticated attacks, such as viruses, worms, and hacking techniques, have
had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just
modifications and enhancements to existing architectures but new ways of organiz-
ing the OS. A wide range of different approaches and design elements has been
tried in both experimental and commercial operating systems, but much of the work
fits into the following categories:

* Microkernel architecture

e Multithreading

* Symmetric multiprocessing

e Distributed operating systems
* Object-oriented design

Most operating systems, until recently, featured a large monolithic kernel.
Most of what is thought of as OS functionality is provided in these large kernels, in-
cluding scheduling, file system, networking, device drivers, memory management,
and more. Typically, a monolithic kernel is implemented as a single process, with all
elements sharing the same address space. A microkernel architecture assigns only a
few essential functions to the kernel, including address spaces, interprocess commu-
nication (IPC), and basic scheduling. Other OS services are provided by processes,
sometimes called servers, that run in user mode and are treated like any other appli-
cation by the microkernel. This approach decouples kernel and server development.
Servers may be customized to specific application or environment requirements.
The microkernel approach simplifies implementation, provides flexibility, and is
well suited to a distributed environment. In essence, a microkernel interacts with
local and remote server processes in the same way, facilitating construction of dis-
tributed systems.

Multithreading is a technique in which a process, executing an application, is di-
vided into threads that can run concurrently. We can make the following distinction:

e Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a
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stack (to enable subroutine branching). A thread executes sequentially and is
interruptable so that the processor can turn to another thread.

e Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking a sin-
gle application into multiple threads, the programmer has great control over the
modularity of the application and the timing of application-related events.

Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves less
processor overhead than a major process switch between different processes.
Threads are also useful for structuring processes that are part of the OS kernel as
described in subsequent chapters.

Until recently, virtually all single-user personal computers and workstations
contained a single general-purpose microprocessor. As demands for performance
increase and as the cost of microprocessors continues to drop, vendors have intro-
duced computers with multiple microprocessors. To achieve greater efficiency and
reliability, one technique is to employ symmetric multiprocessing (SMP), a term
that refers to a computer hardware architecture and also to the OS behavior that ex-
ploits that architecture. A symmetric multiprocessor can be defined as a standalone
computer system with the following characteristics:

1. There are multiple processors.

2. These processors share the same main memory and I/O facilities, interconnected
by a communications bus or other internal connection scheme.

3. All processors can perform the same functions (hence the term symmetric).

In recent years, systems with multiple processors on a single chip have become
widely used, referred to as chip multiprocessor systems. Many of the design issues
are the same, whether dealing with a chip multiprocessor or a multiple-chip SMP.

The OS of an SMP schedules processes or threads across all of the processors.
SMP has a number of potential advantages over uniprocessor architecture, includ-
ing the following:

¢ Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type. This is illustrated in Figure 2.12. With multiprogramming, only
one process can execute at a time; meanwhile all other processes are waiting
for the processor. With multiprocessing, more than one process can be running
simultaneously, each on a different processor.

e Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the sys-
tem. Instead, the system can continue to function at reduced performance.

* Incremental growth: A user can enhance the performance of a system by
adding an additional processor.
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(b) Interleaving and overlapping (multiprocessing; two processors)

I Blocked 1 Running
Figure 2.12 Multiprogramming and Multiprocessing

e Scaling: Vendors can offer a range of products with different price and perfor-
mance characteristics based on the number of processors configured in the
system.

It is important to note that these are potential, rather than guaranteed, benefits. The
OS must provide tools and functions to exploit the parallelism in an SMP system.

Multithreading and SMP are often discussed together, but the two are inde-
pendent facilities. Even on a uniprocessor system, multithreading is useful for struc-
turing applications and kernel processes. An SMP system is useful even for
nonthreaded processes, because several processes can run in parallel. However, the
two facilities complement each other and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The OS takes care of scheduling of threads or processes on
individual processors and of synchronization among processors. This book discusses
the scheduling and synchronization mechanisms used to provide the single-system
appearance to the user. A different problem is to provide the appearance of a single
system for a cluster of separate computers—a multicomputer system. In this case, we
are dealing with a collection of entities (computers), each with its own main memory,
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secondary memory, and other I/O modules. A distributed operating system provides
the illusion of a single main memory space and a single secondary memory space,
plus other unified access facilities, such as a distributed file system. Although clusters
are becoming increasingly popular, and there are many cluster products on the mar-
ket, the state of the art for distributed operating systems lags that of uniprocessor
and SMP operating systems. We examine such systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular extensions
to a small kernel. At the OS level, an object-based structure enables programmers to
customize an OS without disrupting system integrity. Object orientation also eases
the development of distributed tools and full-blown distributed operating systems.

2.5 MICROSOFT WINDOWS OVERVIEW

History

The story of Windows begins with a very different OS, developed by Microsoft for
the first IBM personal computer and referred to as MS-DOS or PC-DOS. The ini-
tial version, DOS 1.0, was released in August 1981. It consisted of 4000 lines of as-
sembly language source code and ran in 8 Kbytes of memory using the Intel 8086
microprocessor.

When IBM developed a hard disk-based personal computer, the PC XT,
Microsoft developed DOS 2.0, released in 1983. It contained support for the hard disk
and provided for hierarchical directories. Heretofore, a disk could contain only one
directory of files, supporting a maximum of 64 files. While this was adequate in the
era of floppy disks, it was too limited for a hard disk, and the single-directory restric-
tion was too clumsy. This new release allowed directories to contain subdirectories
as well as files. The new release also contained a richer set of commands embedded
in the OS to provide functions that had to be performed by external programs pro-
vided as utilities with Release 1. Among the capabilities added were several UNIX-
like features, such as I/O redirection, which is the ability to change the input or
output identity for a given application, and background printing. The memory-resi-
dent portion grew to 24 Kbytes.

When IBM announced the PC AT in 1984, Microsoft introduced DOS 3.0. The
AT contained the Intel 80286 processor, which provided extended addressing and
memory protection features. These were not used by DOS. To remain compatible
with previous releases, the OS simply used the 80286 as a “fast 8086.” The OS did
provide support for new keyboard and hard disk peripherals. Even so, the memory
requirement grew to 36 Kbytes. There were several notable upgrades to the 3.0 re-
lease. DOS 3.1, released in 1984, contained support for networking of PCs. The size
of the resident portion did not change; this was achieved by increasing the amount
of the OS that could be swapped. DOS 3.3, released in 1987, provided support for
the new line of IBM computers, the PS/2. Again, this release did not take advantage
of the processor capabilities of the PS/2, provided by the 80286 and the 32-bit 80386
chips. The resident portion at this stage had grown to a minimum of 46 Kbytes, with
more required if certain optional extensions were selected.
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By this time, DOS was being used in an environment far beyond its capabili-
ties. The introduction of the 80486 and then the Intel Pentium chip provided power
and features that could not be exploited by the simple-minded DOS. Meanwhile, be-
ginning in the early 1980s, Microsoft began development of a graphical user inter-
face (GUI) that would be interposed between the user and DOS. Microsoft’s intent
was to compete with Macintosh, whose OS was unsurpassed for ease of use. By
1990, Microsoft had a version of the GUI, known as Windows 3.0, which incorpo-
rated some of the user friendly features of Macintosh. However, it was still ham-
strung by the need to run on top of DOS.

After an abortive attempt by Microsoft to develop with IBM a next-genera-
tion OS, which would exploit the power of the new microprocessors and which
would incorporate the ease-of-use features of Windows, Microsoft struck out on its
own and developed a new OS from the ground up, Windows NT. Windows NT ex-
ploits the capabilities of contemporary microprocessors and provides multitasking
in a single-user or multiple-user environment.

The first version of Windows NT (3.1) was released in 1993, with the same GUI
as Windows 3.1, another Microsoft OS (the follow-on to Windows 3.0). However,
NT 3.1 was a new 32-bit OS with the ability to support older DOS and Windows
applications as well as provide OS/2 support.

After several versions of NT 3.x, Microsoft released NT 4.0. NT 4.0 has essen-
tially the same internal architecture as 3.x. The most notable external change is that
NT 4.0 provides the same user interface as Windows 95 (an enhanced upgrade to
Windows 3.1). The major architectural change is that several graphics components
that ran in user mode as part of the Win32 subsystem in 3.x have been moved into
the Windows NT Executive, which runs in kernel mode. The benefit of this change is
to speed up the operation of these important functions. The potential drawback is
that these graphics functions now have direct access to low-level system services,
which could impact the reliability of the OS.

In 2000, Microsoft introduced the next major upgrade: Windows 2000. Again,
the underlying Executive and Kernel architecture is fundamentally the same as in
NT 4.0, but new features have been added. The emphasis in Windows 2000 is the ad-
dition of services and functions to support distributed processing. The central ele-
ment of Windows 2000’s new features is Active Directory, which is a distributed
directory service able to map names of arbitrary objects to any kind of information
about those objects. Windows 2000 also added the plug-and-play and power-man-
agement facilities that were already in Windows 98, the successor to Windows 95.
These features are particularly important for laptop computers, which frequently
use docking stations and run on batteries.

One final general point to make about Windows 2000 is the distinction be-
tween Windows 2000 Server and Windows 2000 desktop. In essence, the kernel and
executive architecture and services remain the same, but Server includes some ser-
vices required to use as a network server.

In 2001, a new desktop version of Windows was released, known as Windows
XP. Both home PC and business workstation versions of XP were offered. In 2003,
Microsoft introduced a new server version, known as Windows Server 2003, sup-
porting both 32-bit and 64-bit processors. The 64-bit versions of Server 2003 was de-
signed specifically for the 64-bit Intel Itanium hardware. With the first service pack
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update for Server 2003, Microsoft introduced support for the AMD64 processor ar-
chitecture for both desktops and servers.

In 2007, the latest desktop version of Windows was released, known as
Windows Vista. Vista supports both the Intel x86 and AMD x64 architectures. The
main features of the release were changes to the GUI and many security improve-
ments. The corresponding server release is Windows Server 2008.

Single-User Multitasking

Windows (from Windows 2000 onward) is a significant example of what has become
the new wave in microcomputer operating systems (other examples are Linux and
MacOS). Windows was driven by a need to exploit the processing capabilities of
today’s 32-bit and 64-bit microprocessors, which rival mainframes of just a few years
ago in speed, hardware sophistication, and memory capacity.

One of the most significant features of these new operating systems is that, al-
though they are still intended for support of a single interactive user, they are multi-
tasking operating systems. Two main developments have triggered the need for
multitasking on personal computers, workstations, and servers. First, with the in-
creased speed and memory capacity of microprocessors, together with the support
for virtual memory, applications have become more complex and interrelated. For
example, a user may wish to employ a word processor, a drawing program, and a
spreadsheet application simultaneously to produce a document. Without multitask-
ing, if a user wishes to create a drawing and paste it into a word processing docu-
ment, the following steps are required:

1. Open the drawing program.
Create the drawing and save it in a file or on a temporary clipboard.
Close the drawing program.

Open the word processing program.

LU I

Insert the drawing in the correct location.

If any changes are desired, the user must close the word processing program,
open the drawing program, edit the graphic image, save it, close the drawing pro-
gram, open the word processing program, and insert the updated image. This be-
comes tedious very quickly. As the services and capabilities available to users
become more powerful and varied, the single-task environment becomes more
clumsy and user unfriendly. In a multitasking environment, the user opens each ap-
plication as needed, and leaves it open. Information can be moved around among a
number of applications easily. Each application has one or more open windows, and
a graphical interface with a pointing device such as a mouse allows the user to navi-
gate quickly in this environment.

A second motivation for multitasking is the growth of client/server computing.
With client/server computing, a personal computer or workstation (client) and a host
system (server) are used jointly to accomplish a particular application. The two are
linked, and each is assigned that part of the job that suits its capabilities. Client/server
can be achieved in a local area network of personal computers and servers or by
means of a link between a user system and a large host such as a mainframe. An



2.5 /MICROSOFT WINDOWS OVERVIEW 83

application may involve one or more personal computers and one or more server
devices. To provide the required responsiveness, the OS needs to support high-speed
networking interfaces and the associated communications protocols and data transfer
architectures while at the same time supporting ongoing user interaction.

The foregoing remarks apply to the desktop versions of Windows. The Server
versions are also multitasking but may support multiple users. They support multi-
ple local server connections as well as providing shared services used by multiple
users on the network. As an Internet server, Windows may support thousands of
simultaneous Web connections.

Architecture

Figure 2.13 illustrates the overall structure of Windows 2000; later releases of Win-
dows, including Vista, have essentially the same structure at this level of detail. Its
modular structure gives Windows considerable flexibility. It is designed to execute
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on a variety of hardware platforms and supports applications written for a variety of
other operating systems. As of this writing, desktop Windows is only implemented
on the Intel x86 and AMDG64 hardware platforms. Windows server also supports the
Intel IA64 (Itanium).

As with virtually all operating systems, Windows separates application-
oriented software from the core OS software. The latter, which includes the Executive,
the Kernel, device drivers, and the hardware abstraction layer, runs in kernel mode.
Kernel mode software has access to system data and to the hardware. The remaining
software, running in user mode, has limited access to system data.

Operating System Organization Windows has a highly modular architec-
ture. Each system function is managed by just one component of the OS. The rest of
the OS and all applications access that function through the responsible component
using standard interfaces. Key system data can only be accessed through the appropri-
ate function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interface (APIs).

The kernel-mode components of Windows are the following:

* Executive: Contains the base OS services, such as memory management, process
and thread management, security, I/O, and interprocess communication.

e Kernel: Controls execution of the processor(s). The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multi-
processor synchronization. Unlike the rest of the Executive and the user level,
the Kernel’s own code does not run in threads.

° Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the OS
from platform-specific hardware differences. The HAL makes each computer’s
system bus, direct memory access (DMA) controller, interrupt controller, sys-
tem timers, and memory module look the same to the Executive and Kernel
components. It also delivers the support needed for symmetric multiprocessing
(SMP), explained subsequently.

¢ Device drivers: Dynamic libraries that extend the functionality of the Execu-
tive. These include hardware device drivers that translate user I/O function
calls into specific hardware device I/O requests and software components for
implementing file systems, network protocols, and any other system extensions
that need to run in kernel mode.

° Windowing and graphics system: Implements the graphical user interface (GUI)
functions, such as dealing with windows, user interface controls, and drawing.

The Windows Executive includes components for specific system functions
and provides an API for user-mode software. Following is a brief description of each
of the Executive modules:

* 1/0 manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device dri-
vers for further processing. The I/O manager implements all the Windows I/O
APIs and enforces security and naming for devices, network protocols, and file
systems (using the object manager). Windows I/O is discussed in Chapter 11.
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e Cache manager: Improves the performance of file-based 1/0 by causing re-
cently referenced file data to reside in main memory for quick access, and by
deferring disk writes by holding the updates in memory for a short time before
sending them to the disk.

* Object manager: Creates, manages, and deletes Windows Executive objects
and abstract data types that are used to represent resources such as processes,
threads, and synchronization objects. It enforces uniform rules for retaining,
naming, and setting the security of objects. The object manager also creates
object handles, which consist of access control information and a pointer to the
object. Windows objects are discussed later in this section.

¢ Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

* Power manager: Coordinates power management among various devices and
can be configured to reduce power consumption by shutting down idle devices,
putting the processor to sleep, and even writing all of memory to disk and shut-
ting off power to the entire system.

* Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uniform
view of security, right down to the fundamental entities that make up the Ex-
ecutive. Thus, Windows uses the same routines for access validation and for
audit checks for all protected objects, including files, processes, address spaces,
and I/O devices. Windows security is discussed in Chapter 15.

e Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physi-
cal pages in the computer’s memory. Windows virtual memory management is
described in Chapter 8.

* Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management are described in Chapter 4.

* Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system wide and per-user settings
of various parameters.

* Local procedure call (LPC) facility: Implements an efficient cross-process
procedure call mechanism for communication between local processes imple-
menting services and subsystems. Similar to the remote procedure call (RPC)
facility used for distributed processing.

User-Mode Processes Four basic types of user-mode processes are supported
by Windows:

* Special system processes: User mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service man-
ager, and the logon process

* Service processes: The printer spooler, the event logger, user mode components
that cooperate with device drivers, various network services, and many, many
others. Services are used by both Microsoft and external software developers to
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extend system functionality as they are the only way to run background user
mode activity on a Windows system.

e Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32/WinFX and POSIX. Each environment
subsystem includes a subsystem process shared among all applications using the
subsystem and dynamic link libraries (DLLs) that convert the user application
calls to LPC calls on the subsystem process, and/or native Windows calls.

e User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally tar-
geted at a specific environment subsystems; although some of the programs
that are provided as part of the OS use the native system interfaces (NTAPI).
There is also support for running 16-bit programs written for Windows 3.1 or
MS-DOS.

Windows is structured to support applications written for multiple OS person-
alities. Windows provides this support using a common set of kernel mode compo-
nents that underlie the protected environment subsystems. The implementation of
each subsystem includes a separate process, which contains the shared data struc-
tures, privileges, and Executive object handles needed to implement a particular
personality. The process is started by the Windows Session Manager when the first
application of that type is started. The subsystem process runs as a system user, SO
the Executive will protect its address space from processes run by ordinary users.

A protected subsystem provides a graphical or command-line user interface that
defines the look and feel of the OS for a user. In addition, each protected subsystem
provides the API for that particular operating environment. This means that applica-
tions created for a particular operating environment may run unchanged on Windows,
because the OS interface that they see is the same as that for which they were written.

The most important subsystem is Win32. Win32 is the API implemented on
both Windows NT and Windows 95 and later releases of Windows 9x. Many Win32
applications written for the Windows 9x line of operating systems run on NT sys-
tems unchanged. At the release of Windows XP, Microsoft focused on improving
compatibility with Windows 9x so that enough applications (and device drivers)
would run that they could cease any further support for 9x and focus on NT.

The most recent programming API for Windows is WinFX, which is based on
Microsoft’s NET programming model. WinFX is implemented in Windows as a
layer on top of Win32 and not as a distinct subsystem type

Client/Server Model

The Windows operating system services, the protected subsystems, and the applica-
tions are structured using the client/server computing model, which is a common
model for distributed computing and which is discussed in Part Six. This same archi-
tecture can be adopted for use internal to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core ab-
stractions used by the system, such as processes, threads, virtual memory, I/O, and com-
munication. Windows provides a far richer set of services by using the client/server
model to implement functionality in user-mode processes. Both the environment
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subsystems and the Windows user-mode services are implemented as processes that
communicate with clients via RPC. Each server process waits for a request from a
client for one of its services (for example, memory services, process creation services, or
networking services). A client, which can be an application program or another server
program, requests a service by sending a message. The message is routed through the
Executive to the appropriate server. The server performs the requested operation and
returns the results or status information by means of another message, which is routed
through the Executive back to the client.
Advantages of a client/server architecture include the following:

e It simplifies the Executive. It is possible to construct a variety of APIs imple-
mented in user-mode servers without any conflicts or duplications in the Exec-
utive. New APIs can be added easily.

e It improves reliability. Each new server runs outside of the kernel, with its own
partition of memory, protected from other servers. A single server can fail
without crashing or corrupting the rest of the OS.

e It provides a uniform means for applications to communicate with services via
RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or service, the stub in the client application packages the
parameters for the call and sends them as a message to a server subsystem that
implements the call.

e It provides a suitable base for distributed computing. Typically, distributed com-
puting makes use of a client/server model, with remote procedure calls imple-
mented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass a
message on to a remote server for processing on behalf of local client applica-
tions. Clients need not know whether a request is serviced locally or remotely. In-
deed, whether a request is serviced locally or remotely can change dynamically
based on current load conditions and on dynamic configuration changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for sym-
metric multiprocessing (SMP), both of which were introduced in Section 2.4.
[RUSSO05] lists the following features of Windows that support threads and SMP:

¢ OS routines can run on any available processor, and different routines can ex-
ecute simultaneously on different processors.

* Windows supports the use of multiple threads of execution within a single
process. Multiple threads within the same process may execute on different
processors simultaneously.

e Server processes may use multiple threads to process requests from more than
one client simultaneously.

* Windows provides mechanisms for sharing data and resources between processes
and flexible interprocess communication capabilities.
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Windows Objects

Windows draws heavily on the concepts of object-oriented design. This approach fa-
cilitates the sharing of resources and data among processes and the protection of re-
sources from unauthorized access. Among the key object-oriented concepts used by
Windows are the following:

¢ Encapsulation: An object consists of one or more items of data, called attrib-
utes, and one or more procedures that may be performed on those data, called
services. The only way to access the data in an object is by invoking one of the
object’s services. Thus, the data in the object can easily be protected from
unauthorized use and from incorrect use (e.g., trying to execute a nonexe-
cutable piece of data).

* Object class and instance: An object class is a template that lists the attributes
and services of an object and defines certain object characteristics. The OS can
create specific instances of an object class as needed. For example, there is a
single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

¢ Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive
objects that inherit the properties of an event object, so they can use common
synchronization methods. Other specific object types, such as the device class,
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.

* Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined in
Appendix B. However, Windows is not completely polymorphic because there
are many APIs that are specific to specific object types.

The reader unfamiliar with object-oriented concepts should review Appendix B
at the end of this book.

Not all entities in Windows are objects. Objects are used in cases where data are
intended for user mode access or when data access is shared or restricted. Among the
entities represented by objects are files, processes, threads, semaphores, timers, and
windows. Windows creates and manages all types of objects in a uniform way, via the
object manager. The object manager is responsible for creating and destroying objects
on behalf of applications and for granting access to an object’s services and data.

Each object within the Executive, sometimes referred to as a kernel object (to
distinguish from user-level objects not of concern to the Executive), exists as a mem-
ory block allocated by the kernel and is directly accessible only by kernel mode com-
ponents. Some elements of the data structure (e.g., object name, security parameters,
usage count) are common to all object types, while other elements are specific to a
particular object type (e.g., a thread object’s priority). Because these object data
structures are in the part of each process’s address space accessible only by the ker-
nel, it is impossible for an application to reference these data structures and read or
write them directly. Instead, applications manipulate objects indirectly through the
set of object manipulation functions supported by the Executive. When an object is
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created, the application that requested the creation receives back a handle for the
object. In essence a handle is an index into a Executive table containing a pointer to
the referenced object. This handle can then be used by any thread within the same
process to invoke Win32 functions that work with objects, or can be duplicated into
other processes.

Objects may have security information associated with them, in the form of a
Security Descriptor (SD). This security information can be used to restrict access to
the object based on contents of a token object which describes a particular user. For
example, a process may create a named semaphore object with the intent that only
certain users should be able to open and use that semaphore. The SD for the sema-
phore object can list those users that are allowed (or denied) access to the semaphore
object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process creates
an unnamed object, the object manager returns a handle to that object, and the han-
dle is the only way to refer to it. Named objects are also given a name that other
processes can use to obtain a handle to the object. For example, if process A wishes
to synchronize with process B, it could create a named event object and pass the
name of the event to B. Process B could then open and use that event object. How-
ever, if A simply wished to use the event to synchronize two threads within itself, it
would create an unnamed event object, because there is no need for other processes
to be able to use that event.

There are two categories of objects used by Windows for synchronizing the use
of the processor:

* Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These are described in Chapter 6.

* Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.5
lists the Kernel control objects.

Table 2.5 Windows Kernel Control Objects

Asynchronous Procedure Call Used to break into the execution of a specified thread and to cause a procedure
to be called in a specified processor mode.

Deferred Procedure Call Used to postpone interrupt processing to avoid delaying hardware interrupts.
Also used to implement timers and inter-processor communication

Interrupt Used to connect an interrupt source to an interrupt service routine by
means of an entry in an Interrupt Dispatch Table (IDT). Each processor has
an IDT that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary for
the execution of a set of thread objects. A process contains a pointer to an
address map, a list of ready threads containing thread objects, a list of
threads belonging to the process, the total accumulated time for all threads
executing within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both
user and system code can be profiled.
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Windows is not a full-blown object-oriented OS. It is not implemented in an
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates
the power of object-oriented technology and represents the increasing trend toward
the use of this technology in OS design.

2.6 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a PDP-7
in 1970. Some of the people involved at Bell Labs had also participated in the time-
sharing work being done at MIT’s Project MAC. That project led to the development
of first CTSS and then Multics. Although it is common to say that the original UNIX
was a scaled-down version of Multics, the developers of UNIX actually claimed to be
more influenced by CTSS [RITC78]. Nevertheless, UNIX incorporated many ideas
from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX. The first notable milestone was porting the UNIX system from the PDP-7
to the PDP-11. This was the first hint that UNIX would be an operating system for
all computers. The next important milestone was the rewriting of UNIX in the pro-
gramming language C. This was an unheard-of strategy at the time. It was generally
felt that something as complex as an operating system, which must deal with time-
critical events, had to be written exclusively in assembly language. Reasons for this
attitude include the following:

* Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

¢ Even though compilers had been available since the 1950s, the computer in-
dustry was generally skeptical of the quality of automatically generated code.
With resource capacity small, efficient code, both in terms of time and space,
was essential.

e Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level lan-
guage for most if not all of the system code. Today, virtually all UNIX implementa-
tions are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976. The follow-on Version 7, released in 1978, is the ancestor
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of most modern UNIX systems. The most important of the non-AT&T systems to be
developed was done at the University of California at Berkeley, called UNIX BSD
(Berkeley Software Distribution), running first on PDP and then VAX computers.
AT&T continued to develop and refine the system. By 1982, Bell Labs had combined
several AT&T variants of UNIX into a single system, marketed commercially as
UNIX System III. A number of features was later added to the operating system to
produce UNIX System V.

Description

Figure 2.14 provides a general description of the classic UNIX architecture. The un-
derlying hardware is surrounded by the OS software. The OS is often called the sys-
tem kernel, or simply the kernel, to emphasize its isolation from the user and
applications. It is the UNIX kernel that we will be concerned with in our use of
UNIX as an example in this book. UNIX also comes equipped with a number of
user services and interfaces that are considered part of the system. These can be
grouped into the shell, other interface software, and the components of the C com-
piler (compiler, assembler, loader). The layer outside of this consists of user applica-
tions and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.15. User programs can in-
voke OS services either directly or through library programs. The system call inter-
face is the boundary with the user and allows higher-level software to gain access to
specific kernel functions. At the other end, the OS contains primitive routines that
interact directly with the hardware. Between these two interfaces, the system is di-
vided into two main parts, one concerned with process control and the other con-
cerned with file management and 1/0O. The process control subsystem is responsible
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for memory management, the scheduling and dispatching of processes, and the syn-
chronization and interprocess communication of processes. The file system ex-
changes data between memory and external devices either as a stream of characters
or in blocks. To achieve this, a variety of device drivers are used. For block-oriented
transfers, a disk cache approach is used: a system buffer in main memory is inter-
posed between the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional
UNIX systems; [VAHA96] uses this term to refer to System V Release 3 (SVR3),
4.3BSD, and earlier versions. The following general statements may be made about
a traditional UNIX system. It is designed to run on a single processor and lacks the
ability to protect its data structures from concurrent access by multiple processors.
Its kernel is not very versatile, supporting a single type of file system, process sched-
uling policy, and executable file format. The traditional UNIX kernel is not designed
to be extensible and has few facilities for code reuse. The result is that, as new fea-
tures were added to the various UNIX versions, much new code had to be added,
yielding a bloated and unmodular kernel.
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2.7 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation
that unified many of the important innovations, added other modern OS design fea-
tures, and produced a more modular architecture. Typical of the modern UNIX ker-
nel is the architecture depicted in Figure 2.16. There is a small core of facilities,
written in a modular fashion, that provide functions and services needed by a num-
ber of OS processes. Each of the outer circles represents functions and an interface
that may be implemented in a variety of ways.
We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
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of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system
and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a
key role in the development of OS design theory. 4.xBSD is widely used in academic
installations and has served as the basis of a number of commercial UNIX products.
It is probably safe to say that BSD is responsible for much of the popularity of
UNIX and that most enhancements to UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the de-
sign and implementation organization subsequently dissolved. It is a major upgrade
to 4.3BSD and includes a new virtual memory system, changes in the kernel struc-
ture, and a long list of other feature enhancements.

One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used in
a number of embedded systems.

The latest version of the Macintosh operating system, Mac OS X, is based on
FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 10

Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most success-
ful commercial UNIX implementation.

