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Preface

Integrating simple processing, storage, sensing, and communication capabilities into small-scale,
low-cost devices and joining them into so-called wireless sensor networks opens the door to a
plethora of new applications — or so it is commonly believed. It is a struggle to find a business
model that can turn the bright visions into a prosperous and actually useful undertaking. But this
struggle can be won by applying creative ideas to the underlying technology, assuming that this
technology and its abilities as well as shortcomings and limitations are properly understood. We
have written this book in the hope of fostering this understanding.

Understanding (and presenting) this new type of networks is a formidable challenge. A key
characteristic is the need to understand issues from many diverse areas, ranging from low-level
aspects of hardware and radio communication to high-level concepts like databases or middleware
and to the very applications themselves. Then, a joint optimization can be attempted, carefully tun-
ing all system components, drawing upon knowledge from disciplines like electrical engineering,
computer science and computer engineering, and mathematics. Such a complex optimization is nec-
essary owing to the stringent resource restrictions — in particular, energy — by which these networks
are constrained. As a consequence, a simple explanation along the lines of the ISO/OSI model or
a similar layering model for communication networks fails. Nonetheless, we have attempted to
guide the reader along the lines of such a model and tried to point out the points of interaction and
interdependence between such different “layers”.

In structuring the material and in the writing process, our goal was to explain the main problems
at hand and principles and essential ideas for their solution. We usually did not go into the details of
each of (usually many) several solution options; however, we did provide the required references
for the readers to embark on a journey to the sources on their own. Nor did we attempt to go
into any detail regarding performance characteristics of any described solution. The difficulty here
lies in presenting such results in a comparable way — it is next to impossible to find generally
comparable performance results in scientific publications on the topic of wireless sensor networks.
What is perhaps missing is a suite of benchmarking applications, with clearly delimited rules and
assumptions (the use of a prevalent simulator is no substitute here). Tracking might be one such
application, but it clearly is not the only important application class to which wireless sensor
networks can be applied.

Often, a choice had to be made whether to include a given idea, paper, or concept. Given the
limited space in such a textbook, we preferred originality or an unusual but promising approach
over papers that present solid but more technical work, albeit this type of work can make the
difference whether a particular scheme is practicable at all.

We also tried to avoid, and explicitly argue against, ossification but rather tried to keep and
promote an open mind-set about what wireless sensor networks are and what their crucial research
topics entail. We feel that this still relatively young and immature field is sometimes inappropriately
narrowed down to a few catchwords — energy efficiency being the most prominent example — which,
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Xiv Preface

although indubitably important, might prevent interesting ideas from forming and becoming pub-
licly known. Here, we tried to give the benefit of the doubt and at least tried to include pointers
and references to some “unusual” or odd approaches.

Nonetheless, we had to omit a considerable amount of material; areas like middleware, security,
management, deployment, or modeling suffered heavily or were, in the end, entirely excluded. We
also had to stop including new material at some point in time — at the rate of new publications
appearing on this topic, this book would otherwise never be completed (if you feel that we have
overlooked important work or misrepresented some aspects, we encourage you to contact us). We
still hope that it can serve the reader as a first orientation in this young, vigorous, and fascinat-
ing research area. Visit the website accompanying this book, www.wiley.com/go/wsn, for a
growing repository of lecture slides on ad hoc and sensor networks.

Audience and Prerequisites

The book is mainly targeted at senior undergraduate or graduate-level students, at academic and
industrial researchers working in the field, and also at engineers developing actual solutions for
wireless sensor networks. We consider this book as a good basis to teach a class on wireless sensor
networks (e.g. for a lecture corresponding to three European Credit Transfer System points).

This book is not intended as a first textbook on wireless networking. While we do try to introduce
most of the required background, it will certainly be helpful for the reader to have some prior
knowledge of wireless communication already; some first contact with mobile ad hoc networking
can be beneficial to understand the differences but is not essential. We do, however, assume general
networking knowledge as a given.

Moreover, in several parts of the book, some concepts and results from discrete mathematics
are used. It will certainly be useful for the reader to have some prior idea regarding optimization
problems, NP completeness, and similar topics.
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A guide to the book

The design and optimization of a wireless sensor network draws on knowledge and understanding
of many different areas: properties of the radio front end determine what type of MAC protocols can
be used, the type of application limits the options for routing protocols, and battery self-recharge
characteristics influence sleeping patterns of a node. A book, on the other hand, is a linear entity.
We are therefore forced to find a consecutive form of presenting an inherently nonconsecutive, but
densely interwoven, topic.

To overcome this problem, we structured the book in two parts (Figure 1). The three chapters of
the first part give a high-level overview of applications and problems, of hardware properties, and
of the essential networking architecture. These first three chapters build a foundation upon which
we build a detailed treatment of individual communication protocols in the second part of the book.

This second part is loosely oriented along the lines of the standard ISO/OSI layering model
but, of course, focuses on algorithms and protocols relevant to wireless sensor networks. We start
out by looking at the protocols needed between two neighboring nodes in the physical, link, and
medium access layers. Then, a discussion about names and addresses in a wireless sensor network
follows. The next three chapters — time synchronization, localization and positioning, and topology
control — describe functionality that is important for the correct or efficient operation of a sensor
network but that is not directly involved in the exchange of packets between neighboring nodes.
In a sense, these are “helper protocols”.

On the basis of this understanding of communication between neighbors and on essential helper
functionality, the following three chapters treat networking functionality regarding routing protocols
in various forms, transport layer functionality, and an appropriate notion of quality of service. The
book is complemented by a final chapter on advanced application support. For extra learning
materials in the form of lecture slides, go to the accompanying website, www.wiley.com/go/
wsn, which is gradually being populated.

A Full Course

Selecting the material for a full course from this book should be relatively easy. Essentially, all
topics should be covered, more or less in depth, using a variable number of the example protocols
discussed in the book.

A Reduced Course

If time does not permit covering of all the topics, a selection has to be made. We consider the
following material rather important and recommend to cover it, if at all possible.
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Figure 1 Structure of the book

Chapter 1: Introduction Completely.

Chapter 2: Single node architecture Treat at least Sections 2.1 and 2.2 to some level of detail.
Section 2.3 on operating systems can be covered relatively briefly (depending on the focus
of the course, this might not be very important material).

Chapter 3: Network architecture Cover Sections 3.1 to 3.3. The sections on service interface
and gateways can be omitted for a first reading.

Chapter 4: Physical layer Depending on previous knowledge, this chapter can be skipped entirely.
If possible, Section 4.3 should, however, be covered.

Chapter 5: MAC protocols An important chapter that should be covered, if possible, in its entirety.
If time is short, some examples for each of different protocol classes can be curtailed.

Chapter 6: Link layer protocols Any of the three Sections 6.2, 6.3, or 6.4 can be selected for a
more detailed treatment.

Chapter 7: Naming and addressing This chapter should be treated fairly extensively. Sections 7.3
and 7.4 can be omitted.

Chapter 8: Time synchronization This chapter can be skipped.
Chapter 9: Localization and positioning This chapter can be skipped.

Chapter 10: Topology control While this chapter can, in principle, be skipped as well, some of
the basic ideas should be covered even in a condensed course. We would suggest to cover
Section 10.1 and a single example from Sections 10.2 to 10.6 each.
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Chapter 11: Routing protocols An important chapter. Sections 11.2 and 11.6 may be omitted.'

Chapter 12: Data-centric and content-based networking Quite important and characteristic for
wireless sensor networks. Should receive extensive treatment in a lecture.

Chapter 13: Transport layer and Quality of Service This chapter also should be treated exten-
sively.

Chapter 14: Advanced application support Much of this chapter can be skipped, but a few
examples from Section 14.3 should make a nice conclusion for a lecture.

Evidently, the amount of detail and the focus of a lecture can be controlled by the number of
examples discussed in class. It is probably infeasible to discuss the entire book in a lecture.

''We would like to make the reader aware of the Steiner tree problem described in Section 11.4.2. Tt did surprise us in
preparing this book how often this problem has been “rediscovered” in the sensor network literature, often without recognizing
it for what it is.
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1

Introduction

Objectives of this Chapter

Applications should shape and form the technology for which they are intended. This holds true
in particular for wireless sensor networks, which have, to some degree, been a technology-driven
development. This chapter starts out by putting the idea of wireless sensor networks into a broader
perspective and gives a number of application scenarios, which will later be used to motivate partic-
ular technical needs. It also generalizes from specific examples to types or classes of applications.
Then, the specific challenges for these application types are discussed and why current technology
is not up to meeting these challenges.

At the end of this chapter, the reader should have an appreciation for the types of applications
for which wireless sensor networks are intended and a first intuition about the types of technical
solutions that are required, both in hardware and in networking technologies.

Chapter Outline
1.1  The vision of Ambient Intelligence 1
1.2 Application examples 3
1.3 Types of applications 6
1.4 Challenges for WSNs 7
1.5 Why are sensor networks different? 10
1.6 Enabling technologies for wireless sensor networks 13

1.1 The vision of Ambient Intelligence

The most common form of information processing has happened on large, general-purpose compu-
tational devices, ranging from old-fashioned mainframes to modern laptops or palmtops. In many
applications, like office applications, these computational devices are mostly used to process infor-
mation that is at its core centered around a human user of a system, but is at best indirectly related
to the physical environment.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright © 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5
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2 Introduction

In another class of applications, the physical environment is at the focus of attention. Computation
is used to exert control over physical processes, for example, when controlling chemical processes
in a factory for correct temperature and pressure. Here, the computation is integrated with the
control; it is embedded into a physical system. Unlike the former class of systems, such embedded
systems are usually not based on human interaction but are rather required to work without it; they
are intimately tied to their control task in the context of a larger system.

Such embedded systems are a well-known and long-used concept in the engineering sciences (in
fact, estimates say that up to 98 % of all computing devices are used in an embedded context [91]).
Their impact on everyday life is also continuing to grow at a quick pace. Rare is the household
where embedded computation is not present to control a washing machine, a video player, or a cell
phone. In such applications, embedded systems meet human-interaction-based systems.

Technological progress is about to take this spreading of embedded control in our daily lives a step
further. There is a tendency not only to equip larger objects like a washing machine with embedded
computation and control, but also smaller, even dispensable goods like groceries; in addition, living
and working spaces themselves can be endowed with such capabilities. Eventually, computation
will surround us in our daily lives, realizing a vision of “Ambient Intelligence” where many
different devices will gather and process information from many different sources to both control
physical processes and to interact with human users. These technologies should be unobtrusive and
be taken for granted — Marc Weiser, rightfully called the father of ubiquitous computing, called
them disappearing technologies [867, 868]. By integrating computation and control in our physical
environment, the well-known interaction paradigms of person-to-person, person-to-machine and
machine-to-machine can be supplemented, in the end, by a notion of person-to-physical world
[783]; the interaction with the physical world becomes more important than mere symbolic data
manipulation [126].

To realize this vision, a crucial aspect is needed in addition to computation and control: commu-
nication. All these sources of information have to be able to transfer the information to the place
where it is needed — an actuator or a user — and they should collaborate in providing as precise
a picture of the real world as is required. For some application scenarios, such networks of sen-
sors and actuators are easily built using existing, wired networking technologies. For many other
application types, however, the need to wire together all these entities constitutes a considerable
obstacle to success: Wiring is expensive (figures of up to US$200 per sensor can be found in the
literature [667]), in particular, given the large number of devices that is imaginable in our envi-
ronment; wires constitute a maintenance problem; wires prevent entities from being mobile; and
wires can prevent sensors or actuators from being close to the phenomenon that they are supposed
to control. Hence, wireless communication between such devices is, in many application scenarios,
an inevitable requirement.

Therefore, a new class of networks has appeared in the last few years: the so-called Wireless
Sensor Network (WSN) (see e.g. [17, 648]). These networks consist of individual nodes that are
able to interact with their environment by sensing or controlling physical parameters; these nodes
have to collaborate to fulfill their tasks as, usually, a single node is incapable of doing so; and
they use wireless communication to enable this collaboration. In essence, the nodes without such
a network contain at least some computation, wireless communication, and sensing or control
functionalities. Despite the fact that these networks also often include actuators, the term wireless
sensor network has become the commonly accepted name. Sometimes, other names like “wireless
sensor and actuator networks” are also found.

These WSNs are powerful in that they are amenable to support a lot of very different real-world
applications; they are also a challenging research and engineering problem because of this very
flexibility. Accordingly, there is no single set of requirements that clearly classifies all WSNs, and
there is also not a single technical solution that encompasses the entire design space. For example,
in many WSN applications, individual nodes in the network cannot easily be connected to a wired
power supply but rather have to rely on onboard batteries. In such an application, the energy
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efficiency of any proposed solution is hence a very important figure of merit as a long operation
time is usually desirable. In other applications, power supply might not be an issue and hence other
metrics, for example, the accuracy of the delivered results, can become more important. Also, the
acceptable size and costs of an individual node can be relevant in many applications. Closely tied
to the size is often the capacity of an onboard battery; the price often has a direct bearing on
the quality of the node’s sensors, influencing the accuracy of the result that can be obtained from
a single node. Moreover, the number, price, and potentially low accuracy of individual nodes is
relevant when comparing a distributed system of many sensor nodes to a more centralized version
with fewer, more expensive nodes of higher accuracy. Simpler but numerous sensors that are close
to the phenomenon under study can make the architecture of a system both simpler and more
energy efficient as they facilitate distributed sampling — detecting objects, for example, requires a
distributed system [17, 648].

Realizing such wireless sensor networks is a crucial step toward a deeply penetrating Ambient
Intelligence concept as they provide, figuratively, the “last 100 meters” of pervasive control. To
realize them, a better understanding of their potential applications and the ensuing requirements
is necessary, as is an idea of the enabling technologies. These questions are answered in the
following sections; a juxtaposition of wireless sensor networks and related networking concepts
such as fieldbuses or mobile ad hoc network is provided as well.

1.2 Application examples

The claim of wireless sensor network proponents is that this technological vision will facilitate
many existing application areas and bring into existence entirely new ones. This claim depends on
many factors, but a couple of the envisioned application scenarios shall be highlighted.

Apart from the need to build cheap, simple to program and network, potentially long-lasting
sensor nodes, a crucial and primary ingredient for developing actual applications is the actual
sensing and actuating faculties with which a sensor node can be endowed. For many physical
parameters, appropriate sensor technology exists that can be integrated in a node of a WSN. Some
of the few popular ones are temperature, humidity, visual and infrared light (from simple luminance
to cameras), acoustic, vibration (e.g. for detecting seismic disturbances), pressure, chemical sensors
(for gases of different types or to judge soil composition), mechanical stress, magnetic sensors (to
detect passing vehicles), potentially even radar (see references [245, 246] for examples). But even
more sophisticated sensing capabilities are conceivable, for example, toys in a kindergarten might
have tactile or motion sensors or be able to determine their own speed or location [783].

Actuators controlled by a node of a wireless sensor network are perhaps not quite as multifaceted.
Typically, they control a mechanical device like a servo drive, or they might switch some electrical
appliance by means of an electrical relay, like a lamp, a bullhorn, or a similar device.

On the basis of nodes that have such sensing and/or actuation faculties, in combination with
computation and communication abilities, many different kinds of applications can be constructed,
with very different types of nodes, even of different kinds within one application. A brief list
of scenarios should make the vast design space and the very different requirements of various
applications evident. Overviews of these and other applications are included in references [17, 26,
88, 91, 110, 126, 134, 245, 246, 351, 367, 392, 534, 648, 667, 783, 788, 803, 923].

Disaster relief applications One of the most often mentioned application types for WSN are dis-
aster relief operations. A typical scenario is wildfire detection: Sensor nodes are equipped
with thermometers and can determine their own location (relative to each other or in abso-
lute coordinates). These sensors are deployed over a wildfire, for example, a forest, from an
airplane. They collectively produce a “temperature map” of the area or determine the perime-
ter of areas with high temperature that can be accessed from the outside, for example, by
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firefighters equipped with Personal Digital Assistants (PDAs). Similar scenarios are possible
for the control of accidents in chemical factories, for example.

Some of these disaster relief applications have commonalities with military applications,
where sensors should detect, for example, enemy troops rather than wildfires. In such an
application, sensors should be cheap enough to be considered disposable since a large number
is necessary; lifetime requirements are not particularly high.

Environment control and biodiversity mapping WSNs can be used to control the environment,
for example, with respect to chemical pollutants — a possible application is garbage dump
sites. Another example is the surveillance of the marine ground floor; an understanding of its
erosion processes is important for the construction of offshore wind farms. Closely related to
environmental control is the use of WSNs to gain an understanding of the number of plant
and animal species that live in a given habitat (biodiversity mapping).

The main advantages of WSNs here are the long-term, unattended, wirefree operation of
sensors close to the objects that have to be observed; since sensors can be made small enough
to be unobtrusive, they only negligibly disturb the observed animals and plants. Often, a large
number of sensors is required with rather high requirements regarding lifetime.

Intelligent buildings Buildings waste vast amounts of energy by inefficient Humidity, Ventilation,
Air Conditioning (HVAC) usage. A better, real-time, high-resolution monitoring of temper-
ature, airflow, humidity, and other physical parameters in a building by means of a WSN
can considerably increase the comfort level of inhabitants and reduce the energy consump-
tion (potential savings of two quadrillion British Thermal Units in the US alone have been
speculated about [667]). Improved energy efficiency as well as improved convenience are
some goals of “intelligent buildings” [415], for which currently wired systems like BACnet,
LonWorks, or KNX are under development or are already deployed [776]; these standards
also include the development of wireless components or have already incorporated them in
the standard.

In addition, such sensor nodes can be used to monitor mechanical stress levels of buildings
in seismically active zones. By measuring mechanical parameters like the bending load of
girders, it is possible to quickly ascertain via a WSN whether it is still safe to enter a
given building after an earthquake or whether the building is on the brink of collapse — a
considerable advantage for rescue personnel. Similar systems can be applied to bridges. Other
types of sensors might be geared toward detecting people enclosed in a collapsed building
and communicating such information to a rescue team.

The main advantage here is the collaborative mapping of physical parameters. Depending
on the particular application, sensors can be retrofitted into existing buildings (for HVAC-
type applications) or have to be incorporated into the building already under construction. If
power supply is not available, lifetime requirements can be very high — up to several dozens
of years — but the number of required nodes, and hence the cost, is relatively modest, given
the costs of an entire building.