2.8 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version. Tor-
valds posted an early version of Linux on the Internet in 1991. Since then, a number
of people, collaborating over the Internet, have contributed to the development of
Linux, all under the control of Torvalds. Because Linux is free and the source code is
available, it became an early alternative to other UNIX workstations, such as those
offered by Sun Microsystems and IBM. Today, Linux is a full-featured UNIX system
that runs on all of these platforms and more, including Intel Pentium and Itanium,
and the Motorola/IBM PowerPC.
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WINDOWS/LINUX COMPARISON

Windows Vista Linux

General

A commercial OS, with strong influences from /A open-source implementation of UNIX,
VAX/VMS and requirements for compatibility focused on simplicity and efflclenc.y. Runs on a
with multiple OS personalities, such as DOS/ very large range of processor architectures
Windows, POSIX, and, originally, OS/2

Environment which influenced fundamental design decisions

32-bit program address space 16-bit program address space

Mbytes of physical memory Kbytes of physical memory

Virtual memory Swapping system with memory mapping
Multiprocessor (4-way) Uniprocessor

Micro-controller based 1/O devices State-machine based I/O devices
Client/Server distributed computing Standalone interactive systems

Large, diverse user populations Small number of friendly users

Compare these with today’s environment:

64-bit addresses

Gbytes of physical memory

Virtual memory, Virtual Processors

Multiprocessor (64-128)

High-speed internet/intranet, Web Services

Single user, but vulnerable to hackers worldwide
Although both Windows and Linux have adapted to changes in the environment, the original design
environments (i.e. in 1989 and 1973) heavily influenced the design choices:

Unit of concurrency: threads vs. processes [address space, uniprocessor]
Process creation: CreateProcess() vs. fork() [address space, swapping]
1/O: Async Vs sync [swapping, I/O devices]
Security: Discretionary Access vs. uid/gid ~ [user populations]

System structure

Modular core kernel, with explicit publishing of Monolithic kernel
data structures and interfaces by components
Three layers:
e Hardware Abstraction Layer manages
processor, interrupt, DMA, BIOS details
e Kernel Layer manages CPU scheduling,
interrupts, and synchronization
e Executive Layer implements the major OS
functions in a fully threaded, mostly
preemptive environment

Dynamic data structures and kernel address Kernel code and data is statically allocated
space organization; initialization code dis- to non-pageable memory

carded after boot. Much kernel code and

data is pageable. Non-pageable kernel code

and data uses large pages for TLB efficiency
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File systems, networking, devices are loadable/
unloadable drivers (dynamic link libraries)
using the extensible I/O system interfaces

Dynamically loaded drivers can provide both
pageable and non-pageable sections

Namespace root is virtual with file systems
mounted underneath; types of system objects
easily extended, and leverage unified nam-
ing, referencing, lifetime management, secu-
rity, and handle-based synchronization

OS personalities implemented as user-mode
subsystems. Native NT APIs are based on
the general kernel handle/object architec-
ture and allow cross-process manipulation of
virtual memory, threads, and other kernel
objects

Discretionary Access Controls, discrete
privileges, auditing

Extensive support for loading/unloading
kernel modules, such as device drivers and
file systems.

Modules cannot be paged, but can be
unloaded

Namespace is rooted in a file system; adding
new named system objects require file system
changes or mapping onto device model
Implements a POSIX-compatible, UNIX-
like interface; Kernel API is far simpler than
Windows; Can understand various types of
executables

User/group IDs; capabilities similar to NT priv-
ileges can also be associated with processes

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable, plat-
form-independent software that is free, high quality, and embraced by the user com-
munity. FSF’s GNU project® provides tools for software developers, and the GNU
Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools in de-
veloping his kernel, which he then released under the GPL. Thus, the Linux distrib-
utions that you see today are the product of FSF’'s GNU project, Torvald’s
individual effort, and many collaborators all over the world.

In addition to its use by many individual programmers, Linux has now made
significant penetration into the corporate world. This is not only because of the free
software, but also because of the quality of the Linux kernel. Many talented pro-
grammers have contributed to the current version, resulting in a technically impres-
sive product. Moreover, Linux is highly modular and easily configured. This makes it
easy to squeeze optimal performance from a variety of hardware platforms. Plus,
with the source code available, vendors can tweak applications and utilities to meet
specific requirements. Throughout this book, we will provide details of Linux kernel
internals based on the most recent version, Linux 2.6.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter that a monolithic
kernel is one that includes virtually all of the OS functionality in one large block of code

2GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.
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that runs as a single process with a single address space. All the functional components
of the kernel have access to all of its internal data structures and routines. If changes are
made to any portion of a typical monolithic OS, all the modules and routines must be re-
linked and reinstalled and the system rebooted before the changes can take effect. As a
result, any modification, such as adding a new device driver or file system function, is dif-
ficult. This problem is especially acute for Linux, for which development is global and
done by a loosely associated group of independent programmers.

Although Linux does not use a microkernel approach, it achieves many of the
potential advantages of this approach by means of its particular modular architecture.
Linux is structured as a collection of modules, a number of which can be automatically
loaded and unloaded on demand. These relatively independent blocks are referred to
as loadable modules [GOYE99]. In essence, a module is an object file whose code can
be linked to and unlinked from the kernel at runtime. Typically, a module implements
some specific function, such as a filesystem, a device driver, or some other feature of
the kernel’s upper layer. A module does not execute as its own process or thread, al-
though it can create kernel threads for various purposes as necessary. Rather, a mod-
ule is executed in kernel mode on behalf of the current process.

Thus, although Linux may be considered monolithic, its modular structure
overcomes some of the difficulties in developing and evolving the kernel.

The Linux loadable modules have two important characteristics:

* Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be un-
linked and removed from memory at any time.

¢ Stackable modules: The modules are arranged in a hierarchy. Individual mod-
ules serve as libraries when they are referenced by client modules higher up in
the hierarchy, and as clients when they reference modules further down.

Dynamic linking [FRAN97] facilitates configuration and saves kernel mem-
ory. In Linux, a user program or user can explicitly load and unload kernel modules
using the insmod and rmmod commands. The kernel itself monitors the need for
particular functions and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

1. Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

2. The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.17 is an example that illustrates the structures used by Linux to man-
age modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables, the mod-
ule table and the symbol table. The module table includes the following elements:

e *pext: Pointer to the following module. All modules are organized into a
linked list. The list begins with a pseudomodule (not shown in Figure 2.17).

* “*name: Pointer to module name.

e size: Module size in memory pages.
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Module Module
*next *next
*name *name
size size
usecount usecount
flags flags
nysms nysms
ndeps ndeps
G FAT G VFAT
*deps *deps
*refs *refs
. symbol_table . symbol_table
hd value hd value
*name *name
value value
*name *name
° °
° °
° °
value value
*name *name

Figure 2.17 Example List of Linux Kernel Modules

e usecount: Module usage counter. The counter is incremented when an opera-
tion involving the module’s functions is started and decremented when the op-
eration terminates.

e flags: Module flags.

e nsyms: Number of exported symbols.

e ndeps: Number of referenced modules

e *syms: Pointer to this module’s symbol table.

e *deps: Pointer to list of modules the are referenced by this module.

e “*refs: Pointer to list of modules that use this module.

The symbol table defines those symbols controlled by this module that are

used elsewhere.

Figure 2.17 shows that the VFAT module was loaded after the FAT module
and that the VFAT module is dependent on the FAT module.

Kernel Components

Figure 2.18, taken from [MOSBO02] shows the main components of the Linux kernel
as implemented on an IA-64 architecture (e.g., Intel Itanium). The figure shows sev-
eral processes running on top of the kernel. Each box indicates a separate process,
while each squiggly line with an arrowhead represents a thread of execution.® The

3In Linux, there is no distinction between the concepts of processes and threads. However, multiple
threads in Linux can be grouped together in such a way that, effectively, you can have a single process
comprising multiple threads. These matters are discussed in Chapter 4.
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kernel itself consists of an interacting collection of components, with arrows indicat-
ing the main interactions. The underlying hardware is also depicted as a set of com-
ponents with arrows indicating which kernel components use or control which
hardware components. All of the kernel components, of course, execute on the

processor but, for simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

e Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6
gives a few examples of signals.

Table 2.6 Some Linux Signals

SIGHUP
SIGQUIT
SIGTRAP
SIGBUS
SIGKILL
SIGSEGV
SIGPIPT
SIGTERM

SIGCHLD

Terminal hangup
Keyboard quit

Trace trap

Bus error

Kill signal
Segmentation violation
Broken pipe
Termination

Child status unchanged

SIGCONT
SIGTSTP
SIGTTOU
SIGXCPU
SIGVTALRM
SIGWINCH
SIGPWR
SIGRTMIN
SIGRTMAX

Continue
Keyboard stop

Terminal write
CPU limit exceeded

Virtual alarm clock

Window size unchanged

Power failure

First real-time signal

Last real-time signal
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e System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: filesystem, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.7 defines a few ex-
amples in each category.

Table 2.7 Some Linux System Calls

Filesystem related

close Close a file descriptor.
link Make a new name for a file.
open Open and possibly create a file or device.
read Read from file descriptor.
write Write to file descriptor
Process related
execve Execute program.
exit Terminate the calling process.
getpid Get process identification.
setuid Set user identity of the current process.
prtrace Provides a means by which a parent process my observe and control the execu-

tion of another process, and examine and change its core image and registers.

Scheduling related

sched_getparam
sched_get_priority_max
sched_setscheduler
sched_rr_get_interval

sched_yield

Sets the scheduling parameters associated with the scheduling policy for the
process identified by pid.

Returns the maximum priority value that can be used with the scheduling algo-
rithm identified by policy.

Sets both the scheduling policy (e.g., FIFO) and the associated parameters
for the process pid.

Writes into the timespec structure pointed to by the parameter tp the round
robin time quantum for the process pid.

A process can relinquish the processor voluntarily without blocking via this sys-
tem call. The process will then be moved to the end of the queue for its static
priority and a new process gets to run.

Interprocess Communication (IPC) related

msgrev

semctl
semop

shmat

shmetl

A message buffer structure is allocated to receive a message. The system call
then reads a message from the message queue specified by msqid into the newly
created message buffer.

Performs the control operation specified by crd on the semaphore set semid.
Performs operations on selected members of the semaphore set semid.

Attaches the shared memory segment identified by shmid to the data segment
of the calling process.

Allows the user to receive information on a shared memory segment, set the owner,
group, and permissions of a shared memory segment, or destroy a segment.
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Table 2.7 (Continued)

Socket (Networking) related

bind

connect

gethostname
send

setsockopt

Assigns the local IP address and port for a socket. Returns 0 for success and —1
for error.

Establishes a connection between the given socket and the remote socket asso-
ciated with sockaddr.

Returns local host name.
Send the bytes contained in buffer pointed to by *msg over the given socket.

Sets the options on a socket

Miscellaneous

create_module
fsync
query_module

time

vhangup

Attempts to create a loadable module entry and reserve the kernel memory
that will be needed to hold the module.

Copies all in-core parts of a file to disk, and waits until the device reports that
all parts are on stable storage.

Requests information related to loadable modules from the kernel.
Returns the time in seconds since January 1, 1970.

Simulates a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

Processes and scheduler: Creates, manages, and schedules processes.
Virtual memory: Allocates and manages virtual memory for processes.

File systems: Provides a global, hierarchical namespace for files, directories,
and other file related objects and provides file system functions.

Network protocols: Supports the Sockets interface to users for the TCP/IP
protocol suite.

Character device drivers: Manages devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.

Block device drivers: Manages devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).

Network device drivers: Manages network interface cards and communica-
tions ports that connect to network devices, such as bridges and routers.

Traps and faults: Handles traps and faults generated by the processor, such as
a memory fault.

Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.

Interrupts: Handles interrupts from peripheral devices.

2.9 RECOMMENDED READING AND WEB SITES

[BRINO1] is an excellent collection of papers covering major advances in OS design
over the years. [SWAI(7] is a provocative and interesting short article on the future
of operating systems.
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An excellent treatment of UNIX internals, which provides a comparative
analysis of a number of variants, is [VAHA96]. For UNIX SVR4, [GOODY4] pro-
vides a definitive treatment, with ample technical detail. For the popular open-
source FreeBSD, [MCKUOS5] is highly recommended. [MCDOO07] provides a good
treatment of Solaris internals. Good treatments of Linux internals are [BOVEO06]
and [LOVEO0S].

Although there are countless books on various versions of Windows, there
is remarkably little material available on Windows internals. The book to read is
[RUSSO05]; its coverage stops with Windows Server 2003, but much of the content is
valid for Vista.

BOVE06 Bovet, D., and Cesati, M. Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly, 2006.

BRINO1 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to Distrib-
uted Systems. New York: Springer-Verlag, 2001.

GOODY4 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of UNIX
System V' Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

LOVEO0S Love, R. Linux Kernel Development. Waltham, MA: Novell Press, 2005.

MCDOO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris Ker-
nel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.

MCKUO5 McKusick, M., and Neville-Neil, J. The Design and Implementation of the
FreeBSD Operating System. Reading, MA: Addison-Wesley, 2005.

RUSSO05 Russinovich, M., and Solomon, D. Microsoft Windows Internals: Microsoft
Windows Server(TM) 2003, Windows XP, and Windows 2000. Redmond, WA:
Microsoft Press, 2005.

SWAI07 Swaine, M. “Wither Operating Systems?” Dr. Dobb’s Journal, March 2007.

VAHAY96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:
Prentice Hall, 1996.

Recommended Web sites:

¢ The Operating System Resource Center: A useful collection of documents and papers
on a wide range of operating system topics.

¢ Review of Operating Systems: A comprehensive review of commercial, free, research
and hobby operating systems.

¢ Operating System Technical Comparison: Includes a substantial amount of informa-
tion on a variety of operating systems.

° ACM Special Interest Group on Operating Systems: Information on SIGOPS publica-
tions and conferences.

¢ IEEE Technical Committee on Operating Systems and Application Environments: Includes
an online newsletter and links to other sites.

¢ The comp. os.research FAQ: Lengthy and worthwhile FAQ covering operating system
design issues.
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UNIX Guru Universe: Excellent source of UNIX information.
¢ Linux Documentation Project: The name describes the site.

IBM’s Linux Web site: Provides a wide range of technical and user information on Linux. Much
of it is devoted to IBM products, but there is a lot of useful general technical information.

* Windows Development: Good source of information on Windows internals.

2.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
batch processing multiprogramming serial processing
batch system multlitasking symmetric multiprocessing
execution context multithreading task
interrupt nucleus thread
job operating system (OS) time sharing
job control language physical address time-sharing system
kernel privileged instruction uniprogramming
memory management process virtual address
microkernel process state
monitor real address
monolithic kernel resident monitor
multiprogrammed batch round robin

system scheduling

Review Questions

2.1 What are three objectives of an OS design?
2.2 What is the kernel of an OS?
2.3 What is multiprogramming?
2.4 What is a process?
2.5 How is the execution context of a process used by the OS?
2.6  List and briefly explain five storage management responsibilities of a typical OS.
2.7 Explain the distinction between a real address and a virtual address.
2.8 Describe the round-robin scheduling technique.
2.9 Explain the difference between a monolithic kernel and a microkernel.
2.10  What is multithreading?

Problems

2.1 Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, 7, for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin scheduling is used, and that I/O operations can overlap
with processor operation. Define the following quantities:
¢ Turnaround time = actual time to complete a job
® Throughput = average number of jobs completed per time period T’
® Processor utilization = percentage of time that the processor is active (not waiting)
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2.2

2.3

24

2.5

Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:

a. /O first half, processor second half

b. I/O first and fourth quarters, processor second and third quarter

An I/O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

What is the purpose of system calls, and how do system calls relate to the OS and to
the concept of dual-mode (kernel mode and user mode) operation?

In IBM’s mainframe operating system, OS/390, one of the major modules in the kernel
is the System Resource Manager (SRM). This module is responsible for the allocation
of resources among address spaces (processes). The SRM gives OS/390 a degree of so-
phistication unique among operating systems. No other mainframe OS, and certainly
no other type of OS, can match the functions performed by SRM. The concept of re-
source includes processor, real memory, and I/O channels. SRM accumulates statistics
pertaining to utilization of processor, channel, and various key data structures. Its pur-
pose is to provide optimum performance based on performance monitoring and analy-
sis. The installation sets forth various performance objectives, and these serve as
guidance to the SRM, which dynamically modifies installation and job performance
characteristics based on system utilization. In turn, the SRM provides reports that en-
able the trained operator to refine the configuration and parameter settings to im-
prove user service.

This problem concerns one example of SRM activity. Real memory is divided into
equal-sized blocks called frames, of which there may be many thousands. Each frame
can hold a block of virtual memory referred to as a page. SRM receives control ap-
proximately 20 times per second and inspects each and every page frame. If the page
has not been referenced or changed, a counter is incremented by 1. Over time, SRM
averages these numbers to determine the average number of seconds that a page
frame in the system goes untouched. What might be the purpose of this and what ac-
tion might SRM take?



PART TWO

Processes

ment. The operating system must allocate resources to processes, enable

processes to share and exchange information, protect the resources of each
process from other processes, and enable synchronization among processes. To meet
these requirements, the operating system must maintain a data structure for each
process that describes the state and resource ownership of that process and that en-
ables the operating system to exert process control.

On a multiprogramming uniprocessor, the execution of multiple processes can
be interleaved in time. On a multiprocessor, not only may process execution be in-
terleaved, but also multiple processes can execute simultaneously. Both interleaved
and simultaneous execution are types of concurrency and lead to a host of difficult
problems, both for the application programmer and the operating system.

In many contemporary operating systems, the difficulties of process manage-
ment are compounded by the introduction of the concept of thread. In a multi-
threaded system, the process retains the attributes of resource ownership, while the
attribute of multiple, concurrent execution streams is a property of threads running
within a process.

ROAD MAP FOR PART TWO

Chapter 3 Process Description and Control

The fundamental task of any modern operating system is process manage-

The focus of a traditional operating system is the management of processes. Each
process is, at any time, in one of a number of execution states, including Ready,
Running, and Blocked. The operating system keeps track of these execution
states and manages the movement of processes among the states. For this pur-
pose the operating system maintains rather elaborate data structures describing
each process. The operating system must perform the scheduling function and
provide facilities for process sharing and synchronization. Chapter 3 looks at the
data structures and techniques used in a typical operating system for process
management.
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Chapter 4 Threads, SMP, and Microkernels

Chapter 4 covers three areas that characterize many contemporary operating sys-
tems and that represent advances over traditional operating system design. In many
operating systems, the traditional concept of process has been split into two parts:
one dealing with resource ownership (process) and one dealing with the stream of
instruction execution (thread). A single process may contain multiple threads. A
multithreaded organization has advantages both in the structuring of applications
and in performance. Chapter 4 also examines the symmetric multiprocessor (SMP),
which is a computer system with multiple processors, each of which is able to exe-
cute all application and system code. SMP organization enhances performance and
reliability. SMP is often used in conjunction with multithreading but can have pow-
erful performance benefits even without multithreading. Finally, Chapter 4 exam-
ines the microkernel, which is a style of operating system design that minimizes the
amount of system code that runs in kernel mode. The advantages of this approach
are analyzed.

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

The two central themes of modern operating systems are multiprogramming and
distributed processing. Fundamental to both these themes, and fundamental to the
technology of operating system design, is concurrency. Chapter 5 looks at two as-
pects of concurrency control: mutual exclusion and synchronization. Mutual exclu-
sion refers to the ability of multiple processes (or threads) to share code, resources,
or data in such a way that only one process has access to the shared object at a time.
Related to mutual exclusion is synchronization: the ability of multiple processes to
coordinate their activities by the exchange of information. Chapter 5 provides a
broad treatment of issues related to concurrency, beginning with a discussion of the
design issues involved. The chapter provides a discussion of hardware support for
concurrency and then looks at the most important mechanisms to support concur-
rency: semaphores, monitors, and message passing.

Chapter 6 Concurrency: Deadlock and Starvation

Chapter 6 looks at two additional aspects of concurrency control. Deadlock refers to
a situation in which a set of two or more processes are waiting for other members of
the set to complete an operation in order to proceed, but none of the members is
able to proceed. Deadlock is a difficult phenomenon to anticipate, and there are no
easy general solutions to this problem. Chapter 6 looks at the three major ap-
proaches to dealing with deadlock: prevention, avoidance, and detection. Starvation
refers to a situation in which a process is ready to execute but is continuously denied
access to a processor in deference to other processes. In large part, starvation is
dealt with as a scheduling issue and is therefore treated in Part Four. Although
Chapter 6 focuses on deadlock, starvation is addressed in the context that solutions
to deadlock need to avoid the problem of starvation.
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The design of an operating system (OS) reflects certain general requirements. All mul-
tiprogramming operating systems, from single-user systems such as Windows 98 to
mainframe systems such as IBM’s mainframe operating system, z/OS, which can sup-
port thousands of users, are built around the concept of the process. Most requirements
that the OS must meet can be expressed with reference to processes:

° The OS must interleave the execution of multiple processes, to maximize
processor utilization while providing reasonable response time.

e The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at
the same time avoiding deadlock.'

e The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

We begin our detailed study of operating systems with an examination of the
way in which they represent and control processes. After an introduction to the con-
cept of a process, the chapter discusses process states, which characterize the behavior
of processes. Then we look at the data structures that the OS uses to manage
processes. These include data structures to represent the state of each process and
data structures that record other characteristics of processes that the OS needs to
achieve its objectives. Next, we look at the ways in which the OS uses these data
structures to control process execution. Finally, we discuss process management in
UNIX SVRA4. Chapter 4 provides more modern examples of process management,
namely Solaris, Windows, and Linux.

Note: In this chapter, reference is occasionally made to virtual memory.
Much of the time, we can ignore this concept in dealing with processes, but at cer-
tain points in the discussion, virtual memory considerations are pertinent. Virtual
memory is not discussed in detail until Chapter 8; a brief overview is provided in

Chapter 2.
3.1 WHAT IS A PROCESS?
Background

Before defining the term process, it is useful to summarize some of the concepts in-
troduced in Chapters 1 and 2:

1. A computer platform consists of a collection of hardware resources, such as
the processor, main memory, I/O modules, timers, disk drives, and so on.

2. Computer applications are developed to perform some task. Typically, they accept
input from the outside world, perform some processing, and generate output.

3. It is inefficient for applications to be written directly for a given hardware plat-
form. The principal reasons for this are as follows:

'Deadlock is examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.
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a. Numerous applications can be developed for the same platform. Thus, it makes
sense to develop common routines for accessing the computer’s resources.

b. The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other
resources by multiple applications at the same time.

c¢.  When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

4. The OS was developed to provide a convenient, feature-rich, secure, and con-
sistent interface for applications to use. The OS is a layer of software between
the applications and the computer hardware (Figure 2.1) that supports appli-
cations and utilities.

5. We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources in-
clude main memory, network interfaces, file systems, and so on. Once the OS
has created these resource abstractions for applications to use, it must also
manage their use. For example, an OS may permit resource sharing and
resource protection.

Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the ex-
ecution of applications so that

* Resources are made available to multiple applications.

e The physical processor is switched among multiple applications so all will
appear to be progressing.

e The processor and I/O devices can be used efficiently.
The approach taken by all modern operating systems is to rely on a model in

which the execution of an application corresponds to the existence of one or more
processes.

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,
including
e A program in execution
* An instance of a program running on a computer
e The entity that can be assigned to and executed on a processor
e A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources

We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose that the processor begins to execute this program
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code, and we refer to this executing entity as a process. At any given point in time,
while the program is executing, this process can be uniquely characterized by a
number of elements, including the following:

Identifier: A unique identifier associated with this process, to distinguish it
from all other processes.

State: If the process is currently executing, it is in the running state.
Priority: Priority level relative to other processes.

Program counter: The address of the next instruction in the program to be
executed.

Memory pointers: Includes pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.

Context data: These are data that are present in registers in the processor
while the process is executing.

1I/0 status information: Includes outstanding I/O requests, I/O devices (e.g., tape
drives) assigned to this process, a list of files in use by the process, and so on.

Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

The information in the preceding list is stored in a data structure, typically

called a process control block (Figure 3.1), that is created and managed by the OS.
The significant point about the process control block is that it contains sufficient

Identifier

State

Priority

Program Counter

Memory Pointers

Context Data

1/0O Status
Information

Accounting
Information

Figure 3.1 Simplified Process Control Block
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information so that it is possible to interrupt a running process and later resume ex-
ecution as if the interruption had not occurred. The process control block is the key
tool that enables the OS to support multiple processes and to provide for multipro-
cessing. When a process is interrupted, the current values of the program counter
and the processor registers (context data) are saved in the appropriate fields of
the corresponding process control block, and the state of the process is changed to
some other value, such as blocked or ready (described subsequently). The OS is now
free to put some other process in the running state. The program counter and con-
text data for this process are loaded into the processor registers and this process
now begins to execute.

Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

3.2 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for that
program. From the processor’s point of view, it executes instructions from its reper-
toire in some sequence dictated by the changing values in the program counter reg-
ister. Over time, the program counter may refer to code in different programs that
are part of different processes. From the point of view of an individual program, its
execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the se-
quence of instructions that execute for that process. Such a listing is referred to as a
trace of the process. We can characterize behavior of the processor by showing how
the traces of the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout of
three processes. To simplify the discussion, we assume no use of virtual memory;
thus all three processes are represented by programs that are fully loaded in
main memory. In addition, there is a small dispatcher program that switches the
processor from one process to another. Figure 3.3 shows the traces of each of the
processes during the early part of their execution. The first 12 instructions executed
in processes A and C are shown. Process B executes four instructions, and we as-
sume that the fourth instruction invokes an I/O operation for which the process
must wait.

Now let us view these traces from the processor’s point of view. Figure 3.4
shows the interleaved traces resulting from the first 52 instruction cycles (for conve-
nience, the instruction cycles are numbered). In this figure, the shaded areas repre-
sent code executed by the dispatcher. The same sequence of instructions is executed
by the dispatcher in each instance because the same functionality of the dispatcher
is being executed. We assume that the OS only allows a process to continue execu-
tion for a maximum of six instruction cycles, after which it is interrupted; this
prevents any single process from monopolizing processor time. As Figure 3.4 shows,
the first six instructions of process A are executed, followed by a time-out and the
execution of some code in the dispatcher, which executes six instructions before
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Address  Main memory Program counter
0 | 8000 ¢ |

100
Dispatcher

5000
Process A

8000
Process B

12000
Process C

Figure 3.2 Snapshot of Example Execution (Figure 3.4) at
Instruction Cycle 13

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

(a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2



3.2 / PROCESS STATES 113

1 5000 27 12004
2 5001 28 12005
3 5002 Timeout
4 5003 29 100
5 5004 30 101
6 5005 31 102
Timeout 32 103
7 100 33 104
8 101 34 105
9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
15 8002 Timeout
16 8003 41 100
I/0 Request 42 101
17 100 43 102
18 101 44 103
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011
Timeout

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

turning control to process B.> After four instructions are executed, process B requests
an I/O action for which it must wait. Therefore, the processor stops executing process
B and moves on, via the dispatcher, to process C. After a time-out, the processor
moves back to process A. When this process times out, process B is still waiting for the
I/O operation to complete, so the dispatcher moves on to process C again.

The small numbers of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.
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Dispatch

Enter

Pause

(a) State transition diagram

Queue

Enter Dispatch Exit
—_— Processor | f————>-

Pause

(b) Queuing diagram
Figure 3.5 Two-State Process Model

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of pro-
cesses; this includes determining the interleaving pattern for execution and allocating
resources to processes. The first step in designing an OS to control processes is to
describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time, a
process is either being executed by a processor or not. In this model, a process may
be in one of two states: Running or Not Running, as shown in Figure 3.5a. When the
OS creates a new process, it creates a process control block for the process and en-
ters that process into the system in the Not Running state. The process exists, is
known to the OS, and is waiting for an opportunity to execute. From time to time,
the currently running process will be interrupted and the dispatcher portion of the
OS will select some other process to run. The former process moves from the Run-
ning state to the Not Running state, and one of the other processes moves to the
Running state.

From this simple model, we can already begin to appreciate some of the design
elements of the OS. Each process must be represented in some way so that the OS
can keep track of it. That is, there must be some information relating to each
process, including current state and location in memory; this is the process control
block. Processes that are not running must be kept in some sort of queue, waiting
their turn to execute. Figure 3.5b suggests a structure. There is a single queue in
which each entry is a pointer to the process control block of a particular process.
Alternatively, the queue may consist of a linked list of data blocks, in which each block
represents one process; we will explore this latter implementation subsequently.
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Table 3.1 Reasons for Process Creation

New batch job The OS is provided with a batch job control stream, usually on tape or
disk. When the OS is prepared to take on new work, it will read the
next sequence of job control commands.

Interactive logon A user at a terminal logs on to the system.

Created by OS to provide a service The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program

can dictate the creation of a number of processes.

We can describe the behavior of the dispatcher in terms of this queuing dia-
gram. A process that is interrupted is transferred to the queue of waiting processes.
Alternatively, if the process has completed or aborted, it is discarded (exits the
system). In either case, the dispatcher takes another process from the queue to
execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the creation
and termination of processes; ultimately, and regardless of the model of process
behavior that is used, the life of a process is bounded by its creation and
termination.

Process Creation When a new process is to be added to those currently being
managed, the OS builds the data structures that are used to manage the process and
allocates address space in main memory to the process. We describe these data
structures in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to log
on. In both cases, the OS is responsible for the creation of the new process. An OS
may also create a process on behalf of an application. For example, if a user requests
that a file be printed, the OS can create a process that will manage the printing. The
requesting process can thus proceed independently of the time required to com-
plete the printing task.