Facility management In the management of facilities larger than a single building, WSNs also
have a wide range of possible applications. Simple examples include keyless entry appli-
cations where people wear badges that allow a WSN to check which person is allowed to
enter which areas of a larger company site. This example can be extended to the detection of
intruders, for example of vehicles that pass a street outside of normal business hours. A wide-
area WSN could track such a vehicle’s position and alert security personnel — this application
shares many commonalities with corresponding military applications. Along another line, a
WSN could be used in a chemical plant to scan for leaking chemicals.
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These applications combine challenging requirements as the required number of sensors can
be large, they have to collaborate (e.g. in the tracking example), and they should be able to
operate a long time on batteries.

Machine surveillance and preventive maintenance One idea is to fix sensor nodes to difficult-
to-reach areas of machinery where they can detect vibration patterns that indicate the need
for maintenance. Examples for such machinery could be robotics or the axles of trains. Other
applications in manufacturing are easily conceivable.

The main advantage of WSNs here is the cablefree operation, avoiding a maintenance prob-
lem in itself and allowing a cheap, often retrofitted installation of such sensors. Wired power
supply may or may not be available depending on the scenario; if it is not available, sensors
should last a long time on a finite supply of energy since exchanging batteries is usually
impractical and costly. On the other hand, the size of nodes is often not a crucial issue, nor
is the price very heavily constrained.

Precision agriculture Applying WSN to agriculture allows precise irrigation and fertilizing by
placing humidity/soil composition sensors into the fields. A relatively small number is
claimed to be sufficient, about one sensor per 100 m x 100 m area. Similarly, pest con-
trol can profit from a high-resolution surveillance of farm land. Also, livestock breeding can
benefit from attaching a sensor to each pig or cow, which controls the health status of the
animal (by checking body temperature, step counting, or similar means) and raises alarms if
given thresholds are exceeded.

Medicine and health care Along somewhat similar lines, the use of WSN in health care appli-
cations is a potentially very beneficial, but also ethically controversial, application. Possi-
bilities range from postoperative and intensive care, where sensors are directly attached to
patients — the advantage of doing away with cables is considerable here — to the long-term
surveillance of (typically elderly) patients and to automatic drug administration (embedding
sensors into drug packaging, raising alarms when applied to the wrong patient, is con-
ceivable). Also, patient and doctor tracking systems within hospitals can be literally life
saving.

Logistics In several different logistics applications, it is conceivable to equip goods (individual
parcels, for example) with simple sensors that allow a simple tracking of these objects
during transportation or facilitate inventory tracking in stores or warehouses.

In these applications, there is often no need for a sensor node to actively communicate;
passive readout of data is often sufficient, for example, when a suitcase is moved around on
conveyor belts in an airport and passes certain checkpoints. Such passive readout is much
simpler and cheaper than the active communication and information processing concept
discussed in the other examples; it is realized by so-called Radio Frequency Identifier (RF
ID) tags.

On the other hand, a simple RFID tag cannot support more advanced applications. It is very
difficult to imagine how a passive system can be used to locate an item in a warehouse; it
can also not easily store information about the history of its attached object — questions like
“where has this parcel been?” are interesting in many applications but require some active
participation of the sensor node [246, 392].

Telematics Partially related to logistics applications are applications for the telematics context,
where sensors embedded in the streets or roadsides can gather information about traffic
conditions at a much finer grained resolution than what is possible today [296]. Such a so-
called “intelligent roadside” could also interact with the cars to exchange danger warnings
about road conditions or traffic jams ahead.
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In addition to these, other application types for WSNs that have been mentioned in the literature
include airplane wings and support for smart spaces [245], applications in waste water treatment
plants [367], instrumentation of semiconductor processing chambers and wind tunnels [392], in
“smart kindergartens” where toys interact with children [783], the detection of floods [88], inter-
active museums [667], monitoring a bird habitat on a remote island [534], and implanting sensors
into the human body (for glucose monitoring or as retina prosthesis) [745]

While most of these applications are, in some form or another, possible even with today’s tech-
nologies and without wireless sensor networks, all current solutions are “sensor starved” [667].
Most applications would work much better with information at higher spatial and temporal resolu-
tion about their object of concern than can be provided with traditional sensor technology. wireless
sensor networks are to a large extent about providing the required information at the required
accuracy in time with as little resource consumption as possible.

1.3 Types of applications

Many of these applications share some basic characteristics. In most of them, there is a clear
difference between sources of data — the actual nodes that sense data — and sinks — nodes where the
data should be delivered to. These sinks sometimes are part of the sensor network itself; sometimes
they are clearly systems “outside” the network (e.g. the firefighter’s PDA communicating with a
WSN). Also, there are usually, but not always, more sources than sinks and the sink is oblivious
or not interested in the identity of the sources; the data itself is much more important.

The interaction patterns between sources and sinks show some typical patterns. The most
relevant ones are:

Event detection Sensor nodes should report to the sink(s) once they have detected the occurrence
of a specified event. The simplest events can be detected locally by a single sensor node in
isolation (e.g. a temperature threshold is exceeded); more complicated types of events require
the collaboration of nearby or even remote sensors to decide whether a (composite) event
has occurred (e.g. a temperature gradient becomes too steep). If several different events can
occur, event classification might be an additional issue.

Periodic measurements Sensors can be tasked with periodically reporting measured values. Often,
these reports can be triggered by a detected event; the reporting period is application depen-
dent.

Function approximation and edge detection The way a physical value like temperature changes
from one place to another can be regarded as a function of location. A WSN can be used
to approximate this unknown function (to extract its spatial characteristics), using a limited
number of samples taken at each individual sensor node. This approximate mapping should
be made available at the sink. How and when to update this mapping depends on the
application’s needs, as do the approximation accuracy and the inherent trade-off against
energy consumption.

Similarly, a relevant problem can be to find areas or points of the same given value. An
example is to find the isothermal points in a forest fire application to detect the border of
the actual fire. This can be generalized to finding “edges” in such functions or to sending
messages along the boundaries of patterns in both space and/or time [274].

Tracking The source of an event can be mobile (e.g. an intruder in surveillance scenarios). The
WSN can be used to report updates on the event source’s position to the sink(s), potentially
with estimates about speed and direction as well. To do so, typically sensor nodes have to
cooperate before updates can be reported to the sink.
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These interactions can be scoped both in time and in space (reporting events only within a given
time span, only from certain areas, and so on). These requirements can also change dynamically
overtime; sinks have to have a means to inform the sensors of their requirements at runtime.
Moreover, these interactions can take place only for one specific request of a sink (so-called
“one-shot queries”), or they could be long-lasting relationships between many sensors and many
sinks.

The examples also have shown a wide diversity in deployment options. They range from well-
planned, fixed deployment of sensor nodes (e.g. in machinery maintenance applications) to random
deployment by dropping a large number of nodes from an aircraft over a forest fire. In addition,
sensor nodes can be mobile themselves and compensate for shortcomings in the deployment process
by moving, in a postdeployment phase, to positions such that their sensing tasks can be better
fulfilled [17]. They could also be mobile because they are attached to other objects (in the logistics
applications, for example) and the network has to adapt itself to the location of nodes.

The applications also influence the available maintenance options: Is it feasible and practical
to perform maintenance on such sensors — perhaps even required in the course of maintenance
on associated machinery? Is maintenance irrelevant because these networks are only deployed in
a strictly ad hoc, short-term manner with a clear delimitation of maximum mission time (like in
disaster recovery operations)? Or do these sensors have to function unattended, for a long time,
with no possibility for maintenance?

Closely related to the maintenance options are the options for energy supply. In some appli-
cations, wired power supply is possible and the question is mute. For self-sustained sensor nodes,
depending on the required mission time, energy supply can be trivial (applications with a few days
of usage only) or a challenging research problem, especially when no maintenance is possible but
nodes have to work for years. Obviously, acceptable price and size per node play a crucial role in
designing energy supply.

1.4 Challenges for WSNs

Handling such a wide range of application types will hardly be possible with any single realization
of a WSN. Nonetheless, certain common traits appear, especially with respect to the characteristics
and the required mechanisms of such systems. Realizing these characteristics with new mechanisms
is the major challenge of the vision of wireless sensor networks.

1.4.1 Characteristic requirements

The following characteristics are shared among most of the application examples discussed above:

Type of service The service type rendered by a conventional communication network is evi-
dent — it moves bits from one place to another. For a WSN, moving bits is only a means
to an end, but not the actual purpose. Rather, a WSN is expected to provide meaningful
information and/or actions about a given task: “People want answers, not numbers” (Steven
Glaser, UC Berkeley, in [367]). Additionally, concepts like scoping of interactions to spe-
cific geographic regions or to time intervals will become important. Hence, new paradigms
of using such a network are required, along with new interfaces and new ways of thinking
about the service of a network.

Quality of Service Closely related to the type of a network’s service is the quality of that service.
Traditional quality of service requirements — usually coming from multimedia-type appli-
cations — like bounded delay or minimum bandwidth are irrelevant when applications are
tolerant to latency [26] or the bandwidth of the transmitted data is very small in the first
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place. In some cases, only occasional delivery of a packet can be more than enough; in other
cases, very high reliability requirements exist. In yet other cases, delay is important when
actuators are to be controlled in a real-time fashion by the sensor network. The packet deliv-
ery ratio is an insufficient metric; what is relevant is the amount and quality of information
that can be extracted at given sinks about the observed objects or area.

Therefore, adapted quality concepts like reliable detection of events or the approximation
quality of a, say, temperature map is important.

Fault tolerance Since nodes may run out of energy or might be damaged, or since the wireless
communication between two nodes can be permanently interrupted, it is important that the
WSN as a whole is able to tolerate such faults. To tolerate node failure, redundant deployment
is necessary, using more nodes than would be strictly necessary if all nodes functioned
correctly.

Lifetime In many scenarios, nodes will have to rely on a limited supply of energy (using batteries).
Replacing these energy sources in the field is usually not practicable, and simultaneously,
a WSN must operate at least for a given mission time or as long as possible. Hence, the
lifetime of a WSN becomes a very important figure of merit. Evidently, an energy-efficient
way of operation of the WSN is necessary.

As an alternative or supplement to energy supplies, a limited power source (via power
sources like solar cells, for example) might also be available on a sensor node. Typically,
these sources are not powerful enough to ensure continuous operation but can provide some
recharging of batteries. Under such conditions, the lifetime of the network should ideally be
infinite.

The lifetime of a network also has direct trade-offs against quality of service: investing more
energy can increase quality but decrease lifetime. Concepts to harmonize these trade-offs are
required.

The precise definition of lifetime depends on the application at hand. A simple option is to
use the time until the first node fails (or runs out of energy) as the network lifetime. Other
options include the time until the network is disconnected in two or more partitions, the time
until 50 % (or some other fixed ratio) of nodes have failed, or the time when for the first
time a point in the observed region is no longer covered by at least a single sensor node
(when using redundant deployment, it is possible and beneficial to have each point in space
covered by several sensor nodes initially).

Scalability Since a WSN might include a large number of nodes, the employed architectures and
protocols must be able scale to these numbers.

Wide range of densities In a WSN, the number of nodes per unit area — the density of the net-
work — can vary considerably. Different applications will have very different node densities.
Even within a given application, density can vary over time and space because nodes fail
or move; the density also does not have to homogeneous in the entire network (because of
imperfect deployment, for example) and the network should adapt to such variations.

Programmability Not only will it be necessary for the nodes to process information, but also they
will have to react flexibly on changes in their tasks. These nodes should be programmable, and
their programming must be changeable during operation when new tasks become important.
A fixed way of information processing is insufficient.

Maintainability As both the environment of a WSN and the WSN itself change (depleted batteries,
failing nodes, new tasks), the system has to adapt. It has to monitor its own health and status
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to change operational parameters or to choose different trade-offs (e.g. to provide lower
quality when energy resource become scarce). In this sense, the network has to maintain
itself; it could also be able to interact with external maintenance mechanisms to ensure its
extended operation at a required quality [534].

1.4.2 Required mechanisms

To realize these requirements, innovative mechanisms for a communication network have to be
found, as well as new architectures, and protocol concepts. A particular challenge here is the
need to find mechanisms that are sufficiently specific to the idiosyncrasies of a given application to
support the specific quality of service, lifetime, and maintainability requirements [246]. On the other
hand, these mechanisms also have to generalize to a wider range of applications lest a complete
from-scratch development and implementation of a WSN becomes necessary for every individual
application — this would likely render WSNs as a technological concept economically infeasible.
Some of the mechanisms that will form typical parts of WSNs are:

Multihop wireless communication While wireless communication will be a core technique, a
direct communication between a sender and a receiver is faced with limitations. In particular,
communication over long distances is only possible using prohibitively high transmission
power. The use of intermediate nodes as relays can reduce the total required power. Hence,
for many forms of WSNs, so-called multihop communication will be a necessary ingredient.

Energy-efficient operation To support long lifetimes, energy-efficient operation is a key technique.
Options to look into include energy-efficient data transport between two nodes (measured in
J/bit) or, more importantly, the energy-efficient determination of a requested information.
Also, nonhomogeneous energy consumption — the forming of “hotspots” — is an issue.

Auto-configuration A WSN will have to configure most of its operational parameters autono-
mously, independent of external configuration — the sheer number of nodes and simplified
deployment will require that capability in most applications. As an example, nodes should be
able to determine their geographical positions only using other nodes of the network — so-
called “self-location”. Also, the network should be able to tolerate failing nodes (because of a
depleted battery, for example) or to integrate new nodes (because of incremental deployment
after failure, for example).

Collaboration and in-network processing In some applications, a single sensor is not able to
decide whether an event has happened but several sensors have to collaborate to detect an
event and only the joint data of many sensors provides enough information. Information is
processed in the network itself in various forms to achieve this collaboration, as opposed to
having every node transmit all data to an external network and process it “at the edge” of
the network.

An example is to determine the highest or the average temperature within an area and to
report that value to a sink. To solve such tasks efficiently, readings from individual sensors
can be aggregated as they propagate through the network, reducing the amount of data to
be transmitted and hence improving the energy efficiency. How to perform such aggregation
is an open question.

Data centric Traditional communication networks are typically centered around the transfer of
data between two specific devices, each equipped with (at least) one network address — the
operation of such networks is thus address-centric. In a WSN, where nodes are typically
deployed redundantly to protect against node failures or to compensate for the low quality of
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a single node’s actual sensing equipment, the identity of the particular node supplying data
becomes irrelevant. What is important are the answers and values themselves, not which node
has provided them. Hence, switching from an address-centric paradigm to a data-centric
paradigm in designing architecture and communication protocols is promising.

An example for such a data-centric interaction would be to request the average temperature
in a given location area, as opposed to requiring temperature readings from individual nodes.
Such a data-centric paradigm can also be used to set conditions for alerts or events (“raise an
alarm if temperature exceeds a threshold”). In this sense, the data-centric approach is closely
related to query concepts known from databases; it also combines well with collaboration,
in-network processing, and aggregation.

Locality Rather a design guideline than a proper mechanism, the principle of locality will have to
be embraced extensively to ensure, in particular, scalability. Nodes, which are very limited in
resources like memory, should attempt to limit the state that they accumulate during protocol
processing to only information about their direct neighbors. The hope is that this will allow
the network to scale to large numbers of nodes without having to rely on powerful processing
at each single node. How to combine the locality principle with efficient protocol designs is
still an open research topic, however.

Exploit trade-offs Similar to the locality principle, WSNs will have to rely to a large degree
on exploiting various inherent trade-offs between mutually contradictory goals, both during
system/protocol design and at runtime. Examples for such trade-offs have been mentioned
already: higher energy expenditure allows higher result accuracy, or a longer lifetime of the
entire network trades off against lifetime of individual nodes. Another important trade-off
is node density: depending on application, deployment, and node failures at runtime, the
density of the network can change considerably — the protocols will have to handle very
different situations, possibly present at different places of a single network. Again, not all
the research questions are solved here.

Harnessing these mechanisms such that they are easy to use, yet sufficiently general, for an
application programmer is a major challenge. Departing from an address-centric view of the network
requires new programming interfaces that go beyond the simple semantics of the conventional socket
interface and allow concepts like required accuracy, energy/accuracy trade-offs, or scoping.

1.5 Why are sensor networks different?

On the basis of these application examples and main challenges, two close relatives of WSNs
become apparent: Mobile Ad Hoc Networks (MANETSs) on the one hand and fieldbuses on the
other hand.

1.5.1 Mobile ad hoc networks and wireless sensor networks

An ad hoc network is a network that is setup, literally, for a specific purpose, to meet a quickly
appearing communication need. The simplest example of an ad hoc network is perhaps a set of
computers connected together via cables to form a small network, like a few laptops in a meeting
room. In this example, the aspect of self-configuration is crucial — the network is expected to work
without manual management or configuration.

Usually, however, the notion of a MANET is associated with wireless communication and specif-
ically wireless multihop communication; also, the name indicates the mobility of participating nodes
as a typical ingredient. Examples for such networks are disaster relief operations — firefighters com-
municate with each other — or networks in difficult locations like large construction sites, where
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the deployment of wireless infrastructure (access points etc.), let alone cables, is not a feasible
option. In such networks, the individual nodes together form a network that relays packets between
nodes to extend the reach of a single node, allowing the network to span larger geographical areas
than would be possible with direct sender — receiver communication. The two basic challenges in a
MANET are the reorganization of the network as nodes move about and handling the problems of
the limited reach of wireless communication. Literature on MANETSs that summarize these prob-
lems and their solutions abound, as these networks are still a very active field of research; popular
books include [635, 793, 827].

These general problems are shared between MANETs and WSNs. Nonetheless, there are some
principal differences between the two concepts, warranting a distinction between them and regarding
separate research efforts for each one.

Applications and equipment MANETs are associated with somewhat different applications as
well as different user equipment than WSNs: in a MANET, the terminal can be fairly
powerful (a laptop or a PDA) with a comparably large battery. This equipment is needed
because in the typical MANET applications, there is usually a human in the loop: the
MANET is used for voice communication between two distant peers, or it is used for access
to a remote infrastructure like a Web server. Therefore, the equipment has to be powerful
enough to support these applications.

Application specific Owing to the large number of conceivable combinations of sensing, comput-
ing, and communication technology, many different application scenarios for WSNs become
possible. It is unlikely that there will be a “one-size-fits-all” solution for all these potentially
very different possibilities. As one example, WSNs are conceivable with very different net-
work densities, from very sparse to very dense deployments, which will require different or
at least adaptive protocols. This diversity, although present, is not quite as large in MANETS.

Environment interaction Since WSNSs have to interact with the environment, their traffic charac-
teristics can be expected to be very different from other, human-driven forms of networks.
A typical consequence is that WSNs are likely to exhibit very low data rates over a large
timescale, but can have very bursty traffic when something happens (a phenomenon known
from real-time systems as event showers or alarm storms). Long periods (months) of inactiv-
ity can alternate with short periods (seconds or minutes) of very high activity in the network,
pushing its capacity to the limits. MANETS, on the other hand, are used to support more
conventional applications (Web, voice, and so on) with their comparably well understood
traffic characteristics.