Traditionally, the OS created all processes in a way that was transparent to the
user or application program, and this is still commonly found with many contempo-
rary operating systems. However, it can be useful to allow one process to cause the
creation of another. For example, an application process may generate another
process to receive data that the application is generating and to organize those data
into a form suitable for later analysis. The new process runs in parallel to the origi-
nal process and is activated from time to time when new data are available. This
arrangement can be very useful in structuring the application. As another example,
a server process (e.g., print server, file server) may generate a new process for each
request that it handles. When the OS creates a process at the explicit request of an-
other process, the action is referred to as process spawning.
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Table 3.2 Reasons for Process Termination

Normal completion The process executes an OS service call to indicate that it has completed
running.
Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and,
in the case of an interactive process, the amount of time since the user last
provided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed
to use, or it tries to use it in an improper fashion, such as writing to a read-
only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries
to store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event
to occur.

1/O failure An error occurs during input or output, such as inability to find a file, failure

to read or write after a specified maximum number of tries (when, for exam-
ple, a defective area is encountered on a tape), or invalid operation (such as
reading from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the

process (for example, if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically termi-
nate all of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving this
cooperation is a difficult task for the programmer; this topic is discussed in Chapter 5.

Process Termination Table 3.2 summarizes typical reasons for process termina-
tion. Any computer system must provide a means for a process to indicate its com-
pletion. A batch job should include a Halt instruction or an explicit OS service call
for termination. In the former case, the Halt instruction will generate an interrupt to
alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may
quit an application (e.g., word processing or spreadsheet). All of these actions ulti-
mately result in a service request to the OS to terminate the requesting process.
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Figure 3.6  Five-State Process Model

Additionally, a number of error and fault conditions can lead to the termina-
tion of a process. Table 3.2 lists some of the more commonly recognized conditions.’

Finally, in some operating systems, a process may be terminated by the process
that created it or when the parent process is itself terminated.

A Five-State Model

If all processes were always ready to execute, then the queuing discipline suggested
by Figure 3.5b would be effective. The queue is a first-in-first-out list and the proces-
sor operates in round-robin fashion on the available processes (each process in the
queue is given a certain amount of time, in turn, to execute and then returned to the
queue, unless blocked). However, even with the simple example that we have described,
this implementation is inadequate: some processes in the Not Running state are
ready to execute, while others are blocked, waiting for an I/O operation to complete.
Thus, using a single queue, the dispatcher could not just select the process at the oldest
end of the queue. Rather, the dispatcher would have to scan the list looking for the
process that is not blocked and that has been in the queue the longest.

A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,
we have added two additional states that will prove useful. The five states in this
new diagram are as follows:

* Running: The process that is currently being executed. For this chapter, we
will assume a computer with a single processor, so at most one process at a
time can be in this state.

¢ Ready: A process that is prepared to execute when given the opportunity.

* Blocked/Waiting:* A process that cannot execute until some event occurs, such
as the completion of an I/O operation.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

“Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use
Blocked, but the terms are interchangeable.
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* New: A process that has just been created but has not yet been admitted to the
pool of executable processes by the OS. Typically, a new process has not yet
been loaded into main memory, although its process control block has been
created.

e Exit: A process that has been released from the pool of executable processes
by the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log onto a time-sharing system or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this
point, the process is in the New state. This means that the OS has performed the
necessary actions to create the process but has not committed itself to the execution
of the process. For example, the OS may limit the number of processes that may be
in the system for reasons of performance or main memory limitation. While a
process is in the new state, information concerning the process that is needed by the
OS is maintained in control tables in main memory. However, the process itself is
not in main memory. That is, the code of the program to be executed is not in main
memory, and no space has been allocated for the data associated with that program.
While the process is in the New state, the program remains in secondary storage,
typically disk storage.’

Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the exit state. At this point, the process is
no longer eligible for execution. The tables and other information associated with
the job are temporarily preserved by the OS, which provides time for auxiliary or
support programs to extract any needed information. For example, an accounting
program may need to record the processor time and other resources utilized by the
process for billing purposes. A utility program may need to extract information
about the history of the process for purposes related to performance or utilization
analysis. Once these programs have extracted the needed information, the OS no
longer needs to maintain any data relating to the process and the process is deleted
from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

¢ Null - New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1.

* New — Ready: The OS A will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual

5In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support vir-
tual memory, when a process moves from New to Ready, its program code and data are loaded into virtual
memory. Virtual memory was briefly discussed in Chapter 2 and is examined in detail in Chapter 8.
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memory committed to existing processes. This limit assures that there are not
so many active processes as to degrade performance.

* Ready — Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or dis-
patcher. Scheduling is explored in Part Four.

* Running — Exit: The currently running process is terminated by the OS if the
process indicates that it has completed, or if it aborts. See Table 3.2.

* Running — Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transition,
which are not implemented in all operating systems. Of particular importance
is the case in which the OS assigns different levels of priority to different
processes. Suppose, for example, that process A is running at a given priority
level, and process B, at a higher priority level, is blocked. If the OS learns that
the event upon which process B has been waiting has occurred, moving B to a
ready state, then it can interrupt process A and dispatch process B. We say that
the OS has preempted process A.° Finally, a process may voluntarily release
control of the processor. An example is a background process that performs
some accounting or maintenance function periodically.

* Running — Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
system service call; that is, a call from the running program to a procedure that
is part of the operating system code. For example, a process may request a ser-
vice from the OS that the OS is not prepared to perform immediately. It can
request a resource, such as a file or a shared section of virtual memory, that is
not immediately available. Or the process may initiate an action, such as an
1/O operation, that must be completed before the process can continue. When
processes communicate with each other, a process may be blocked when it is
waiting for another process to provide data or waiting for a message from
another process.

* Blocked — Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.

* Ready — Exit: For clarity, this transition is not shown on the state diagram. In
some systems, a parent may terminate a child process at any time. Also, if a
parent terminates, all child processes associated with that parent may be
terminated.

¢ Blocked — Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each
process among the states. Figure 3.8a suggests the way in which a queuing discipline

®In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process is finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so that another process can be executed.
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might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is
time for the OS to choose another process to run, it selects one from the Ready
queue. In the absence of any priority scheme, this can be a simple first-in-first-out
queue. When a running process is removed from execution, it is either terminated or
placed in the Ready or Blocked queue, depending on the circumstances. Finally,
when an event occurs, any process in the Blocked queue that has been waiting on
that event only is moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan
the entire blocked queue, searching for those processes waiting on that event. In a
large OS, there could be hundreds or even thousands of processes in that queue.
Therefore, it would be more efficient to have a number of queues, one for each
event. Then, when the event occurs, the entire list of processes in the appropriate
queue can be moved to the Ready state (Figure 3.8b).

One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for
each priority level. The OS could then readily determine which is the highest-priority
ready process that has been waiting the longest.

Suspended Processes

The Need for Swapping The three principal states just described (Ready, Run-
ning, Blocked) provide a systematic way of modeling the behavior of processes and
guide the implementation of the OS. Some operating systems are constructed using
just these three states.

However, there is good justification for adding other states to the model. To see
the benefit of these new states, consider a system that does not employ virtual memory.
Each process to be executed must be loaded fully into main memory. Thus, in Fig-
ure 3.8b, all of the processes in all of the queues must be resident in main memory.

Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation and therefore the processor in a uniprogram-
ming system is idle most of the time. But the arrangement of Figure 3.8b does not
entirely solve the problem. It is true that, in this case, memory holds multiple
processes and that the processor can move to another process when one process is
blocked. But the processor is so much faster than I/O that it will be common for all
of the processes in memory to be waiting for I/O. Thus, even with multiprogram-
ming, a processor could be idle most of the time.

What to do? Main memory could be expanded to accommodate more processes.
But there are two flaws in this approach. First, there is a cost associated with main
memory, which, though small on a per-byte basis, begins to add up as we get into the
gigabytes of storage. Second, the appetite of programs for memory has grown as fast
as the cost of memory has dropped. So larger memory results in larger processes, not
more processes.

Another solution is swapping, which involves moving part or all of a process
from main memory to disk. When none of the processes in main memory is in the
Ready state, the OS swaps one of the blocked processes out onto disk into a suspend
queue. This is a queue of existing processes that have been temporarily kicked out of
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Figure 3.9 Process State Transition Diagram with Suspend States

main memory, or suspended. The OS then brings in another process from the sus-
pend queue, or it honors a new-process request. Execution then continues with the
newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared to tape or printer I/O), swapping will usually
enhance performance.

With the use of swapping as just described, one other state must be added to
our process behavior model (Figure 3.9a): the Suspend state. When all of the
processes in main memory are in the Blocked state, the OS can suspend one process
by putting it in the Suspend state and transferring it to disk. The space that is freed
in main memory can then be used to bring in another process.



3.2 / PROCESS STATES 123

When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process
or it can bring in a previously suspended process. It would appear that the prefer-
ence should be to bring in a previously suspended process, to provide it with service
rather than increasing the total load on the system.

But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is still
not ready for execution. Recognize, however, that each process in the Suspend state
was originally blocked on a particular event. When that event occurs, the process is
not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two inde-
pendent concepts here: whether a process is waiting on an event (blocked or not)
and whether a process has been swapped out of main memory (suspended or not).
To accommodate this 2 X 2 combination, we need four states:

* Ready: The process is in main memory and available for execution.
* Blocked: The process is in main memory and awaiting an event.
¢ Blocked/Suspend: The process is in secondary memory and awaiting an event.

* Ready/Suspend: The process is in secondary memory but is available for
execution as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new sus-
pend states, one other point should be mentioned. The discussion so far has assumed
that virtual memory is not in use and that a process is either all in main memory or all
out of main memory. With a virtual memory scheme, it is possible to execute a process
that is only partially in main memory. If reference is made to a process address that is
not in main memory, then the appropriate portion of the process can be brought in. The
use of virtual memory would appear to eliminate the need for explicit swapping,
because any desired address in any desired process can be moved in or out of main
memory by the memory management hardware of the processor. However, as we shall
see in Chapter 8, the performance of a virtual memory system can collapse if there is a
sufficiently large number of active processes, all of which are partially in main memory.
Therefore, even in a virtual memory system, the OS will need to swap out processes
explicitly and completely from time to time in the interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have
developed. (The dashed lines in the figure indicate possible but not necessary tran-
sitions.) Important new transitions are the following:

¢ Blocked — Blocked/Suspend: If there are no ready processes, then at least one
blocked process is swapped out to make room for another process that is
not blocked. This transition can be made even if there are ready processes
available, if the OS determines that the currently running process or a ready
process that it would like to dispatch requires more main memory to maintain
adequate performance.

* Blocked/Suspend — Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been
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waiting occurs. Note that this requires that the state information concerning
suspended processes must be accessible to the OS.

* Ready/Suspend — Ready: When there are no ready processes in main memory,
the OS will need to bring one in to continue execution. In addition, it might be the
case that a process in the Ready/Suspend state has higher priority than any of the
processes in the Ready state. In that case, the OS designer may dictate that it is
more important to get at the higher-priority process than to minimize swapping.

* Ready — Ready/Suspend: Normally, the OS would prefer to suspend a blocked
process rather than a ready one, because the ready process can now be executed,
whereas the blocked process is taking up main memory space and cannot be
executed. However, it may be necessary to suspend a ready process if that is
the only way to free up a sufficiently large block of main memory. Also, the OS
may choose to suspend a lower-priority ready process rather than a higher-
priority blocked process if it believes that the blocked process will be ready soon.

Several other transitions that are worth considering are the following:

* New — Ready/Suspend and New — Ready: When a new process is created, it
can either be added to the Ready queue or the Ready/Suspend queue. In
either case, the OS must create a process control block and allocate an address
space to the process. It might be preferable for the OS to perform these house-
keeping duties at an early time, so that it can maintain a large pool of processes
that are not blocked. With this strategy, there would often be insufficient room
in main memory for a new process; hence the use of the (New — Ready/Suspend)
transition. On the other hand, we could argue that a just-in-time philosophy of
creating processes as late as possible reduces OS overhead and allows that OS
to perform the process-creation duties at a time when the system is clogged
with blocked processes anyway.

¢ Blocked/Suspend — Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in main
memory, what is the point of bringing it in? But consider the following sce-
nario: A process terminates, freeing up some main memory. There is a process
in the (Blocked/Suspend) queue with a higher priority than any of the processes
in the (Ready/Suspend) queue and the OS has reason to believe that the
blocking event for that process will occur soon. Under these circumstances, it
would seem reasonable to bring a blocked process into main memory in pref-
erence to a ready process.

* Running — Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempting
the process because a higher-priority process on the Blocked/Suspend queue
has just become unblocked, the OS could move the running process directly to
the (Ready/Suspend) queue and free some main memory.

* Any State — Exit: Typically, a process terminates while it is running, either
because it has completed or because of some fatal fault condition. However, in
some operating systems, a process may be terminated by the process that cre-
ated it or when the parent process is itself terminated. If this is allowed, then a
process in any state can be moved to the Exit state.
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Table 3.3 Reasons for Process Suspension

Swapping The OS needs to release sufficient main memory to bring in a process that is ready
to execute.
Other OS reason The OS may suspend a background or utility process or a process that is suspected

of causing a problem.

Interactive user request A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

Timing A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a descendent to examine or
modify the suspended process, or to coordinate the activity of various descendants.

Other Uses of Suspension So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not in
main memory is not immediately available for execution, whether or not it is awaiting
an event.

We can generalize the concept of a suspended process. Let us define a sus-
pended process as having the following characteristics:

1. The process is not immediately available for execution.

2. The process may or may not be waiting on an event. If it is, this blocked condition
is independent of the suspend condition, and occurrence of the blocking event
does not enable the process to be executed immediately.

3. The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

4. The process may not be removed from this state until the agent explicitly or-
ders the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason that
we have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or tracing
process may be employed to monitor activity on the system; the process may be
used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS, under
operator control, may turn this process on and off from time to time. If the OS detects
or suspects a problem, it may suspend a process. One example of this is deadlock,
which is discussed in Chapter 6. As another example, a problem is detected on a
communications line, and the operator has the OS suspend the process that is using
the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For exam-
ple, if a user suspects a bug in the program, he or she may debug the program by
suspending its execution, examining and modifying the program or data, and resuming
execution. Or there may be a background process that is collecting trace or account-
ing statistics, which the user may wish to be able to turn on and off.
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Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is an
example.

Finally, a parent process may wish to suspend a descendent process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

3.3 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches
processes for execution by the processor, allocates resources to processes, and re-
sponds to requests by user processes for basic services. Fundamentally, we can think
of the OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,
there are a number of processes (Py, . . ., P,,) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process Py is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P, is also in main memory but is blocked
waiting for an I/O device allocated to P;. Process P, has been swapped out and is
therefore suspended.

We explore the details of the management of these resources by the OS on
behalf of the processes in later chapters. Here we are concerned with a more funda-
mental question: What information does the OS need to control processes and man-
age resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about the
current status of each process and resource. The universal approach to providing
this information is straightforward: The OS constructs and maintains tables of

Virtual
memory
Computer
resources
Processor 1/0 1/0 1/0 e
memory

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)
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Figure 3.11 General Structure of Operating System Control Tables

information about each entity that it is managing. A general idea of the scope of this
effort is indicated in Figure 3.11, which shows four different types of tables main-
tained by the OS: memory, I/O, file, and process. Although the details will differ from
one OS to another, fundamentally, all operating systems maintain information in
these four categories.

Memory tables are used to keep track of both main (real) and secondary
(virtual) memory. Some of main memory is reserved for use by the OS; the remainder
is available for use by processes. Processes are maintained on secondary memory
using some sort of virtual memory or simple swapping mechanism. The memory tables
must include the following information:

The allocation of main memory to processes

The allocation of secondary memory to processes

° Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions

¢ Any information needed to manage virtual memory

We examine the information structures for memory management in detail in Part
Three.
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I/0 tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to
a particular process. If an I/O operation is in progress, the OS needs to know the
status of the I/O operation and the location in main memory being used as the
source or destination of the I/O transfer. /O management is examined in
Chapter 11.

The OS may also maintain file tables. These tables provide information about
the existence of files, their location on secondary memory, their current status, and
other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by the
OS itself. This topic is explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The remain-
der of this section is devoted to an examination of the required process tables.
Before proceeding to this discussion, two additional points should be made. First,
although Figure 3.11 shows four distinct sets of tables, it should be clear that these
tables must be linked or cross-referenced in some fashion. Memory, I/O, and files
are managed on behalf of processes, so there must be some reference to these re-
sources, directly or indirectly, in the process tables. The files referred to in the file
tables are accessible via an I/0O device and will, at some times, be in main or virtual
memory. The tables themselves must be accessible by the OS and therefore are sub-
ject to memory management.

Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much
main memory exists, what are the I/O devices and what are their identifiers, and so
on. This is an issue of configuration. That is, when the OS is initialized, it must have
access to some configuration data that define the basic environment, and these data
must be created outside the OS, with human assistance or by some autoconfigura-
tion software.

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it must
know where the process is located, and second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

Process Location Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a
process must include a program or set of programs to be executed. Associated
with these programs is a set of data locations for local and global variables and
any defined constants. Thus, a process will consist of at least sufficient memory to
hold the programs and data of that process. In addition, the execution of a pro-
gram typically involves a stack (see Appendix 1B) that is used to keep track of
procedure calls and parameter passing between procedures. Finally, each process
has associated with it a number of attributes that are used by the OS for process
control. Typically, the collection of attributes is referred to as a process control
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Table 3.4 Typical Elements of a Process Image

User Data

The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program

The program to be executed.

Stack

Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store para-
meters and calling addresses for procedure and system calls.

Process Control Block

Data needed by the OS to control the process (see Table 3.5).

block.” We can refer to this collection of program, data, stack, and attributes as the
process image (Table 3.4).

The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a con-
tiguous, or continuous, block of memory. This block is maintained in secondary
memory, usually disk. So that the OS can manage the process, at least a small por-
tion of its image must be maintained in main memory. To execute the process, the
entire process image must be loaded into main memory or at least virtual memory.
Thus, the OS needs to know the location of each process on disk and, for each such
process that is in main memory, the location of that process in main memory. We saw
a slightly more complex variation on this scheme with the CTSS OS, in Chapter 2.
With CTSS, when a process is swapped out, part of the process image may remain in
main memory. Thus, the OS must keep track of which portions of the image of each
process are still in main memory.

Modern operating systems presume paging hardware that allows noncontigu-
ous physical memory to support partially resident processes.® At any given time,
a portion of a process image may be in main memory, with the remainder in
secondary memory.’ Therefore, process tables maintained by the OS must show the
location of each page of each process image.

Figure 3.11 depicts the structure of the location information in the following way.
There is a primary process table with one entry for each process. Each entry contains,
at least, a pointer to a process image. If the process image contains multiple blocks,
this information is contained directly in the primary process table or is available by

"Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection on
memory management in Section 2.3.

9This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.
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Table 3.5 Typical Elements of a Process Control Block

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include

e Identifier of this process
¢ Identifier of the process that created this process (parent process)
e User identifier

Processor State Information

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC imple-
mentations have over 100.

Control and Status Registers

These are a variety of processor registers that are employed to control the operation of the processor. These include
e Program counter: Contains the address of the next instruction to be fetched

o Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow)
o Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store pa-
rameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information:

e Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, waiting,
halted).

e Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest-allowable).

o Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

e Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent-child
(creator-created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent processes.
Some or all of this information may be maintained in the process control block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions that
may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the
processor or other resources may also be included; this information may be needed by the scheduler.
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cross-reference to entries in memory tables. Of course, this depiction is generic; a par-
ticular OS will have its own way of organizing the location information.

Process Attributes A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

Table 3.5 lists the typical categories of information required by the OS for
each process. You may be somewhat surprised at the quantity of information re-
quired. As you gain a greater appreciation of the responsibilities of the OS, this list
should appear more reasonable.

We can group the process control block information into three general
categories:

e Process identification
* Processor state information
e Process control information

With respect to process identification, in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (Figure 3.11); otherwise there must be a mapping that
allows the OS to locate the appropriate tables based on the process identifier. This
identifier is useful in several ways. Many of the other tables controlled by the OS
may use process identifiers to cross-reference process tables. For example, the mem-
ory tables may be organized so as to provide a map of main memory with an indica-
tion of which process is assigned to each region. Similar references will appear in
I/O and file tables. When processes communicate with one another, the process
identifier informs the OS of the destination of a particular communication. When
processes are allowed to create other processes, identifiers indicate the parent and
descendents of each process.

In addition to these process identifiers, a process may be assigned a user
identifier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.
While a process is running, of course, the information is in the registers. When a
process is interrupted, all of this register information must be saved so that it can be
restored when the process resumes execution. The nature and number of registers
involved depend on the design of the processor. Typically, the register set will in-
clude user-visible registers, control and status registers, and stack pointers. These are
described in Chapter 1.

Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contain condition codes plus other status information. A good
example of a processor status word is that on Pentium processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by any
OS (including UNIX and Windows) running on a Pentium processor.
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VIP = Virtual interrupt pending IF = Interrupt enable flag
VIF = Virtual interrupt flag TF = Trap flag

AC = Alignment check SF = Sign flag

VM = Virtual 8086 mode ZF = Zero flag
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NT = Nested task flag PF = Parity flag

IOPL = 1/O privilege level CF = Carry flag

OF = Overflow flag
Figure 3.12  Pentium II EFLAGS Register

Table 3.6 Pentium EFLAGS Register Bits

Control Bits

AC (Alignment check)

Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)

If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides in-
formation about the vendor, family, and model.

RF (Resume flag)

Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)

When set, causes the processor to generate an exception on all accesses to I/O devices during protected mode
operation.

DF (Direction flag)

Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

IF (Interrupt enable flag)

When set, the processor will recognize external interrupts.

TF (Trap flag)

When set, causes an interrupt after the execution of each instruction. This is used for debugging.

Operating Mode Bits

NT (Nested task flag)
Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)

Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)

Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)

Used in virtual 8086 mode instead of IF.




Condition Codes

AF (Auxiliary carry flag)

Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL

register.
CF (Carry flag)

Indicates carrying our or borrowing into the leftmost bit position following an arithmetic operation. Also mod-

ified by some of the shift and rotate operations.

OF (Overflow flag)
Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)

Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)

Indicates the sign of the result of an arithmetic or logic operation.
ZF (Zero flag)

Indicates that the result of an arithmetic or logic operation is 0.
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The third major category of information in the process control block can be
called, for want of a better name, process control information. This is the additional
information needed by the OS to control and coordinate the various active processes.
The last part of Table 3.5 indicates the scope of this information. As we examine the
details of operating system functionality in succeeding chapters, the need for the

various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each
process image consists of a process control block, a user stack, the private address space
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Figure 3.14 Process List Structures

of the process, and any other address space that the process shares with other
processes. In the figure, each process image appears as a contiguous range of addresses.
In an actual implementation, this may not be the case; it will depend on the memory
management scheme and the way in which control structures are organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be implemented
as linked lists of process control blocks. For example, the queuing structure of Fig-
ure 3.8a could be implemented as suggested in Figure 3.14.

The Role of the Process Control Block The process control block is the
most important data structure in an OS. Each process control block contains all of the
information about a process that is needed by the OS. The blocks are read and/or
modified by virtually every module in the OS, including those involved with schedul-
ing, resource allocation, interrupt processing, and performance monitoring and
analysis. One can say that the set of process control blocks defines the state of the OS.

This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct ac-
cess to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

¢ A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.
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* A design change in the structure or semantics of the process control block
could affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The tradeoff in the
use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

3.4 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages processes,
we need to distinguish between the mode of processor execution normally associated
with the OS and that normally associated with user programs. Most processors
support at least two modes of execution. Certain instructions can only be executed
in the more-privileged mode. These would include reading or altering a control reg-
ister, such as the program status word; primitive I/O instructions; and instructions
that relate to memory management. In addition, certain regions of memory can only
be accessed in the more-privileged mode.

The less-privileged mode is often referred to as the user mode, because user
programs typically would execute in this mode. The more-privileged mode is re-
ferred to as the system mode, control mode, or kernel mode. This last term refers to
the kernel of the OS, which is that portion of the OS that encompasses the impor-
tant system functions. Table 3.7 lists the functions typically found in the kernel of
an OS.

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

e Process creation and termination

® Process scheduling and dispatching

® Process switching

e Process synchronization and support for interprocess communication
e Management of process control blocks

Memory Management

e Allocation of address space to processes
® Swapping
¢ Page and segment management

I/0 Management

¢ Buffer management
e Allocation of I/O channels and devices to processes

Support Functions

e Interrupt handling
® Accounting
© Monitoring
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The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to be
executing and how is the mode changed? Regarding the first question, typically
there is a bit in the program status word (PSW) that indicates the mode of execu-
tion. This bit is changed in response to certain events. Typically, when a user makes a
call to an operating system service or when an interrupt triggers execution of an
operating system routine, the mode is set to the kernel mode and, upon return from
the service to the user process, the mode is set to user mode. As an example, consider
the Intel Itanium processor, which implements the 64-bit IA-64 architecture. The
processor has a processor status register (psr) that includes a 2-bit cpl (current priv-
ilege level) field. Level 0 is the most privileged level, while level 3 is the least
privileged level. Most operating systems, such as Linux, use level 0 for the kernel and
one other level for user mode. When an interrupt occurs, the processor clears most
of the bits in the psr, including the cpl field. This automatically sets the cpl to level 0.
At the end of the interrupt-handling routine, the final instruction that is executed is
irt (interrup return). This instruction causes the processor to restore the psr of the
interrupted program, which restores the privilege level of that program. A similar
sequence occurs when an application places a system call. For the Itanium, an appli-
cation places a system call by placing the system call identifier and the system call
arguments in a predefined area and then executing a special instruction that has the
effect of interrupting execution at the user level and transferring control to the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process.
Having discussed the data structures associated with a process, we are now in a po-
sition to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (Table 3.1), to create a new process,
it can proceed as follows:

1. Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

2. Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request at
job creation time. If a process is spawned by another process, the parent process
can pass the needed values to the OS as part of the process-creation request. If
any existing address space is to be shared by this new process, the appropriate link-
ages must be set up. Finally, space for a process control block must be allocated.

3. Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized with
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most entries zero, except for the program counter (set to the program entry
point) and system stack pointers (set to define the process stack boundaries). The
process control information portion is initialized based on standard default val-
ues plus attributes that have been requested for this process. For example, the
process state would typically be initialized to Ready or Ready/Suspend. The
priority may be set by default to the lowest priority unless an explicit request is
made for a higher priority. Initially, the process may own no resources (I/O
devices, files) unless there is an explicit request for these or unless they are inher-
ited from the parent.

4. Set the appropriate linkages. For example, if the OS maintains each scheduling
queue as a linked list, then the new process must be put in the Ready or
Ready/Suspend list.

5. Create or expand other data structures. For example, the OS may maintain an
accounting file on each process to be used subsequently for billing and/or per-
formance assessment purposes.

Process Switching

On the face of it, the function of process switching would seem to be straightfor-
ward. At some time, a running process is interrupted and the OS assigns another
process to the Running state and turns control over to that process. However, several
design issues are raised. First, what events trigger a process switch? Another issue is
that we must recognize the distinction between mode switching and process switch-
ing. Finally, what must the OS do to the various data structures under its control to
achieve a process switch?

When to Switch Processes A process switch may occur any time that the OS
has gained control from the currently running process. Table 3.8 suggests the possi-
ble events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is ex-
ternal to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does

Table 3.8 Mechanisms for Interrupting the Execution of a Process

Mechanism Cause Use
Interrupt External to the execution of the Reaction to an asynchronous
current instruction external event
Trap Associated with the execution of Handling of an error or an
the current instruction exception condition
Supervisor call Explicit request Call to an operating system
function
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some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

* Clock interrupt: The OS determines whether the currently running process
has been executing for the maximum allowable unit of time, referred to as a
time slice. That is, a time slice is the maximum amount of time that a process
can execute before being interrupted. If so, this process must be switched to a
Ready state and another process dispatched.

¢ 1/O interrupt: The OS determines what I/O action has occurred. If the I/O ac-
tion constitutes an event for which one or more processes are waiting, then the
OS moves all of the corresponding blocked processes to the Ready state (and
Blocked/Suspend processes to the Ready/Suspend state). The OS must then
decide whether to resume execution of the process currently in the Running
state or to preempt that process for a higher-priority Ready process.

° Memory fault: The processor encounters a virtual memory address reference
for a word that is not in main memory. The OS must bring in the block (page or
segment) of memory containing the reference from secondary memory to main
memory. After the I/O request is issued to bring in the block of memory, the
process with the memory fault is placed in a blocked state; the OS then per-
forms a process switch to resume execution of another process. After the de-
sired block is brought into memory, that process is placed in the Ready state.

With a trap, the OS determines if the error or exception condition is fatal. If so,
then the currently running process is moved to the Exit state and a process switch
occurs. If not, then the action of the OS will depend on the nature of the error and
the design of the OS. It may attempt some recovery procedure or simply notify the
user. It may do a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an 1/O operation, such as a file open. This call results in a transfer to a rou-
tine that is part of the operating system code. The use of a system call may place the
user process in the Blocked state.