Scale Potentially, WSNs have to scale to much larger numbers (thousands or perhaps hundreds
of thousands) of entities than current ad hoc networks, requiring different, more scalable
solutions. As a concrete case in point, endowing sensor nodes with a unique identifier is costly
(either at production or at runtime) and might be an overhead that could be avoided — hence,
protocols that work without such identifiers might become important in WSNs, whereas it
is fair to assume such identifiers to exist in MANET nodes.

Energy In both WSNs and MANETS, energy is a scare resource. But WSNs have tighter require-
ments on network lifetime, and recharging or replacing WSN node batteries is much less an
option than in MANETs. Owing to this, the impact of energy considerations on the entire
system architecture is much deeper in WSNs than in MANETS.

Self configurability Similar to ad hoc networks, WSNs will most likely be required to self-
configure into connected networks, but the difference in traffic, energy trade-offs, and so
forth, could require new solutions. Nevertheless, it is in this respect that MANETs and
WSNs are probably most similar.
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Dependability and QoS The requirements regarding dependability and QoS are quite different. In
a MANET, each individual node should be fairly reliable; in a WSN, an individual node
is next to irrelevant. The quality of service issues in a MANET are dictated by traditional
applications (low jitter for voice applications, for example); for WSNs, entirely new QoS
concepts are required, which also take energy explicitly into account.

Data centric Redundant deployment will make data-centric protocols attractive in WSNs. This
concept is alien to MANETs. Unless applications like file sharing are used in MANETS, which
do bear some resemblance to data centric approaches, data-centric protocols are irrelevant
to MANETSs — but these applications do not represent the typically envisioned use case.

Simplicity and resource scarceness Since sensor nodes are simple and energy supply is scarce,
the operating and networking software must be kept orders of magnitude simpler compared
to today’s desktop computers. This simplicity may also require breaking with conventional
layering rules for networking software, since layering abstractions typically cost time and
space. Also, resources like memory, which is relevant for comparably heavy-weight routing
protocols as those used in MANETS, is not available in arbitrary quantities, requiring new,
scalable, resource-efficient solutions.

Mobility The mobility problem in MANETS is caused by nodes moving around, changing multihop
routes in the network that have to be handled. In a WSN, this problem can also exist if the
sensor nodes are mobile in the given application. There are two additional aspects of mobility
to be considered in WSNs.

First, the sensor network can be used to detect and observe a physical phenomenon (in the
intrusion detection applications, for example). This phenomenon is the cause of events that
happen in the network (like raising of alarms) and can also cause some local processing, for
example, determining whether there really is an intruder. What happens if this phenomenon
moves about? Ideally, data that has been gathered at one place should be available at the
next one. Also, in tracking applications, it is the explicit task of the network to ensure that
some form of activity happens in nodes that surround the phenomenon under observation.

Second, the sinks of information in the network (nodes where information should be delivered
to) can be mobile as well. In principle, this is no different than node mobility in the general
MANET sense, but can cause some difficulties for protocols that operate efficiently in fully
static scenarios. Here, carefully observing trade-offs is necessary.

Furthermore, in both MANET and WSNs, mobility can be correlated — a group of nodes
moving in a related, similar fashion. This correlation can be caused in a MANET by, for
example, belonging to a group of people traveling together. In a WSN, the movement of nodes
can be correlated because nodes are jointly carried by a storm, a river, or some other fluid.

In summary, there are commonalities, but the fact that WSNs have to support very different
applications, that they have to interact with the physical environment, and that they have to carefully
adjudicate various trade-offs justifies considering WSNs as a system concept distinct from MANETs.

1.5.2 Fieldbuses and wireless sensor networks

Fieldbuses are networks that are specifically designed for operation under hard real-time constraints
and usually with inbuilt fault tolerance, to be used predominantly in control applications, that is, as
part of a control loop. Examples include the Profibus and IEEE 802.4 Token Bus networks [372]
for factory floor automation or the CAN bus for onboard networks in cars; some example sum-
maries on the topic include [532, 644, 881]. Because of the stringent hard real-time requirements,
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these networks are usually wired and only the layers one (physical), two (link layer), and seven
(application) of the OSI reference model are used, avoiding communication over multiple hops and
associated queuing delays in intermediate nodes. Nevertheless, a number of research efforts deal
with realizing fieldbus semantics on top of wireless communication, despite its inherently limited
error rates that jeopardize real-time guarantees [200, 687, 878].

Since fieldbuses also have to deal with the physical environment for which they report sensing
data and which they control, they are in this sense very similar to WSNs. With some justification,
WSNs can be considered examples of wireless fieldbuses. Some differences do exist, however:
WSNs do mostly not attempt to provide real-time guarantees in the range of (tens of) millisec-
onds but are rather focused on applications that can tolerate longer delays and some jitter (delay
variability). Also, the adaptive trade-offs that WSNs are willing to make (accuracy against energy
efficiency, for example) is a concept that is not commonly present in the fieldbus literature; specifi-
cally, fieldbuses make no attempt to conserve energy, and their protocols are not prepared to do so.

But these distinctions can only serve as a rough guideline; the borderline between these two
research areas is certainly a blurry one.

1.6 Enabling technologies for wireless sensor networks

Building such wireless sensor networks has only become possible with some fundamental advances
in enabling technologies. First and foremost among these technologies is the miniaturization of
hardware. Smaller feature sizes in chips have driven down the power consumption of the basic
components of a sensor node to a level that the constructions of WSNs can be contemplated. This
is particularly relevant to microcontrollers and memory chips as such, but also, the radio modems,
responsible for wireless communication, have become much more energy efficient. Reduced chip
size and improved energy efficiency is accompanied by reduced cost, which is necessary to make
redundant deployment of nodes affordable.

Next to processing and communication, the actual sensing equipment is the third relevant
technology. Here, however, it is difficult to generalize because of the vast range of possible sen-
sors — Chapter 2 will go more into details here.

These three basic parts of a sensor node have to accompanied by power supply. This requires,
depending on application, high capacity batteries that last for long times, that is, have only a
negligible self-discharge rate, and that can efficiently provide small amounts of current. Ideally, a
sensor node also has a device for energy scavenging, recharging the battery with energy gathered
from the environment — solar cells or vibration-based power generation are conceivable options.
Such a concept requires the battery to be efficiently chargeable with small amounts of current, which
is not a standard ability. Both batteries and energy scavenging are still objects of ongoing research.

The counterpart to the basic hardware technologies is software. The first question to answer
here is the principal division of tasks and functionalities in a single node — the architecture of
the operating system or runtime environment. This environment has to support simple retasking,
cross-layer information exchange, and modularity to allow for simple maintenance. This software
architecture on a single node has to be extended to a network architecture, where the division of
tasks between nodes, not only on a single node, becomes the relevant question — for example, how
to structure interfaces for application programmers. The third part to solve then is the question of
how to design appropriate communication protocols.

This book only touches briefly on the hardware aspects of WSNSs. It is also not much concerned
with the questions of appropriate runtime environments. It focuses, rather, on the WSNs architecture
and protocols to solve the communication questions as such.
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Single-node architecture

Objectives of this Chapter

This fairly long chapter explains the basic part of a wireless sensor network: the nodes as such.
It discusses the principal tasks of a node — computation, storage, communication, and sensing/
actuation — and which components are required to perform these tasks. Then, the energy consump-
tion of these components is described: how energy can be stored, gathered from the environment,
and saved by intelligently controlling the mode of operation of node components. This control has
to be exerted by an operating system like execution environment, which is described in the last
major section of this chapter. Finally, some examples of sensor nodes are given.

At the end of this chapter, the reader should have an understanding of the capabilities and limitations
of the nodes in a sensor network. It lays the foundation for the following chapter, which discusses the
principal options on how individual sensor nodes can be connected into a wireless sensor network.

Chapter Outline
2.1 Hardware components 18
2.2 Energy consumption of sensor nodes 36
2.3 Operating systems and execution environments 45
2.4 Some examples of sensor nodes 54
2.5 Conclusion 56

Building a wireless sensor network first of all requires the constituting nodes to be developed and
available. These nodes have to meet the requirements that come from the specific requirements of a
given application: they might have to be small, cheap, or energy efficient, they have to be equipped
with the right sensors, the necessary computation and memory resources, and they need adequate
communication facilities. These hardware components and their composition into a functioning
node are described in Section 2.1; the power consumption of these components and the ensuing
trade-offs are discussed in Section 2.2. As this chapter only focuses onto an individual node, the
consequences of choosing a particular communication technology for the architecture of a wireless
sensor network as a whole are described in Chapter 3.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright © 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5
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In addition to the hardware of sensor nodes, the operating system and programming model is
an important consideration. Section 2.3 describes the tasks of such an operating system along with
some examples as well as suitable programming interfaces.

2.1 Hardware components

2.1.1 Sensor node hardware overview

When choosing the hardware components for a wireless sensor node, evidently the application’s
requirements play a decisive factor with regard mostly to size, costs, and energy consumption of the
nodes — communication and computation facilities as such are often considered to be of acceptable
quality, but the trade-offs between features and costs is crucial. In some extreme cases, an entire
sensor node should be smaller than 1 cc, weigh (considerably) less than 100 g, be substantially
cheaper than USS$1, and dissipate less than 100 uW [667]. In even more extreme visions, the
nodes are sometimes claimed to have to be reduced to the size of grains of dust. In more realistic
applications, the mere size of a node is not so important; rather, convenience, simple power supply,
and cost are more important [126].

These diversities notwithstanding, a certain common trend is observable in the literature when
looking at typical hardware platforms for wireless sensor nodes. While there is certainly not a single
standard available, nor would such a standard necessarily be able to support all application types,
this section will survey these typical sensor node architectures. In addition, there are a number of
research projects that focus on shrinking any of the components in size, energy consumption, or
costs, based on the fact that custom off-the-shelf components do currently not live up to some of
the more stringent application requirements. But as this book focuses on the networking aspects of
WSNs, these efforts are not discussed here.

A basic sensor node comprises five main components (Figure 2.1):

Controller A controller to process all the relevant data, capable of executing arbitrary code.

Memory Some memory to store programs and intermediate data; usually, different types of memory
are used for programs and data.

Sensors and actuators The actual interface to the physical world: devices that can observe or
control physical parameters of the environment.

Communication Turning nodes into a network requires a device for sending and receiving infor-
mation over a wireless channel.

Memory

Communication Sensors/
. —— Controller
device actuators

Power supply

Figure 2.1 Overview of main sensor node hardware components
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Power supply As usually no tethered power supply is available, some form of batteries are neces-
sary to provide energy. Sometimes, some form of recharging by obtaining energy from the
environment is available as well (e.g. solar cells).

Each of these components has to operate balancing the trade-off between as small an energy
consumption as possible on the one hand and the need to fulfill their tasks on the other hand.
For example, both the communication device and the controller should be turned off as long as
possible. To wake up again, the controller could, for example, use a preprogrammed timer to be
reactivated after some time. Alternatively, the sensors could be programmed to raise an interrupt if
a given event occurs — say, a temperature value exceeds a given threshold or the communication
device detects an incoming transmission.

Supporting such alert functions requires appropriate interconnection between individual compo-
nents. Moreover, both control and data information have to be exchanged along these interconnec-
tions. This interconnection can be very simple — for example, a sensor could simply report an analog
value to the controller — or it could be endowed with some intelligence of its own, preprocessing
sensor data and only waking up the main controller if an actual event has been detected — for
example, detecting a threshold crossing for a simple temperature sensor. Such preprocessing can be
highly customized to the specific sensor yet remain simple enough to run continuously, resulting
in improved energy efficiency [26].

2.1.2 Controller
Microcontrollers versus microprocessors, FPGAs, and ASICs

The controller is the core of a wireless sensor node. It collects data from the sensors, processes this
data, decides when and where to send it, receives data from other sensor nodes, and decides on the
actuator’s behavior. It has to execute various programs, ranging from time-critical signal processing
and communication protocols to application programs; it is the Central Processing Unit (CPU)
of the node.

Such a variety of processing tasks can be performed on various controller architectures, repre-
senting trade-offs between flexibility, performance, energy efficiency, and costs.

One solution is to use general-purpose processors, like those known from desktop computers.
These processors are highly overpowered, and their energy consumption is excessive. But simpler
processors do exist, specifically geared toward usage in embedded systems. These processors are
commonly referred as microcontrollers. Some of the key characteristics why these microcontrollers
are particularly suited to embedded systems are their flexibility in connecting with other devices
(like sensors), their instruction set amenable to time-critical signal processing, and their typically
low power consumption; they are also convenient in that they often have memory built in. In
addition, they are freely programmable and hence very flexible. Microcontrollers are also suitable
for WSNs since they commonly have the possibility to reduce their power consumption by going
into sleep states where only parts of the controller are active; details vary considerably between
different controllers. Details regarding power consumption and energy efficiency are discussed in
Section 2.2. One of the main differences to general-purpose systems is that microcontroller-based
systems usually do not feature a memory management unit, somewhat limiting the functionality of
memory — for example, protected or virtual memory is difficult, if not impossible, to achieve.

A specialized case of programmable processors are Digital Signal Processors (DSPs). They are
specifically geared, with respect to their architecture and their instruction set, for processing large
amounts of vectorial data, as is typically the case in signal processing applications. In a wireless
sensor node, such a DSP could be used to process data coming from a simple analog, wireless
communication device to extract a digital data stream. In broadband wireless communication,
DSPs are an appropriate and successfully used platform. But in wireless sensor networks, the
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requirements on wireless communication are usually much more modest (e.g. simpler, easier to
process modulations are used that can be efficiently handled in hardware by the communication
device itself) and the signal processing tasks related to the actual sensing of data is also not overly
complicated. Hence, these advantages of a DSP are typically not required in a WSN node and they
are usually not used.

Another option for the controller is to depart from the high flexibility offered by a (fairly general-
purpose) microcontroller and to use Field-Programmable Gate Arrays (FPGAs) or Application-
Specific Integrated Circuits (ASICs) instead. An FPGA can be reprogrammed (or rather recon-
figured) “in the field” to adapt to a changing set of requirements; however, this can take time
and energy — it is not practical to reprogram an FPGA at the same frequency as a microcontroller
could change between different programs. An ASIC is a specialized processor, custom designed
for a given application such as, for example, high-speed routers and switches. The typical trade-off
here is loss of flexibility in return for a considerably better energy efficiency and performance. On
the other hand, where a microcontroller requires software development, ASICs provide the same
functionality in hardware, resulting in potentially more costly hardware development.

For a dedicated WSN application, where the duties of a the sensor nodes do not change over
lifetime and where the number of nodes is big enough to warrant the investment in ASIC devel-
opment, they can be a superior solution. At the current stage of WSN technology, however, the
bigger flexibility and simpler usage of microcontrollers makes them the generally preferred solu-
tion. However, this is not necessarily the final solution as “convenient programmability over several
orders of energy consumption and data processing requirements is a worthy research goal” [648].
In addition, splitting processing tasks between some low-level, fixed functionality put into a very
energy-efficient ASIC and high-level, flexible, relatively rarely invoked processing on a microcon-
troller is an attractive design and research option [26, 648].

For the remainder of this book, a microcontroller-based architecture is assumed.

Some examples for microcontrollers

Microcontrollers that are used in several wireless sensor node prototypes include the Atmel proces-
sor or Texas Instrument’s MSP 430. In older prototypes, the Intel StrongArm processors have also
been used, but this is no longer considered as a practical option; it is included here for the sake of
completeness. Nonetheless, as the principal properties of these processors and controllers are quite
similar, conclusions from these earlier research results still hold to a large degree.

Intel StrongARM

The Intel StrongARM [379] is, in WSN terms, a fairly high-end processor as it is mostly geared
toward handheld devices like PDAs. The SA-1100 model has a 32-bit Reduced Instruction Set
Computer (RISC) core, running at up to 206 MHz.

Texas Instruments MSP 430

Texas Instrument provides an entire family of microcontrollers under the family designation MSP
430 [814]. Unlike the StrongARM, it is explicitly intended for embedded applications. Accordingly,
it runs a 16-bit RISC core at considerably lower clock frequencies (up to 4 MHz) but comes with
a wide range of interconnection possibilities and an instruction set amenable to easy handling of
peripherals of different kinds. It features a varying amount of on-chip RAM (sizes are 2—10 kB),
several 12-bit analog/digital converters, and a real-time clock. It is certainly powerful enough to
handle the typical computational tasks of a typical wireless sensor node (possibly with the exception
of driving the radio front end, depending on how it is connected — bit or byte interface — to the
controller).
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Atmel ATmega
The Atmel ATmega 128L [28] is an 8-bit microcontroller, also intended for usage in embedded
applications and equipped with relevant external interfaces for common peripherals.

2.1.3 Memory

The memory component is fairly straightforward. Evidently, there is a need for Random Access
Memory (RAM) to store intermediate sensor readings, packets from other nodes, and so on. While
RAM is fast, its main disadvantage is that it loses its content if power supply is interrupted. Program
code can be stored in Read-Only Memory (ROM) or, more typically, in Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM) or flash memory (the later being similar to EEPROM
but allowing data to be erased or written in blocks instead of only a byte at a time). Flash memory
can also serve as intermediate storage of data in case RAM is insufficient or when the power
supply of RAM should be shut down for some time. The long read and write access delays of flash
memory should be taken into account, as well as the high required energy.

Correctly dimensioning memory sizes, especially RAM, can be crucial with respect to manufac-
turing costs and power consumption. However, even general rules of thumbs are difficult to give
as the memory requirements are very much application dependent.

2.1.4 Communication device
Choice of transmission medium

The communication device is used to exchange data between individual nodes. In some cases, wired
communication can actually be the method of choice and is frequently applied in many sensor
networklike settings (using field buses like Profibus, LON, CAN, or others). The communication
devices for these networks are custom off-the-shelf components.

The case of wireless communication is considerably more interesting. The first choice to make
is that of the transmission medium — the usual choices include radio frequencies, optical communi-
cation, and ultrasound; other media like magnetic inductance are only used in very specific cases.
Of these choices, Radio Frequency (RF)-based communication is by far the most relevant one as
it best fits the requirements of most WSN applications: It provides relatively long range and high
data rates, acceptable error rates at reasonable energy expenditure, and does not require line of
sight between sender and receiver. Thus, RF-based communication and transceiver will receive the
lion share of attention here; other media are only treated briefly at the end of this section.