Mode Switching In Chapter 1, we discussed the inclusion of an interrupt stage
as part of the instruction cycle. Recall that, in the interrupt stage, the processor
checks to see if any interrupts are pending, indicated by the presence of an interrupt
signal. If no interrupts are pending, the processor proceeds to the fetch stage and
fetches the next instruction of the current program in the current process. If an in-
terrupt is pending, the processor does the following:

1. It sets the program counter to the starting address of an interrupt handler
program.

2. It switches from user mode to kernel mode so that the interrupt processing
code may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of the
interrupt handler program, which will service the interrupt. At this point, typically,
the context of the process that has been interrupted is saved into that process
control block of the interrupted program.
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One question that may now occur to you is, What constitutes the context that
is saved? The answer is that it must include any information that may be altered by
the execution of the interrupt handler and that will be needed to resume the pro-
gram that was interrupted. Thus, the portion of the process control block that was
referred to as processor state information must be saved. This includes the program
counter, other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence
of an interrupt. It may send an acknowledgment to the entity that issued the inter-
rupt, such as an I/O module. And it may do some basic housekeeping relating to the
effects of the event that caused the interrupt. For example, if the interrupt relates to
an I/O event, the interrupt handler will check for an error condition. If an error has
occurred, the interrupt handler may send a signal to the process that originally re-
quested the I/O operation. If the interrupt is by the clock, then the handler will hand
control over to the dispatcher, which will want to pass control to another process be-
cause the time slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need to be
done. However, in most operating systems, the occurrence of an interrupt does not
necessarily mean a process switch. It is possible that, after the interrupt handler has
executed, the currently running process will resume execution. In that case, all that
is necessary is to save the processor state information when the interrupt occurs and
restore that information when control is returned to the program that was running.
Typically, the saving and restoring functions are performed in hardware.

Change of Process State It is clear, then, that the mode switch is a concept
distinct from that of the process switch.!” A mode switch may occur without chang-
ing the state of the process that is currently in the Running state. In that case, the
context saving and subsequent restoral involve little overhead. However, if the cur-
rently running process is to be moved to another state (Ready, Blocked, etc.), then
the OS must make substantial changes in its environment. The steps involved in a
full process switch are as follows:

1. Save the context of the processor, including program counter and other
registers.

2. Update the process control block of the process that is currently in the Running
state. This includes changing the state of the process to one of the other states
(Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields must also be
updated, including the reason for leaving the Running state and accounting
information.

3. Move the process control block of this process to the appropriate queue (Ready;
Blocked on Event i; Ready/Suspend).

0The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.
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Select another process for execution; this topic is explored in Part Four.

Update the process control block of the process selected. This includes changing
the state of this process to Running.

Update memory management data structures. This may be required, depending
on how address translation is managed; this topic is explored in Part Three.
Restore the context of the processor to that which existed at the time the se-
lected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort

than a mode switch.

3.5 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

e The OS functions in the same way as ordinary computer software in the sense

that the OS is a set of programs executed by the processor.

e The OS frequently relinquishes control and depends on the processor to re-

store control to the OS.

If the OS is just a collection of programs and if it is executed by the processor

just like any other program, is the OS a process? If so, how is it controlled? These in-
teresting questions have inspired a number of design approaches. Figure 3.15 illus-
trates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (Figure 3.15a). With this approach, when the
currently running process is interrupted or issues a supervisor call, the mode context
of this process is saved and control is passed to the kernel. The OS has its own region
of memory to use and its own system stack for controlling procedure calls and
returns. The OS can perform any desired functions and restore the context of the in-
terrupted process, which causes execution to resume in the interrupted user process.
Alternatively, the OS can complete the function of saving the environment of the
process and proceed to schedule and dispatch another process. Whether this happens
depends on the reason for the interruption and the circumstances at the time.

In any case, the key point here is that the concept of process is considered to

apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
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Figure 3.15 Relationship between Operating System
and User Processes

The view is that the OS is primarily a collection of routines that the user calls to per-
form various functions, executed within the environment of the user’s process. This
is illustrated in Figure 3.15b. At any given point, the OS is managing n process im-
ages. Each image includes not only the regions illustrated in Figure 3.13, but also
program, data, and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.
Operating system code and data are in the shared address space and are shared by
all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operat-
ing system routine. However, execution continues within the current user process.
Thus, a process switch is not performed, just a mode switch within the same
process.

If the OS, upon completion of its work, determines that the current process
should continue to run, then a mode switch resumes the interrupted program within
the current process. This is one of the key advantages of this approach: A user pro-
gram has been interrupted to employ some operating system routine, and then re-
sumed, and all of this has occurred without incurring the penalty of two process
switches. If, however, it is determined that a process switch is to occur rather than
returning to the previously executing program, then control is passed to a process-
switching routine. This routine may or may not execute in the current process,
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depending on system design. At some point, however, the current process has to be
placed in a nonrunning state and another process designated as the running process.
During this phase, it is logically most convenient to view execution as taking place
outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in
time, a process will save its state information, choose another process to run from
among those that are ready, and relinquish control to that process. The reason this is
not an arbitrary and indeed chaotic situation is that during the critical time, the code
that is executed in the user process is shared operating system code and not user
code. Because of the concept of user mode and kernel mode, the user cannot tamper
with or interfere with the operating system routines, even though they are executing
in the user’s process environment. This further reminds us that there is a distinction
between the concepts of process and program and that the relationship between the
two is not one to one. Within a process, both a user program and operating system
programs may execute, and the operating system programs that execute in the vari-
ous user processes are identical.
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Process-Based Operating System

Another alternative, illustrated in Figure 3.15c, is to implement the OS as a collec-
tion of system processes. As in the other options, the software that is part of the ker-
nel executes in a kernel mode. In this case, however, major kernel functions are
organized as separate processes. Again, there may be a small amount of process-
switching code that is executed outside of any process.

This approach has several advantages. It imposes a program design disci-
pline that encourages the use of a modular OS with minimal, clean interfaces be-
tween the modules. In addition, some noncritical operating system functions are
conveniently implemented as separate processes. For example, we mentioned
earlier a monitor program that records the level of utilization of various re-
sources (processor, memory, channels) and the rate of progress of the user
processes in the system. Because this program does not provide a particular ser-
vice to any active process, it can only be invoked by the OS. As a process, the
function can run at an assigned priority level and be interleaved with other
processes under dispatcher control. Finally, implementing the OS as a set of
processes is useful in a multiprocessor or multicomputer environment, in which
some of the operating system services can be shipped out to dedicated proces-
sors, improving performance.

3.6 SECURITY ISSUES

An OS associates a set of privileges with each process. These privileges dictate what
resources the process may access, including regions of memory, files, privileged sys-
tem instructions, and so on. Typically, a process that executes on behalf of a user has
the privileges that the OS recognizes for that user. A system or utility process may
have privileges assigned at configuration time.

On a typical system, the highest level of privilege is referred to as administra-
tor, supervisor, or root, access.'! Root access provides access to all the functions and
services of the operating system. With root access, a process has complete control of
the system and can add or changes programs and files, monitor other processes, send
and receive network traffic, and alter privileges.

A key security issue in the design of any OS is to prevent, or at least detect, at-
tempts by a user or a piece of malicious software (malware) from gaining unautho-
rized privileges on the system and, in particular, from gaining root access. In this
section, we briefly summarize the threats and countermeasures related to this secu-
rity issue. Part Seven provides more detail.

System Access Threats

System access threats fall into two general categories: intruders and malicious
software.

10n UNIX systems, the administrator, or superuser, account is called root; hence the term root access.
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Intruders One of the most common threats to security is the intruder (the other is
viruses), often referred to as a hacker or cracker. In an important early study of in-
trusion, Anderson [ANDESO] identified three classes of intruders:

* Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

e Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

* Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of
the scale, there are many people who simply wish to explore internets and see
what is out there. At the serious end are individuals who are attempting to read
privileged data, perform unauthorized modifications to data, or disrupt the
system.

The objective of the intruder is to gain access to a system or to increase the
range of privileges accessible on a system. Most initial attacks use system or soft-
ware vulnerabilities that allow a user to execute code that opens a back door into
the system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We introduce buffer over-
flow attacks in Chapter 7.

Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user.

Malicious Software Perhaps the most sophisticated types of threats to computer
systems are presented by programs that exploit vulnerabilities in computing sys-
tems. Such threats are referred to as malicious software, or malware. In this context,
we are concerned with threats to application programs as well as utility programs,
such as editors and compilers, and kernel-level programs.

Malicious software can be divided into two categories: those that need a
host program, and those that are independent. The former, referred to as
parasitic, are essentially fragments of programs that cannot exist independently
of some actual application program, utility, or system program. Viruses, logic
bombs, and backdoors are examples. The latter are self-contained programs that
can be scheduled and run by the operating system. Worms and bot programs are
examples.

We can also differentiate between those software threats that do not replicate
and those that do. The former are programs or fragments of programs that are acti-
vated by a trigger. Examples are logic bombs, backdoors, and bot programs. The lat-
ter consist of either a program fragment or an independent program that, when
executed, may produce one or more copies of itself to be activated later on the same
system or some other system. Viruses and worms are examples.
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Malicious software can be relatively harmless or may perform one or more of
a number of harmful actions, including destroying files and data in main memory,
bypassing controls to gain privileged access, and providing a means for intruders to
bypass access controls.

Countermeasures

Intrusion Detection RFC 2828 (Internet Security Glossary) defines intrusion
detection as follows: A security service that monitors and analyzes system events for
the purpose of finding, and providing real-time or near-real-time warning of,
attempts to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

* Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

¢ Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols to
identify suspicious activity

An IDS comprises three logical components:

* Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

* Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has
occurred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.

e User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

Intrusion detection systems are typically designed to detect human intruder
behavior as well as malicious software behavior.

Authentication In most computer security contexts, user authentication is the
fundamental building block and the primary line of defense. User authentication is
the basis for most types of access control and for user accountability. RFC 2828
defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. An authen-
tication process consists of two steps:

¢ Identification step: Presenting an identifier to the security system. (Identi-
fiers should be assigned carefully, because authenticated identities are the
basis for other security services, such as access control service.)

¢ Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.
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For example, user Alice Toklas could have the user identifier ABTOKLAS.
This information needs to be stored on any server or computer system that Alice
wishes to use and could be known to system administrators and other users. A
typical item of authentication information associated with this user ID is a pass-
word, which is kept secret (known only to Alice and to the system). If no one is able
to obtain or guess Alice’s password, then the combination of Alice’s user ID and
password enables administrators to set up Alice’s access permissions and audit her
activity. Because Alice’s ID is not secret, system users can send her e-mail, but be-
cause her password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed identity
to the system; user authentication is the means of establishing the validity of the claim.

There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

* Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

* Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a token.

* Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

* Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false neg-
atives, user acceptance, cost, and convenience.

Access Control Access control implements a security policy that specifies who
or what (e.g., in the case of a process) may have access to each specific system re-
source and the type of access that is permitted in each instance.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate a user seek-
ing access. Typically, the authentication function determines whether the user is per-
mitted to access the system at all. Then the access control function determines if the
specific requested access by this user is permitted. A security administrator main-
tains an authorization database that specifies what type of access to which resources
is allowed for this user. The access control function consults this database to deter-
mine whether to grant access. An auditing function monitors and keeps a record of
user accesses to system resources.

Firewalls Firewalls can be an effective means of protecting a local system or network
of systems from network-based security threats while at the same time affording access
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to the outside world via wide area networks and the Internet. Traditionally, a firewall is
a dedicated computer that interfaces with computers outside a network and has special
security precautions built into it in order to protect sensitive files on computers within
the network. It is used to service outside network, especially Internet, connections and
dial-in lines. Personal firewalls that are implemented in hardware or software, and
associated with a single workstation or PC, are also common.

[BELLY4] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network ex-
cept via the firewall. Various configurations are possible, as explained later in
this chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies.

3. The firewall itself is immune to penetration. This implies the use of a hardened
system with a secured operating system. Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

3.7 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS
executes within the environment of a user process. UNIX uses two categories of
processes: system processes and user processes. System processes run in kernel
mode and execute operating system code to perform administrative and housekeep-
ing functions, such as allocation of memory and process swapping. User processes
operate in user mode to execute user programs and utilities and in kernel mode to
execute instructions that belong to the kernel. A user process enters kernel mode by
issuing a system call, when an exception (fault) is generated, or when an interrupt
occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9 and a state transition diagram is shown in Figure 3.17
(based on figure in [BACHS6]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

e UNIX employs two Running states to indicate whether the process is execut-
ing in user mode or kernel mode.

e A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted line
joining them. The distinction is made to emphasize the way in which the preempted
state is entered. When a process is running in kernel mode (as a result of a super-
visor call, clock interrupt, or I/O interrupt), there will come a time when the kernel
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Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in Ready to run as soon as the kernel schedules it.

Memory

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run, Process is ready to run, but the swapper must swap the process into main memory be-

Swapped fore the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a
process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

has completed its work and is ready to return control to the user program. At this
point, the kernel may decide to preempt the current process in favor of one that is
ready and of higher priority. In that case, the current process moves to the pre-
empted state. However, for purposes of dispatching, those processes in the pre-
empted state and those in the Ready to Run,in Memory state form one queue.

Fork

|

Created
eempted
Not Enough Memory
(swapping system only)

Preempt N

Swap Out
Reschedule g © "
Process Swap In g2rre
System Call,
Interrupt
Wakeup
Interrupt,
Interrupt Return
Swap Out

Figure 3.17 UNIX Process State Transition Diagram
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Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 discusses the re-
quirements for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is created
when the system boots; in effect, it is predefined as a data structure loaded at boot
time. It is the swapper process. In addition, process 0 spawns process 1, referred to as
the init process; all other processes in the system have process 1 as an ancestor. When
a new interactive user logs onto the system, it is process 1 that creates a user process
for that user. Subsequently, the user process can create child processes in a branching
tree, so that any particular application can consist of a number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and can
be generated directly from a compiled object file. The user’s program is separated

Table 3.10 UNIX Process Image

User-Level Context

Process text Executable machine instructions of the program

Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions executing in user
mode

Shared memory Memory shared with other processes, used for interprocess communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process

Processor status Contains the hardware status at the time of preemption; contents and format are hard-

register ware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at
the time or preemption

General-purpose Hardware dependent

registers

System-Level Context

Process table entry Defines state of a process; this information is always accessible to the operating

system
U (user) area Process control information that needs to be accessed only in the context of the
process
Per process region Defines the mapping from virtual to physical addresses; also contains a permission
table field that indicates the type of access allowed the process: read-only, read-write, or

read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode
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into text and data areas; the text area is read-only and is intended to hold the pro-
gram’s instructions. While the process is executing, the processor uses the user stack
area for procedure calls and returns and parameter passing. The shared memory
area is a data area that is shared with other processes. There is only one physical
copy of a shared memory area, but, by the use of virtual memory, it appears to each
sharing process that the shared memory region is in its address space. When a
process is not running, the processor status information is stored in the register
context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and
stays with a process throughout its lifetime, and a dynamic part, which varies in size
through the life of the process. One element of the static part is the process table
entry. This is actually part of the process table maintained by the OS, with one entry
per process. The process table entry contains process control information that is ac-
cessible to the kernel at all times; hence, in a virtual memory system, all process
table entries are maintained in main memory. Table 3.11 lists the contents of a
process table entry. The user area, or U area, contains additional process control in-
formation that is needed by the kernel when it is executing in the context of this
process; it is also used when paging processes to and from memory. Table 3.12 shows
the contents of this table.

The distinction between the process table entry and the U area reflects the
fact that the UNIX kernel always executes in the context of some process. Much of
the time, the kernel will be dealing with the concerns of that process. However, some
of the time, such as when the kernel is performing a scheduling algorithm prepara-
tory to dispatching another process, it will need access to information about other

Table 3.11 UNIX Process Table Entry

Process status

Current state of process.

Pointers

To U area and process memory area (text, data, stack).

Process size

Enables the operating system to know how much space to allocate the process.

User
identifiers

The real user ID identifies the user who is responsible for the running process. The effective
user ID may be used by a process to gain temporary privileges associated with a particular
program; while that program is being executed as part of the process, the process operates
with the effective user ID.

Process identi-
fiers

ID of this process; ID of parent process. These are set up when the process enters the Created
state during the fork system call.

Event Valid when a process is in a sleeping state; when the event occurs, the process is transferred

descriptor to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to send
alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory Indicates whether process image is in main memory or swapped out. If it is in memory, this

status field also indicates whether it may be swapped out or is temporarily locked into main memory.
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Table 3.12 UNIX U Area

Process table
pointer

Indicates entry that corresponds to the U area.

User identifiers

Real and effective user IDs. Used to determine user privileges.

Timers

Record time that the process (and its descendants) spent executing in user mode and in
kernel mode.

Signal-handler
array

For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function).

Control terminal

Indicates login terminal for this process, if one exists.

Error field

Records errors encountered during a system call.

Return value

Contains the result of system calls.

I/O parameters

Describe the amount of data to transfer, the address of the source (or target) data array
in user space, and file offsets for I/O.

File parameters

Current directory and current root describe the file system environment of the
process.

User file descrip-
tor table

Records the files the process has open.

Limit fields

Restrict the size of the process and the size of a file it can write.

Permission modes
fields

Mask mode settings on files the process creates.

processes. The information in a process table can be accessed when the given
process is not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is
the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode and contains the information that must be saved and re-
stored as procedure calls and interrupts occur.

Process Control

Process creation in UNIX is made by means of the kernel system call, fork ( ).When
a process issues a fork request, the OS performs the following functions [BACHS6]:

1. It allocates a slot in the process table for the new process.

2. It assigns a unique process ID to the child process.

3. It makes a copy of the process image of the parent, with the exception of any
shared memory.

4. Tt increments counters for any files owned by the parent, to reflect that an addi-
tional process now also owns those files.

5. It assigns the child process to the Ready to Run state.

6. It returns the ID number of the child to the parent process, and a 0 value to the
child process.
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All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions it can do one of the following, as part of
the dispatcher routine:

e Stay in the parent process. Control returns to user mode at the point of the
fork call of the parent.

e Transfer control to the child process. The child process begins executing at
the same point in the code as the parent, namely at the return from the
fork call.

e Transfer control to another process. Both parent and child are left in the
Ready to Run state.

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this:
When the return from the fork occurs, the return parameter is tested. If the value is
zero, then this is the child process, and a branch can be executed to the appropriate
user program to continue execution. If the value is nonzero, then this is the parent
process, and the main line of execution can continue.

3.8 SUMMARY

The most fundamental concept in a modern OS is the process. The principal func-
tion of the OS is to create, manage, and terminate processes. While processes are
active, the OS must see that each is allocated time for execution by the processor,
coordinate their activities, manage conflicting demands, and allocate system re-
sources to processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state, re-
sources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most im-
portant of these are Ready, Running, and Blocked. A ready process is one that is
not currently executing but that is ready to be executed as soon as the OS dis-
patches it. The running process is that process that is currently being executed by
the processor. In a multiple-processor system, more than one process can be in this
state. A blocked process is waiting for the completion of some event, such as an I/O
operation.

A running process is interrupted either by an interrupt, which is an event
that occurs outside the process and that is recognized by the processor, or by exe-
cuting a supervisor call to the OS. In either case, the processor performs a mode
switch, transferring control to an operating system routine. The OS, after it has
completed necessary work, may resume the interrupted process or switch to some
other process.
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3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
blocked state privileged mode round robin
child process process running state
exit state process control suspend state
interrupt block swapping

kernel mode
mode switch
new state
parent process
preempt

process image
process switch
program status

system mode
task
trace

word trap
ready state user mode

Review Questions

3.1
3.2
33
34
3.5
3.6
3.7
3.8

3.9
3.10
3.11
3.12

What is an instruction trace?

What common events lead to the creation of a process?

For the processing model of Figure 3.6, briefly define each state.
What does it mean to preempt a process?

What is swapping and what is its purpose?

Why does Figure 3.9b have two blocked states?

List four characteristics of a suspended process.

For what types of entities does the OS maintain tables of information for manage-
ment purposes?

List three general categories of information in a process control block.
Why are two modes (user and kernel) needed?

What are the steps performed by an OS to create a new process?
What is the difference between an interrupt and a trap?
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3.13
3.14

Give three examples of an interrupt.
What is the difference between a mode switch and a process switch?

Problems

3.1

3.2

34

3.5

3.6

3.8

Name five major activities of an OS with respect to process management, and briefly
describe why each is required.

Consider a computer with N processors in a multiprocessor configuration.

a. How many processes can be in each of the Ready, Running, and Blocked states at
one time?

b. What is the minimum number of processes that can be in each of the Ready,
Running, and Blocked states at one time?

Figure 3.9b contains seven states. In principle, one could draw a transition between

any two states, for a total of 42 different transitions.

a. List all of the possible transitions and give an example of what could cause each
transition.

b. List all of the impossible transitions and explain why.

In [PINK89], the following states are defined for processes: Execute (running), Active
(ready), Blocked, and Suspend. A process is blocked if it is waiting for permission to
use a resource, and it is suspended if it is waiting for an operation to be completed on
a resource it has already acquired. In many operating systems, these two states are
lumped together as the blocked state, and the suspended state has the definition we
have used in this chapter. Compare the relative merits of the two sets of definitions.

For the seven-state process model of Figure 3.9b, draw a queuing diagram similar to
that of Figure 3.8b.

Consider the state transition diagram of Figure 3.9b. Suppose that it is time for the
OS to dispatch a process and that there are processes in both the Ready state and the
Ready/Suspend state, and that at least one process in the Ready/Suspend state has
higher scheduling priority than any of the processes in the Ready state. Two extreme
policies are as follows: (1) Always dispatch from a process in the Ready state, to min-
imize swapping, and (2) always give preference to the highest-priority process, even
though that may mean swapping when swapping is not necessary. Suggest an inter-
mediate policy that tries to balance the concerns of priority and performance.
Table 3.13 shows the process states for the VAX/VMS operating system.
a. Can you provide a justification for the existence of so many distinct wait states?
b. Why do the following states not have resident and swapped-out versions: Page Fault
Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Resource Wait?
c. Draw the state transition diagram and indicate the action or occurrence that causes
each transition.

The VAX/VMS operating system makes use of four processor access modes to facili-

tate the protection and sharing of system resources among processes. The access

mode determines

* Instruction execution privileges: What instructions the processor may execute

° Memory access privileges: Which locations in virtual memory the current in-
struction may access

The four modes are as follows:

¢ Kernel: Executes the kernel of the VMS operating system, which includes mem-
ory management, interrupt handling, and I/O operations

* Executive: Executes many of the OS service calls, including file and record (disk
and tape) management routines

e Supervisor: Executes other OS services, such as responses to user commands

e User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers
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Table 3.13 VAX/VMS Process States

Process State

Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for the

page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing

page fault wait in another process, or a private page that is in the process
of being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess

signaling mechanisms).

Free Page Wait

Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O

completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait

Process waiting for miscellaneous system resource

3.9

3.10

A process executing in a less-privileged mode often needs to call a procedure that ex-
ecutes in a more-privileged mode; for example, a user program requires an operating
system service. This call is achieved by using a change-mode (CHM) instruction, which
causes an interrupt that transfers control to a routine at the new access mode. A return
is made by executing the REI (return from exception or interrupt) instruction.

a. A number of operating systems have two modes, kernel and user. What are the
advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?

The VMS scheme discussed in the preceding problem is often referred to as a ring

protection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user

scheme, as described in Section 3.3, is a two-ring structure. [SILB04] points out a

problem with this approach:

The main disadvantage of the ring (hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain D; but not accessible in domain D; , then we must have
j < i.But this means that every segment accessible in D; is also accessible in D;.

a. Explain clearly what the problem is that is referred to in the preceding quote.

b. Suggest a way that a ring-structured OS can deal with this problem.

Figure 3.8b suggests that a process can only be in one Event queue at a time.

a. Is it possible that you would want to allow a process to wait on more than one
event at the same time? Provide an example.

b. In that case, how would you modify the queuing structure of the figure to support
this new feature?
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Figure 3.18 VAX/VMS Access Modes

3.11 Inanumber of early computers, an interrupt caused the register values to be stored in
fixed locations associated with the given interrupt signal. Under what circumstances
is this a practical technique? Explain why it is inconvenient in general.

3.12  In Section 3.4, it was stated that UNIX is unsuitable for real-time applications be-
cause a process executing in kernel mode may not be preempted. Elaborate.



PROGRAMMING PROJECT

DEVELOPING A SHELL

The Shell or Command Line Interpreter is the fundamental User interface to an Operat-
ing System. Your first project is to write a simple shell - myshell - that has the following
properties:

1.

The shell must support the following internal commands:

i. cd <directory> - Change the current default directory to <directory>.If the
<directory> argument is not present, report the current directory. If the direc-
tory does not exist an appropriate error should be reported. This command should
also change the PWD environment variable.

ii. clr - Clear the screen.
iii. dir <directory> - List the contents of directory <directory>.
iv. environ - List all the environment strings.
V. echo <comment> - Display <comment> on the display followed by a new line
(multiple spaces/tabs may be reduced to a single space).
vi. help - Display the user manual using the more filter.
vii. pause - Pause operation of the shell until 'Enter' is pressed.
viil. quit - Quit the shell.
ix. The shell environment should contain shell=<pathname>/myshell where
<pathname>/myshell is the full path for the shell executable (not a hardwired
path back to your directory, but the one from which it was executed).

All other command line input is interpreted as program invocation, which should be
done by the shell forking and execing the programs as its own child processes. The
programs should be executed with an environment that contains the entry:
parent=<pathname>/myshell where <pathname>/myshell is as described in
L.ix. above.

The shell must be able to take its command line input from a file. That is, if the shell is
invoked with a command line argument:

myshell batchfile

then batchfile is assumed to contain a set of command lines for the shell to process.
When the end-of-file is reached, the shell should exit. Obviously, if the shell is invoked
without a command line argument, it solicits input from the user via a prompt on the
display.

The shell must support i/o-redirection on either or both stdin and/or stdout. That is, the
command line

programname argl arg2 < inputfile > outputfile

will execute the program programname with arguments argl and arg2, the stdin
FILE stream replaced by inputfile and the stdout FILE stream replaced by
outputfile.

157
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stdout redirection should also be possible for the internal commands dir, environ,
echo, & help.

With output redirection, if the redirection character is > then the output file is cre-
ated if it does not exist and truncated if it does. If the redirection token is >> then
output file is created if it does not exist and appended to if it does.

The shell must support background execution of programs. An ampersand (&) at the
end of the command line indicates that the shell should return to the command line
prompt immediately after launching that program.

The command line prompt must contain the pathname of the current directory.

Note: You can assume that all command line arguments (including the redirection
symbols, <, > & >> and the background execution symbol, &) will be delimited from
other command line arguments by white space - one or more spaces and/or tabs (see
the command line in 4. above).

Project Requirements

1.

2.

Design a simple command line shell that satisfies the above criteria and implement it
on the specified UNIX platform.

Write a simple manual describing how to use the shell. The manual should contain
enough detail for a beginner to UNIX to use it. For example, you should explain the
concepts of I/O redirection, the program environment, and background program execu-
tion. The manual MUST be named readme and must be a simple text document
capable of being read by a standard Text Editor.

For an example of the sort of depth and type of description required, you should have
alook at the online manuals for csh and tcsh (man csh, man tcsh).These shells
obviously have much more functionality than yours and thus, your manuals don’t
have to be quite so large.

You should NOT include building instructions, included file lists or source code - we
can find that out from the other files you submit. This should be an Operator’s manual
not a Developer’s manual.

The source code MUST be extensively commented and appropriately structured to
allow your peers to understand and easily maintain the code. Properly commented
and laid out code is much easier to interpret, and it is in your interests to ensure that
the person marking your project is able to understand your coding without having to
perform mental gymnastics!

Details of submission procedures will be supplied well before the deadline.

The submission should contain only source code file(s), include file(s), a makefile
(all lower case please), and the readme file (all lowercase, please). No executable
program should be included. The person marking your project will be automatically
rebuilding your shell program from the source code provided. If the submitted code
does not compile it cannot be marked!

The makefile (all lowercase, please) MUST generate the binary file myshel1 (all
lower case please). A sample makefile would be
# Joe Citizen, s1234567 - Operating Systems Project 1
# CompLabl/01 tutor: Fred Bloggs
myshell: myshell.c utility.c myshell.h
gcc -Wall myshell.c utility.c -o myshell

The program myshell is then generated by just typing make at the command line
prompt.

Note: The fourth line in the above makefile MUST begin with a tab
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7. 1In the instance shown above, the files in the submitted directory would be:

makefile
myshell.c
utility.c
myshell.h
readme

Submission

A makefile is required. All files in your submission will be copied to the same directory,
therefore, do not include any paths in your makefile. The makefile should include all
dependencies that build your program. If a library is included, your makefile should also
build the library.

Do not hand in any binary or object code files. All that is required is your source code, a
makefile and readme file. Test your project by copying the source code only into an empty
directory and then compile it by entering the command make.

We shall be using a shell script that copies your files to a test directory, deletes any pre-
existing myshell, *.a, and/or *. o files, performs a make, copies a set of test files to the test
directory, and then exercises your shell with a standard set of test scripts through stdin and
command line arguments. If this sequence fails due to wrong names, wrong case for names,
wrong version of source code that fails to compile, nonexistence of files, etc. then the marking
sequence will also stop. In this instance, the only marks that can be awarded will be for the
tests completed at that point and the source code and manual.

Required Documentation

Your source code will be assessed and marked as well as the readme manual. Commenting is
definitely required in your source code. The user manual can be presented in a format of your
choice (within the limitations of being displayable by a simple Text Editor). Again, the manual
should contain enough detail for a beginner to UNIX to use the shell. For example, you
should explain the concepts of I/O redirection, the program environment and background
execution. The manual MUST be named readme (all lowercase, please, NO . txt extension).

DATE \@ "M/d/yy" 8/11/07
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This chapter examines some more advanced concepts related to process management,
which are found in a number of contemporary operating systems. First, we show that
the concept of process is more complex and subtle than presented so far and in fact
embodies two separate and potentially independent concepts: one relating to resource
ownership and one relating to execution. This distinction has led to the development, in
many operating systems, of a construct known as the thread. After examining threads,
we look at symmetric multiprocessing (SMP). With SMP, the OS must be able to
simultaneously schedule different processes on multiple processors. Finally, we intro-
duce the concept of the microkernel, which is an effective means of structuring the OS
to support process management and its other tasks.

4.1 PROCESSES AND THREADS

The discussion so far has presented the concept of a process as embodying two
characteristics:

* Resource ownership: A process includes a virtual address space to hold the
process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, I/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.

* Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5 and Figure 1.26). This
execution may be interleaved with that of other processes. Thus, a process has
an execution state (Running, Ready, etc.) and a dispatching priority and is the
entity that is scheduled and dispatched by the OS.

Some thought should convince the reader that these two characteristics are in-
dependent and could be treated independently by the OS. This is done in a number
of operating systems, particularly recently developed systems. To distinguish the two
characteristics, the unit of dispatching is usually referred to as a thread or lightweight
processi while the unit of resource ownership is usually still referred to as a process
or task.

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths of
execution within a single process. The traditional approach of a single thread of exe-
cution per process, in which the concept of a thread is not recognized, is referred to

! Alas, even this degree of consistency cannot be maintained. In IBM’s mainframe operating systems, the
concepts of address space and task, respectively, correspond roughly to the concepts of process and
thread that we describe in this section. Also, in the literature, the term lightweight process is used as either
(1) equivalent to the term thread, (2) a particular type of thread known as a kernel-level thread, or (3) in
the case of Solaris, an entity that maps user-level threads to kernel-level threads.
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Figure 4.1 Threads and Processes [ANDE97]

as a single-threaded approach. The two arrangements shown in the left half of
Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single user process and a single thread. Other operating systems, such as
some variants of UNIX, support multiple user processes but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches. A
Java run-time environment is an example of a system of one process with multiple
threads. Of interest in this section is the use of multiple processes, each of which sup-
port multiple threads. This approach is taken in Windows, Solaris, and many modern
versions of UNIX, among others. In this section we give a general description of
multithreading; the details of the Windows, Solaris, and Linux approaches are dis-
cussed later in this chapter.

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

e A virtual address space that holds the process image
* Protected access to processors, other processes (for interprocess communica-
tion), files, and 1/O resources (devices and channels)
Within a process, there may be one or more threads, each with the following:

° A thread execution state (Running, Ready, etc.).

¢ A saved thread context when not running; one way to view a thread is as an in-
dependent program counter operating within a process.
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Figure 4.2 Single Threaded and Multithreaded Process Models

* An execution stack.
e Some per-thread static storage for local variables.

e Access to the memory and resources of its process, shared with all other
threads in that process.

Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e., there
is no distinct concept of thread), the representation of a process includes its process
control block and user address space, as well as user and kernel stacks to manage
the call/return behavior of the execution of the process. While the process is run-
ning, it controls the processor registers. The contents of these registers are saved
when the process is not running. In a multithreaded environment, there is still a sin-
gle process control block and user address space associated with the process,
but now there are separate stacks for each thread, as well as a separate control block
for each thread containing register values, priority, and other thread-related state
information.

Thus, all of the threads of a process share the state and resources of that
process. They reside in the same address space and have access to the same data.
When one thread alters an item of data in memory, other threads see the results if
and when they access that item. If one thread opens a file with read privileges, other
threads in the same process can also read from that file.

The key benefits of threads derive from the performance implications:

1. It takes far less time to create a new thread in an existing process than to cre-
ate a brand-new process. Studies done by the Mach developers show that
thread creation is ten times faster than process creation in UNIX [TEVAS87].

2. It takes less time to terminate a thread than a process.
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3. It takes less time to switch between two threads within the same process than to
switch between processes.

4. Threads enhance efficiency in communication between different executing
programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

Thus, if there is an application or function that should be implemented as a set
of related units of execution, it is far more efficient to do so as a collection of threads
rather than a collection of separate processes.

An example of an application that could make use of threads is a file server.
As each new file request comes in, a new thread can be spawned for the file man-
agement program. Because a server will handle many requests, many threads will be
created and destroyed in a short period. If the server runs on a multiprocessor com-
puter, then multiple threads within the same process can be executing simultane-
ously on different processors. Further, because processes or threads in a file server
must share file data and therefore coordinate their actions, it is faster to use threads
and shared memory than processes and message passing for this coordination.

The thread construct is also useful on a single processor to simplify the struc-
ture of a program that is logically doing several different functions.

[LETWSS] gives four examples of the uses of threads in a single-user multi-
processing system:

* Foreground and background work: For example, in a spreadsheet program,
one thread could display menus and read user input, while another thread ex-
ecutes user commands and updates the spreadsheet. This arrangement often
increases the perceived speed of the application by allowing the program to
prompt for the next command before the previous command is complete.

* Asynchronous processing: Asynchronous elements in the program can be im-
plemented as threads. For example, as a protection against power failure, one
can design a word processor to write its random access memory (RAM) buffer
to disk once every minute. A thread can be created whose sole job is periodic
backup and that schedules itself directly with the OS; there is no need for
fancy code in the main program to provide for time checks or to coordinate
input and output.

* Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, multi-
ple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.

° Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

In an OS that supports threads, scheduling and dispatching is done on a thread
basis; hence most of the state information dealing with execution is maintained in
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thread-level data structures. There are, however, several actions that affect all of the
threads in a process and that the OS must manage at the process level. For example,
suspension involves swapping the address space of one process out of main memory
to make room for the address space of another process. Because all threads in a
process share the same address space, all threads are suspended at the same time.
Similarly, termination of a process terminates all threads within that process.

Thread Functionality

Like processes, threads have execution states and may synchronize with one another.
We look at these two aspects of thread functionality in turn.

Thread States As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share
the address space of the process.

There are four basic thread operations associated with a change in thread state
[ANDEO04]:

e Spawn: Typically, when a new process is spawned, a thread for that process is
also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and argu-
ments for the new thread. The new thread is provided with its own register
context and stack space and placed on the ready queue.

* Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may now turn to
the execution of another ready thread in the same or a different process.

e Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.

¢ Finish: When a thread completes, its register context and stacks are deallocated.

A significant issue is whether the blocking of a thread results in the blocking of
the entire process. In other words, if one thread in a process is blocked, does this pre-
vent the running of any other thread in the same process even if that other thread is
in a ready state? Clearly, some of the flexibility and power of threads is lost if the
one blocked thread blocks an entire process.

We return to this issue subsequently in our discussion of user-level versus kernel-
level threads, but for now let us consider the performance benefits of threads that
do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a pro-
gram that performs two remote procedure calls (RPCs)? to two different hosts to
obtain a combined result. In a single-threaded program, the results are obtained in
sequence, so that the program has to wait for a response from each server in turn.
Rewriting the program to use a separate thread for each RPC results in a substantial

2An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling program behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and are
discussed in Chapter 16.
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Figure 4.3 Remote Procedure Call (RPC) Using Threads

speedup. Note that if this program operates on a uniprocessor, the requests must be
generated sequentially and the results processed in sequence; however, the program
waits concurrently for the two replies.

On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4, three threads in two
processes are interleaved on the processor. Execution passes from one thread to
another either when the currently running thread is blocked or its time slice is
exhausted.?

Thread Synchronization All of the threads of a process share the same
address space and other resources, such as open files. Any alteration of a resource by
one thread affects the environment of the other threads in the same process. It is
therefore necessary to synchronize the activities of the various threads so that they
do not interfere with each other or corrupt data structures. For example, if two
threads each try to add an element to a doubly linked list at the same time, one
element may be lost or the list may end up malformed.

The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques are the subject of Chapters 5 and 6.

3In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.
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Figure 4.4 Multithreading Example on a Uniprocessor

Example—Adobe PageMaker*

An example of the use of threads is the Adobe PageMaker application running
under a shared system. PageMaker is a writing, design, and production tool for desk-
top publishing. The thread structure for PageMaker used in the operating system
0OS/2, shown in Figure 4.5 [KRON90], was chosen to optimize the responsiveness
of the application (similar thread structures would be found on other operating

Figure 4.5 Thread Structure for Adobe PageMaker

“This example is somewhat dated. However, it illustrates the basic concepts using a well-documented
implementation.
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systems). Three threads are always active: an event-handling thread, a screen-re-
draw thread, and a service thread.

Generally, OS/2 is less responsive in managing windows if any input message
requires too much processing. The OS/2 guidelines state that no message should
require more than 0.1 s processing time. For example, calling a subroutine to print a
page while processing a print command would prevent the system from dispatching
any further message to any applications, slowing performance. To meet this criterion,
time-consuming user operations in PageMaker — printing, importing data, and flow-
ing text—are performed by a service thread. Program initialization is also largely
performed by the service thread, which absorbs the idle time while the user invokes
the dialogue to create a new document or open an existing document. A separate
thread waits on new event messages.

Synchronizing the service thread and event-handling thread is complicated be-
cause a user may continue to type or move the mouse, which activates the event-
handling thread, while the service thread is still busy. If this conflict occurs, PageMaker
filters these messages and accepts only certain basic ones, such as window resize.

The service thread sends a message to the event-handling thread to indicate
completion of its task. Until this occurs, user activity in PageMaker is restricted.
The program indicates this by disabling menu items and displaying a “busy” cursor.
The user is free to switch to other applications, and when the busy cursor is moved to
another window, it will change to the appropriate cursor for that application.

The screen redraw function is handled by a separate thread. This is done for
two reasons:

1. PageMaker does not limit the number of objects appearing on a page; thus,
processing a redraw request can easily exceed the guideline of 0.1 s.

2. Using a separate thread allows the user to abort drawing. In this case, when the
user rescales a page, the redraw can proceed immediately. The program is less
responsive if it completes an outdated display before commencing with a dis-
play at the new scale.

Dynamic scrolling—redrawing the screen as the user drags the scroll indicator —
is also possible. The event-handling thread monitors the scroll bar and redraws the
margin rulers (which redraw quickly and give immediate positional feedback to the
user). Meanwhile, the screen-redraw thread constantly tries to redraw the page and
catch up.

Implementing dynamic redraw without the use of multiple threads places a
greater burden on the application to poll for messages at various points. Multi-
threading allows concurrent activities to be separated more naturally in the code.

User-Level and Kernel-Level Threads

There are two broad categories of thread implementation: user-level threads
(ULTs) and kernel-level threads (KLTs).’ The latter are also referred to in the liter-
ature as kernel-supported threads or lightweight processes.

The acronyms ULT and KLT are nor widely used but are introduced for conciseness.
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Figure 4.6 User-Level and Kernel-Level Threads

User-Level Threads In a pure ULT facility, all of the work of thread manage-
ment is done by the application and the kernel is not aware of the existence of
threads. Figure 4.6a illustrates the pure ULT approach. Any application can be pro-
grammed to be multithreaded by using a threads library, which is a package of
routines for ULT management. The threads library contains code for creating and
destroying threads, for passing messages and data between threads, for scheduling
thread execution, and for saving and restoring thread contexts.

By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process managed
by the kernel. At any time that the application is running (the process is in the Run-
ning state), the application may spawn a new thread to run within the same process.
Spawning is done by invoking the spawn utility in the threads library. Control is
passed to that utility by a procedure call. The threads library creates a data structure
for the new thread and then passes control to one of the threads within this process
that is in the Ready state, using some scheduling algorithm. When control is passed
to the library, the context of the current thread is saved, and when control is passed
from the library to a thread, the context of that thread is restored. The context es-
sentially consists of the contents of user registers, the program counter, and stack
pointers.

All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The kernel
continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should clar-
ify the relationship between thread scheduling and process scheduling. Suppose that
process B is executing in its thread 2; the states of the process and two ULTs that are
part of the process are shown in Figure 4.7a. Each of the following is a possible
occurrence:
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1. The application executing in thread 2 makes a system call that blocks B. For
example, an I/O call is made. This causes control to transfer to the kernel. The
kernel invokes the I/O action, places process B in the Blocked state, and
switches to another process. Meanwhile, according to the data structure main-
tained by the threads library, thread 2 of process B is still in the Running
state. It is important to note that thread 2 is not actually running in the sense
of being executed on a processor; but it is perceived as being in the Running
state by the threads library. The corresponding state diagrams are shown in
Figure 4.7b.

2. A clock interrupt passes control to the kernel and the kernel determines that the
currently running process (B) has exhausted its time slice. The kernel places
process B in the Ready state and switches to another process. Meanwhile,
according to the data structure maintained by the threads library, thread 2 of
process B is still in the Running state. The corresponding state diagrams are
shown in Figure 4.7c.

3. Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The corre-
sponding state diagrams are shown in Figure 4.7d.

In cases 1 and 2 (Figures 4.7b and 4.7¢), when the kernel switches control back
to process B, execution resumes in thread 2. Also note that a process can be inter-
rupted, either by exhausting its time slice or by being preempted by a higher-priority
process, while it is executing code in the threads library. Thus, a process may be in
the midst of a thread switch from one thread to another when interrupted. When
that process is resumed, execution continues within the threads library, which com-
pletes the thread switch and transfers control to another thread within that process.

There are a number of advantages to the use of ULTs instead of KLTs, includ-
ing the following:

1. Thread switching does not require kernel mode privileges because all of the
thread management data structures are within the user address space of a sin-
gle process. Therefore, the process does not switch to the kernel mode to do
thread management. This saves the overhead of two mode switches (user to
kernel; kernel back to user).

2. Scheduling can be application specific. One application may benefit most from a
simple round-robin scheduling algorithm, while another might benefit from a
priority-based scheduling algorithm. The scheduling algorithm can be tailored to
the application without disturbing the underlying OS scheduler.

3. ULTs can run on any OS. No changes are required to the underlying kernel to
support ULTs. The threads library is a set of application-level functions shared
by all applications.

There are two distinct disadvantages of ULTs compared to KLTs:

1. In a typical OS, many system calls are blocking. As a result, when a ULT exe-
cutes a system call, not only is that thread blocked, but also all of the threads
within the process are blocked.
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2. In a pure ULT strategy, a multithreaded application cannot take advantage of
multiprocessing. A kernel assigns one process to only one processor at a time.
Therefore, only a single thread within a process can execute at a time. In effect,
we have application-level multiprogramming within a single process. While
this multiprogramming can result in a significant speedup of the application,
there are applications that would benefit from the ability to execute portions
of code simultaneously.

There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: each
switch becomes a process switch rather than a thread switch, resulting in much
greater overhead.

Another way to overcome the problem of blocking threads is to use a tech-
nique referred to as jacketing. The purpose of jacketing is to convert a blocking sys-
tem call into a nonblocking system call. For example, instead of directly calling a
system I/O routine, a thread calls an application-level I/O jacket routine. Within this
jacket routine is code that checks to determine if the I/O device is busy. If it is, the
thread enters the Blocked state and passes control (through the threads library) to
another thread. When this thread later is given control again, the jacket routine
checks the I/0 device again.

Kernel-Level Threads In a pure KLT facility, all of the work of thread manage-
ment is done by the kernel. There is no thread management code in the application
level, simply an application programming interface (API) to the kernel thread facil-
ity. Windows is an example of this approach.

Figure 4.6b depicts the pure KLT approach. The kernel maintains context in-
formation for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second, if
one thread in a process is blocked, the kernel can schedule another thread of the
same process. Another advantage of the KLT approach is that kernel routines them-
selves can be multithreaded.

The principal disadvantage of the KLT approach compared to the ULT
approach is that the transfer of control from one thread to another within the same
process requires a mode switch to the kernel. To illustrate the differences, Table 4.1
shows the results of measurements taken on a uniprocessor VAX computer running
a UNIX-like OS. The two benchmarks are as follows: Null Fork, the time to create,
schedule, execute, and complete a process/thread that invokes the null procedure
(i.e., the overhead of forking a process/thread); and Signal-Wait, the time for a

Table 4.1 Thread and Process Operation Latencies (j.s)

Operation User-Level Threads Kernel-Level Threads Processes
Null Fork 34 948 11,300
Signal-Wait 37 441 1,840
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process/thread to signal a waiting process/thread and then wait on a condition (i.e.,
the overhead of synchronizing two processes/threads together). We see that there is
an order of magnitude or more of difference between ULTs and KLTs and similarly
between KLTs and processes.

Thus, on the face of it, while there is a significant speedup by using KLT multi-
threading compared to single-threaded processes, there is an additional significant
speedup by using ULTs. However, whether or not the additional speedup is realized
depends on the nature of the applications involved. If most of the thread switches in
an application require kernel mode access, then a ULT-based scheme may not per-
form much better than a KL'T-based scheme.

Combined Approaches Some operating systems provide a combined ULT/KLT
facility (Figure 4.6¢). In a combined system, thread creation is done completely in
user space, as is the bulk of the scheduling and synchronization of threads within an
application. The multiple ULTs from a single application are mapped onto some
(smaller or equal) number of KLTs. The programmer may adjust the number of
KLTs for a particular application and processor to achieve the best overall results.

In a combined approach, multiple threads within the same application can run
in parallel on multiple processors, and a blocking system call need not block the
entire process. If properly designed, this approach should combine the advantages
of the pure ULT and KLT approaches while minimizing the disadvantages.

Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

As we have said, the concepts of resource allocation and dispatching unit have tra-
ditionally been embodied in the single concept of the process; that is,as a 1 : 1 rela-
tionship between threads and processes. Recently, there has been much interest in
providing for multiple threads within a single process, which is a many-to-one rela-
tionship. However, as Table 4.2 shows, the other two combinations have also been
investigated, namely, a many-to-many relationship and a one-to-many relationship.

Many-to-Many Relationship The idea of having a many-to-many relation-
ship between threads and processes has been explored in the experimental operat-
ing system TRIX [PAZZ92, WARDS80]. In TRIX, there are the concepts of domain

Table 4.2  Relationship between Threads and Processes

Threads:Processes Description Example Systems
1:1 Each thread of execution is a unique process with its Traditional UNIX
own address space and resources. implementations
M:1 A process defines an address space and dynamic Windows NT, Solaris,
resource ownership. Multiple threads may be created Linux, OS/2, OS/390,
and executed within that process. MACH
1:M A thread may migrate from one process environment Ra (Clouds),
to another. This allows a thread to be easily moved Emerald
among distinct systems.
M:N Combines attributes of M:1 and 1:M cases. TRIX
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and thread. A domain is a static entity, consisting of an address space and “ports”
through which messages may be sent and received. A thread is a single execution
path, with an execution stack, processor state, and scheduling information.

As with the multithreading approaches discussed so far, multiple threads may
execute in a single domain, providing the efficiency gains discussed earlier. However,
it is also possible for a single user activity, or application, to be performed in multiple
domains. In this case, a thread exists that can move from one domain to another.

The use of a single thread in multiple domains seems primarily motivated by a
desire to provide structuring tools for the programmer. For example, consider a pro-
gram that makes use of an I/O subprogram. In a multiprogramming environment
that allows user-spawned processes, the main program could generate a new process
to handle I/O and then continue to execute. However, if the future progress of the
main program depends on the outcome of the I/O operation, then the main program
will have to wait for the other I/O program to finish. There are several ways to
implement this application:

1. The entire program can be implemented as a single process. This is a reason-
able and straightforward solution. There are drawbacks related to memory
management. The process as a whole may require considerable main memory
to execute efficiently, whereas the I/O subprogram requires a relatively small
address space to buffer I/O and to handle the relatively small amount of pro-
gram code. Because the I/O program executes in the address space of the larger
program, either the entire process must remain in main memory during the
I/O operation or the I/O operation is subject to swapping. This memory man-
agement effect would also exist if the main program and the I/O subprogram
were implemented as two threads in the same address space.

2. The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the I/O
activity is frequent, one must either leave the subordinate process alive, which
consumes management resources, or frequently create and destroy the subpro-
gram, which is inefficient.

3. Treat the main program and the I/O subprogram as a single activity that is to
be implemented as a single thread. However, one address space (domain)
could be created for the main program and one for the I/O subprogram. Thus,
the thread can be moved between the two address spaces as execution pro-
ceeds. The OS can manage the two address spaces independently, and no
process creation overhead is incurred. Furthermore, the address space used by
the I/O subprogram could also be shared by other simple 1/O programs.

The experiences of the TRIX developers indicate that the third option has
merit and may be the most effective solution for some applications.

One-to-Many Relationship In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the
concept of a thread as primarily an entity that can move among address spaces.®

%The movement of processes or threads among address spaces, or thread migration, on different
machines has become a hot topic in recent years. Chapter 16 explores this topic.
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A notable example of this research is the Clouds operating system, and especially
its kernel, known as Ra [DASG92]. Another example is the Emerald system
[STEEYS].

A thread in Clouds is a unit of activity from the user’s perspective. A process is
a virtual address space with an associated process control block. Upon creation, a
thread starts executing in a process by invoking an entry point to a program in that
process. Threads may move from one address space to another and actually span
computer boundaries (i.e., move from one computer to another). As a thread moves,
it must carry with it certain information, such as the controlling terminal, global
parameters, and scheduling guidance (e.g., priority).

The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among comput-
ers may be dictated by the OS for a variety of system-related reasons, such as the
need to access a remote resource, and load balancing.

4.2 SYMMETRIC MULTIPROCESSING

Traditionally, the computer has been viewed as a sequential machine. Most computer
programming languages require the programmer to specify algorithms as sequences
of instructions. A processor executes programs by executing machine instructions
in sequence and one at a time. Each instruction is executed in a sequence of opera-
tions (fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-
operation level, multiple control signals are generated at the same time. Instruction
pipelining, at least to the extent of overlapping fetch and execute operations, has
been around for a long time. Both of these are examples of performing functions in
parallel.

As computer technology has evolved and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to improve performance and, in some cases, to improve reliability.
In this book, we examine the two most popular approaches to providing parallelism
by replicating processors: symmetric multiprocessors (SMPs) and clusters. SMPs are
discussed in this section; clusters are examined in Chapter 16.

SMP Architecture

It is useful to see where SMP architectures fit into the overall category of parallel
processors. A taxonomy that highlights parallel processor systems first introduced
by Flynn [FLYN72] is still the most common way of categorizing such systems. Flynn
proposed the following categories of computer systems:

¢ Single instruction single data (SISD) stream: A single processor executes a
single instruction stream to operate on data stored in a single memory.

e Single instruction multiple data (SIMD) stream: A single machine instruction
controls the simultaneous execution of a number of processing elements on a
lockstep basis. Each processing element has an associated data memory, so
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that each instruction is executed on a different set of data by the different
processors. Vector and array processors fall into this category.

* Multiple instruction single data (MISD) stream: A sequence of data is trans-
mitted to a set of processors, each of which executes a different instruction
sequence. This structure has never been implemented.

e Multiple instruction multiple data (MIMD) stream: A set of processors simul-
taneously execute different instruction sequences on different data sets.

With the MIMD organization, the processors are general purpose, because
they must be able to process all of the instructions necessary to perform the appro-
priate data transformation. MIMDs can be further subdivided by the means in
which the processors communicate (Figure 4.8). If the processors each have a dedi-
cated memory, then each processing element is a self-contained computer. Commu-
nication among the computers is either via fixed paths or via some network facility.
Such a system is known as a cluster, or multicomputer. If the processors share a
common memory, then each processor accesses programs and data stored in the
shared memory, and processors communicate with each other via that memory; such
a system is known as a shared-memory multiprocessor.

One general classification of shared-memory multiprocessors is based on
how processes are assigned to processors. The two fundamental approaches are
master/ slave and symmetric. With a master/slave architecture, the OS kernel
always runs on a particular processor. The other processors may only execute user
programs and perhaps OS utilities. The master is responsible for scheduling
processes or threads. Once a process/thread is active, if the slave needs service (e.g.,
an I/O call), it must send a request to the master and wait for the service to be per-
formed. This approach is quite simple and requires little enhancement to a
uniprocessor multiprogramming OS. Conflict resolution is simplified because one
processor has control of all memory and I/O resources. The disadvantages of this
approach are as follows:

Parallel processor

/\

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream)
Shared memory Distributed memory
(tightly coupled) (loosely coupled)
Master/slave Symmetric Clusters
multiprocessors
(SMP)

Figure 4.8 Parallel Processor Architectures
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e A failure of the master brings down the whole system.

¢ The master can become a performance bottleneck, because it alone must do
all scheduling and process management.

In a symmetric multiprocessor (SMP), the kernel can execute on any proces-
sor, and typically each processor does self-scheduling from the pool of available
processes or threads. The kernel can be constructed as multiple processes or multi-
ple threads, allowing portions of the kernel to execute in parallel. The SMP
approach complicates the OS. It must ensure that two processors do not choose the
same process and that processes are not somehow lost from the queue. Techniques
must be employed to resolve and synchronize claims to resources.

The design of both SMPs and clusters is complex, involving issues relating to
physical organization, interconnection structures, interprocessor communication,
OS design, and application software techniques. Our concern here, and later in our
discussion of clusters (Chapter 16), is primarily with OS design issues, although in
both cases we touch briefly on organization.

SMP Organization

Figure 4.9 illustrates the general organization of an SMP. There are multiple proces-
sors, each of which contains its own control unit, arithmetic-logic unit, and registers.
Each processor has access to a shared main memory and the I/O devices through

Processor Processor Processor

L1 cache L1 cache L1 cache
L2 cache | L2 cache Ij L2 cache

System bus

. 1/0

Main 10 adapter
memory
subsystem

1/0
adapter

1/0
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Figure 4.9 Symmetric Multiprocessor Organization
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some form of interconnection mechanism; a shared bus is a common facility. The
processors can communicate with each other through memory (messages and status
information left in shared address spaces). It may also be possible for processors to
exchange signals directly. The memory is often organized so that multiple simulta-
neous accesses to separate blocks of memory are possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new de-
sign considerations. Because each local cache contains an image of a portion of main
memory, if a word is altered in one cache, it could conceivably invalidate a word in
another cache. To prevent this, the other processors must be alerted that an update
has taken place. This problem is known as the cache coherence problem and is typi-
cally addressed in hardware rather than by the OS.”

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that
the user may view the system in the same fashion as a multiprogramming uniproces-
sor system. A user may construct applications that use multiple processes or multiple
threads within processes without regard to whether a single processor or multiple
processors will be available. Thus a multiprocessor OS must provide all the func-
tionality of a multiprogramming system plus additional features to accommodate
multiple processors. The key design issues include the following:

e Simultaneous concurrent processes or threads: Kernel routines need to be
reentrant to allow several processors to execute the same kernel code simulta-
neously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly
to avoid deadlock or invalid operations.

* Scheduling: Scheduling may be performed by any processor, so conflicts must
be avoided. If kernel-level multithreading is used, then the opportunity exists
to schedule multiple threads from the same process simultaneously on multi-
ple processors. Multiprocessor scheduling is examined in Chapter 10.

* Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, described in Chapter 5.

° Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers and is discussed in Part
Three. In addition, the OS needs to exploit the available hardware parallelism,
such as multiported memories, to achieve the best performance. The paging
mechanisms on different processors must be coordinated to enforce consis-
tency when several processors share a page or segment and to decide on page
replacement.

A description of hardware-based cache coherency schemes is provided in [STALO6a].
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* Reliability and fault tolerance: The OS should provide graceful degradation in
the face of processor failure. The scheduler and other portions of the OS must
recognize the loss of a processor and restructure management tables accordingly.

Because multiprocessor OS design issues generally involve extensions to solu-
tions to multiprogramming uniprocessor design problems, we do not treat multi-
processor operating systems separately. Rather, specific multiprocessor issues are
addressed in the proper context throughout this book.

4.3 MICROKERNELS

A microkernel is a small OS core that provides the foundation for modular exten-
sions. The term is somewhat fuzzy, however, and there are a number of questions
about microkernels that are answered differently by different OS design teams.
These questions include how small a kernel must be to qualify as a microkernel, how
to design device drivers to get the best performance while abstracting their func-
tions from the hardware, whether to run nonkernel operations in kernel or user
space, and whether to keep existing subsystem code (e.g., a version of UNIX) or
start from scratch.

The microkernel approach was popularized by its use in the Mach OS, which is
now the core of the Macintosh Mac OS X operating system. In theory, this approach
provides a high degree of flexibility and modularity. A number of products now
boast microkernel implementations, and this general design approach is likely to be
seen in most of the personal computer, workstation, and server operating systems
developed in the near future.