For a practical wireless, RF-based system, the carrier frequency has to be carefully chosen.
Chapter 4 contains a detailed discussion; for the moment, suffice it to say that wireless sensor
networks typically use communication frequencies between about 433 MHz and 2.4 GHz.

The reader is expected to be familiar with the basics of wireless communication; a survey is
included in Chapter 4.

Transceivers

For actual communication, both a transmitter and a receiver are required in a sensor node. The
essential task is to convert a bit stream coming from a microcontroller (or a sequence of bytes or
frames) and convert them to and from radio waves. For practical purposes, it is usually convenient
to use a device that combines these two tasks in a single entity. Such combined devices are called
transceivers. Usually, half-duplex operation is realized since transmitting and receiving at the
same time on a wireless medium is impractical in most cases (the receiver would only hear the
own transmitter anyway).
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A range of low-cost transceivers is commercially available that incorporate all the circuitry
required for transmitting and receiving — modulation, demodulation, amplifiers, filters, mixers,
and so on. For a judicious choice, the transceiver’s tasks and its main characteristics have to
be understood.

Transceiver tasks and characteristics

To select appropriate transceivers, a number of characteristics should be taken into account. The
most important ones are:

Service to upper layer A receiver has to offer certain services to the upper layers, most notably
to the Medium Access Control (MAC) layer. Sometimes, this service is packet oriented;
sometimes, a transceiver only provides a byte interface or even only a bit interface to the
microcontroller.

In any case, the transceiver must provide an interface that somehow allows the MAC layer
to initiate frame transmissions and to hand over the packet from, say, the main memory of
the sensor node into the transceiver (or a byte or a bit stream, with additional processing
required on the microcontroller). In the other direction, incoming packets must be streamed
into buffers accessible by the MAC protocol.

Power consumption and energy efficiency The simplest interpretation of energy efficiency is the
energy required to transmit and receive a single bit. Also, to be suitable for use in WSNs,
transceivers should be switchable between different states, for example, active and sleeping.
The idle power consumption in each of these states and during switching between them is
very important — details are discussed in Section 2.2.

Carrier frequency and multiple channels Transceivers are available for different carrier frequen-
cies; evidently, it must match application requirements and regulatory restrictions. It is often
useful if the transceiver provides several carrier frequencies (“channels”) to choose from,
helping to alleviate some congestion problems in dense networks. Such channels or “sub-
bands” are relevant, for example, for certain MAC protocols (FDMA or multichannel CSMA/
ALOHA techniques, see Chapter 5).

State change times and energy A transceiver can operate in different modes: sending or receiv-
ing, use different channels, or be in different power-safe states. In any case, the time and
the energy required to change between two such states are important figures of merit. The
turnaround time between sending and receiving, for example, is important for various medium
access protocols (see Chapter 5).

Data rates Carrier frequency and used bandwidth together with modulation and coding determine
the gross data rate. Typical values are a few tens of kilobits per second — considerably less than
in broadband wireless communication, but usually sufficient for WSNs. Different data rates
can be achieved, for example, by using different modulations or changing the symbol rate.

Modulations The transceivers typically support one or several of on/off-keying, ASK, FSK, or
similar modulations. If several modulations are available, it is convenient for experiments if
they are selectable at runtime even though, for real deployment, dynamic switching between
modulations is not one of the most discussed options.

Coding Some transceivers allow various coding schemes to be selected.

Transmission power control Some transceivers can directly provide control over the transmission
power to be used; some require some external circuitry for that purpose. Usually, only a

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

Hardware components 23

discrete number of power levels are available from which the actual transmission power can
be chosen. Maximum output power is usually determined by regulations.

Noise figure The noise figure NF of an element is defined as the ratio of the Signal-to-Noise
Ratio (SNR) ratio SNR; at the input of the element to the SNR ratio SNR( at the element’s
output:

_ SNR,
"~ SNRy

NF

It describes the degradation of SNR due to the element’s operation and is typically given in
dB:

NFdB = SNR; dB — SNR( dB

Gain The gain is the ratio of the output signal power to the input signal power and is typically
given in dB. Amplifiers with high gain are desirable to achieve good energy efficiency.

Power efficiency The efficiency of the radio front end is given as the ratio of the radiated power to
the overall power consumed by the front end; for a power amplifier, the efficiency describes
the ratio of the output signal’s power to the power consumed by the overall power amplifier.

Receiver sensitivity The receiver sensitivity (given in dBm) specifies the minimum signal power
at the receiver needed to achieve a prescribed E,/Ny or a prescribed bit/packet error rate.
Better sensitivity levels extend the possible range of a system.

Range While intuitively the range of a transmitter is clear, a formal definition requires some care.
The range is considered in absence of interference; it evidently depends on the maximum
transmission power, on the antenna characteristics, on the attenuation caused by the environ-
ment, which in turn depends on the used carrier frequency, on the modulation/coding scheme
that is used, and on the bit error rate that one is willing to accept at the receiver. It also
depends on the quality of the receiver, essentially captured by its sensitivity. Typical values
are difficult to give here, but prototypes or products with ranges between a few meters and
several hundreds of meters are available.

Blocking performance The blocking performance of a receiver is its achieved bit error rate in
the presence of an interferer. More precisely, at what power level can an interferer (at a
fixed distance) send at a given offset from the carrier frequency such that target BER can
still be met? An interferer at higher frequency offsets can be tolerated at large power levels.
Evidently, blocking performance can be improved by interposing a filter between antenna
and transceiver.

An important special case is an adjacent channel interferer that transmits on neighboring
frequencies. The adjacent channel suppression describes a transceiver’s capability to filter
out signals from adjacent frequency bands (and thus to reduce adjacent channel interference)
has a direct impact on the observed Signal to Interference and Noise Ratio (SINR).

Out of band emission The inverse to adjacent channel suppression is the out of band emission of
a transmitter. To limit disturbance of other systems, or of the WSN itself in a multichannel
setup, the transmitter should produce as little as possible of transmission power outside of
its prescribed bandwidth, centered around the carrier frequency.

Carrier sense and RSSI In many medium access control protocols, sensing whether the wireless
channel, the carrier, is busy (another node is transmitting) is a critical information. The
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receiver has to be able to provide that information. The precise semantics of this carrier-
sense signal depends on the implementation. For example, the IEEE 802.15.4 standard [468]
distinguishes the following modes:

e The received energy is above threshold; however, the underlying signal does not need to
comply with the modulation and spectral characteristics.

e A carrier has been detected, that is, some signal which complies with the modulation.

e Carrier detected and energy is present.

Also, the signal strength at which an incoming data packet has been received can provide
useful information (e.g. a rough estimate about the distance from the transmitter assuming
the transmission power is known); a receiver has to provide this information in the Received
Signal Strength Indicator (RSSI).

Frequency stability The frequency stability denotes the degree of variation from nominal center
frequencies when environmental conditions of oscillators like temperature or pressure change.
In extreme cases, poor frequency stability can break down communication links, for example,
when one node is placed in sunlight whereas its neighbor is currently in the shade.

Voltage range Transceivers should operate reliably over a range of supply voltages. Otherwise,
inefficient voltage stabilization circuitry is required.

Transceivers appropriate for WSNs are available from many manufacturers. Usually, there is an
entire family of devices to choose from, for example, customized to different regulatory restrictions
on carrier frequency in Europe and North America. Currently popular product series include the
RFM TR 1001, the Chipcon CC 1000 and CC 2420 (as one of the first IEEE 802.15.4 compliant
models), and the Infineon TDAS525x family, to name but a few. They are described in a bit more
detail at the end of this section.

An important peculiarity and a key difference compared to other communication devices is the
fact that these simple transceivers often lack a unique identifier: each Ethernet device, for example,
has a MAC-level address that uniquely identifies this individual device. For simple transceivers, the
additional cost of providing such an identifier is relatively high with respect to the device’s total
costs, and thus, unique identifiers cannot be relied upon to be present in all devices. The availability
of such device identifiers is very useful in many communication protocols and their absence will
have considerable consequences for protocol design.

Improving these commercial designs to provide better performance at lower energy consumption
and reduced cost is an ongoing effort by a large research community, facing challenges such as low
transistor transconductance or limitations of integrated passive RF components. As these hardware-
related questions are not the main focus of this book, the reader is referred to other material
[26, 134, 647].

Transceiver structure

A fairly common structure of transceivers is into the Radio Frequency (RF) front end and the
baseband part:

e the radio frequency front end performs analog signal processing in the actual radio frequency
band, whereas

e the baseband processor performs all signal processing in the digital domain and communicates
with a sensor node’s processor or other digital circuitry.
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Between these two parts, a frequency conversion takes place, either directly or via one or
several Intermediate Frequencys (IFs). The boundary between the analog and the digital domain is
constituted by Digital/Analog Converters (DACs) and Analog/Digital Converters (ADCs).

A detailed discussion of the low-power design of RF front end and baseband circuitry is well
beyond the scope of this book; one place to start with is reference [3].

The RF front end performs analog signal processing in the actual radio frequency band, for
example in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band; it is the first stage of
the interface between the electromagnetic waves and the digital signal processing of the further
transceiver stages [46, 470]. Some important elements of an RF front ends architecture are sketched
in Figure 2.2:

e The Power Amplifier (PA) accepts upconverted signals from the IF or baseband part and amplifies
them for transmission over the antenna.

e The Low Noise Amplifier (LNA) amplifies incoming signals up to levels suitable for further
processing without significantly reducing the SNR [470]. The range of powers of the incoming
signals varies from very weak signals from nodes close to the reception boundary to strong
signals from nearby nodes; this range can be up to 100 dB. Without management actions, the
LNA is active all the time and can consume a significant fraction of the transceiver’s energy.

e Elements like local oscillators or voltage-controlled oscillators and mixers are used for frequency
conversion from the RF spectrum to intermediate frequencies or to the baseband. The incoming
signal at RF frequencies frp is multiplied in a mixer with a fixed-frequency signal from the local
oscillator (frequency fi o). The resulting intermediate-frequency signal has frequency fio — fre-
Depending on the RF front end architecture, other elements like filters are also present.

The efficiency of RF front ends in wireless sensor networks is discussed in Section 4.3.

Transceiver operational states

Many transceivers can distinguish four operational states [670]:

Intermediate frequency
Radio frontend and baseband procesing

Antenna
interface

Power
amplifier
(PA)

Frequency
conversion

Figure 2.2 RF front end [46]
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Transmit In the transmit state, the transmit part of the transceiver is active and the antenna
radiates energy.

Receive In the receive state the receive part is active.

Idle A transceiver that is ready to receive but is not currently receiving anything is said to be in an
idle state. In this idle state, many parts of the receive circuitry are active, and others can be
switched off. For example, in the synchronization circuitry, some elements concerned with
acquisition are active, while those concerned with tracking can be switched off and activated
only when the acquisition has found something. MYERS et al. [580] also discuss techniques
for switching off parts of the acquisition circuitry for IEEE 802.11 transceivers. A major
source of power dissipation is leakage.

Sleep In the sleep state, significant parts of the transceiver are switched off. There are transceivers
offering several different sleep states, see reference [580] for a discussion of sleep states for
IEEE 802.11 transceivers. These sleep states differ in the amount of circuitry switched off
and in the associated recovery times and startup energy [855]. For example, in a complete
power down of the transceiver, the startup costs include a complete initialization as well
as configuration of the radio, whereas in “lighter” sleep modes, the clock driving certain
transceiver parts is throttled down while configuration and operational state is remembered.

The sensor node’s protocol stack and operating software must decide into which state the trans-
ceiver is switched, according to the current and anticipated communications needs. One problem
complicating this decision is that the operation of state changes also dissipate power [670]. For
example, a transceiver waking up from the sleep mode to the transmit mode requires some startup
time and startup energy, for example, to ramp up phase-locked loops or voltage-controlled oscilla-
tors. During this startup time, no transmission or reception of data is possible [762]. The problem
of scheduling the node states (equivalently: switching on and off node/transceiver components) so
as to minimize average power consumption (also called power management) is rather complex,
an in-depth treatment can be found in reference [85], and a further reference is [741].

Advanced radio concepts

Apart from these basic transceiver concepts, a number of advanced concepts for radio communi-
cation are the objectives of current research. Three of them are briefly summarized here.

Wakeup radio

Looking at the transceiver concepts described above, one of the most power-intensive operations
is waiting for a transmission to come in, ready to receive it. During this time, the receiver circuit
must be powered up so that the wireless channel can be observed, spending energy without any
immediate benefit.

While it seems unavoidable to provide a receiver with power during the actual reception of a
packet, it would be desirable not to have to invest power while the node is only waiting for a
packet to come in. A receiver structure is necessary that does not need power but can detect when
a packet starts to arrive. To keep this specialized receiver simple, it suffices for it to raise an event
to notify other components of an incoming packet; upon such an event, the main receiver can be
turned on and perform the actual reception of the packet.

Such receiver concepts are called wakeup receivers [312, 667, 752, 931, 931]: Their only
purpose is to wake up the main receiver without needing (a significant amount of) power to do
S0 — ZHONG et al. [931] state a target power consumption of less than 1 pW. In the simplest case,
this wakeup would happen for every packet; a more sophisticated version would be able to decide,
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using proper address information at the start of the packet, whether the incoming packet is actually
destined for this node and only then wake up the main receiver.

Such wakeup receivers are tremendously attractive as they would do away with one of the main
problems of WSNs: the need to be permanently able to receive in a network with low average
traffic. It would considerably simplify a lot of the design problems of WSNs, in particular of the
medium access control — Section 5.2.4 will discuss these aspects and some ensuing problems in
more detail. Unfortunately, so far the realization of a reliable, well-performing wakeup receiver has
not been achieved yet.

Spread-spectrum transceivers

Simple transceiver concepts, based on modulations like Amplitude Shift Keying (ASK) or Fre-
quency Shift Keying (FSK), can suffer from limited performance, especially in scenarios with a
lot of interference. To overcome this limitation, the use of spread-spectrum transceivers has been
proposed by some researchers [155, 281]. These transceivers, however, suffer mostly from complex
hardware and consequently higher prices, which has prevented them from becoming a mainstream
concept for WSNs so far. Section 4.2.5 presents details.

Ultrawideband communication

UltraWideBand (UWB) communication is a fairly radical change from conventional wireless com-
munication as outlined above. Instead of modulating a digital signal onto a carrier frequency,
a very large bandwidth is used to directly transmit the digital sequence as very short impulses
(to form nearly rectangular impulses requires considerable bandwidth, because of which this con-
cept is not used traditionally) [44, 646, 866, 885].! Accordingly, these impulses occupy a large
spectrum starting from a few Hertz up to the range of several GHz. The challenge is to syn-
chronize sender and receiver sufficiently (to an accuracy of trillionth of seconds) so that the
impulses can be correctly detected. A side effect of precisely timed impulses is that UWB is
fairly resistant to multipath fading [181, 472], which can be a serious obstacle for carrier-based
radio communication.

Using such a large bandwidth, an ultrawideband communication will overlap with the spectrum
of a conventional radio system. But, because of the large spreading of the signal, a very small
transmission power suffices. This power can be small enough so that it vanishes in the noise floor
from the perspective of a traditional radio system.

As one concrete example, consider a time-hopping Pulse Position Modulation (PPM) proposed as
combined modulation and multiple access scheme by WIN and ScHOLTZ [885]. For each symbol, a
number of pulses are transmitted with almost periodic spacing. The deviations from the periodicity
encode both the modulation as well as the transmitting user.

For a communication system, the effect is that a very high data rate can be realized over short
distances; what is more, UWB communication can relatively easily penetrate obstacles such as
doors, which are impermeable to narrowband radio waves. For a WSN, the high data rate is not
strictly necessary but can be leveraged to reduce the on-time of the transceivers. The nature of
UWB also allows to precisely measure distances (with claimed precision of centimeters).

These desirable features of UWB communication have to be balanced against the difficulties
of building such transceivers at low-cost and low-power consumption. More precisely, an UWB
transmitter is actually relatively simple since it does not need oscillators or related circuitry found
in transmitters for a carrier-frequency-based transmitter. The receivers, on the other hand, require
complex timing synchronization. As of this writing, UWB transceivers have not yet been used in
prototypes for wireless sensor nodes.

"' A more precise definition of an ultrawideband system is that it uses at least 500 MHz or a fractional spectrum of at
least 20 % of the carrier frequency. This definition would theoretically encompass also spread-spectrum systems with high
bandwidth; however, most people have the usage of short pulses in mind when speaking about UWB.
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One of the best sources of information about UWB in WSN might be the documents of
the IEEE 802.15.4a study group, which looks at UWB as an alternative physical layer for the
IEEE 802.15.4 standard for short-range, low bitrate wireless communication. Some references to
start from are [82, 187, 566, 603, 884]. A comparison between UWB and Direct Sequence Spread
Spectrum (DSSS) technologies for sensor networks has been made in [939], under the assumption
of an equal bandwidth for both types of systems.

Nonradio frequency wireless communication

While most of the wireless sensor network work has focused on the use of radio waves as
communication media, other options exists. In particular, optical communication and ultrasound
communication have been considered as alternatives.

Optical

KaHN et al. [392] and others have considered the use of optical links between sensor nodes. Its
main advantage is the very small energy per bit required for both generating and detecting optical
light — simple Light-Emitting Diodes (LEDs) are good examples for high-efficiency senders. The
required circuitry for an optical transceiver is also simpler and the device as a whole can be smaller
than the radio frequency counterpart. Also, communication can take place concurrently with only
negligible interference. The evident disadvantage, however, is that communicating peers need to
have a line of sight connection and that optical communication is more strongly influenced by
weather conditions.

As a case in point, consider the so-called “corner-cube reflector”: three mirrors placed at right
angles to each other in a way that each beam of light directed at it is reflected back to its source
(as long as it comes from a cone centered around the main diagonal of the cube) — an example for
such a structure is shown in Figure 2.3. This reflection property holds only as long as the mirrors
are exactly at right angles. When one the mirrors is slightly moved, a signal can be modulated onto
an incoming ray of light, effectively transmitting information back to the sender. In fact, data rates
up to 1 kb/s have been demonstrated using such a device. Its main advantage is that the mechanical
movement of one such mirror only takes very little energy, compared to actually generating a beam
of light or even a radio wave. Hence, a passive readout of sensor nodes can be done very energy

Figure 2.3 Example of a corner-cube reflector for optical communication [168]. Reproduced by permission
of IEEE
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efficiently over long distances as long as the reader has enough power to produce the laser beam
(up to 150 m have been demonstrated using a 5 mW laser).