Microkernel Architecture

Operating systems developed in the mid to late 1950s were designed with little con-
cern about structure. No one had experience in building truly large software sys-
tems, and the problems caused by mutual dependence and interaction were grossly
underestimated. In these monolithic operating systems, virtually any procedure can
call any other procedure. Such lack of structure was unsustainable as operating sys-
tems grew to massive proportions. For example, the first version of OS/360 con-
tained over a million lines of code; Multics, developed later, grew to 20 million lines
of code [DENNS84]. As we discussed in Section 2.3, modular programming tech-
niques were needed to handle this scale of software development. Specifically,
layered operating systems® (Figure 4.10a) were developed in which functions are
organized hierarchically and interaction only takes place between adjacent layers.
With the layered approach, most or all of the layers execute in kernel mode.
Problems remain even with the layered approach. Each layer possesses con-
siderable functionality. Major changes in one layer can have numerous effects, many
difficult to trace, on code in adjacent layers (above and below). As a result, it is

8As usual, the terminology in this area is not consistently applied in the literature. The term monolithic
operating system is often used to refer to both of the two types of operating systems that I have referred
to as monolithic and layered.
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difficult to implement tailored versions of a base OS with a few functions added or
subtracted. And security is difficult to build in because of the many interactions be-
tween adjacent layers.

The philosophy underlying the microkernel is that only absolutely essential
core OS functions should be in the kernel. Less essential services and applications
are built on the microkernel and execute in user mode. Although the dividing line
between what is in and what is outside the microkernel varies from one design to
the next, the common characteristic is that many services that traditionally have
been part of the OS are now external subsystems that interact with the kernel and
with each other; these include device drivers, file systems, virtual memory manager,
windowing system, and security services.

A microkernel architecture replaces the traditional vertical, layered stratifi-
cation of an OS with a horizontal one (Figure 4.10b). OS components external to
the microkernel are implemented as server processes; these interact with each
other on a peer basis, typically by means of messages passed through the microker-
nel. Thus, the microkernel functions as a message exchange: It validates messages,
passes them between components, and grants access to hardware. The microkernel
also performs a protection function; it prevents message passing unless exchange is
allowed.

For example, if an application wishes to open a file, it sends a message to the
file system server. If it wishes to create a process or thread, it sends a message to the
process server. Each of the servers can send messages to other servers and can in-
voke the primitive functions in the microkernel. This is a client/server architecture
within a single computer.

Benefits of a Microkernel Organization

A number of advantages for the use of microkernels have been reported in the lit-
erature (e.g., [FINKO4], [LIED96a], [WAYNO94a]). These include
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e Uniform interfaces

¢ Extensibility

e Flexibility

e Portability

e Reliability

e Distributed system support

e Support for object-oriented operating systems (OOOSS)

Microkernel design imposes a uniform interface on requests made by a
process. Processes need not distinguish between kernel-level and user-level services
because all such services are provided by means of message passing.

Any OS will inevitably need to acquire features not in its current design, as
new hardware devices and new software techniques are developed. The microkernel
architecture facilitates extensibility, allowing the addition of new services as well as
the provision of multiple services in the same functional area. For example, there
may be multiple file organizations for diskettes; each organization can be imple-
mented as a user-level process rather than having multiple file services available in
the kernel. Thus, users can choose from a variety of services the one that provides
the best fit to the user’s needs. With the microkernel architecture, when a new fea-
ture is added, only selected servers need to be modified or added. The impact of new
or modified servers is restricted to a subset of the system. Further, modifications do
not require building a new kernel.

Related to the extensibility of the microkernel architecture is its flexibility.
Not only can new features be added to the OS, but also existing features can be sub-
tracted to produce a smaller, more efficient implementation. A microkernel-based
OS is not necessarily a small system. Indeed, the structure lends itself to adding a
wide range of features. But not everyone needs, for example, a high level of security
or the ability to do distributed computing. If substantial (in terms of memory
requirements) features are made optional, the base product will appeal to a wider
variety of users.

Intel’s near monopoly of many segments of the computer platform market is
unlikely to be sustained indefinitely. Thus, portability becomes an attractive feature
of an OS. In the microkernel architecture, all or at least much of the processor-
specific code is in the microkernel. Thus, changes needed to port the system to a new
processor are fewer and tend to be arranged in logical groupings.

The larger the size of a software product, the more difficult it is to ensure its
reliability. Although modular design helps to enhance reliability, even greater gains
can be achieved with a microkernel architecture. A small microkernel can be rigor-
ously tested. Its use of a small number of application programming interfaces
(APIs) improves the chance of producing quality code for the OS services outside
the kernel. The system programmer has a limited number of APIs to master and
limited means of interacting with and therefore adversely affecting other system
components.

The microkernel lends itself to distributed system support, including clusters
controlled by a distributed OS. When a message is sent from a client to a server
process, the message must include an identifier of the requested service. If a distributed
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system (e.g., a cluster) is configured so that all processes and services have unique
identifiers, then in effect there is a single system image at the microkernel level. A
process can send a message without knowing on which computer the target service
resides. We return to this point in our discussion of distributed systems in Part Six.

A microkernel architecture works well in the context of an object-oriented operat-
ing system. An object-oriented approach can lend discipline to the design of the
microkernel and to the development of modular extensions to the OS. As a result, a
number of microkernel design efforts are moving in the direction of object orientation
[WAYN94b]. One promising approach to marrying the microkernel architecture with
OOOS principles is the use of components [MESS96]. Components are objects with
clearly defined interfaces that can be interconnected to form software in a building
block fashion. All interaction between components uses the component interface.
Other systems, such as Windows, do not rely exclusively or fully on object-oriented
methods but have incorporated object-oriented principles into the microkernel design.

Microkernel Performance

A potential disadvantage of microkernels that is often cited is that of performance.
It takes longer to build and send a message via the microkernel, and accept and de-
code the reply, than to make a single service call. However, other factors come into
play so that it is difficult to generalize about the performance penalty, if any.

Much depends on the size and functionality of the microkernel. [LIED96a]
summarizes a number of studies that reveal a substantial performance penalty for
what might be called first-generation microkernels. These penalties persisted de-
spite efforts to optimize the microkernel code. One response to this problem was to
enlarge the microkernel by reintegrating critical servers and drivers back into the
OS. Prime examples of this approach are Mach and Chorus. Selectively increasing
the functionality of the microkernel reduces the number of user-kernel mode
switches and the number of address-space process switches. However, this workaround
reduces the performance penalty at the expense of the strengths of microkernel design:
minimal interfaces, flexibility, and so on.

Another approach is to make the microkernel not larger but smaller.
[LIED96b] argues that, properly designed, a very small microkernel eliminates the
performance penalty and improves flexibility and reliability. To give an idea of the
sizes involved, a typical first-generation microkernel consists of 300 Kbytes of code
and 140 system call interfaces. An example of a small second-generation microker-
nelis L4 [HART97, LIED95], which consists of 12 Kbytes of code and 7 system calls.
Experience with these systems indicates that they can perform as well or better than
a layered OS such as UNIX.

Microkernel Design

Because different microkernels exhibit a range of functionality and size, no hard-
and-fast rules can be stated concerning what functions are provided by the micro-
kernel and what structure is implemented. In this section, we present a minimal set
of microkernel functions and services, to give a feel for microkernel design.

The microkernel must include those functions that depend directly on the
hardware and those functions needed to support the servers and applications
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operating in user mode. These functions fall into the general categories of low-level
memory management, interprocess communication (IPC), and I/O and interrupt
management.

Low-Level Memory Management The microkernel has to control the hard-
ware concept of address space to make it possible to implement protection at the
process level. As long as the microkernel is responsible for mapping each virtual
page to a physical frame, the bulk of memory management, including the protection
of the address space of one process from another and the page replacement algo-
rithm and other paging logic, can be implemented outside the kernel. For example, a
virtual memory module outside the microkernel decides when to bring a page into
memory and which page already in memory is to be replaced; the microkernel maps
these page references into a physical address in main memory.

The concept that paging and virtual memory management can be performed
external to the kernel was introduced with Mach’s external pager [YOUNS7].
Figure 4.11 illustrates the operation of an external pager. When a thread in the
application references a page not in main memory, a page fault occurs and execution
traps to the kernel. The kernel then sends a message to the pager process indicating
which page has been referenced. The pager can decide to load that page and allocate
a page frame for that purpose. The pager and the kernel must interact to map the
pager’s logical operations onto physical memory. Once the page is available, the pager
sends a resume message to the application.

This technique enables a nonkernel process to map files and databases into
user address spaces without invoking the kernel. Application-specific memory shar-
ing policies can be implemented outside the kernel.

[LIED95] suggests a set of just three microkernel operations that can support
external paging and virtual memory management:

e Grant: The owner of an address space (a process) can grant a number of its
pages to another process. The kernel removes these pages from the grantor’s
address space and assigns them to the designated process.

e Map: A process can map any of its pages into the address space of another
process, so that both processes have access to the pages. This creates shared
memory between the two processes. The kernel maintains the assignment of
these pages to the original owner but provides a mapping to permit access by
other processes.

Application Pager
Page Address-space
fault Resume function call
C v,
\. J
Microkernel

Figure 4.11 Page Fault Processing
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e Flush: A process can reclaim any pages that were granted or mapped to other
processes.

To begin, the kernel allocates all available physical memory as resources to a
base system process. As new processes are created, pages from the original total
address space can be granted or mapped to the new process. Such a scheme could
support multiple virtual memory schemes simultaneously.

Interprocess Communication The basic form of communication between
processes or threads in a microkernel OS is messages. A message includes a header
that identifies the sending and receiving process and a body that contains direct
data, a pointer to a block of data, or some control information about the process.
Typically, we can think of IPC as being based on ports associated with processes. A
port is, in essence, a queue of messages destined for a particular process; a process
may have multiple ports. Associated with the port is a list of capabilities indicating
what processes may communicate with this process. Port identities and capabilities
are maintained by the kernel. A process can grant new access to itself by sending a
message to the kernel indicating the new port capability.

A note about message passing is appropriate here. Message passing between sep-
arate processes with nonoverlapping address spaces involves memory-to-memory
copying and thus is bounded by memory speeds and does not scale with processor
speeds. Thus, current OS research reflects an interest in thread-based IPC and memory-
sharing schemes such as page remapping (a single page shared by multiple processes).

I/0 and Interrupt Management With a microkernel architecture, it is possi-
ble to handle hardware interrupts as messages and to include I/O ports in address
spaces. The microkernel can recognize interrupts but does not handle them. Rather,
it generates a message for the user-level process currently associated with that inter-
rupt. Thus, when an interrupt is enabled, a particular user-level process is assigned to
the interrupt and the kernel maintains the mapping. Transforming interrupts into
messages must be done by the microkernel, but the microkernel is not involved in
device-specific interrupt handling.

[LIEDY96a] suggests viewing hardware as a set of threads that have unique
thread identifiers and send messages (consisting simply of the thread ID) to associ-
ated software threads in user space. A receiving thread determines whether the mes-
sage comes from an interrupt and determines the specific interrupt. The general
structure of such user-level code is the following:

driver thread:
do
waitFor (msg, sender);
if (sender == my_hardware_interrupt) ({
read/write I/0 ports;
reset hardware interrupt;
}
else ¢ o o;
while (true);
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4.4 WINDOWS THREAD AND SMP MANAGEMENT

Windows process design is driven by the need to provide support for a variety of OS
environments. Processes supported by different OS environments differ in a num-
ber of ways, including the following:

e How processes are named

Whether threads are provided within processes
* How processes are represented
* How process resources are protected

What mechanisms are used for interprocess communication and synchronization

* How processes are related to each other

Accordingly, the native process structures and services provided by the Windows

Kernel are relatively simple and general purpose, allowing each OS subsystem to
emulate a particular process structure and functionality. Important characteristics of
Windows processes are the following:

* Windows processes are implemented as objects.

* An executable process may contain one or more threads.

* Both process and thread objects have built-in synchronization capabilities.

Figure 4.12, based on one in [RUSSO05], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security

Access
token
Virtual address descriptors
Process
object >
Available
Handle table objects
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Handlel : :
o
Handle2 : : I
1
Handle3 : : E—

Figure 4.12 A Windows Process and Its Resources
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access token, called the primary token of the process. When a user first logs on,
Windows creates an access token that includes the security ID for the user.
Every process that is created by or runs on behalf of this user has a copy of this
access token. Windows uses the token to validate the user’s ability to access se-
cured objects or to perform restricted functions on the system and on secured
objects. The access token controls whether the process can change its own attrib-
utes. In this case, the process does not have a handle opened to its access token.
If the process attempts to open such a handle, the security system determines
whether this is permitted and therefore whether the process may change its own
attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. One handle exists for each thread contained in this object.
Figure 4.12 shows a single thread. In addition, the process has access to a file object
and to a section object that defines a section of shared memory.

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-
purpose process facility. Windows makes use of two types of process-related objects:
processes and threads. A process is an entity corresponding to a user job or applica-
tion that owns resources, such as memory, and opens files. A thread is a dispatchable
unit of work that executes sequentially and is interruptible, so that the processor can
turn to another thread.

Each Windows process is represented by an object whose general structure is
shown in Figure 4.13a. Each process is defined by a number of attributes and encap-
sulates a number of actions, or services, that it may perform. A process will perform
a service when called upon through a set of published interface methods. When
Windows creates a new process, it uses the object class, or type, defined for the
Windows process as a template to generate a new object instance. At the time of
creation, attribute values are assigned. Table 4.3 gives a brief definition of each of
the object attributes for a process object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from
the same process may execute in parallel. Figure 4.13b depicts the object structure
for a thread object, and Table 4.4 defines the thread object attributes. Note that
some of the attributes of a thread resemble those of a process. In those cases, the
thread attribute value is derived from the process attribute value. For example, the
thread processor affinity is the set of processors in a multiprocessor system that
may execute this thread; this set is equal to or a subset of the process processor
affinity.

Note that one of the attributes of a thread object is context. This information
enables threads to be suspended and resumed. Furthermore, it is possible to alter
the behavior of a thread by altering its context when it is suspended.
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Figure 4.13 Windows Process and Thread Objects

Multithreading

Windows supports concurrency among processes because threads in different
processes may execute concurrently. Moreover, multiple threads within the same
process may be allocated to separate processors and execute simultaneously. A mul-
tithreaded process achieves concurrency without the overhead of using multiple
processes. Threads within the same process can exchange information through their
common address space and have access to the shared resources of the process.
Threads in different processes can exchange information through shared memory
that has been set up between the two processes.

An object-oriented multithreaded process is an efficient means of implementing
a server application. For example, one server process can service a number of clients.

Thread States
An existing Windows thread is in one of six states (Figure 4.14):

* Ready: May be scheduled for execution. The Kernel dispatcher keeps track of
all ready threads and schedules them in priority order.
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Table 4.3 Windows Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security Descriptor Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority A baseline execution priority for the process’s threads.

Default processor affinity The default set of processors on which the process’s threads can run.

Quota limits The maximum amount of paged and nonpaged system memory, paging file
space, and processor time a user’s processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that the process’s

threads have performed.

VM operation counters Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally
these are connected to environment subsystem and debugger processes,
respectively.

Exit status The reason for a process’s termination.

e Standby: A standby thread has been selected to run next on a particular
processor. The thread waits in this state until that processor is made available.
If the standby thread’s priority is high enough, the running thread on that
processor may be preempted in favor of the standby thread. Otherwise, the
standby thread waits until the running thread blocks or exhausts its time slice.

Table 4.4 Windows Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority The thread’s execution priority at any given moment.

Base priority The lower limit of the thread’s dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time The cumulative amount of time a thread has executed in user mode and in
kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an asynchronous pro-
cedure call.

Suspension count The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token A temporary access token allowing a thread to perform operations on behalf of

another process (used by subsystems).

Termination port An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status The reason for a thread’s termination.
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Figure 4.14 Windows Thread States

* Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the ready state.

° Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an envi-
ronment subsystem directs the thread to suspend itself. When the waiting con-
dition is satisfied, the thread moves to the Ready state if all of its resources are
available.

e Transition: A thread enters this state after waiting if it is ready to run but the re-
sources are not available. For example, the thread’s stack may be paged out of
memory. When the resources are available, the thread goes to the Ready state.

* Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the executive’ for
future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS clients. It is the responsibility of each OS

9The Windows executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.
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subsystem to exploit the Windows process and thread features to emulate the
process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Windows executive. The executive creates a
process object and returns a handle to that object to the subsystem. When Windows
creates a process, it does not automatically create a thread. In the case of Win32, a
new process is always created with a thread. Therefore, for these operating systems,
the subsystem calls the Windows process manager again to create a thread for the
new process, receiving a thread handle back from Windows. The appropriate thread
and process information are then returned to the application. In the case of 16-bit
Windows and POSIX, threads are not supported. Therefore, for these operating sys-
tems, the subsystem obtains a thread for the new process from Windows so that the
process may be activated but returns only process information to the application.
The fact that the application process is implemented using a thread is not visible to
the application.

When a new process is created in Win32, the new process inherits many of
its attributes from the creating process. However, in the Windows environment,
this process creation is done indirectly. An application client process issues its
process creation request to the OS subsystem; then a process in the subsystem in
turn issues a process request to the Windows executive. Because the desired effect is
that the new process inherits characteristics of the client process and not of the serv-
er process, Windows enables the subsystem to specify the parent of the new process.
The new process then inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

Windows supports an SMP hardware configuration. The threads of any process, in-
cluding those of the executive, can run on any processor. In the absence of affinity
restrictions, explained in the next paragraph, the microkernel assigns a ready
thread to the next available processor. This assures that no processor is idle or is
executing a lower-priority thread when a higher-priority thread is ready. Multiple
threads from the same process can be executing simultaneously on multiple
processors.

As a default, the microkernel uses the policy of soft affinity in assigning
threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution to certain processors (hard affinity).

4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable flex-
ibility in exploiting processor resources.
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Multithreaded Architecture
Solaris makes use of four separate thread-related concepts:

¢ Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.

e User-level threads: Implemented through a threads library in the address
space of a process, these are invisible to the OS. A user-level thread (ULT)!" is
a user-created unit of execution within a process.

* Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps to
one kernel thread. LWPs are scheduled by the kernel independently and may
execute in parallel on multiprocessors.

¢ Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.15 illustrates the relationship among these four entities. Note that there
is always exactly one kernel thread for each LWP. An LWP is visible within a process
to the application. Thus, LWP data structures exist within their respective process
address space. At the same time, each LWP is bound to a single dispatchable kernel
thread, and the data structure for that kernel thread is maintained within the kernel’s
address space.

A process may consists of a single ULT bound to a single LWP. In this case, there
is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LZWP, which in turn are each bound to a single kernel thread.

Process

User User
_I thread r _I thread r
Lightweight Lightweight
process (LWP) process (LWP)
syscall() ‘ f ‘ 1 syscall()
Kernel Kernel
thread thread

_|

System calls

Kernel

Hardware

Figure 4.15 Processes and Threads in Solaris [MCDO07]

10Again, the acronym ULT is unique to this book and is not found in the Solaris literature.



192 CHAPTER 4 / THREADS, SMP, AND MICROKERNELS

In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement sys-
tem functions reduces the overhead of switching within the kernel (from a process
switch to a thread switch).

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended to
facilitate thread management by the OS and to provide a clean interface to applica-
tions. The ULT interface can be a standard thread library. A defined ULT maps onto
a LWP, which is managed by the OS and which has defined states of execution, de-
fined subsequently. An LWP is bound to a kernel thread with a one-to-one corre-
spondence in execution states. Thus, concurrency and execution is managed at the
level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface (API) consisting of system calls. The API allows the user to
invoke kernel services to perform privileged tasks on behalf of the calling process,
such as read or write a file, issue a control command to a device, create a new
process or thread, allocate memory for the process to use, and so on.

Process Structure

Figure 4.16 compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris. On a typical UNIX implementation, the process structure
includes the process ID; the user IDs; a signal dispatch table, which the kernel uses to
decide what to do when sending a signal to a process; file descriptors, which describe
the state of files in use by this process; a memory map, which defines the address
space for this process; and a processor state structure, which includes the kernel stack
for this process. Solaris retains this basic structure but replaces the processor state
block with a list of structures containing one data block for each LWP.
The LWP data structure includes the following elements:

* An LWP identifier

e The priority of this LWP and hence the kernel thread that supports it

¢ A signal mask that tells the kernel which signals will be accepted

e Saved values of user-level registers (when the LWP is not running)

e The kernel stack for this LWP, which includes system call arguments, results,
and error codes for each call level

e Resource usage and profiling data
¢ Pointer to the corresponding kernel thread
e Pointer to the process structure

Thread Execution

Figure 4.17 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As



4.5 / SOLARIS THREAD AND SMP MANAGEMENT 193

UNIX process structure Solaris process structure
Process ID Process ID
User IDs User IDs
Signal dispatch table Signal dispatch table

Memory map Memory map

Priority
Signal mask
Registers
STACK E\
File descriptors coe File descriptors
Processor state

LWP2 LWP 1
LWP ID - LWP ID
Priority Priority
Signal mask Signal mask
Registers Registers
STACK STACK
X X) X X)

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEW196]

mentioned, some kernel threads are not associated with an LWP; the same execution
diagram applies. The states are as follows:

e RUN: The thread is runnable; that is, the thread is ready to execute.

e ONPROC: The thread is executing on a processor.

e SLEEP: The thread is blocked.

e STOP: The thread is stopped.

e ZOMBIE: The thread has terminated.

e FREE: Thread resources have been released and the thread is awaiting
removal from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-priority
thread or because of time-slicing. A thread moves from ONPROC to SLEEP if it is
blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed.
A thread enters the STOP state if its process is stopped; this might be done for de-
bugging purposes.
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Figure 4.17  Solaris Thread States [MCDO07]

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity:
processes and interrupts. Processes (or threads) cooperate with each other and man-
age the use of shared data structures by means of a variety of primitives that enforce
mutual exclusion (only one process at a time can execute certain code or access cer-
tain data) and that synchronize their execution. Interrupts are synchronized by pre-
venting their handling for a period of time. Solaris unifies these two concepts into a
single model, namely kernel threads and the mechanisms for scheduling and execut-
ing kernel threads. To do this, interrupts are converted to kernel threads.

The motivation for converting interrupts to threads is to reduce overhead. In-
terrupt handlers often manipulate data shared by the rest of the kernel. Therefore,
while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way this
is done is for the routine to set the interrupt priority level higher to block interrupts
and then lower the priority level after access is completed. These operations take
time. The problem is magnified on a multiprocessor system. The kernel must protect
more objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

1. Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

2. The kernel controls access to data structures and synchronizes among interrupt
threads using mutual exclusion primitives, of the type discussed in Chapter 5.
That is, the normal synchronization techniques for threads are used in handling
interrupts.
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3. Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the
thread that was executing on that processor is pinned. A pinned thread cannot move
to another processor and its context is preserved; it is simply suspended until the in-
terrupt is processed. The processor then begins executing an interrupt thread. There
is a pool of deactivated interrupt threads available, so that a new thread creation is
not required. The interrupt thread then executes to handle the interrupt. If the han-
dler routine needs access to a data structure that is currently locked in some fashion
for use by another executing thread, the interrupt thread must wait for access to that
data structure. An interrupt thread can only be preempted by another interrupt
thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach pro-
vides superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

o State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

WINDOWS/LINUX COMPARISON

Windows

Linux

Processes are containers for the user-mode address
space, a general handle mechanism for referencing
kernel objects, and threads; Threads run in a process,
and are the schedulable entities

Processes are both containers and the schedulable
entities; processes can share address space and sys-
tem resources, making processes effectively usable as
threads

Processes are created by discrete steps which con-
struct the container for a new program and the first
thread; a fork() like native API exists, but only used
for POSIX compatibility

Processes created by making virtual copies with
fork() and then over-writing with exec() to run a new
program

Process handle table used to uniformly reference
kernel objects (representing processes, threads,
memory sections, synchronization, I/O devices, dri-
vers, open files, network connections, timers, kernel
transactions, etc)

Kernel objects referenced by ad hoc collection of
APIs, and mechanisms — including file descriptors for
open files and sockets and PIDs for processes and
process groups

Up to 16 million handles on kernel objects are sup-
ported per process

Up to 64 open files/sockets are supported per
process

Kernel is fully multi-threaded, with kernel preemp-
tion enabled on all systems in the original design

Few kernel processes used, and kernel preemption is
arecent feature

Many system services implemented using a
client/server computing, including the OS personality
subsystems that run in user-mode and communicate
using remote-procedure calls

Most services are implemented in the kernel, with the
exception of many networking functions
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* Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes
are scheduled before normal processes, and within each category, relative pri-
orities can be used. A counter keeps track of the amount of time a process is
allowed to execute.

¢ Identifiers: Each process has a unique process identifier and also has user and
group identifiers. A group identifier is used to assign resource access privileges
to a group of processes.

* Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described in Chapter 6.

e Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

* Times and timers: Includes process creation time and the amount of processor
time so far consumed by the process. A process may also have associated one
or more interval timers. A process defines an interval timer by means of a sys-
tem call; as a result a signal is sent to the process when the timer expires. A
timer may be single use or periodic.

¢ File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process.

* Address space: Defines the virtual address space assigned to this process.

¢ Processor-specific context: The registers and stack information that constitute
the context of this process.

Figure 4.18 shows the execution states of a process. These are as follows:

* Running: This state value corresponds to two states. A Running process is
either executing or it is ready to execute.

e Interruptible: This is a blocked state, in which the process is waiting for an
event, such as the end of an I/O operation, the availability of a resource, or a
signal from another process.

¢ Uninterruptible: This is another blocked state. The difference between this
and the Interruptible state is that in an uninterruptible state, a process is wait-
ing directly on hardware conditions and therefore will not handle any signals.

* Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be
put into the Stopped state.

e Zombie: The process has been terminated but, for some reason, still must have
its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux kernel
offered no support for multithreading. Instead, applications would need to be
written with a set of user-level library functions, the most popular of which is
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known as pthread (POSIX thread) libraries, with all of the threads mapping into a
single kernel-level process.!! We have seen that modern versions of UNIX offer
kernel-level threads. Linux provides a unique solution in that it does not recognize
a distinction between threads and processes. Using a mechanism similar to the
lightweight processes of Solaris, user-level threads are mapped into kernel-level
processes. Multiple user-level threads that constitute a single user-level process
are mapped into Linux kernel-level processes that share the same group ID. This
enables these processes to share resources such as files and memory and to avoid
the need for a context switch when the scheduler switches among processes in the
same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so that it shares resources, such as files, signal
handlers, and virtual memory. When the two processes share the same virtual mem-
ory, they function as threads within a single process. However, no separate type of
data structure is defined for a thread. In place of the usual fork() command, processes
are created in Linux using the clone() command. This command includes a set of
flags as arguments, defined in Table 4.5. The traditional fork() system call is imple-
mented by Linux as a clone() system call with all of the clone flags cleared.

"POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a stan-
dard for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads.
Pthreads are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but
Microsoft Windows implementations also exist.
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Table 4.5  Linux clone () flags

CLONE_CLEARID Clear the task ID.
CLONE_DETACHED | The parent does not want a SIGCHLD signal sent on exit.
CLONE_FILES Shares the table that identifies the open files.

CLONE_FS Shares the table that identifies the root directory and the current working directory, as
well as the value of the bit mask used to mask the initial file permissions of a new file.

CLONE_IDLETASK Set PID to zero, which refers to an idle task. The idle task is employed when all
available tasks are blocked waiting for resources.

CLONE_NEWNS Create a new namespace for the child.

CLONE_PARENT Caller and new task share the same parent process.

CLONE_PTRACE If the parent process is being traced, the child process will also be traced.
CLONE_SETTID Write the TID back to user space.

CLONE_SETTLS Create a new TLS for the child.

CLONE_SIGHAND Shares the table that identifies the signal handlers.
CLONE_SYSVSEM Shares System V SEM_UNDO semantics.

CLONE_THREAD Inserts this process into the same thread group of the parent. If this flag is true, it
implicitly enforces CLONE_PARENT.
CLONE_VFORK If set, the parent does not get scheduled for execution until the child invokes the

execve() system call.

CLONE_VM Shares the address space (memory descriptor and all page tables):

When the Linux kernel performs a switch from one process to another, it
checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same ad-
dress space, so that a context switch is basically just a jump from one location of
code to another location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone()
call creates separate stack spaces for each process.

4.7 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a mul-
tithreaded system, multiple concurrent threads may be defined within a single
process. This may be done using either user-level threads or kernel-level threads.
User-level threads are unknown to the OS and are created and managed by a
threads library that runs in the user space of a process. User-level threads are
very efficient because a mode switch is not required to switch from one thread to
another. However, only a single user-level thread within a process can execute at
a time, and if one thread blocks, the entire process is blocked. Kernel-level
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threads are threads within a process that are maintained by the kernel. Because
they are recognized by the kernel, multiple threads within the same process can
execute in parallel on a multiprocessor and the blocking of a thread does not
block the entire process. However, a mode switch is required to switch from one
thread to another.

Symmetric multiprocessing is a method of organizing a multiprocessor system
such that any process (or thread) can run on any processor; this includes kernel code
and processes. An SMP architecture raises new OS design issues and provides
greater performance than a uniprocessor system under similar conditions.

In its pure form, a microkernel OS consists of a very small microkernel that
runs in kernel mode and that contains only the most essential and critical OS func-
tions. Other OS functions are implemented to execute in user mode and to use the
microkernel for critical services. The microkernel design leads to a flexible and high-
ly modular implementation. However, questions remain about the performance of
such an architecture.

4.8 RECOMMENDED READING

[LEWI96] and [KLEI96] provide good overviews of thread concepts and a discus-
sion of programming strategies; the former focuses more on concepts and the latter
more on programming, but both provide useful coverage of both topics. [PHAM96]
discusses the Windows NT thread facility in depth. Good coverage of UNIX threads
concepts is found in [ROBB04].

[MUKHO96] provides a good discussion of OS design issues for SMPs. [CHAP97]
contains five articles on recent design directions for multiprocessor operating systems.
Worthwhile discussions of the principles of microkernel design are contained in
[LIED95] and [LIED96]; the latter focuses on performance issues.

CHAP97 Chapin, S., and Maccabe, A., eds. “Multiprocessor Operating Systems: Harness-
ing the Power.” special issue of /IEEE Concurrency, April-June 1997.

KLEI96 Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper Saddle
River, NJ: Prentice Hall, 1996.

LEWI96 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice Hall, 1996.

LIEDYS Liedtke, J. “On p-Kernel Construction.” Proceedings of the Fifteenth ACM Sym-
posium on Operating Systems Principles, December 1995.
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1996.
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Parallel Computers: Theory and Practice. Edited by T. Casavant, P. Tvrkik, and F. Plasil.
Los Alamitos, CA: IEEE Computer Society Press, 1996.

PHAMY96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT. Upper
Saddle River, NJ: Prentice Hall, 1996.

ROBBO04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,
Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.
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4.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
kernel-level thread (KLT) multithreading task
lightweight process port thread
message process user-level thread (ULT)
microkernel symmetric multiprocessor
monolithic operating system (SMP)

Review Questions

4.1 Table 3.5 lists typical elements found in a process control block for an unthreaded OS.
Of these, which should belong to a thread control block and which should belong to a
process control block for a multithreaded system?

4.2 List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

4.3 What are the two separate and potentially independent characteristics embodied in
the concept of process?

4.4 Give four general examples of the use of threads in a single-user multiprocessing system.

4.5 What resources are typically shared by all of the threads of a process?

4.6  List three advantages of ULTs over KLTs.

4.7 List two disadvantages of ULTs compared to KLTs.

4.8 Define jacketing.

4.9 Briefly define the various architectures named in Figure 4.8.

4.10  List the key design issues for an SMP operating system.

4.11 Give examples of services and functions found in a typical monolithic OS that may be
external subsystems to a microkernel OS.

4.12 List and briefly explain seven potential advantages of a microkernel design compared
to a monolithic design.

4.13 Explain the potential performance disadvantage of a microkernel OS.

4.14  List three functions you would expect to find even in a minimal microkernel OS.

4.15  What is the basic form of communications between processes or threads in a micro-
kernel OS?

Problems

4.1 It was pointed out that two advantages of using multiple threads within a process are
that (1) less work is involved in creating a new thread within an existing process than
in creating a new process, and (2) communication among threads within the same
process is simplified. Is it also the case that a mode switch between two threads with-
in the same process involves less work than a mode switch between two threads in dif-
ferent processes?

4.2 In the discussion of ULTs versus KLTs, it was pointed out that a disadvantage of
ULTs is that when a ULT executes a system call, not only is that thread blocked, but
also all of the threads within the process are blocked. Why is that so?

4.3 In OS/2,what is commonly embodied in the concept of process in other operating sys-

tems is split into three separate types of entities: session, processes, and threads. A ses-
sion is a collection of one or more processes associated with a user interface
(keyboard, display, mouse). The session represents an interactive user application,
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such as a word processing program or a spreadsheet. This concept allows the personal-
computer user to open more than one application, giving each one or more windows
on the screen. The OS must keep track of which window, and therefore which session,
is active, so that keyboard and mouse input are routed to the appropriate session. At
any time, one session is in foreground mode, with other sessions in background mode.
All keyboard and mouse input is directed to one of the processes of the foreground
session, as dictated by the applications. When a session is in foreground mode, a
process performing video output sends it directly to the hardware video buffer and
thence to the user’s screen. When the session is moved to the background, the hard-
ware video buffer is saved to a logical video buffer for that session. While a session is
in background, if any of the threads of any of the processes of that session executes
and produces screen output, that output is directed to the logical video buffer. When
the session returns to foreground, the screen is updated to reflect the current contents
of the logical video buffer for the new foreground session.

There is a way to reduce the number of process-related concepts in OS/2 from three

to two. Eliminate sessions, and associate the user interface (keyboard, mouse, screen)

with processes. Thus one process at a time is in foreground mode. For further struc-

turing, processes can be broken up into threads.

a. What benefits are lost with this approach?

b. If you go ahead with this modification, where do you assign resources (memory,
files, etc.): at the process or thread level?

Consider an environment in which there is a one-to-one mapping between user-level
threads and kernel-level threads that allows one or more threads within a process to
issue blocking system calls while other threads continue to run. Explain why this
model can make multithreaded programs run faster than their single-threaded coun-
terparts on a uniprocessor computer. LEWI196-42

If a process exits and there are still threads of that process running, will they continue
to run? LEWI96-42

The OS/390 mainframe operating system is structured around the concepts of address
space and task. Roughly speaking, a single address space corresponds to a single
application and corresponds more or less to a process in other operating systems.
Within an address space, a number of tasks may be generated and execute concurrently;
this corresponds roughly to the concept of multithreading. Two data structures are
key to managing this task structure. An address space control block (ASCB) contains
information about an address space needed by OS/390 whether or not that address
space is executing. Information in the ASCB includes dispatching priority, real and
virtual memory allocated to this address space, the number of ready tasks in this ad-
dress space, and whether each is swapped out. A task control block (TCB) represents
a user program in execution. It contains information needed for managing a task
within an address space, including processor status information, pointers to programs
that are part of this task, and task execution state. ASCBs are global structures main-
tained in system memory, while TCBs are local structures maintained within their ad-
dress space. What is the advantage of splitting the control information into global and
local portions? OS2e-155

A multiprocessor with eight processors has 20 attached tape drives. There is a

large number of jobs submitted to the system that each require a maximum of

four tape drives to complete execution. Assume that each job starts running with
only three tape drives for a long period before requiring the fourth tape drive for

a short period toward the end of its operation. Also assume an endless supply of

such jobs.

a. Assume the scheduler in the OS will not start a job unless there are four tape dri-
ves available. When a job is started, four drives are assigned immediately and are
not released until the job finishes. What is the maximum number of jobs that can
be in progress at once? What are the maximum and minimum number of tape dri-
ves that may be left idle as a result of this policy?
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4.8

4.9

4.10

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

Many current language specifications, such as for C and C++, are inadequate for multi-
threaded programs. This can have an impact on compilers and the correctness of code,
as this problem illustrates. Consider the following declarations and function
definition:

int global_positives = 0;

typedef struct list {
struct list *next;
double val;

} * list;

void count_positives(list 1)
{
list p;
for (p = 1; p; P = p -> next)
if (p -> val > 0.0)
++global_positives;

Now consider the case in which thread A performs

count_positives (<list containing only negative values>);
while thread B performs

++global_positives;

a. What does the function do?
b. The Clanguage only addresses single-threaded execution. Does the use of two the
parallel threads, create any problems or potential problems? login-0207

But some existing optimizing compilers (including gcc, which tends to be relatively
conservative) will “optimize” count_positives to something similar to

void count_positives(list 1)
{
list p;
register int r;
r = global_positives;
for (p = 1; p; P = p -> next)
if (p -> val > 0.0) ++r;
global_positives = r;
}

What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

Consider the following code using the POSIX Pthreads API:

thread2.c

#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
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int myglobal;
void *thread_function(void *arg) {

int 1,3;

for ( 1=0; 1<20; i++ ) {
j=myglobal;
j=3+1;
printf(“.”);
fflush (stdout) ;
sleep(1l);
myglobal=7;

}
return NULL;

int main(void) {
pthread_t mythread;
int 1i;
if ( pthread_create( &mythread, NULL, thread_function, NULL)

printf (“error creating thread.”);
abort () ;
}
for ( 1=0; 1<20; i++) {
myglobal=myglobal+l;
printf (“o”);
fflush (stdout) ;

sleep(1l);

}

if ( pthread_join ( mythread, NULL ) ) {
printf (“error joining thread.”);
abort () ;

}

printf (“\nmyglobal equals %d\n”,myglobal) ;
exit (0);

}

In main() we first declare a variable called mythread, which has a type of pthread_t.
This is essential an id for a thread. Next, the if statement creates a thread associated
with mythread. The call pthread_create() returns zero on success and a non-zero
value on failure. The third argument of pthread_create() is the name of a function
that the new thread will execute when it starts. When this thread_function() returns, the
thread terminates. Meanwhile, the main program itself defines a thread, so that there
are two threads executing. The pthread_join function enables the main thread to wait
until the new thread completes.

a. What does this program accomplish?

b. Here is the output from the executed program:

$ ./thread2
..0.0.0.0.00.0.0.0.0.0.0.0.0.0..0.0.0.0.0
myglobal equals 21

Is this the output you would expect? If not, what has gone wrong? POSIXthreadsex-
plained.pdf
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4.11 The Solaris documentation states, that a ULT may yield to another thread of the same
priority. Isn’t it possible that there will be a runnable thread of higher priority and
that therefore the yield function should result in yielding to a thread of the same or
higher priority?

4.12 In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs.

In Solaris 8, a single LWP supports one or more ULTs.

a. What is the possible benefit of allowing a many-to-one mapping of ULTs to
LWPs?

b. In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.
Explain why.
c. Figure 4.19 shows the state transition diagrams for a ULT and its associated LWP in
Solaris 8 and 9. Explain the operation of the two diagrams and their relationships.
4.13 Explain the rationale for the Uninterruptible state in Linux.
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The central themes of operating system design are all concerned with the management
of processes and threads:

° Multiprogramming: The management of multiple processes within a
uniprocessor system.

* Multiprocessing: The management of multiple processes within a multiprocessor.

* Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is a
prime example of this type of system.

Fundamental to all of these areas, and fundamental to OS design, is concurrency.
Concurrency encompasses a host of design issues, including communication among
processes, sharing of and competing for resources (such as memory, files, and I/O ac-
cess), synchronization of the activities of multiple processes, and allocation of
processor time to processes. We shall see that these issues arise not just in multipro-
cessing and distributed processing environments but even in single-processor multi-
programming systems.
Concurrency arises in three different contexts:

e Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

e Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively pro-
grammed as a set of concurrent processes.

* Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often im-
plemented as a set of processes or threads.

Because of the importance of this topic, four chapters and an appendix of this
book focus on concurrency-related issues. This chapter and the next deal with con-
currency in multiprogramming and multiprocessing systems. Chapters 16 and 18 ex-
amine concurrency issues related to distributed processing. Although the remainder
of this book covers a number of other important topics in OS design, concurrency
will play a major role in our consideration of all of these other topics.

This chapter begins with an introduction to the concept of concurrency and
the implications of the execution of multiple concurrent processes.! We find that the
basic requirement for support of concurrent processes is the ability to enforce mu-
tual exclusion; that is, the ability to exclude all other processes from a course of ac-
tion while one process is granted that ability. Next, we examine some hardware
mechanisms that can support mutual exclusion. Then we look at solutions that do
not involve busy waiting and that can be supported either by the OS or enforced by
language compilers. We examine three approaches: semaphores, monitors, and mes-
sage passing.

'For simplicity, we generally refer to the concurrent execution of processes. In fact, as we have seen
in the preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than
a process.
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Some Key Terms Related to Concurrency

atomic operation A sequence of one or more statements that appears to be indivisible; that is, no other

process can see an intermediate state or interrupt the operation.

critical section A section of code within a process that requires access to shared resources and that must

not be executed while another process is in a corresponding section of code.

deadlock A situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something.
livelock A situation in which two or more processes continuously change their states in response

to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses shared resources,

no other process may be in a critical section that accesses any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared data item and

the final result depends on the relative timing of their execution.

starvation

A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

Two classic problems in concurrency are used to illustrate the concepts and com-

pare the approaches presented in this chapter. The producer/consumer problem is in-
troduced in Section 5.3 and used as a running example. The chapter closes with the
readers/writers problem.

Our discussion of concurrency continues in Chapter 6, and we defer a discussion

of the concurrency mechanisms of our example systems until the end of that chapter.
Appendix A covers additional topics on concurrency.

Table 5.1 lists some key terms related to concurrency.

5.1 PRINCIPLES OF CONCURRENCY

In a single-processor multiprogramming system, processes are interleaved in time to
yield the appearance of simultaneous execution (Figure 2.12a). Even though actual
parallel processing is not achieved, and even though there is a certain amount of
overhead involved in switching back and forth between processes, interleaved exe-
cution provides major benefits in processing efficiency and in program structuring.
In a multiple-processor system, it is possible not only to interleave the execution of
multiple processes but also to overlap them (Figure 2.12b).

At first glance, it may seem that interleaving and overlapping represent funda-

mentally different modes of execution and present different problems. In fact, both
techniques can be viewed as examples of concurrent processing, and both present
the same problems. In the case of a uniprocessor, the problems stem from a basic
characteristic of multiprogramming systems: The relative speed of execution of
processes cannot be predicted. It depends on the activities of other processes, the
way in which the OS handles interrupts, and the scheduling policies of the OS. The
following difficulties arise:

1. The sharing of global resources is fraught with peril. For example, if two processes
both make use of the same global variable and both perform reads and writes on
that variable, then the order in which the various reads and writes are executed is
critical. An example of this problem is shown in the following subsection.
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2. Itis difficult for the OS to manage the allocation of resources optimally. For ex-
ample, process A may request use of, and be granted control of, a particular I/O
channel and then be suspended before using that channel. It may be undesirable
for the OS simply to lock the channel and prevent its use by other processes; in-
deed this may lead to a deadlock condition, as described in Chapter 6.

3. It becomes very difficult to locate a programming error because results are
typically not deterministic and reproducible (e.g., see [LEBL87, CARRS9,
SHENOQ2] for a discussion of this point).

All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpre-
dictable. A multiprocessor system must also deal with problems arising from the si-
multaneous execution of multiple processes. Fundamentally, however, the problems
are the same as those for uniprocessor systems. This should become clear as the dis-
cussion proceeds.

A Simple Example

Consider the following procedure:

void echo()

{
chin = getchar();
chout = chin;
putchar (chout) ;

This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin. It is then transferred to variable
chout and sent to the display. Any program can call this procedure repeatedly to
accept user input and display it on the user’s screen.

Now consider that we have a single-processor multiprogramming system sup-
porting a single user. The user can jump from one application to another, and each
application uses the same keyboard for input and the same screen for output. Be-
cause each application needs to use the procedure echo, it makes sense for it to be
a shared procedure that is loaded into a portion of memory global to all applica-
tions. Thus, only a single copy of the echo procedure is used, saving space.

The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems.
Consider the following sequence:

1. Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin. At this point, the most re-
cently entered character, %, is stored in variable chin.

2. Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y, on the screen.
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3. Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y, which is transferred to chout
and displayed.

Thus, the first character is lost and the second character is displayed twice. The
essence of this problem is the shared global variable, chin. Multiple processes have
access to this variable. If one process updates the global variable and then is inter-
rupted, another process may alter the variable before the first process can use its
value. Suppose, however, that we permit only one process at a time to be in that pro-
cedure. Then the foregoing sequence would result in the following:

1. Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x, is stored in variable chin.

2. Process P2 is activated and invokes the echo procedure. However, because P1 is
still inside the echo procedure, although currently suspended, P2 is blocked from
entering the procedure. Therefore, P2 is suspended awaiting the availability of
the echo procedure.

3. Atsome later time, process P1 is resumed and completes execution of echo.The
proper character, x, is displayed.

4. When P1 exits echo, this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

This example shows that it is necessary to protect shared global variables (and
other shared global resources) and that the only way to do that is to control the code
that accesses the variable. If we impose the discipline that only one process at a time
may enter echo and that once in echo the procedure must run to completion be-
fore it is available for another process, then the type of error just discussed will not
occur. How that discipline may be imposed is a major topic of this chapter.

This problem was stated with the assumption that there was a single-processor,
multiprogramming OS. The example demonstrates that the problems of concurrency
occur even when there is a single processor. In a multiprocessor system, the same
problems of protected shared resources arise, and the same solution works. First, sup-
pose that there is no mechanism for controlling access to the shared global variable:

1. Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

2. The following events occur; events on the same line take place in parallel:

Process P1 Process P2
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar (chout) ; .
. putchar (chout) ;
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The result is that the character input to P1 is lost before being displayed, and
the character input to P2 is displayed by both P1 and P2. Again, let us add the
capability of enforcing the discipline that only one process at a time may be in echo.
Then the following sequence occurs:

1. Processes P1 and P2 are both executing, each on a separate processor. P1 in-
vokes the echo procedure.

2. While P1 is inside the echo procedure, P2 invokes echo. Because P1 is still inside
the echo procedure (whether P1 is suspended or executing), P2 is blocked from
entering the procedure. Therefore, P2 is suspended awaiting the availability of
the echo procedure.

3. At a later time, process P1 completes execution of echo, exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo, P2 is re-
sumed and begins executing echo.

In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

Race Condition

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

As a first example, suppose that two processes, P1 and P2, share the global
variable a. At some point in its execution, P1 updates a to the value 1, and at some
point in its execution, P2 updates a to the value 2. Thus, the two tasks are in a race to
write variable a. In this example the “loser” of the race (the process that updates
last) determines the final value of a.

For our second example, consider two process, P3 and P4, that share global
variables b and c, with initial valuesb = 1 and ¢ = 2.Atsome point in its execu-
tion, P3 executes the assignmentb = b + c,and at some point in its execution, P4
executes the assignment ¢ = b + c.Note that the two processes update different
variables. However, the final values of the two variables depend on the order in
which the two processes execute these two assignments. If P3 executes its assign-
ment statement first, then the final values are b = 3 and ¢ = 5.If P4 executes its
assignment statement first, then the final valuesare b = 4andc = 3.

Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

What design and management issues are raised by the existence of concurrency? We
can list the following concerns:

1. The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4.
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2. The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

e Processor time: This is the scheduling function, discussed in Part Four.

* Memory: Most operating systems use a virtual memory scheme. The topic is
addressed in Part Three.

¢ Files: Discussed in Chapter 12.
e 1/0 devices: Discussed in Chapter 11.

3. The OS must protect the data and physical resources of each process against un-
intended interference by other processes. This involves techniques that relate to
memory, files, and I/O devices. A general treatment of protection is found in
Chapter 14.

4. The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

To understand how the issue of speed independence can be addressed, we
need to look at the ways in which processes can interact.

Process Interaction

We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness plus the consequences of each:

Table 5.2 Process Interaction
Degree of Awareness Relationship Influence That One Potential Control
Process Has on the Problems
Other
Processes unaware of Competition ® Results of one ® Mutual exclusion

each other

process independent
of the action of others

® Timing of process
may be affected

® Deadlock (renewable
resource)

® Starvation

Processes indirectly
aware of each other (e.g.,
shared object)

Cooperation by sharing

® Results of one
process may depend
on information
obtained from others

® Timing of process
may be affected

® Mutual exclusion

® Deadlock (renewable
resource)

® Starvation

® Data coherence

Processes directly aware
of each other (have com-
munication primitives
available to them)

Cooperation by commu-
nication

® Results of one
process may depend
on information
obtained from others

¢ Timing of process
may be affected

® Deadlock (consum-
able resource)

® Starvation
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* Processes unaware of each other: These are independent processes that are
not intended to work together. The best example of this situation is the multi-
programming of multiple independent processes. These can either be batch
jobs or interactive sessions or a mixture. Although the processes are not work-
ing together, the OS needs to be concerned about competition for resources.
For example, two independent applications may both want to access the same
disk or file or printer. The OS must regulate these accesses.

* Processes indirectly aware of each other: These are processes that are not nec-
essarily aware of each other by their respective process IDs but that share ac-
cess to some object, such as an I/O buffer. Such processes exhibit cooperation
in sharing the common object.

* Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation.

Conditions will not always be as clear-cut as suggested in Table 5.2. Rather,
several processes may exhibit aspects of both competition and cooperation. Never-
theless, it is productive to examine each of the three items in the preceding list sep-
arately and determine their implications for the OS.

Competition among Processes for Resources Concurrent processes come
into conflict with each other when they are competing for the use of the same resource.
In its pure form, we can describe the situation as follows. Two or more processes
need to access a resource during the course of their execution. Each process is un-
aware of the existence of other processes, and each is to be unaffected by the execu-
tion of the other processes. It follows from this that each process should leave the
state of any resource that it uses unaffected. Examples of resources include 1/O de-
vices, memory, processor time, and the clock.

There is no exchange of information between the competing processes. How-
ever, the execution of one process may affect the behavior of competing processes.
In particular, if two processes both wish access to a single resource, then one process
will be allocated that resource by the OS, and the other will have to wait. Therefore,
the process that is denied access will be slowed down. In an extreme case, the
blocked process may never get access to the resource and hence will never termi-
nate successfully.

In the case of competing processes three control problems must be faced.
First is the need for mutual exclusion. Suppose two or more processes require
access to a single nonsharable resource, such as a printer. During the course of
execution, each process will be sending commands to the I/O device, receiving sta-
tus information, sending data, and/or receiving data. We will refer to such a
resource as a critical resource, and the portion of the program that uses it a critical
section of the program. It is important that only one program at a time be allowed
in its critical section. We cannot simply rely on the OS to understand and enforce
this restriction because the detailed requirements may not be obvious. In the case
of the printer, for example, we want any individual process to have control of the
printer while it prints an entire file. Otherwise, lines from competing processes will
be interleaved.
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/* PROCESS 1 */

void P1
{
while (true) {
/* preceding code /;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);

/* following code */;

/* PROCESS 2 */

void P2

{

while (true) {

/* preceding code */;
entercritical (Ra);

/* critical section */;
exitcritical (Ra);

/* following code */;

/* PROCESS n */

void Pn
{
while (true) {
/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);

/* following code */;

Figure 5.1 Ilustration of Mutual Exclusion

The enforcement of mutual exclusion creates two additional control problems.
One is that of deadlock. For example, consider two processes, P1 and P2, and two re-
sources, R1 and R2. Suppose that each process needs access to both resources to
perform part of its function. Then it is possible to have the following situation: the
OS assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two re-
sources. Neither will release the resource that it already owns until it has acquired
the other resource and performed the function requiring both resources. The two
processes are deadlocked.

A final control problem is starvation. Suppose that three processes (P1, P2, P3)
each require periodic access to resource R. Consider the situation in which P1 is in
possession of the resource, and both P2 and P3 are delayed, waiting for that re-
source. When P1 exits its critical section, either P2 or P3 should be allowed access to
R. Assume that the OS grants access to P3 and that P1 again requires access before
P3 completes its critical section. If the OS grants access to P1 after P3 has finished,
and subsequently alternately grants access to P1 and P3, then P2 may indefinitely be
denied access to the resource, even though there is no deadlock situation.

Control of competition inevitably involves the OS because it is the OS that al-
locates resources. In addition, the processes themselves will need to be able to ex-
press the requirement for mutual exclusion in some fashion, such as locking a
resource prior to its use. Any solution will involve some support from the OS, such
as the provision of the locking facility. Figure 5.1 illustrates the mutual exclusion
mechanism in abstract terms. There are n processes to be executed concurrently.
Each process includes (1) a critical section that operates on some resource Ra, and
(2) additional code preceding and following the critical section that does not involve
access to Ra. Because all processes access the same resource Ra, it is desired that
only one process at a time be in its critical section. To enforce mutual exclusion, two
functions are provided: entercritical and exitcritical. Each function
takes as an argument the name of the resource that is the subject of competition.
Any process that attempts to enter its critical section while another process is in its
critical section, for the same resource, is made to wait.

It remains to examine specific mechanisms for providing the functions
entercritical and exitcritical. For the moment, we defer this issue while
we consider the other cases of process interaction.
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Cooperation among Processes by Sharing The case of cooperation by
sharing covers processes that interact with other processes without being explicitly
aware of them. For example, multiple processes may have access to shared variables
or to shared files or databases. Processes may use and update the shared data with-
out reference to other processes but know that other processes may have access to
the same data. Thus the processes must cooperate to ensure that the data they share
are properly managed. The control mechanisms must ensure the integrity of the
shared data.

Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

However, over and above these problems, a new requirement is introduced:
that of data coherence. As a simple example, consider a bookkeeping application in
which various data items may be updated. Suppose two items of data a and b are to
be maintained in the relationship a = b. That is, any program that updates one value
must also update the other to maintain the relationship. Now consider the following
two processes:

Pl:
a = a 1;
b = b 1;

P2:
= 2 * b;

a= 2 * a;

If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

a = a 1;
b =2 * b;
b=»b + 1;
a =2 * a;

At the end of this execution sequence, the condition a = b no longer holds. For
example, if we start with a = b = 1, at the end of this execution sequence we have a =
4 and b = 3. The problem can be avoided by declaring the entire sequence in each
process to be a critical section.

Thus we see that the concept of critical section is important in the case of co-
operation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (Figure 5.1) can be used here. In this case, the ar-
gument for the functions could be a variable, a file, or any other shared object. Fur-
thermore, if critical sections are used to provide data integrity, then there may be no
specific resource or variable that can be identified as an argument. In that case, we
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can think of the argument as being an identifier that is shared among concurrent
processes to identify critical sections that must be mutually exclusive.

Cooperation among Processes by Communication In the first two cases
that we have discussed, each process has its own isolated environment that does not
include the other processes. The interactions among processes are indirect. In both
cases, there is a sharing. In the case of competition, they are sharing resources with-
out being aware of the other processes. In the second case, they are sharing values,
and although each process is not explicitly aware of the other processes, it is aware
of the need to maintain data integrity. When processes cooperate by communica-
tion, however, the various processes participate in a common effort that links all of
the processes. The communication provides a way to synchronize, or coordinate, the
various activities.

Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,
the problems of deadlock and starvation are still present. As an example of dead-
lock, two processes may be blocked, each waiting for a communication from the
other. As an example of starvation, consider three processes, P1, P2, and P3, that ex-
hibit the following behavior. P1 is repeatedly attempting to communicate with ei-
ther P2 or P3, and P2 and P3 are both attempting to communicate with P1. A
sequence could arise in which P1 and P2 exchange information repeatedly, while P3
is blocked waiting for a communication from P1. There is no deadlock, because P1
remains active, but P3 is starved.

Requirements for Mutual Exclusion

Any facility or capability that is to provide support for mutual exclusion should
meet the following requirements:

1. Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

2. A process that halts in its noncritical section must do so without interfering with
other processes.

3. It must not be possible for a process requiring access to a critical section to be de-
layed indefinitely: no deadlock or starvation.

4. When no process is in a critical section, any process that requests entry to its crit-
ical section must be permitted to enter without delay.

5. No assumptions are made about relative process speeds or number of processors.

6. A process remains inside its critical section for a finite time only.
There are a number of ways in which the requirements for mutual exclusion
can be satisfied. One way is to leave the responsibility with the processes that wish

to execute concurrently. Thus processes, whether they are system programs or appli-
cation programs, would be required to coordinate with one another to enforce
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mutual exclusion, with no support from the programming language or the OS. We
can refer to these as software approaches. Although this approach is prone to high
processing overhead and bugs, it is nevertheless useful to examine such approaches
to gain a better understanding of the complexity of concurrent processing. This topic
is covered in Appendix A. A second approach involves the use of special-purpose
machine instructions. These have the advantage of reducing overhead but neverthe-
less will be shown to be unattractive as a general-purpose solution; they are covered
in Section 5.2. A third approach is to provide some level of support within the OS or
a programming language. Three of the most important such approaches are exam-
ined in Sections 5.3 through 5.5.

5.2 MUTUAL EXCLUSION: HARDWARE SUPPORT

A number of software algorithms for enforcing mutual exclusion have been devel-
oped. The software approach is likely to have high processing overhead and the risk
of logical errors is significant. However, a study of these algorithms illustrate many
of the basic concepts and potential problems in developing concurrent programs.
For the interested reader, Appendix A includes a discussion of software approaches.
In this section, we look at several interesting hardware approaches to mutual
exclusion.

Interrupt Disabling

In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it in-
vokes an OS service or until it is interrupted. Therefore, to guarantee mutual exclu-
sion, it is sufficient to prevent a process from being interrupted. This capability can
be provided in the form of primitives defined by the OS kernel for disabling and en-
abling interrupts. A process can then enforce mutual exclusion in the following way
(compare Figure 5.1):

while (true) {
/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;

Because the critical section cannot be interrupted, mutual exclusion is guaran-
teed. The price of this approach, however, is high. The efficiency of execution could
be noticeably degraded because the processor is limited in its ability to interleave
processes. A second problem is that this approach will not work in a multiprocessor
architecture. When the computer includes more than one processor, it is possible
(and typical) for more than one process to be executing at a time. In this case, dis-
abled interrupts do not guarantee mutual exclusion.
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Special Machine Instructions

In a multiprocessor configuration, several processors share access to a common
main memory. In this case, there is not a master/slave relationship; rather the proces-
sors behave independently in a peer relationship. There is no interrupt mechanism
between processors on which mutual exclusion can be based.