Ultrasound
Both radio frequency and optical communication are suitable for open-air environments. In some
application scenarios, however, sensor nodes are used in environments where radio or optical
communication is not applicable because these waves do not penetrate the surrounding medium. One
such medium is water, and an application scenario is the surveillance of marine ground floor erosion
to help in the construction of offshore wind farms. Sensors are deployed on the marine ground floor
and have to communicate amongst themselves. In such an underwater environment, ultrasound is
an attractive communication medium as it travels relatively long distances at comparably low
power.

A further aspect of ultrasound is its use in location systems as a secondary means of communi-
cation with a different propagation speed. Details will be discussed in Chapter 9.

Some examples of radio transceivers

To complete this discussion of possible communication devices, a few examples of standard
radio transceivers that are commonly used in various WSN prototype nodes should be briefly
described. All these transceivers are in fact commodity, off-the-shelf items available via usual
distributors. They are all single-chip solutions, integrating transmitter and receiver functionality,
requiring only a small number of external parts and have a fairly low-power consumption. In
principle, similar equipment is available from a number of manufacturers — as can be expected,
there is not one “best product” available, but each of them has particular advantages and disadvan-
tages.

RFM TR1000 family

The TR1000 family of radio transceivers from RF Monolithics? is available for the 916 MHz and
868 MHz frequency range. It works in a 400 kHz wide band centered at, for example, 916.50 MHz.
It is intended for short-range radio communication with up to 115.2 kbps. The modulation is either
on-off-keying (at a maximum rate of 30 kbps) or ASK; it also provides a dynamically tunable output
power. The maximum radiated power is given in the data sheet [690] as 1.5 dBm, ~ 1.4 mW,
whereas in the Mica motes a number of 0.75 mW is given [351]. The transceiver offers received
signal strength information. It is attractive because of its low-power consumption in both send and
receive modes and especially in sleep mode. Details about parameters and configurations can be
found in the data sheet [690].

Hardware accelerators (Mica motes)

The Mica motes use the RFM TR1000 transceiver and contain also a set of hardware accelerators.
On the one hand, the transceiver offers a very low-level interface, giving the microcontroller tight
control over frame formats, MAC protocols, and so forth. On the other hand, framing and MAC
can be very computation intensive, for example, for computing checksums, for making bytes out of
serially received bits or for detecting Start Frame Delimiters (SFDs) in a stream of symbols. The
hardware accelerators offer some of these primitive computations in hardware, right at the disposal
of the microcontroller.

Chipcon CC1000 and CC2420 family
Chipcon® offers a wide range of transceivers that are appealing for use in WSN hardware. To name
but two examples: The CC1000 operates in a wider frequency range, between 300 and 1000 MHz,

2 http://www.rfm.com
3 http://www.chipcon.com
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programmable in steps of 250 Hz. It uses FSK as modulation, provides RSSI, and has programmable
output power. An interesting feature is the possibility to compensate for crystal temperature drift.
It should also be possible to use it in frequency hopping protocols. Details can be found in the data
sheet[157].

The CC2420 [158] is a more complicated device. It implements the physical layer as prescribed
by the IEEE 802.15.4 standard with the required support for this standard’s MAC protocol. In
fact, the company claims that this is the first commercially available single-chip transceiver for
IEEE 802.15.4. As a consequence of implementing this standard, the transceiver operates in the
2.4 GHz band and features the required DSSS modem, resulting in a data rate of 250 kbps. It
achieves this at still relatively low-power consumption, although not quite on par with the simpler
transceivers described so far.

Infineon TDA 525x family

The Infineon TDA 525x family provides flexible, single-chip, energy-efficient transceivers. The
TDA 5250 [375], as an example, is a 868—870 MHztransceiver providing both ASK and FSK
modulation, it has a highly efficient power amplifier, RSSI information, a tunable crystal oscillator,
an onboard data filter, and an intelligent power-down feature. One of the interesting features is
a self-polling mechanism, which can very quickly determine data rate. Compared to some other
transceiver, it also has an excellent blocking performance that makes it quite resistant to interference.

IEEE 802.15.4/Ember EM2420 RF transceiver

The IEEE 802.15.4 low-rate Wireless Personal Area Network (WPAN) [468] works in three differ-
ent frequency bands and employs a DSSS scheme. Some basic data can be found in Table 2.1. For
one particular RF front-end design, the Ember* EM2420 RF Transceiver [240], some numbers on
power dissipation are available. For a radiated power of —0.5 dBm (corresponding to ~0.9 mW)
and with a supply voltage of 3.3 V, the transmit mode draws a current of 22.7 mA, correspond-
ing to ~74.9 mW, whereas in the receive mode, 25.2 mA current are drawn, corresponding to
~83.2 mW. In the sleep mode, only 12 HA are drawn.

In all bands, DSSS is used. In the 868 MHz band, only a single channel with a data rate
of 20 kbps is available, in the 915 MHz band ten channels of 40kbps each and in the 2.4 GHz
band 16 channels of 250 kbps are available. In the lower two bands, the chips are Binary Phase
Shift Keying (BPSK)-modulated, and the data symbols are encoded differentially. A pseudonoise
sequence of 15 chips is used for every bit. The modulation scheme in the 2.4 GHz band is a little

Table 2.1 The different PHY’s of the IEEE 802.15.4 standard
[468]. Reproduced by permission of IEEE

Band 868 MHz 915 MHz 2.4 GHz
Frequency [MHz] 868 902— 2400—-
868.6 928 2483.5
Chip rate [kchips/s] 300 600 2000
# of channels 1 10 16
Modulation BPSK BPSK 0O-QPSK
Data rate [kb/s] 20 40 250
Symbol rate [ksymbols/s] 20 40 62.5
Symbol type binary binary 16-ary
orthogonal

4 http://www.ember.com
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bit more complicated. As can be observed from the table, a channel symbol consists of four user
bits. These 16 different symbol values are distinguished by using 16 different nearly orthogonal
pseudorandom chip sequences. The resulting chip sequence is then modulated using a modulation
scheme called offset-Quaternary Phase Shift Keying (QPSK). Some of the design rationale for this
modulation scheme is also given in reference [115, Chap. 3].

National Semiconductor LMX3162

The radio hardware of the £ AMPS-1 node [563, 762, 872] consists of a digital baseband processor
implemented on an FPGA, whereas for the RF front end, a (now obsolete) National Semiconductor
LMX3162 transceiver [588] is used. The LMX3162 operates in the 2.4 GHz band and offers six
different radiated power levels from 0 dBm up to 20 dBm. To transmit data, the baseband processor
can control an externally controllable Voltage-Controlled Oscillator (VCO). The main components
of the RF front end (phase-lock loop, transmit and receive circuitry) can be shut off. The baseband
processor controls the VCO and also provides timing information to a TDMA-based MAC protocol
(see Chapter 5). For data transmission, FSK with a data rate of 1 Mbps is used.

Conexant RDSSSOIM

The WINS sensor node of Rockwell® carries a Conexant RDSSSOM transceiver, consisting of the
RF part working in the ISM band between 902 and 928 MHzand a microcontroller (a 65C02)
responsible for processing DSSS signals with a spreading factor of 12 bits per chip. The data
rate is 100 kbps. The RF front end offers radiated power levels of 1 mW, 10 mW and 100 mW. A
number of 40 sub-bands are available, which can be freely selected. The microcontroller implements
portions of a MAC protocol also.

2.1.5 Sensors and actuators

Without the actual sensors and actuators, a wireless sensor network would be beside the point
entirely. But as the discussion of possible application areas has already indicated, the possible
range of sensors is vast. It is only possible to give a rough idea on which sensors and actuators
can be used in a WSN.

Sensors

Sensors can be roughly categorized into three categories (following reference [670]):

Passive, omnidirectional sensors These sensors can measure a physical quantity at the point of
the sensor node without actually manipulating the environment by active probing — in this
sense, they are passive. Moreover, some of these sensors actually are self-powered in the
sense that they obtain the energy they need from the environment — energy is only needed
to amplify their analog signal. There is no notion of “direction” involved in these mea-
surements. Typical examples for such sensors include thermometer, light sensors, vibration,
microphones, humidity, mechanical stress or tension in materials, chemical sensors sensitive
for given substances, smoke detectors, air pressure, and so on.

Passive, narrow-beam sensors These sensors are passive as well, but have a well-defined notion
of direction of measurement. A typical example is a camera, which can “take measurements”
in a given direction, but has to be rotated if need be.

Active sensors This last group of sensors actively probes the environment, for example, a sonar
or radar sensor or some types of seismic sensors, which generate shock waves by small

5 See http://wins.rsc.rockwell.com/.
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explosions. These are quite specific — triggering an explosion is certainly not a lightly under-
taken action — and require quite special attention.

In practice, sensors from all of these types are available in many different forms with many indi-
vidual peculiarities. Obvious trade-offs include accuracy, dependability, energy consumption, cost,
size, and so on — all this would make a detailed discussion of individual sensors quite ineffective.

Overall, most of the theoretical work on WSNs considers passive, omnidirectional sensors.
Narrow-beam-type sensors like cameras are used in some practical testbeds, but there is no real
systematic investigation on how to control and schedule the movement of such sensors. Active
sensors are not treated in the literature to any noticeable extent.

An assumption occasionally made in the literature [128, 129] is that each sensor node has a
certain area of coverage for which it can reliably and accurately report the particular quantity that
it is observing. More elaborately, a sensor detection model is used, relating the distance between
a sensor and the to-be-detected event or object to a detection probability; an example for such a
detection model is contained in references [599, 944].

Strictly speaking, this assumption of a coverage area is difficult to justify in its simplest form.
Nonetheless, it can be practically useful: It is often possible to postulate, on the basis of application-
specific knowledge, some properties of the physical quantity under consideration, in particular, how
quickly it can change with respect to distance. For example, temperature or air pressure are unlikely
to vary very strongly within a few meters. Hence, allowing for some inevitable inaccuracies in the
measurement, the maximum rate of changeover distance can be used to derive such a “coverage
radius” within which the values of a single sensor node are considered “good enough”. The precise
mathematical tools for such a derivation are spatial versions of the sampling theorems.

Actuators

Actuators are just about as diverse as sensors, yet for the purposes of designing a WSN, they are a
bit simpler to take account of: In principle, all that a sensor node can do is to open or close a switch
or a relay or to set a value in some way. Whether this controls a motor, a light bulb, or some other
physical object is not really of concern to the way communication protocols are designed. Hence, in
this book, we shall treat actuators fairly summarily without distinguishing between different types.

In a real network, however, care has to be taken to properly account for the idiosyncrasies of
different actuators. Also, it is good design practice in most embedded system applications to pair
any actuator with a controlling sensor — following the principle to “never trust an actuator” [429].

2.1.6 Power supply of sensor nodes

For untethered wireless sensor nodes, the power supply is a crucial system component. There are
essentially two aspects: First, storing energy and providing power in the required form; second,
attempting to replenish consumed energy by “scavenging” it from some node-external power source
over time.

Storing power is conventionally done using batteries. As a rough orientation, a normal AA
battery stores about 2.2-2.5 Ah at 1.5 V. Battery design is a science and industry in itself, and
energy scavenging has attracted a lot of attention in research. This section can only provide some
small glimpses of this vast field; some papers that deal with these questions (and serve as the basis
for this section) are references [134, 392, 667, 670] and, in particular, reference [703].

Storing energy: Batteries

Traditional batteries
The power source of a sensor node is a battery, either nonrechargeable (“primary batteries™) or,
if an energy scavenging device is present on the node, also rechargeable (“secondary batteries”).
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Table 2.2 Energy densities for various primary
and secondary battery types [703]

Primary batteries

Chemistry Zinc-air  Lithium  Alkaline
Energy (J/cm?) 3780 2880 1200

Secondary batteries

Chemistry Lithium  NiMHd NiCd
Energy (J/cm?) 1080 860 650

In some form or other, batteries are electro-chemical stores for energy — the chemicals being the
main determining factor of battery technology.
Upon these batteries, very tough requirements are imposed:

Capacity They should have high capacity at a small weight, small volume, and low price. The main
metric is energy per volume, J/cm?. Table 2.2 shows some typical values of energy densities,
using traditional, macroscale battery technologies. In addition, research on ‘“microscale”
batteries, for example, deposited directly onto a chip, is currently ongoing.

Capacity under load They should withstand various usage patterns as a sensor node can consume
quite different levels of power over time and actually draw high current in certain operation
modes.

Current numbers on power consumption of WSN nodes vary and are treated in detail in
Section 2.2, so it is difficult to provide precise guidelines. But for most technologies, the
larger the battery, the more power can be delivered instantaneously. In addition, the rated
battery capacity specified by a manufacturer is only valid as long as maximum discharge
currents are not exceeded, lest capacity drops or even premature battery failure occurs [670].°

Self-discharge Their self-discharge should be low; they might also have to last for a long time
(using certain technologies, batteries are operational only for a few months, irrespective of
whether power is drawn from them or not).

Zinc-air batteries, for example, have only a very short lifetime (on the order of weeks),
which offsets their attractively high energy density.

Efficient recharging Recharging should be efficient even at low and intermittently available
recharge power; consequently, the battery should also not exhibit any “memory effect”.

Some of the energy-scavenging techniques described below are only able to produce cur-
rent in the A region (but possibly sustained) at only a few volts at best. Current battery
technology would basically not recharge at such values.

Relaxation Their relaxation effect — the seeming self-recharging of an empty or almost empty
battery when no current is drawn from it, based on chemical diffusion processes within
the cell — should be clearly understood. Battery lifetime and usable capacity is considerably
extended if this effect is leveraged. As but one example, it is possible to use multiple batteries
in parallel and “schedule” the discharge from one battery to another, depending on relaxation
properties and power requirements of the operations to be supported [153].

6 This effect is due to the need for active material in a battery to be transported to the electrodes. If too much power is
drawn, this transport is not fast enough and the battery fails even though energy is still stored in it.
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Unconventional energy stores

Apart from traditional batteries, there are also other forms of energy reservoirs that can be contem-
plated. In a wider sense, fuel cells also qualify as an electro-chemical storage of energy, directly
producing electrical energy by oxidizing hydrogen or hydrocarbon fuels. Fuel cells actually have
excellent energy densities (e.g. methanol as a fuel stores 17.6 kJ/cm?), but currently available
systems still require a nonnegligible minimum size for pumps, valves, and so on. A slightly more
traditional approach to using energy stored in hydrocarbons is to use miniature versions of heat
engines, for example, a turbine [243]. Shrinking such heat engines to the desired sizes still requires
a considerable research effort in MicroElectroMechanical Systems (MEMSs); predictions regarding
power vary between 0.1-10 W at sizes of about 1 cc [703]. And lastly, even radioactive substances
have been proposed as an energy store [463]. Another option are so-called “gold caps”, high-quality
and high-capacity capacitors, which can store relatively large amounts of energy, can be easily and
quickly recharged, and do not wear out over time.

DC-DC Conversion

Unfortunately, batteries (or other forms of energy storage) alone are not sufficient as a direct
power source for a sensor node. One typical problem is the reduction of a battery’s voltage as its
capacity drops. Consequently, less power is delivered to the sensor node’s circuits, with immediate
consequences for oscillator frequencies and transmission power — a node on a weak battery will
have a smaller transmission range than one with a full battery, possibly throwing off any calibrations
done for the range at full battery ranges.

A DC - DC converter can be used to overcome this problem by regulating the voltage delivered
to the node’s circuitry. To ensure a constant voltage even though the battery’s supply voltage drops,
the DC — DC converter has to draw increasingly higher current from the battery when the battery
is already becoming weak, speeding up battery death (see Figure 3 in reference [670]). Also, the
DC - DC converter does consume energy for its own operation, reducing overall efficiency. But the
advantages of predictable operation during the entire life cycle can outweigh these disadvantages.

Energy scavenging

Some of the unconventional energy stores described above — fuel cells, micro heat engines, radioac-
tivity — convert energy from some stored, secondary form into electricity in a less direct and easy to
use way than a normal battery would do. The entire energy supply is stored on the node itself — once
the fuel supply is exhausted, the node fails.

To ensure truly long-lasting nodes and wireless sensor networks, such a limited energy store is
unacceptable. Rather, energy from a node’s environment must be tapped into and made available
to the node — energy scavenging should take place. Several approaches exist [667, 701, 703]:

Photovoltaics The well-known solar cells can be used to power sensor nodes. The available power
depends on whether nodes are used outdoors or indoors, and on time of day and whether
for outdoor usage. Different technologies are best suited for either outdoor or indoor usage.
The resulting power is somewhere between 10 uW /cm? indoors and 15 mW /cm? outdoors.
Single cells achieve a fairly stable output voltage of about 0.6 V (and have therefore to
be used in series) as long as the drawn current does not exceed a critical threshold, which
depends, among other factors, on the light intensity. Hence, solar cells are usually used
to recharge secondary batteries. Best trade-offs between complexity of recharging circuitry,
solar cell efficiency, and battery lifetime are still open questions.

Temperature gradients Differences in temperature can be directly converted to electrical energy.
Theoretically, even small difference of, for example, 5 K can produce considerable power, but
practical devices fall very short of theoretical upper limits (given by the Carnot efficiency).
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Seebeck effect-based thermoelectric generators are commonly considered; one example is a
generator, which will be commercially available soon, that achieves about 80 uW/cm? at
about 1 V from a 5 Kelvin temperature difference.’

Vibrations One almost pervasive form of mechanical energy is vibrations: walls or windows in
buildings are resonating with cars or trucks passing in the streets, machinery often has low-
frequency vibrations, ventilations also cause it, and so on. The available energy depends on
both amplitude and frequency of the vibration and ranges from about 0.1 uW/cm? up to
10, 000 uW /cm?® for some extreme cases (typical upper limits are lower).

Converting vibrations to electrical energy can be undertaken by various means, based on
electromagnetic, electrostatic, or piezoelectric principles. Figure 2.4 shows, as an example, a
generator based on a variable capacitor [549]. Practical devices of 1 cm® can produce about
200 uW/cm? from 2.25 m/s, 120 Hz vibration sources, actually sufficient to power simple
wireless transmitters [702].

Pressure variations Somewhat akin to vibrations, a variation of pressure can also be used as
a power source. Such piezoelectric generators are in fact used already. One well-known
example is the inclusion of a piezoelectric generator in the heel of a shoe, to generate power
as a human walks about [759]. This device can produce, on average, 330 ;,LW/cm2. It is,
however, not clear how such technologies can be applied to WSNss.

Flow of air/liquid Another often-used power source is the flow of air or liquid in wind mills or
turbines. The challenge here is again the miniaturization, but some of the work on millimeter-
scale MEMS gas turbines might be reusable [243]. However, this has so far not produced
any notable results.