At the hardware level, as was mentioned, access to a memory location ex-
cludes any other access to that same location. With this as a foundation, processor
designers have proposed several machine instructions that carry out two actions
atomically,” such as reading and writing or reading and testing, of a single memory
location with one instruction fetch cycle. During execution of the instruction, access
to the memory location is blocked for any other instruction referencing that
location.

In this section, we look at two of the most commonly implemented instruc-
tions. Others are described in [RAYNS86] and [STON93].

Compare&Swap Instruction The compare&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

int compare_and_swap (int *word, int testval, int newval)

{
int oldval;
oldval = *word
if (oldval == testval) *word = newval;
return oldval;
}

This version of the instruction checks a memory location (*word) against a
test value (testval). If the memory location’s current value is testval, it is replaced
with newval; otherwise it is left unchanged. The old memory value is always re-
turned; thus, the memory location has been updated if the returned value is the
same as the test value. This atomic instruction therefore has two parts: A compare is
made between a memory value and a test value; if the values differ a swap occurs.
The entire compare&swap function is carried out atomically; that is, it is not subject
to interruption.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, [A64, sparc, /390, etc.), and most operating systems use this
instruction for support of concurrency.

Figure 5.2a shows a mutual exclusion protocol based on the use of this in-
struction.®> A shared variable bolt is initialized to 0. The only process that may
enter its critical section is one that finds bolt equal to 0. All other processes at

’The term atomic means that the instruction is treated as a single step that cannot be interrupted.

3The construct parbegin (P1, P2, ..., Pn) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures P1, P2, . . ., Pn; when all of P1,P2,. .., Pn have
terminated, resume the main program.
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/* program mutualexclusion */
const int n =
int bolt;
void P(int 1)
{

while (true) {

/* do nothing */;

}

}

void main()

{
bolt = 0;
parbegin (P (1

). P(2),

while (compare_and_ swap (bolt,

/* number of processes */;

0, 1)

== i}

/* program mutualexclusion */
int const n = /* number of processes**/;
int bolt;
void P(int i)
{
int keyi = 1;
while (true) {
do exchange

(keyi, bolt)

/* critical section */; while (keyi != 0);
bolt = 0; /* critical section */;
/* remainder */; bolt = 0;

/* remainder */;
}
}
void main()
{
bolt = 0;
parbegin (P (1)

P(2), ..., P(n));

(a) Compare and swap instruction

(b) Exchange instruction

Figure 5.2 Hardware Support for Mutual Exclusion

enter their critical section go into a busy waiting mode. The term busy waiting, or
spin waiting, refers to a technique in which a process can do nothing until it gets
permission to enter its critical section but continues to execute an instruction or set
of instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the
waiting processes is granted access to its critical section. The choice of process
depends on which process happens to execute the compare&swap instruction
next.

Exchange Instruction The exchange instruction can be defined as follows:

void exchange (int register, int memory)

{
int temp;
temp = memory;
memory = register;
register = temp;

}

The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium)
contain an XCHG instruction.

Figure 5.2b shows a mutual exclusion protocol based on the use of an exchange
instruction. A shared variable bolt is initialized to 0. Each process uses a local
variable key that is initialized to 1. The only process that may enter its critical section
is one that finds bolt equal to 0. It excludes all other processes from the critical
section by setting bolt to 1. When a process leaves its critical section, it resets bolt to
0, allowing another process to gain access to its critical section.
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Note that the following expression always holds because of the way in which

the variables are initialized and because of the nature of the exchange algorithm:

bolt + > key; = n

If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one
process is in its critical section, namely the process whose key value equals 0.

Properties of the Machine-Instruction Approach The use of a special
machine instruction to enforce mutual exclusion has a number of advantages:

It is applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.

It is simple and therefore easy to verify.

It can be used to support multiple critical sections; each critical section can be
defined by its own variable.

There are some serious disadvantages:

Busy waiting is employed. Thus, while a process is waiting for access to a criti-
cal section, it continues to consume processor time.

Starvation is possible. When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus,
some process could indefinitely be denied access.

Deadlock is possible. Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the
same resource as P1, it will be denied access because of the mutual exclusion
mechanism. Thus it will go into a busy waiting loop. However, P1 will never
be dispatched because it is of lower priority than another ready process, P2.

Because of the drawbacks of both the software and hardware solutions just

outlined, we need to look for other mechanisms.

5.3 SEMAPHORES

We now turn to OS and programming language mechanisms that are used to pro-
vide concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in
this section, with semaphores. The next two sections discuss monitors and message
passing. The other mechanisms in Table 5.3 are discussed when treating specific
operating system examples, in Chapters 6 and 13.

The first major advance in dealing with the problems of concurrent processes

came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with the de-
sign of an OS as a collection of cooperating sequential processes and with the devel-
opment of efficient and reliable mechanisms for supporting cooperation. These
mechanisms can just as readily be used by user processes if the processor and OS
make the mechanisms available.
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Table 5.3 ~ Common Concurrency Mechanisms

Semaphore

An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary Semaphore

A semaphore that takes on only the values 0 and 1.

Mutex

Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).

Condition Variable

A data type that is used to block a process or thread until a particular condition is true.

Monitor

A programming language construct that encapsulates variables, access procedures and

initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections. A monitor may
have a queue of processes that are waiting to access it.

Event Flags A memory word used as a synchronization mechanism. Application code may associ-

ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one

of the bits is set (OR).

Mailboxes/Messages A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting for

the value of a lock variable to indicate availability.

The fundamental principle is this: Two or more processes can cooperate by
means of simple signals, such that a process can be forced to stop at a specified place
until it has received a specific signal. Any complex coordination requirement can be
satisfied by the appropriate structure of signals. For signaling, special variables
called semaphores are used. To transmit a signal via semaphore s, a process exe-
cutes the primitive semSignal (s).To receive a signal via semaphore s, a process
executes the primitive semWait (s); if the corresponding signal has not yet been
transmitted, the process is suspended until the transmission takes place.*

To achieve the desired effect, we can view the semaphore as a variable that has
an integer value upon which only three operations are defined:

1. A semaphore may be initialized to a nonnegative integer value.

2. The semwait operation decrements the semaphore value. If the value becomes
negative, then the process executing the semwait is blocked. Otherwise, the
process continues execution.

3. The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWait oper-
ation, if any, is unblocked.

“In Dijkstra’s original paper and in much of the literature, the letter P is used for semWait and the letter
V for semSignal;these are the initials of the Dutch words for test (proberen) and increment (verhogen).
In some of the literature, the terms wait and signal are used. This book uses semWait and
semSignal for clarity, and to avoid confusion with similar wait and signal operations in monitors, dis-
cussed subsequently.
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Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be un-
blocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[DOWNO7] points out three interesting consequences of the semaphore
definition:

e In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

e After a process increments a semaphore and another process gets woken up,
both processes continue running concurrently. There is no way to know which
process, if either, will continue immediately on a uniprocessor system.

* When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

Figure 5.3 suggests a more formal definition of the primitives for semaphores.
The semWait and semSignal primitives are assumed to be atomic. A more re-
stricted version, known as the binary semaphore, is defined in Figure 5.4. A binary
semaphore may only take on the values 0 and 1 and can be defined by the following
three operations:

1. A binary semaphore may be initialized to 0 or 1.

struct semaphore {
int count;
queueType queue;
}i
void semWait (semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process in s.queue */;
/* block this process */;
}
}
void semSignal (semaphore s)
{
s.count++;
if (s.count <= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;

Figure 5.3 A Definition of Semaphore Primitives
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struct binary_semaphore {
enum {zero, one} value;
queueType queue;
Yy
void semWaitB (binary_semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.queue */;
/* block this process */;
}
}
void semSignalB (semaphore s)
{
if (s.queue is empty())
s.value = one;
else {
/* remove a process P from s.queue */;
/* place process P on ready list */;

Figure 5.4 A Definition of Binary Semaphore Primitives

2. The semWaitB operation checks the semaphore value. If the value is zero, then
the process executing the semwWaitB is blocked. If the value is one, then the
value is changed to zero and the process continues execution.

3. The semSignalB operation checks to see if any processes are blocked on this
semaphore (semaphore value equals zero). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and it can
be shown that it has the same expressive power as the general semaphore (see Prob-
lem 5.17). To contrast the two types of semaphores, the nonbinary semaphore is
often referred to as either a counting semaphore or a general semaphore.

A concept related to the binary semaphore is the mutex. A key difference be-
tween the two is that the process that locks the mutex (sets the value to zero) must
be the one to unlock it (sets the value to 1). In contrast, it is possible for one process
to lock a binary semaphore and for another to unlock it.>

For both counting semaphores and binary semaphores, a queue is used to
hold processes waiting on the semaphore. The question arises of the order in
which processes are removed from such a queue. The fairest removal policy is
first-in-first-out (FIFO): The process that has been blocked the longest is released
from the queue first; a semaphore whose definition includes this policy is called
a strong semaphore. A semaphore that does not specify the order in which

In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris,
offer a mutex facility that conforms to the definition in this book.
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processes are removed from the queue is a weak semaphore. Figure 5.5, based on
one in [DENNS84], is an example of the operation of a strong semaphore. Here
processes A, B, and C depend on a result from process D. Initially (1), A is run-
ning; B, C, and D are ready; and the semaphore count is 1, indicating that one of

@ Processor
A
|

Blocked queue Semaphore Ready queue
@ Processor
B
L |
— s=0_|—"T Ta[c[D]
Blocked queue Semaphore Ready queue
@ Processor
D
L= |
— B s=-1 —_[ [ [a[d]
Blocked queue Semaphore Ready queue
@ Processor
D
L= |

— [ [T T] =0 | [Bla[c]

Blocked queue Semaphore Ready queue
@ Processor
@
L= |
— s=0 |—>"T [o[B[4]
Blocked queue Semaphore Ready queue
@ Processor
D
L= |
Blocked queue Semaphore Ready queue

@ Processor

— B[A | [ [ [c]

Blocked queue Semaphore Ready queue

Figure 5.5 Example of Semaphore Mechanism



224 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int 1)
{
while (true) {
semWait (s) ;
/* critical section Y5
semSignal (s) ;
/* remainder 17
}
}
void main ()
{
parbegin (P(1), P(2), . . ., P(n));
}

Figure 5.6 Mutual Exclusion Using Semaphores

D’s results is available. When A issues a semWai t instruction on semaphore s, the
semaphore decrements to 0, and A can continue to execute; subsequently it
rejoins the ready queue. Then B runs (2), eventually issues a semWa it instruction,
and is blocked, allowing D to run (3). When D completes a new result, it issues a
semSignal instruction, which allows B to move to the ready queue (4). D rejoins
the ready queue and C begins to run (5) but is blocked when it issues a semWait
instruction. Similarly, A and B run and are blocked on the semaphore, allowing D
to resume execution (6). When D has a result, it issues a semSignal, which trans-
fers C to the ready queue. Later cycles of D will release A and B from the Blocked
state.

For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.6, strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient and because this is the form of semaphore typically provided by operat-
ing systems.

Mutual Exclusion

Figure 5.6 shows a straightforward solution to the mutual exclusion problem using a
semaphore s (compare Figure 5.1). Consider n processes, identified in the array P(i),
all of which need access to the same resource. Each process has a critical section
used to access the resource. In each process, a semwait (s) is executed just before
its critical section. If the value of s becomes negative, the process is blocked. If the
value is 1, then it is decremented to 0 and the process immediately enters its critical
section; because s is no longer positive, no other process will be able to enter its
critical section.

The semaphore is initialized to 1. Thus, the first process that executes a
semWait will be able to enter the critical section immediately, setting the value of s
to 0. Any other process attempting to enter the critical section will find it busy and
will be blocked, setting the value of s to —1. Any number of processes may attempt
entry; each such unsuccessful attempt results in a further decrement of the value of
s. When the process that initially entered its critical section departs, s is incremented
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and one of the blocked processes (if any) is removed from the queue of blocked
processes associated with the semaphore and put in a Ready state. When it is next
scheduled by the OS, it may enter the critical section.

Figure 5.7, based on one in [BACOO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.6. In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock. Process
A executes semWait(Iock); because the semaphore has a value of 1 at the time of
the semWait operation, A can immediately enter its critical section and the sema-
phore takes on the value 0. While A is in its critical section, both B and C perform a
semWait operation and are blocked pending the availability of the semaphore.
When A exits its critical section and performs semSignal(Ilock), B, which was the
first process in the queue, can now enter its critical section.

The program of Figure 5.6 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met
simply by initializing the semaphore to the specified value. Thus, at any time, the
value of s.count can be interpreted as follows:

e s.count > 0: s.count is the number of processes that can execute semwait(s)
without suspension (if no semSignal(s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual

exclusion.
Queue for Value of
semaphore lock  semaphore lock A B C
Critical
region
o senvaitton | | N
:Dj @ 1 Blocked on
____________________________ semWait(lock) | | semaphore
! v lock
| [B] :

i

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

Figure 5.7 Processes Accessing Shared Data Protected by a Semaphore
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e s.count < 0: The magnitude of s.count is the number of processes suspended in
s.queue.

Animation:
The Producer/Consumer Problem Producer/Consumer
We now examine one of the most common problems faced in concurrent process-
ing: the producer/consumer problem. The general statement is this: there are one or
more producers generating some type of data (records, characters) and placing
these in a buffer. There is a single consumer that is taking items out of the buffer one
at a time. The system is to be constrained to prevent the overlap of buffer opera-
tions. That is, only one agent (producer or consumer) may access the buffer at any
one time. The problem is to make sure that the producer won’t try to add data into
the buffer if it’s full and that the consumer won’t try to remove data from an empty
buffer. We will look at a number of solutions to this problem to illustrate both the
power and the pitfalls of semaphores.
To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions

as follows:
producer: consumer :
while (true) { while (true) {
/* produce item v */; while (in <= out)
blin] = v; /* do nothing */;
in++; w = blout];
} out++;

/* consume item w */;

Figure 5.8 illustrates the structure of buffer b. The producer can generate
items and store them in the buffer at its own pace. Each time, an index (in) into
the buffer is incremented. The consumer proceeds in a similar fashion but must
make sure that it does not attempt to read from an empty buffer. Hence, the

b[1] | b[2] | b[3] | b[4] | b[5] e o o o

Out In

Note: Shaded area indicates portion of buffer that is occupied

Figure 5.8 Infinite Buffer for the
Producer/Consumer Problem
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/* program producerconsumer */
int n;
binary_semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB(delay) ;
semSignalB(s) ;

void consumer (

semWaitB (delay) ;
while (true) {
semWaitB(s) ;
take () ;
n--;
semSignalB(s) ;
consume () ;
if (n==0) semWaitB(delay) ;

void main ()

m =03
parbegin (producer, consumer) ;

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

consumer makes sure that the producer has advanced beyond it (in > out) before
proceeding.

Let us try to implement this system using binary semaphores. Figure 5.9 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in — out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semwait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add to
the buffer at any time. It performs semWaitB(s) before appending and
semSignalB(s) afterward to prevent the consumer or any other producer from
accessing the buffer during the append operation. Also, while in the critical section,
the producer increments the value of n. If n = 1, then the buffer was empty just prior
to this append, so the producer performs semSignalB (delay) to alert the con-
sumer of this fact. The consumer begins by waiting for the first item to be produced,
using semWaitB (delay).It then takes an item and decrements # in its critical sec-
tion. If the producer is able to stay ahead of the consumer (a common situation),
then the consumer will rarely block on the semaphore delay because n will usually
be positive. Hence both producer and consumer run smoothly.
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Table 5.4 Possible Scenario for the Program of Figure 5.9
Producer Consumer S n Delay

1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0

4 if (n==1)
(semSignalB(delay)) 0 1 1
5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 semSignalB(s) 1 0 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0

12 if (n==1)
(semSignalB(delay)) 0 1 1
13 semSignalB(s) 1 1 1
14 if (n==0) (semWaitB(delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 if (n==0) (semWaitB(delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 -1 0
21 semiSignlaB(s) 1 -1 0

NOTE: White areas represent the critical section controlled by semaphore s.

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so that it will be forced to wait
until the producer has placed more items in the buffer. This is the purpose of the
statement: if n == 0 semWaitB (delay). Consider the scenario outlined in
Table 5.4. In line 14, the consumer fails to execute the semWaitB operation. The
consumer did indeed exhaust the buffer and set n to 0 (line 8), but the producer
has incremented n before the consumer can test it in line 14. The result is a
semSignalB not matched by a prior semwWaitB. The value of —1 for # in line 20
means that the consumer has consumed an item from the buffer that does not
exist. It would not do simply to move the conditional statement inside the critical
section of the consumer because this could lead to deadlock (e.g., after line 8 of
the table).

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.10. A careful
trace of the logic should convince you that deadlock can no longer occur.
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/* program producerconsumer */
int n;
binary_semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB(delay) ;
semSignalB(s) ;
}

void consumer ()

int m; /* a local variable */
semWaitB (delay) ;

while (true) {
semWaitB(s) ;
take () ;
n--;
m = n;

semSignalB(s) ;
consume () ;
if (m==0) semWaitB(delay) ;

void main ()

n = 0;
parbegin (producer, consumer) ;

Figure 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.11. The variable n is now
a semaphore. Its value still is equal to the number of items in the buffer. Suppose
now that in transcribing this program, a mistake is made and the operations
semSignal (s) and semSignal (n) are interchanged. This would require that the
semSignal (n) operation be performed in the producer’s critical section without
interruption by the consumer or another producer. Would this affect the program?
No, because the consumer must wait on both semaphores before proceeding in any
case.

Now suppose that the semWait (n) and semWait (s) operations are acci-
dentally reversed. This produces a serious, indeed a fatal, flaw. If the consumer
ever enters its critical section when the buffer is empty (n.count = 0), then no pro-
ducer can ever append to the buffer and the system is deadlocked. This is a good
example of the subtlety of semaphores and the difficulty of producing correct
designs.
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/* program producerconsumer */
semaphore n = 0, s = 1;
void producer ()

{
while (true) {
produce () ;
semWait (s) ;
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;
}
}
void main ()
{
parbegin (producer, consumer) ;

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

Block on: Unblock on:
Producer: insert in full buffer Consumer: item inserted
Consumer: remove from empty buffer Producer: item removed

b[1] | b[2] | b[3] | b4l [ bS] | e e e e |bln]

T T

Out In
(@)

b[1] | b[2] [ b[3] | b[4] | b[5S] e o o o |Dbln]

]

In Out
(b)

Figure 5.12  Finite Circular Buffer for the
Producer/Consumer Problem
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/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1, n = 0, e = sizeofbuffer;
void producer ()
{
while (true) ({
produce () ;
semWait (e) ;
semWait (s)
append () ;
semSignal (s) ;
semSignal (n) ;

i

}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s) ;
take();
semSignal (s) ;
semSignal (e) ;
consume () ;
}
}
void main()
{
parbegin (producer, consumer) ;
}

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and # is the size of the buffer):

producer: consumer :
while (true) { while (true) {
/* produce item v */ while (in == out)
while ((in + 1) % n == out) /* do nothing */;
/* do nothing */; w = blout];
blin] = v; out = (out + 1) % n;
in = (in + 1) % n; /* consume item w */;
} }

Figure 5.13 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem, described in Appendix A. Appendix A also includes additional examples of the
problem of race conditions when using semaphores.

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement them
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semWait (s) semWait (s)
{ {
while (compare_and swap(s.flag, 0 , 1) == 1) inhibit interrupts;
/* do nothing */; s.count--;
s.count--; if (s.count < 0) {
if (s.count < 0) { /* place this process in s.qgueue */;
/* place this process in s.queue*/; /* block this process and allow inter-
/* Dblock this process (must also set| rupts */;
s.flag to 0) */; }
} else
s.flag = 0; allow interrupts;
} }
semSignal (s) semSignal (s)
{ {
while (compare_and_swap(s.flag, 0 , 1) == 1) inhibit interrupts;
/* do nothing */; s.count++;
s.count++; if (s.count <= 0) {
if (s.count <= 0) { /* remove a process P from s.queue */;
/* remove a process P from s.queue */; /* place process P on ready list */;
/* place process P on ready list */; }
} allow interrupts;
s.flag = 0; }
}
(a) Compare and Swap Instruction (b) Interrupts

Figure 5.14 Two Possible Implementations of Semaphores

in hardware or firmware. Failing this, a variety of schemes have been suggested. The
essence of the problem is one of mutual exclusion: Only one process at a time may
manipulate a semaphore with either a semwWait or semSignal operation. Thus,
any of the software schemes, such as Dekker’s algorithm or Peterson’s algorithm
(Appendix A), could be used; this would entail a substantial processing overhead.
Another alternative is to use one of the hardware-supported schemes for mutual ex-
clusion. For example, Figure 5.14a shows the use of a compare & swap instruction.
In this implementation, the semaphore is again a structure, as in Figure 5.3, but now
includes a new integer component, s.flag. Admittedly, this involves a form of busy
waiting. However, the semWait and semSignal operations are relatively short, so
the amount of busy waiting involved should be minor.

For a single-processor system, it is possible to inhibit interrupts for the dura-
tion of a semWait or semSignal operation, as suggested in Figure 5.14b. Once
again, the relatively short duration of these operations means that this approach is
reasonable.

5.4 MONITORS

Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual ex-
clusion and for coordinating processes. However, as Figure 5.9 suggests, it may be diffi-
cult to produce a correct program using semaphores. The difficulty is that semWait
and semSignal operations may be scattered throughout a program and it is not easy
to see the overall effect of these operations on the semaphores they affect.
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The monitor is a programming-language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR?74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for
something like a linked list, you may want to lock all linked lists with one lock, or
have one lock for each list, or have one lock for each element of each list.

We begin with a look at Hoare’s version and then examine a refinement.

Monitor with Signal

A monitor is a software module consisting of one or more procedures, an initializa-
tion sequence, and local data. The chief characteristics of a monitor are the following:

1. The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

2. A process enters the monitor by invoking one of its procedures.

3. Only one process may be executing in the monitor at a time; any other processes
that have invoked the monitor are blocked, waiting for the monitor to become
available.

The first two characteristics are reminiscent of those for objects in object-oriented
software. Indeed, an object-oriented OS or programming language can readily
implement a monitor as an object with special characteristics.

By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed by
only one process at a time. Thus, a shared data structure can be protected by placing
it in a monitor. If the data in a monitor represent some resource, then the monitor
provides a mutual exclusion facility for accessing the resource.

To be useful for concurrent processing, the monitor must include synchroniza-
tion tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked but releases the monitor so that some other
process may enter it. Later, when the condition is satisfied and the monitor is again
available, the process needs to be resumed and allowed to reenter the monitor at the
point of its suspension.

A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition vari-
ables are a special data type in monitors, which are operated on by two functions:

e cwait (c): Suspend execution of the calling process on condition c. The
monitor is now available for use by another process.

* csignal (c): Resume execution of some process blocked after a cwait
on the same condition. If there are several such processes, choose one of
them; if there is no such process, do nothing.

Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.
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Figure 5.15  Structure of a Monitor

Figure 5.15 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as having
a single entry point that is guarded so that only one process may be in the monitor
at a time. Other processes that attempt to enter the monitor join a queue of
processes blocked waiting for monitor availability. Once a process is in the monitor,
it may temporarily block itself on condition x by issuing cwait (x);itis then placed
in a queue of processes waiting to reenter the monitor when the condition changes,
and resume execution at the point in its program following the cwait (x) call

If a process that is executing in the monitor detects a change in the condition
variable x, it issues csignal (x), which alerts the corresponding condition queue
that the condition has changed.

As an example of the use of a monitor, let us return to the bounded-buffer
producer/consumer problem. Figure 5.16 shows a solution using a monitor. The
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/* program producerconsumer */
monitor boundedbuffer;

char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
cond notfull, notempty; /* condition variables for synchronization */

void append (char x)
{

if (count == N) cwait (notfull); /* buffer is full; avoid overflow */
buffer[nextin] = x;

nextin = (nextin + 1) % N;

count++;

/* one more item in buffer */

csignal (nonempty) ; /*resume any waiting consumer */
}
void take (char x)

{

if (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow */
x = buffer[nextout];
nextout = (nextout + 1) % N);
count--; /* one fewer item in buffer */
csignal (notfull); /* resume any waiting producer */
}
{ /* monitor body */
nextin = 0; nextout = 0; count = 0; /* buffer initially empty */

void producer ()

{
char x;
while (true) {
produce (xX) ;
append (x) ;
}

}

void consumer (

{
char x;
while (true) {
take (x) ;
consume (x) ;
}

}

void main ()

{

parbegin (producer, consumer) ;

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

monitor module, boundedbuf fer, controls the buffer used to store and
retrieve characters. The monitor includes two condition variables (declared
with the construct cond): notfull is true when there is room to add at least
one character to the buffer, and notempty is true when there is at least one
character in the buffer.



236 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

A producer can add characters to the buffer only by means of the procedure
append inside the monitor; the producer does not have direct access to buffer. The
procedure first checks the condition notfull to determine if there is space available
in the buffer. If not, the process executing the monitor is blocked on that condition.
Some other process (producer or consumer) may now enter the monitor. Later,
when the buffer is no longer full, the blocked process may be removed from the
queue, reactivated, and resume processing. After placing a character in the buffer,
the process signals the notempty condition. A similar description can be made of the
consumer function.

This example points out the division of responsibility with monitors compared
to semaphores. In the case of monitors, the monitor construct itself enforces mutual
exclusion: It is not possible for both a producer and a consumer simultaneously to
access the buffer. However, the programmer must place the appropriate cwait and
csignal primitives inside the monitor to prevent processes from depositing
items in a full buffer or removing them from an empty one. In the case of sema-
phores, both mutual exclusion and synchronization are the responsibility of the
programmer.

Note that in Figure 5.16, a process exits the monitor immediately after execut-
ing the csignal function. If the csignal does not occur at the end of the proce-
dure, then, in Hoare’s proposal, the process issuing the signal is blocked to make the
monitor available and placed in a queue until the monitor is free. One possibility at
this point would be to place the blocked process in the entrance queue, so that it
would have to compete for access with other processes that had not yet entered the
monitor. However, because a process blocked on a csignal function has already
partially performed its task in the monitor, it makes sense to give this process prece-
dence over newly entering processes by setting up a separate urgent queue (Fig-
ure 5.15). One language that uses monitors, Concurrent Pascal, requires that
csignal only appear as the last operation executed by a monitor procedure.

If there are no processes waiting on condition x, then the execution of
csignal (x) has no effect.

As with semaphores, it is possible to make mistakes in the synchronization
function of monitors. For example, if either of the csignal functions in the
boundedbuf fer monitor are omitted, then processes entering the corresponding
condition queue are permanently hung up. The advantage that monitors have over
semaphores is that all of the synchronization functions are confined to the monitor.
Therefore, it is easier to verify that the synchronization has been done correctly and
to detect bugs. Furthermore, once a monitor is correctly programmed, access to
the protected resource is correct for access from all processes. In contrast, with
semaphores, resource access is correct only if all of the processes that access the
resource are programmed correctly.

Alternate Model of Monitors with Notify and Broadcast

Hoare’s definition of monitors [HOAR?74] requires that if there is at least one
process in a condition queue, a process from that queue runs immediately when an-
other process issues a csignal for that condition. Thus, the process issuing the
csignal must either immediately exit the monitor or be blocked on the monitor.
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void append (char x)

{

while (count == N) cwait (notfull); /* buffer is full; avoid overflow */
buffer[nextin] = X;

nextin = (nextin + 1) % N;

count++; /* one more item in buffer */
cnotify (notempty) ; /* notify any waiting consumer */

}

void take (char x)
{

while (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow */
x = buffer[nextout];

nextout = (nextout + 1) % N);

count--; /* one fewer item in buffer */
cnotify (notfull) ; /* notify any waiting producer */

Figure 5.17 Bounded Buffer Monitor Code for Mesa Monitor

There are two drawbacks to this approach:

1. If the process issuing the csignal has not finished with the monitor, then two
additional process switches are required: one to block this process and another
to resume it when the monitor becomes available.

2. Process scheduling associated with a signal must be perfectly reliable. When a
csignal is issued, a process from the corresponding condition queue must be
activated immediately and the scheduler must ensure that no other process en-
ters the monitor before activation. Otherwise, the condition under which the
process was activated could change. For example, in Figure 5.16, when a
csignal (notempty) is issued, a process from the notempty queue must be
activated before a new consumer enters the monitor. Another example: a pro-
ducer process may append a character to an empty buffer and then fail before
signaling; any processes in the not empty queue would be permanently hung up.

Lampson and Redell developed a different definition of monitors for the lan-
guage Mesa [LAMPS80]. Their approach overcomes the problems just listed and sup-
ports several useful extensions. T