To summarize, Table 2.3 gives an overview of typical values of power and energy densities for
different energy sources. The values in this table vary somewhat from those presented above as
partially different technologies or environments were assumed; all these numbers can only serve as
a general orientation but should always be taken with a grain of salt.
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Figure 2.4 A MEMS device for converting vibrations to electrical energy, based on a variable capacitor [549].
Reproduced by permission of IEEE

7 Compare http://www.adsx.com.
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Table 2.3 Comparison of energy sources [667]

Energy source Energy density
Batteries (zinc-air) 1050—1560 mWh/cm?
Batteries (rechargeable lithium) 300 mWh/cm3 (at 3-4 V)
Energy source Power density
Solar (outdoors) 15 mW /cm? (direct sun)
0.15 mW/cm? (cloudy day)
Solar (indoors) 0.006 mW/cm2 (standard office desk)
0.57 mW/cm? (<60 W desk lamp)
Vibrations 0.01-0.1 mW/cm3
Acoustic noise 3107 mW/cm? at 75 dB

9,6-1074 mW/cm2 at 100 dB
Passive human-powered systems 1.8 mW (shoe inserts)
Nuclear reaction 80 mW/cm?, 10° mWh/cm?

As these examples show, energy scavenging usually has to be combined with secondary batteries
as the actual power sources are not able to provide power consistently, uninterruptedly, at a required
level; rather, they tend to fluctuate over time. This requires additional circuitry for recharging
of batteries, possibly converting to higher power levels, and a battery technology that can be
recharged at low currents. An alternative approach is to align the task execution pattern of the sensor
network (which sensor is active when) with the characteristics of energy scavenging — KANSAL and
SRIVASTAVA [399] introduce this idea and describe some protocols and algorithms; they show that
the network lifetime is extended by up to 200 % if these scavenging characteristics are taken into
account in the task allocation.

2.2 Energy consumption of sensor nodes

2.2.1 Operation states with different power consumption

As the previous section has shown, energy supply for a sensor node is at a premium: batteries
have small capacity, and recharging by energy scavenging is complicated and volatile. Hence, the
energy consumption of a sensor node must be tightly controlled. The main consumers of energy
are the controller, the radio front ends, to some degree the memory, and, depending on the type,
the sensors.

To give an example, consider the energy consumed by a microcontroller per instruction. A typical
ball park number is about 1 nJ per instruction [391]. To put this into perspective with the battery
capacity numbers from Section 2.1.6, assume a battery volume of one cubic millimeter, which is
about the maximum possible for the most ambitious visions of “smart dust”. Such a battery could
store about 1J. To use such a battery to power a node even only a single day, the node must not
consume continuously more than 1/(24 - 60 - 60) Ws/s ~ 11.5 uW. No current controller, let alone
an entire node, is able to work at such low-power levels.

One important contribution to reduce power consumption of these components comes from
chip-level and lower technologies: Designing low-power chips is the best starting point for an
energy-efficient sensor node. But this is only one half of the picture, as any advantages gained by
such designs can easily be squandered when the components are improperly operated.

The crucial observation for proper operation is that most of the time a wireless sensor node has
nothing to do. Hence, it is best to turn it off. Naturally, it should be able to wake up again, on the
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basis of external stimuli or on the basis of time. Therefore, completely turning off a node is not
possible, but rather, its operational state can be adapted to the tasks at hand. Introducing and using
multiple states of operation with reduced energy consumption in return for reduced functionality is
the core technique for energy-efficient wireless sensor node. In fact, this approach is well known
even from standard personal computer hardware, where, for example, the Advanced Configuration
and Power Interface (ACPI) [8] introduces one state representing the fully operational machine and
four sleep states of graded functionality/power consumption/wakeup time (time necessary to return
to fully operational state). The term Dynamic Power Management (DPM) summarizes this field of
work (see e.g. reference [63] for a slightly older, but quite a broad-range overview).

These modes can be introduced for all components of a sensor node, in particular, for controller,
radio front end, memory, and sensors. Different models usually support different numbers of such
sleep states with different characteristics; some examples are provided in the following sections. For
a controller, typical states are “active”, “idle”, and “sleep”’; a radio modem could turn transmitter,
receiver, or both on or off; sensors and memory could also be turned on or off. The usual terminology
is to speak of a “deeper” sleep state if less power is consumed.

While such a graded sleep state model is straightforward enough, it is complicated by the fact
that transitions between states take both time and energy. The usual assumption is that the deeper
the sleep state, the more time and energy it takes to wake up again to fully operational state (or to
another, less deep sleep state). Hence, it may be worthwhile to remain in an idle state instead of
going to deeper sleep states even from an energy consumption point of view.

Figure 2.5 illustrates this notion based on a commonly used model (used in, e.g. references
[558, 769]). At time 1, the decision whether or not a component (say, the microcontroller) is to be
put into sleep mode should be taken to reduce power consumption from Pycgive t0 Pyleep. If it remains
active and the next event occurs at time feyent, then a total energy of Egcive = Pactive (fevent — 1)
has be spent uselessly idling. Putting the component into sleep mode, on the other hand, requires a
time Tgown Until sleep mode has been reached; as a simplification, assume that the average power
consumption during this phase i (Pactive + Psteep) /2. Then, Pyeep is consumed until Zeyene. In total,
Tdown (Pactive + Psteep) /2 + (fevent — 11 — Tdown) Psleep €N€rgy is required in sleep mode as opposed to
(fevent — 1) Paciive When remaining active. The energy saving is thus

Esaved Z(Ievem - tl)Paclive - (Tdown(Paclive + Psleep)/2 +

(2.1)
(tevent -0 = Tdown)Psleep)-
Once the event to be processed occurs, however, an additional overhead of
Eoverhead = fup(Pactive + PSICCP)/27 (22)
Esaved Eoverhead
P .
active
: \
1
1
1
P sleep , ,
1 1
1 1L
t, Time
Tdown

Figure 2.5 Energy savings and overheads for sleep modes
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is incurred to come back to operational state before the event can be processed, again making a
simplifying assumption about average power consumption during makeup. This energy is indeed
an overhead since no useful activity can be undertaken during this time. Clearly, switching to a
sleep mode is only beneficial if Eqyerhead < Esaved OF, equivalently, if the time to the next event is
sufficiently large:

Pactive + Psleep Tup) ) (2.3)

1
(fevent — 11) > E (Tdown +

Pactive sleep

Careful scheduling of such transitions has been considered from several perspectives — reference
[769], for example, gives a fairly abstract treatment — and in fact, a lot of medium access control
research in wireless sensor networks can be regarded as the problem of when to turn off the receiver
of a node.

2.2.2 Microcontroller energy consumption

Basic power consumption in discrete operation states

Embedded controllers commonly implement the concept of multiple operational states as outlined
above; it is also fairly easy to control. Some examples probably best explain the idea.

Intel StrongARM
The Intel StrongARM [379] provides three sleep modes:

e In normal mode, all parts of the processor are fully powered. Power consumption is up to
400 mW.

e In idle mode, clocks to the CPU are stopped; clocks that pertain to peripherals are active. Any
interrupt will cause return to normal mode. Power consumption is up to 100 mW.

e In sleep mode, only the real-time clock remains active. Wakeup occurs after a timer interrupt
and takes up to 160 ms. Power consumption is up to 50 uW.

Texas Instruments MSP 430

The MSP430 family [814] features a wider range of operation modes: One fully operational mode,
which consumes about 1.2 mW (all power values given at 1 MHz and 3 V). There are four sleep
modes in total. The deepest sleep mode, LPM4, only consumes 0.3 uW, but the controller is only
woken up by external interrupts in this mode. In the next higher mode, LPM3, a clock is also still
running, which can be used for scheduled wake ups, and still consumes only about 6 LW.

Atmel ATmega

The Atmel ATmega 128L [28] has six different modes of power consumption, which are in principle
similar to the MSP 430 but differ in some details. Its power consumption varies between 6 mW
and 15 mW in idle and active modes and is about 75 UW in power-down modes.

Dynamic voltage scaling

A more sophisticated possibility than discrete operational states is to use a continuous notion of
functionality/power adaptation by adapting the speed with which a controller operates. The idea is
to choose the best possible speed with which to compute a task that has to be completed by a given
deadline. One obvious solution is to switch the controller in full operation mode, compute the task
at highest speed, and go back to a sleep mode as quickly as possible.

The alternative approach is to compute the task only at the speed that is required to finish it
before the deadline. The rationale is the fact that a controller running at lower speed, that is, lower
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clock rates, consumes less power than at full speed. This is due to the fact that the supply voltage
can be reduced at lower clock rates while still guaranteeing correct operation. This technique is
called Dynamic Voltage Scaling (DVS) [133].

This technique is actually beneficial for CMOS chips: As the actual power consumption P
depends quadratically on the supply voltage Vpp [649], reducing the voltage is a very efficient
way to reduce power consumption. Power consumption also depends on the frequency f, hence
Po f-Vip.

Consequently, dynamic voltage scaling also reduces energy consumption. The Transmeta Crusoe

processor, for example, can be scaled from 700 MHz at 1.65 V down to 200 MHz at 1.1 V [649].
This reduces the power consumption by a factor of % = 7.875, but the speed is only reduced
by a factor of 700/200 = 3.5. Hence, the energy required per instruction is reduced by 3.5/7.875 ~
44 %. Other processors and microcontrollers behave similarly, Figure 2.6 shows an example for the
StrongARM SA-1100 [558]. The ultimate reason for this improvement is the convex shape of the
function power against speed, caused by varying the supply voltage.

When applying dynamic voltage scaling, care has to be taken to operate the controller within
its specifications. There are minimum and maximum clock rates for each device, and for each
clock rate, there is a minimum and maximum threshold that must be obeyed. Hence, when there is
nothing to process, going into sleep modes is still the only option. Also, using arbitrary voltages
requires a quite efficient DC-DC converter to be used [134].

How to control DVS from an application or from the operating system is discussed in

Section 2.3.4 on page 48.

2.2.3 Memory

From an energy perspective, the most relevant kinds of memory are on-chip memory of a microcon-
troller and FLASH memory — off-chip RAM is rarely if ever used. In fact, the power needed to drive
on-chip memory is usually included in the power consumption numbers given for the controllers.
Hence, the most relevant part is FLASH memory — in fact, the construction and usage of FLASH
memory can heavily influence node lifetime. The relevant metrics are the read and write times and

Energy per operation
o
n

6.9 1.1
206.4 00 1.0 Core voltage (V)

Figure 2.6 Energy per operation with dynamic power scaling on an Intel StrongARM SA-1100 [558]. Repro-
duced by permission of IEEE

Clock (MHz)
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energy consumption. All this information is readily available from manufacturers’ data sheets and
do vary depending on several factors. Read times and read energy consumption tend to be quite
similar between different types of FLASH memory [329]. Writing is somewhat more complicated,
as it depends on the granularity with which data can be accessed (individual bytes or only complete
pages of various sizes). One means for comparability is to look at the numbers for overwriting the
whole chip. Considerable differences in erase and write energy consumption exist, up to ratios of
900:1 between different types of memory [329].

To give a concrete example, consider the energy consumption necessary for reading and writing
to the Flash memory used on the Mica nodes [534]. Reading data takes 1.111 nAh, writing requires
83.333 nAh.

Hence, writing to FLASH memory can be a time- and energy-consuming task that is best avoided
if somehow possible. For detailed numbers, it is necessary to consult the documentation of the
particular wireless sensor node and its FLASH memory under consideration.

2.2.4 Radio transceivers

A radio transceiver has essentially two tasks: transmitting and receiving data between a pair of
nodes. Similar to microcontrollers, radio transceivers can operate in different modes, the simplest
ones are being turned on or turned off. To accommodate the necessary low total energy consumption,
the transceivers should be turned off most of the time and only be activated when necessary — they
work at a low duty cycle. But this incurs additional complexity, time and power overhead that has
to be taken into account.

To understand the energy consumption behavior of radio transceivers and their impact on the
protocol design, models for the energy consumption per bit for both sending and receiving are
required. Several such models of different accuracy and level of detail exist and are mostly textbook
knowledge [14, 661, 682, 938] (for a research paper example see reference [762]); the presentation
here mostly follows reference [559], in particular, with respect to concrete numbers.

Modeling energy consumption during transmission

In principle, the energy consumed by a transmitter is due to two sources [670]: one part is due to
RF signal generation, which mostly depends on chosen modulation and target distance and hence
on the transmission power Py, that is, the power radiated by the antenna. A second part is due to
electronic components necessary for frequency synthesis, frequency conversion, filters, and so on.
These costs are basically constant.

One of the most crucial decisions when transmitting a packet is thus the choice of Py. Chapter 4
will discuss some of the factors involved in such a decision; controlling the transmission power will
also play a role in several other chapters of Part II. For the present discussion, let us assume that
the desired transmission power Py is known — Chapter 4 will make it clear that Py is a function
of system aspects like energy per bit over noise Ej/Ny, the bandwidth efficiency ngw, the distance
d and the path loss coefficient y.

The transmitted power is generated by the amplifier of a transmitter. Its own power consumption
Pymp depends on its architecture, but for most of them, their consumed power depends on the power
they are to generate. In the most simplistic models, these two values are proportional to each other,
but this is an oversimplification. A more realistic model assumes that a certain constant power level
is always required irrespective of radiated power, plus a proportional offset:

Pamp = Qamp + ,Bamp Pi. 2.4

where aymp and B, are constants depending on process technology and amplifier architecture [559].
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As an example, MIN and CHANDRAKASAN [563] report, for the tAMPS-1 nodes, dgmp = 174 mW
and Bamp = 5.0. Accordingly, the efficiency of the power amplifier nps for Px = 0 dBm = 1 mW
radiated power is given by

P« I mW

= ~ 0.55 %.
Pamp  174mW + 5.0 - I mW

npA =

This model implies that the amplifier’s efficiency Pi/Pamp is best at maximum output power.
Maximum power is, however, not necessarily the common case and therefore such a design is
not necessarily the most beneficial one — in cellular systems, for example, amplifiers often do not
operate at their maximum output power. While it is not clear how this observation would translate to
WSNes, it appears promising especially in dense networks to use amplifiers with different efficiency
characteristics [447]. Nonetheless, here we shall restrict the attention to the model of Equation (2.4).

In addition to the amplifier, other circuitry has to be powered up during transmission as well,
for example, baseband processors. This power is referred to as Pigiec-

The energy to transmit a packet n-bits long (including all headers) then depends on how long it
takes to send the packet, determined by the nominal bit rate R and the coding rate Rgode, and on
the total consumed power during transmission. If, in addition, the transceiver has to be turned on
before transmission, startup costs also are incurred (mostly to allow voltage-controlled oscillators
and phase-locked loops to settle). Equation (2.5) summarizes these effects.

n
Ex (I’l, Recodes Pamp) = Tstart Pstart + W(Plelec + Pamp)- (25)

code

It should be pointed out that this equation does not depend on the modulation chosen for transmis-
sion (Section 4.3 will discuss in detail an example containing multiple modulations). Measurements
based on IEEE 802.11 hardware [221] have shown that in fact there is a slight dependence on the
modulation, but the difference between 1 Mbit/s and 11 Mbit/s is less than 10 % for all considered
transmission power values, so this is an acceptable simplification. Moreover, it is assumed that the
coding overhead only depends on the coding rate, which is an acceptable assumption. In this model,
the antenna efficiency is missing as well, that is, it is assumed to have a perfect antenna. Otherwise,
there would be further power losses between the output of the PA and the radiated power.

This model can be easily enhanced by the effects of Forward Error Correction (FEC) coding
since, with respect to transmission, FEC just increases the number of bits approximately by a factor
of one divided by the code rate (see Chapter 6), since the coding energy is negligible [563].

Disregarding the distance-independent terms in these energy costs and only assuming a simplified
energy cost proportional to some power of the distance has been called “one of the top myths”
of energy consumption in radio communication [560]. Clearly, choosing such an inappropriately
simplified model would have considerable consequences on system design, for example, incorrectly
favoring a multihop approach (see Chapter 3).

Modeling energy consumption during reception

Similar to the transmitter, the receiver can be either turned off or turned on. While being turned on,
it can either actively receive a packet or can be idle, observing the channel and ready to receive.
Evidently, the power consumption while it is turned off is negligible. Even the difference between
idling and actually receiving is very small and can, for most purposes, be assumed to be zero.

To elucidate, the energy Ei..q required to receive a packet has a startup component Ty Psiart
similar to the transmission case when the receiver had been turned off (startup times are considered
equal for transmission and receiving here); it also has a component that is proportional to the
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packet time #codc' During this time of actual reception, receiver circuitry has to be powered up,
requiring a (more or less constant) power of Pgec — for example, to drive the LNA in the RF front
end. The last component is the decoding overhead, which is incurred for every bit — this decoding
overhead can be substantial depending on the concrete FEC in use; Section 6.2.3 goes into details
here. Equation (2.6) summarizes these components.

n
Ercvd = Tstart Pstart + WPrXElec + nEdecBit- (26)

code

The decoding energy is relatively complicated to model, as it depends on a number of hardware
and system parameters — for example, is decoding done in dedicated hardware (by, for example,
a dedicated Viterbi decoder for convolutional codes) or in software on a microcontroller; it also
depends on supply voltage, decoding time per bit (which in turn depends on processing speed
influenced by techniques like DVS), constraint length K of the used code, and other parameters.
MiIN and CHANDRAKASAN [559] give more details.

Again, it is worthwhile pointing out that different modulation schemes only implicitly affect this
result via the increase in time to transmit the packet.

Some numbers

Providing concrete numbers for exemplary radio transceivers is even more difficult than it is for
microcontrollers: The range of commercially available transceivers is vast, with many different
characteristics. Transceivers that appear to have excellent energy characteristics might suffer from
other shortcomings like poor frequency stability under temperature variations (leading to partitioning
of a network when parts of the node are placed in the shade and others in sunlight), poor blocking
performance, high susceptibility to interference on neighboring frequency channels, or undesirable
error characteristics; they could also lack features that other transceivers have, like tunability to
multiple frequencies. Hence, the numbers presented here should be considered very cautiously,
even more so since they had been collected from different sources and were likely determined in
noncomparable environments (and not all numbers are available for all examples). Still, they should
serve to provide some impression of current performance figures for actual hardware.

Table 2.4 summarizes the parameters discussed here for a number of different nodes. These
numbers have been collected from references [670] and [563];® the data sheets [588, 690] offer
further information. Note that the way of reporting such figures in the literature is anything but
uniform and that hence many of the numbers given here had to be calculated or estimated. The
reader is encouraged to check with the original publications for full detail. In particular, the data
about the WINS and MEDUSA-II node do not allow to distinguish between aamp and Pglec and
Bamp 18 estimated by curve fitting. STEMM and KaTz [789] present additional data for some older
hardware geared toward handheld devices. References [351, 353, 725, 769] also contain further
examples for sensor nodes; FEENEY and NILSSON [254] and EBERT et al. [221] present actual
measurement results for IEEE 802.11-based hardware. One useful reference number for rule-of-
thumb estimations might be the 1 pJ required to transmit a single bit and 0.5 pJ to receive one for
the REM TR1000 transceiver [353].

Looking at the startup times in Table 2.4, we see that actually considerable time and energy can
be spent to turn on a transceiver. CHANDRAKASAN et al. [134] argue therefore that architectures
with short startup times are preferable and point out the impact of startup time on the energy per
bit when using different modulations; they also propose an appropriate transceiver architecture with

8 Since these numbers are likely obtained by different measurement methods, they are not directly comparable and the reader
must be cautious. However, at least they give useful ballpark estimates.
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Table 2.4 Some parameters of transceiver energy consumption

Symbol Description Example transceiver

HWAMPS-1 WINS MEDUSA-II

[559] [670] [670]
Qamp Equation (2.4) 174 mW N/A N/A
Bamp Equation (2.4) 5.0 8.9 7.43
Pamp Amplifier pwr.  179-674 mW N/A N/A
PxElec Reception pwr. 279 mW 368.3 mW 12.48 mW
Pi1die Receive idle N/A 344.2 mW 12.34 mW
Pyt Startup pwr. 58.7 mW N/A N/A
PiElec Transmit pwr. 151 mW ~ 386 mW 11.61 mW
R Transmission 1 Mbps 100 kbps OOK 30 kbps
rate ASK 115.2 kbps

Tstart Startup time 466 us N/A N/A

fast startup time. WANG et al. [855] also point this out and provide figures on how startup time
influences the choice between modulations.

These startup costs motivate some considerations of the entire system architecture. One possible
idea is to have only very simply functionalities on line that can handle most of the processing, for
example, decide whether a packet is intended for a given node, and only startup other components,
for example, the controller, if necessary [648]. Clearly, wakeup radios are the most advanced
version of this concept. Naturally, startup costs also have to be taken into account during protocol
design.

Another common observation based on these figures is that transmitting and receiving have
comparable power consumption, at least for short-range communication [648]. Details differ, of
course, but it is an acceptable approximation to assume Piglec = Pixplec and even neglecting the
amplifier part can be admissible as long as very low transmission powers are used. In fact, for
some architectures, receiving consumes more power than transmitting.

CHANDRAKASAN et al. [132] summarize these numbers into an energy per bit versus bitrate
figure, pointing out that energy efficiency improves as transmission rates go up if duty cycling is
used on the radio.

Dynamic scaling of radio power consumption

Applying controller-based Dynamic Voltage Scaling (DVS) principles to radio transceivers as well
is tempting, but nontrivial. Scaling down supply voltage or frequency to obtain lower power con-
sumption in exchange for higher latency is only applicable to some of the electronic parts of a
transceiver, but this would mean that the remainder of the circuitry — the amplifier, for instance,
which cannot be scaled down as its radiated and hence its consumed power mostly depends on the
communication distance — still has to be run at high power over an extended period of time [670].

However, the frequency/voltage versus performance trade-off exploited in DVS is not the only
possible trade-off to exploit. Any such “parameter versus performance” trade-off that has a convex
characteristic should be amenable to an analogous optimization technique. For radio communication,
in particular, possible parameters include the choice of modulation and/or code, giving raise to
Dynamic Modulation Scaling (DMS), Dynamic Code Scaling (DCS) and Dynamic Modulation-
Code Scaling (DMCS) optimization techniques [449, 559, 650, 735, 738]. The claim that such
trade-offs do not apply to communication is another one of the “myths” of energy consumption in
communication [560].
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The idea of these approaches is to dynamically adapt modulation, coding, or other parameters to
maximize system metrics like throughput or, particularly relevant here, energy efficiency. It rests
on the hardware’s ability to actually perform such modulation adaptations, but this is a commonly
found property of modern transceivers. In addition, delay constraints and time-varying radio channel
properties have to be taken into account.

The details of these approaches are somewhat involved, and partially, complicated optimiza-
tion problems have to be approximately solved. The required computational effort should not be
underestimated and a combined analysis should be undertaken on how best to split up energy
consumption. Nonetheless, these approaches are quite beneficial in energy efficiency terms.

2.2.5 Relationship between computation and communication

Looking at the energy consumption numbers for both microcontrollers and radio transceivers, an
evident question to ask is which is the best way to invest the precious energy resources of a sensor
node: Is it better to send data or to compute? What is the relation in energy consumption between
sending data and computing?

Again, details about this relationship heavily depend on the particular hardware in use, but
a few rule-of-thumb figures can be given here. Typically, computing a single instruction on a
microcontroller requires about 1 nJ. Also, 1 nJ about suffices to take a single sample in a radio
transceiver; Bluetooth transceivers could be expected to require roughly 100 nJ to transmit a single
bit (disregarding issues like startup cost and packet lengths) [391]. For other hardware, the ratio of
the energy consumption to send one bit compared to computing a single instruction is between 1500
to 2700 for Rockwell WINS nodes, between 220 to 2900 for MEDUSA 1I nodes, and about 1400
for WINS NG 2.0 nodes [670]. HILL et al. [353] notes, for the RFM TR1000 radio transceiver, 1 pJ
to transmit a single bit and 0.5 pJ to receive one; their processor takes about 8 nJ per instruction.
This results in a (actually quite good) ratio of about 190 for communication to computation costs.
In a slightly different perspective, communicating 1 kB of data over 100 m consumes roughly the
same amount of energy as computing three million instructions [648]. HILL and CULLER [351] give
some more numbers for specific applications.

Disregarding the details, it is clear that communication is a considerably more expensive under-
taking than computation. Still, energy required for computation cannot be simply ignored; depending
on the computational task, it is usually still smaller than the energy for communication, but still
noticeable. This basic observation motivates a number of approaches and design decisions for the
networking architecture of wireless sensor networks. The core idea is to invest into computation
within the network whenever possible to safe on communication costs, leading to the notion of
in-network processing and aggregation. These ideas will be discussed in detail in Chapter 3.

2.2.6 Power consumption of sensor and actuators

Providing any guidelines about the power consumption of the actual sensors and actuators is next to
impossible because of the wide diversity of these devices. For some of them — for example, passive
light or temperature sensors — the power consumption can perhaps be ignored in comparison to other
devices on a wireless node (although HiLL et al. [353] report a power consumption of 0.6 to 1 mA
for a temperature sensor). For others, in particular, active devices like sonar, power consumption
can be quite considerable and must even be considered in the dimensioning of power sources on the
sensor node, not to overstress batteries, for example. To derive any meaningful numbers, requires a
look at the intended application scenarios and the intended sensors to be used. Some hints on power
consumption of sensor/controller interfaces, namely, AD converters, can be found in reference [26].

In addition, the sampling rate evidently is quite important. Not only does more frequent sampling
require more energy for the sensors as such but also the data has to processed and, possibly,
communicated somewhere.
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Table 2.5 Example characteristics of sensors. Reproduced from [534] by permission of

ACM
Sensor Accuracy  Interchangeability Sample Startup Current
rate [Hz] [ms] [mA]
Photoresistor N/A 10 % 2000 10 1.235
12C temperature 1K 0.20 K 2 500 0.15
Barometric pressure 1.5 mbar 0.5 % 10 500 0.01
Bar. press. temp. 0.8 K 0.24 K 10 500 0.01
Humidity 2% 3% 500 500— 0.775
3000
Thermopile 3K 5% 2000 200 0.17
Thermistor 5K 10 % 2000 10 0.126

To give some quantitative ideas, Table 2.5 provides examples of various sensor characteristics.

2.3 Operating systems and execution environments
2.3.1 Embedded operating systems

The traditional tasks of an operating system are controlling and protecting the access to resources
(including support for input/output) and managing their allocation to different users as well as the
support for concurrent execution of several processes and communication between these processes
[807]. These tasks are, however, only partially required in an embedded system as the executing
code is much more restricted and usually much better harmonized than in a general-purpose system.
Also, as the description of the microcontrollers has shown, these systems plainly do not have the
required resources to support a full-blown operating system.

Rather, an operating system or an execution environment — perhaps the more modest term is the
more appropriate one — for WSNs should support the specific needs of these systems. In particular,
the need for energy-efficient execution requires support for energy management, for example, in
the form of controlled shutdown of individual components or Dynamic Voltage Scaling (DVS)
techniques. Also, external components — sensors, the radio modem, or timers — should be handled
easily and efficiently, in particular, information that becomes available asynchronously (at any
arbitrary point in time) must be handled.

All this requires an appropriate programming model, a clear way to structure a protocol stack,
and explicit support for energy management — without imposing too heavy a burden on scarce
system resources like memory or execution time. These three topics are treated in the following
sections, with a case study completing the operating system considerations.

2.3.2 Programming paradigms and application programming interfaces

Concurrent Programming

One of the first questions for a programming paradigm is how to support concurrency. Such support
for concurrent execution is crucial for WSN nodes, as they have to handle data communing from
arbitrary sources — for example, multiple sensors or the radio transceiver — at arbitrary points in
time. For example, a system could poll a sensor to decide whether data is available and process
the data right away, then poll the transceiver to check whether a packet is available, and then
immediately process the packet, and so on. (Figure 2.7). Such a simple sequential model would run
the risk of missing data while a packet is processed or missing a packet when sensor information is
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processed. This risk is particularly large if the processing of sensor data or incoming packets takes
substantial amounts of time, which can easily be the case. Hence, a simple, sequential programming
model is clearly insufficient.

Process-based concurrency

Most modern, general-purpose operating systems support concurrent (seemingly parallel) execution
of multiple processes on a single CPU. Hence, such a process-based approach would be a first
candidate to support concurrency in a sensor node as well; it is illustrated in (b) of Figure 2.7. While
indeed this approach works in principle, mapping such an execution model of concurrent processes
to a sensor node shows, however, that there are some granularity mismatches [491]: Equating
individual protocol functions or layers with individual processes would entail a high overhead in
switching from one process to another. This problem is particularly severe if often tasks have to be
executed that are small with respect to the overhead incurred for switching between tasks — which
is typically the case in sensor networks. Also, each process requires its own stack space in memory,
which fits ill with the stringent memory constraints of sensor nodes.

Event-based programming

For these reasons, a somewhat different programming model seems preferable. The idea is to
embrace the reactive nature of a WSN node and integrate it into the design of the operating
system. The system essentially waits for any event to happen, where an event typically can be the
availability of data from a sensor, the arrival of a packet, or the expiration of a timer. Such an
event is then handled by a short sequence of instructions that only stores the fact that this event
has occurred and stores the necessary information — for example, a byte arriving for a packet or the
sensor’s value — somewhere. The actual processing of this information is not done in these event
handler routines, but separately, decoupled from the actual appearance of events. This event-based
programming [353] model is sketched in Figure 2.8.

Handle sensor Handle packet
process process

Poll sensor

Process
sensor
data

Poll transceiver

Process
received
packet

OS-mediated
process switching

Sequential programming model Process-based programming model

Figure 2.7 Two inadequate programming models for WSN operating systems: purely sequential execution
(a) and process-based execution (b)
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Radio
Sensor event
event -
Idle/Regular ‘ Radio event handler
processing

Sensor event
handler j

Figure 2.8 Event-based programming model

Such an event handler can interrupt the processing of any normal code, but as it is very simple
and short, it can be required to run to completion in all circumstances without noticeably disturbing
other code. Event handlers cannot interrupt each other (as this would in turn require complicated
stack handling procedures) but are simply executed one after each other.

As a consequence, this event-based programming model distinguishes between two different
“contexts’: one for the time-critical event handlers, where execution cannot be interrupted and a
second context for the processing of normal code, which is only triggered by the event handlers.

This event-based programming model is slightly different to what most programmers are used
to and commonly requires some getting used to. It is actually comparable, on some levels, to
communicating, extended finite state machines, which are used in protocol design formalisms as
well as in some parallel programming paradigms. It does offer considerable advantages. LI et al.
[491] compared the performance of a process-based and an event-based programming model (using
TinyOS [353] described below) on the same hardware and found that performance improved by a
factor of 8, instruction/data memory requirements were reduced by factors of 2 and 30, respectively,
and power consumption was reduced by a factor of 12.

Interfaces to the operating system

In addition to the programming model that is stipulated, if not actually imposed, by the operating
system, it is also necessary to specify some interfaces to how internal state of the system can be
inquired and perhaps set. As the clear distinction between protocol stack and application programs
vanishes somewhat in WSNs, such an interface should be accessible from protocol implementations
and it should allow these implementations to access each other. This interface is also closely tied
with the structure of protocol stacks discussed in the following section.

Such an Application Programming Interface (API) comprises, in general, a “functional interface,
object abstractions, and detailed behavioral semantics” [558]. Abstractions are wireless links, nodes,
and so on; possible functions include state inquiry and manipulation, sending and transmitting of
data, access to hardware (sensors, actuators, transceivers), and setting of policies, for example, with
respect to energy/quality trade-offs.

While such a general API would be extremely useful, there is currently no clear standard — or
even an in-depth discussion — arising from the literature. Some first steps in this direction are more
concerned with the networking architecture [751], not so much with accessing functionality on a
single node. Until this changes, de facto standards will continue to be used and are likely to serve
reasonably well. Section 2.3.5 describes one such de facto standard.

2.3.3 Structure of operating system and protocol stack

The traditional approach to communication protocol structuring is to use layering: individual
protocols are stacked on top of each other, each layer only using functions of the layer directly
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below. This layered approach has great benefits in keeping the entire protocol stack manageable,
in containing complexity, and in promoting modularity and reuse. For the purposes of a WSN,
however, it is not clear whether such a strictly layered approach will suffice (the presentation here
follows to some degree reference [431]).

As an example, consider the use of information about the strength of the signal received from
a communication partner. This physical layer information can be used to assist in networking
protocols to decide about routing changes (a signal becomes weaker if a node moves away and
should perhaps no longer be used as a next hop), to compute location information by estimating
distance from the signal strength, or to assist link layer protocols in channel-adaptive or hybrid
FEC/ARQ schemes. Hence, one single source of information can be used to the advantage of many
other protocols not directly associated with the source of this information.

Such cross-layer information exchange is but one way to loosen the strict confinements of the
layered approach. Also, WSNs are not the only reason why such liberations are sought. Even in
traditional network scenarios, efficiency considerations [170], the need to support wired networking
protocols in wireless systems (e.g. TCP over wireless [42]), the need to migrate functionality into
the backbone despite the prescriptions of Internet’s end-to-end model [97], or the desire to support
handover mechanisms by physical layer information in cellular networks [257] all have created a
considerable pressure for a flexible, manageable, and efficient way of structuring and implementing
communication protocols. HILL and CULLER [351] discuss some more examples in which cross-layer
optimization is particularly useful in WSNss.

When departing from the layered architecture, the prevalent trend is to use a component model.
Relatively large, monolithic layers are broken up into small, self-contained “components”, “building
blocks”, or “modules” (the terminology varies). These components only fulfill one well-defined
function each — for example, computation of a Cyclic Redundancy Check (CRC) — and interact
with each other over clear interfaces. The main difference compared to the layered architecture is
that these interactions are not confined to immediate neighbors in an up/down relationship, but can
be with any other component.

This component model not only solves some of the structuring problems for protocol stacks, it
also fits naturally with an event-based approach to programming wireless sensor nodes. Wrapping of
hardware, communication primitives, in-network processing functionalities all can be conveniently
designed and implemented as components.

One popular example for an operating system following this approach is TinyOS [353], described
in detail later. It uses the notion of explicit wiring of components to allow event exchange to take
place between them. While this is beneficial for “push” types of interactions (events are more or
less immediately distributed to the receiving component), it does not serve well other cases where
a “pull” type of information exchange is necessary. Looking at the case of the received signal
strength information described above, the receiving component might not be interested in receiving
all such events; rather, it might suffice to be informed asynchronously. A good solution for this is
a blackboard, based on publish/subscribe principles [251], where information can be deposited and
anonymously exchanged, allowing a looser coupling between components. This concept has been
proposed in reference [431] and appears a promising add-on.

2.3.4 Dynamic energy and power management

Switching individual components into various sleep states or reducing their performance by scaling
down frequency and supply voltage and selecting particular modulation and codings were the
prominent examples discussed in Section 2.2 for improving energy efficiency. To control these
possibilities, decisions have to be made by the operating system, by the protocol stack, or potentially
by an application when to switch into one of these states. Dynamic Power Management (DPM) on
a system level is the problem at hand.
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One of the complicating factors to DPM is the energy and time required for the transition of a
component between any two states. If these factors were negligible, clearly it would be optimal to
always & immediately go into the mode with the lowest power consumption possible. As this is
not the case, more advanced algorithms are required, taking into account these costs, the rate of
updating power management decisions, the probability distribution of time until future events, and
properties of the used algorithms. In fact, this field is very broad and only a few examples can
be discussed here — for an overview, refer, for example, to reference [304] (especially parts III, V,
and VI therein) or reference [62].

Probabilistic state transition policies

SiNHA and CHANDRAKASAN [769] consider the problem of policies that regulate the transition
between various sleep states. They start out by considering sensors randomly distributed over a
fixed area and assume that events arrive with certain temporal distributions (Poisson process) and
spatial distributions. This allows them to compute probabilities for the time to the next event,
once an event has been processed (even for moving events). They use this probability to select
the deepest sleep state out of several possible ones that still fulfill the threshold requirements of
Equation (2.3).

In addition, they take into account the possibility of missing events when the sensor as such
is also shut down in sleep mode. This can be acceptable for some applications, and SINHA and
CHANDRAKASAN give some probabilistic rules on how to decide whether to go into such a deep
sleep mode.

Other examples for state transition policies are discussed in references [611, 767, 784].

Controlling dynamic voltage scaling

To turn the possibilities of DVS into a technical solution also requires some further considerations.
For example, it is the rare exception that there is only a single task to be run in an operating
system; hence, a clever scheduler is required to decide which clock rate to use in each situation
to meet all deadlines. This can require feedback from applications and has been mostly studied in
“traditional” applications, for example, video playback in reference [649]. Another approach [259]
incorporates dynamic voltage scaling control into the kernel of the operating system and achieves
energy efficiency improvements in mixed workloads without modifications to user programs. Many
other papers have considered DVS-based power management in various circumstances, often in the
context of hard real-time systems, for example, references [109, 302, 307, 445, 537, 763, 869, 906]
and the citations in reference [669]. Applying these results to the specific settings of a WSN
is, however, still a research task as WSNs usually do not operate under similarly strict timing
constraints, nor are the application profiles comparable.

Trading off fidelity against energy consumption

Most of the just described work on controlling DVS assumes hard deadlines for each task (the
task has to be completed by a given time, otherwise its results are useless). In WSNs, such an
assumption is often not appropriate. Rather, there are often tasks that can be computed with a
higher or lower level of accuracy. The fidelity achieved by such tasks is a candidate for trading it
off against other resources. When time is considered, the concept of “imprecise computation” results
[515]. In a WSN, the natural trade-off is against energy required to compute a task. Essentially, the
question arises again how best to invest a given amount of energy available for a given task [770].
Deliberately embracing such inaccuracies in return for lower energy consumption is a characteristic
feature of WSNs; some examples will be discussed in various places in the book.
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Some approaches to exploit such trade-offs have been described in the literature, for example,
in references [260, 669], but mostly in the context of multimedia systems. SINHA et al. [770]
discuss the energy-quality trade-off for algorithm design, especially for signal processing purposes
(filtering, frequency domain transforms, and classification). The idea is to transform an algorithm
such that it quickly approximates the final result and keeps computing as long as energy is available,
producing incremental refinements (being a direct counterpart to imprecise computation [515],
where computation can continue as long as time is available). As a simple example, the computation
of a polynomial f(x) = Z,N: 0 kix' is given: depending on whether x < 1 or x > 1, computation
should start with the low-order or high-order terms for having the best possible approximation in
case the computation has to be aborted because it exceeded its energy allocation. The performance
of such (original or transformed) algorithms is studied using their £ — Q metric, indicating which
(normalized) result quality can be achieved for how much (normalized) energy.

2.3.5 Case Study: TinyOS and nesC

Section 2.3.2 has advocated the use of an event-based programming model as the only feasible
way to support the concurrency required for sensor node software while staying within the confined
resources and running on top of the simple hardware provided by these nodes. The open question is
how to harness the power of this programming model without getting lost in the complexity of many
individual state machines sending each other events. In addition, modularity should be supported
to easily exchange one state machine against another. The operating system TinyOS [353], along
with the programming language nesC [285], addresses these challenges (the exposition here follows
mainly these references).

TinyOS supports modularity and event-based programming by the concept of components. A
component contains semantically related functionality, for example, for handling a radio interface
or for computing routes. Such a component comprises the required state information in a frame,
the program code for normal tasks, and handlers for events and commands. Both events and com-
mands are exchanged between different components. Components are arranged hierarchically, from
low-level components close to the hardware to high-level components making up the actual appli-
cation. Events originate in the hardware and pass upward from low-level to high-level components;
commands, on the other hand, are passed from high-level to low-level components.

Figure 2.9 shows a timer component that provides a more abstract version of a simple hardware
time. It understands three commands (“init”, “start”, and “stop”) and can handle one event (“fire”)
from another component, for example, a wrapper component around a hardware timer. It issues
“setRate” commands to this component and can emit a “fired” event itself.

The important thing to note is that, in staying with the event-based paradigm, both command and
event handlers must run to conclusion; they are only supposed to perform very simple triggering
duties. In particular, commands must not block or wait for an indeterminate amount of time; they
are simply a request upon which some task of the hierarchically lower component has to act.
Similarly, an event handler only leaves information in its component’s frame and arranges for a
task to be executed later; it can also send commands to other components or directly report an
event further up.

The actual computational work is done in the tasks. In TinyOS, they also have to run to com-
pletion, but can be interrupted by handlers. The advantage is twofold: there is no need for stack
management and tasks are atomic with respect to each other. Still, by virtue of being triggered by
handlers, tasks are seemingly concurrent to each other.

The arbitration between tasks — multiple can be triggered by several events and are ready to
execute — is done by a simple, power-aware First In First Out (FIFO) scheduler, which shuts the
node down when there is no task executing or waiting.
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Figure 2.9 Example Timer component (adapted from references [285, 353])

With handlers and tasks all required to run to completion, it is not clear how a component
could obtain feedback from another component about a command that it has invoked there — for
example, how could an Automatic Repeat Request (ARQ) protocol learn from the MAC protocol
whether a packet had been sent successfully or not? The idea is to split invoking such a request
and the information about answers into two phases: The first phase is the sending of the command,
the second is an explicit information about the outcome of the operation, delivered by a separate
event. This split-phase programming approach requires for each command a matching event but
enables concurrency under the constraints of run-to-completion semantics — if no confirmation for
a command is required, no completion event is necessary.

Having commands and events as the only way of interaction between components (the frames of
components are private data structures), and especially when using split-phase programming, a large
number of commands and events add up in even a modestly large program. Hence, an abstraction is
necessary to organize them. As a matter of fact, the set of commands that a component understands
and the set of events that a component may emit are its interface to the components of a hierarchi-
cally higher layer; looked at it the other way around, a component can invoke certain commands
at its lower component and receive certain events from it. Therefore, structuring commands and
events that belong together forms an interface between two components.

The nesC language formalizes this intuition by allowing a programmer to define interface types
that define commands and events that belong together. This allows to easily express split-phase
programming style by putting commands and their corresponding completion events into the same
interface. Components then provide certain interfaces to their users and in turn use other interfaces
from underlying components.

Figure 2.10 shows how the Timer component of the previous example can be reorganized into
using a clock interface and providing two interfaces StdCtrl and Timer. The corresponding nesC
code is shown in Listing 2.1. Note that the component TimerComponent is defined here as a module
since it is a primitive component, directly containing handlers and tasks.

Such primitive components or modules can be combined into larger configurations by simply
“wiring” appropriate interfaces together. For this wiring to take place, only components that have
the correct interface types can be plugged together (this is checked by the compiler). Figure 2.11
shows how the TimerComponent and an additional component HWClock can be wired together
to form a new component CompleteTimer, exposing only the StdCtrl and Timer interfaces to the
outside; Listing 2.2 shows the corresponding nesC code. Note that both modules and configurations
are components.
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Figure 2.10 Organizing the Timer component using interfaces [285, 353]

Listing 2.1: Defining modules and interfaces [285]

interface StdCtrl {
command result_ t init ();

}

interface Timer ({
command result t start (char type, uint32_t interval);
command result t stop ();
event result_t fired();

}

interface Clock {
command result t setRate (char interval, char scale);
event result_ t fire () ;

}

module TimerComponent {
provides {
interface StdCtrl;
interface Timer;

}

uses interface Clock as Clk;

Using these component definition, implementation, and connection concepts, TinyOS and nesC
together form a powerful and relatively easy to use basis to implement both core operating system
functionalities as well as communication protocol stacks and application functions. Experience has
shown [285] that in fact programmers do use these paradigms and arrive at relatively small, highly
specialized components that are then combined as needed, proving the modularity claim. Also, code
size and memory requirements are quite small.

Overall, TinyOS can currently be regarded as the standard implementation platform for WSNs.
It is also becoming available for an increasing number of platforms other than the original “motes”
on which it had been developed. For practical work, the project web page [820] provides a lot of
valuable information along with a good tutorial [821].
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Figure 2.11 Building a larger configuration out of two components [285, 353]

Listing 2.2: Wiring components to form a configuration [285]

configuration CompleteTimer ({
provides {
interface StdCtrl;
interface Timer;
}
implementation ({
components TimerComponent , HWClock;
StdCtrl = TimerComponent .HWClock;
Timer = TimerComponent .Timer;
TimerComponent .Clk = HWClock.Clock;
}
}

On top of the TinyOS operating system, a vast range of extensions, protocols, and applications
have been developed. Some brief examples must suffice here.” LEvis and CULLER [481] describe a
virtual machine concept on top of TinyOS that provides a high-level interface to concisely represent
programs; it is particularly beneficial for over-the-air reprogramming and retasking of an existing
network. Conceiving of the sensor network as a relational database is made possible by the TinyDB
project.

2.3.6 Other examples

Apart from TinyOS, there are a few other execution environments or operating systems for WSN
nodes. One example is Contiki'® [216], which has been ported to various hardware platforms and
actually implements a TCP/IP stack on top of a platform with severely restricted resources [215].
Other examples are ecos [224] and the Mantis project [4].

% In February 2004, google found about 15.800 results when searching for “TinyOS”; in November 2004, already 123.000!
10 http://www.sics.se/~adam/contiki/
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2.4 Some examples of sensor nodes

There are quite a number of actual nodes available for use in wireless sensor network research
and development. Again, depending on the intended application scenarios, they have to fulfill quite
different requirements regarding battery life, mechanical robustness of the node’s housing, size, and
so on. A few examples shall highlight typical approaches; an overview of current developments
can be found, for example, in reference [352].

2.4.1 The “Mica Mote” family

Starting in the late 1990s, an entire family of nodes has evolved out of research projects at the
University of California at Berkeley, partially with the collaboration of Intel, over the years. They
are commonly known as the Mica motes 1 with different versions (Mica, Mica2, Mica2Dot) having
been designed [351, 353, 534]; references [285, 481] have an overview table of the family members;
schematics for some of these designs are available from [822]. They are commercially available
via the company Crossbow!? in different versions and different kits. TinyOS is the usually used
operating system for these nodes.

An early example for the schematics of such a node is shown in Figure 2.12 [353].

All these boards feature a microcontroller belonging to the Atmel family, a simple radio modem
(usually a TR 1000 from RFM), and various connections to the outside. In addition, it is possible to
connect additional “sensor boards” with, for example, barometric or humidity sensors, to the node
as such, enabling a wider range of applications and experiments. Also, specialized enclosures have
been built for use in rough environments, for example, for monitoring bird habitats [534]. Sensors
are connected to the controller via an I2C bus or via SPI, depending on the version.

The MEDUSA-II nodes [670] share the basic components and are quite similar in design.

2.4.2 EYES nodes

The nodes developed by Infineon in the context of the European Union — sponsored project “Energy-
efficient Sensor Networks” (EYES) '3 are another example of a typical sensor node (Figure 2.13). It
is equipped with a Texas Instrument MSP 430 microcontroller, an Infineon radio modem TDA 5250,
along with a SAW filter and transmission power control; the radio modem also reports the measured
signal strength to the controller. The node has a USB interface to a PC and the possibility to add
additional sensors/actuators.

2.4.3 BTnodes

The “Btnodes” [103] have been developed at the ETH Ziirich out of several research projects
(Figure 2.14). They feature an Atmel ATmega 128L microcontroller, 64 + 180 kB RAM, and
128 kB FLASH memory. Unlike most other sensor nodes (but similar to some nodes developed
by Intel), they use Bluetooth as their radio technology in combination with a Chipcon CC1000
operating between 433 and 915 MHz.

2.4.4 Scatterweb

The ScatterWeb platform [694] was developed at the Computer Systems & Telematics group at the
Freie Universitidt Berlin (Figure 2.15). This is an entire family of nodes, starting from a relatively

"' A mote: a small particle, like a mote of dust.
12 http://www.xbow.com
Bhttp://www.eyes.eu.org
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Figure 2.12 Schematics and photograph of a Mica node [353]. Reproduced by permission of ACM

standard sensor node (based on MSP 430 microcontroller) and ranges up to embedded web servers,
which comes equipped with a wide range of interconnection possibilities — apart from Bluetooth
and a low-power radio mode, connections for I2C or CAN are available, for example.

2.4.5 Commercial solutions

Apart from these academic research prototypes, there are already a couple of sensor-node-type
devices commercially available, including appropriate housing, certification, and so on. Some of
these companies include “ember” (www.ember.com) or “Millenial” (www.millenial.net).
The market here is more dynamic than can be reasonably reflected in a textbook and the reader is
encouraged to watch for up-to-date developments.
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Figure 2.13 EYES sensor node. Reproduced by permission of Thomas Lentsch, Infineon

Figure 2.14 Btnode. Reproduced by permission of Jan Beutel, ETH Zurich

2.5 Conclusion

This chapter has introduced the necessary hardware prerequisites for building wireless sensor
networks — the nodes as such. It has shown the principal ways of constructing such nodes and has
shown some numbers on the performance and energy consumption of its main components — mainly
the controller, the communication device, and the sensors. On the basis of these numbers, it will
often be convenient to assume that a wireless sensor node consists of two separate parts [778]: One
part that is continuously vigilant, can detect and report events, and has small or even negligible
power consumption. This is complemented by a second part that performs actual processing and
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Figure 2.15 A ScatterWeb embedded web server. Reproduced by permission of Prof. Dr.-Ing. J. Schiller, FU
Berlin

communication, has higher, nonnegligible power consumption, and has therefore to be operated in
a low duty cycle. This separation of functionalities is justified from the hardware properties as is
it supported by operating systems like TinyOS.

Looking at the large variety of components to choose from, each with their own characteristic
advantages and disadvantages, it is not surprising that there is not a single, “perfect” wireless
sensor node — different application requirements will require different trade-offs to be made and
different architectures to be used. As a consequence, there will be sensor networks that employ a
heterogeneous mix of various node types to fulfill their tasks, for example, nodes with more or less
computation power, different types of wireless communication, or different battery sizes. This can
have consequences on how to design a wireless sensor network by exploiting this heterogeneity in
hardware to assign different tasks to the best-suited nodes.

While much of the work described here is still on-going research or in its prototypical state,
the emerging capabilities of future sensor nodes with respect to communication, computation,
and storage as well as regarding their energy consumption trade-offs are quite apparent already.
The absolute numbers are still subject to change, but it is unlikely that inherent trade-offs, for
example, between the energy required for computation or communication, are going to change
dramatically in the foreseeable future. These trade-offs form the basis for the construction of
networking functionalities, geared toward the specific requirements of wireless sensor network
applications.
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Network architecture

Objectives of this Chapter

This chapter introduces the basic principles of turning individual sensor nodes into a wireless sensor
network. On the basis of the high-level application scenarios of Chapter 1, more concrete scenarios
and the resulting optimization goals of how a network should function are discussed. On the basis
of these scenarios and goals, a few principles for the design of networking protocols in wireless
sensor networks are derived — these principles and the resulting protocol mechanisms constitute
the core differences of WSNs compared to other network types. To make the resulting capabilities
of a WSN usable, a proper service interface is required, as is an integration of WSNs into larger
network contexts.

At the end of this chapter, the reader should be able to appreciate the basic networking “phi-
losophy” followed by wireless sensor network research. Upon this basis, the next part of the book
will then discuss in detail individual networking functionalities.

Chapter Outline
3.1 Sensor network scenarios 60
3.2 Optimization goals and figures of merit 63
3.3 Design principles for WSNs 67
3.4 Service interfaces of WSNs 74
3.5 Gateway concepts 78
3.6 Conclusion 81

The architecture of wireless sensor networks draws upon many sources. Historically, a lot of
related work has been done in the context of self-organizing, mobile, ad hoc networks (references
[635, 793, 827] provide some overview material). While these networks are intended for different
purposes, they share the need for a decentralized, distributed form of organization. From a different
perspective, sensor networks are related to real-time computing [429, 514] and even to some
concepts from peer-to-peer computing [55, 480, 574, 608, 842], active networks [111], and mobile
agents/swarm intelligence [86, 98, 176, 220, 8§92].

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright © 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5
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Consequently, the number of ideas and publications on networking architectures for wireless
sensor networks is vast, and it is often difficult to clearly attribute who first came up with a certain
idea, especially since many of them are fairly obvious extrapolations of ideas from the areas just
mentioned; also, similar concepts have often been proposed more or less concurrently by different
authors. Nonetheless, proper attribution shall be given where possible. A (not necessarily complete)
collection of important architectural papers on wireless sensor networks is [26, 88, 126, 134, 233,
245, 246, 274, 342, 344, 351, 353, 392, 433, 500, 534, 648, 653, 667, 758, 778, 788, 798, 921, 923];
pointers and discussion of architectural issues are also included in practically all overview papers,
for example, [17, 367, 670, 699].

3.1 Sensor network scenarios

3.1.1 Types of sources and sinks

Section 1.3 has introduced several typical interaction patterns found in WSNs — event detection,
periodic measurements, function approximation and edge detection, or tracking — it has also already
briefly touched upon the definition of “sources” and “sinks”. A source is any entity in the network
that can provide information, that is, typically a sensor node; it could also be an actuator node that
provides feedback about an operation.

A sink, on the other hand, is the entity where information is required. There are essentially three
options for a sink: it could belong to the sensor network as such and be just another sensor/actuator
node or it could be an entity outside this network. For this second case, the sink could be an actual
device, for example, a handheld or PDA used to interact with the sensor network; it could also
be merely a gateway to another larger network such as the Internet, where the actual request for
the information comes from some node “far away” and only indirectly connected to such a sensor
network. These main types of sinks are illustrated by Figure 3.1, showing sources and sinks in
direct communication.

For much of the remaining discussion, this distinction between various types of sinks is actually
fairly irrelevant. It is important, as discussed in Section 3.1.4, whether sources or sinks move, but
what they do with the information is not a primary concern of the networking architecture. There
are some consequences of a sink being a gateway node; they will be discussed in Section 3.5.

3.1.2 Single-hop versus multihop networks

From the basics of radio communication and the inherent power limitation of radio communica-
tion follows a limitation on the feasible distance between a sender and a receiver. Because of this
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Figure 3.1 Three types of sinks in a very simple, single-hop sensor network
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Obstacle

Figure 3.2 Multihop networks: As direct communication is impossible because of distance and/or obstacles,
multihop communication can circumvent the problem

limited distance, the simple, direct communication between source and sink is not always possible,
specifically in WSNs, which are intended to cover a lot of ground (e.g. in environmental or agri-
culture applications) or that operate in difficult radio environments with strong attenuation (e.g. in
buildings).

To overcome such limited distances, an obvious way out is to use relay stations, with the
data packets taking multi hops from the source to the sink. This concept of multihop networks
(illustrated in Figure 3.2) is particularly attractive for WSNs as the sensor nodes themselves can
act as such relay nodes, foregoing the need for additional equipment. Depending on the particular
application, the likelihood of having an intermediate sensor node at the right place can actually
be quite high — for example, when a given area has to be uniformly equipped with sensor nodes
anyway — but nevertheless, there is not always a guarantee that such multihop routes from source
to sink exist, nor that such a route is particularly short.

While multihopping is an evident and working solution to overcome problems with large dis-
tances or obstacles, it has also been claimed to improve the energy efficiency of communication.
The intuition behind this claim is that, as attenuation of radio signals is at least quadratic in most
environments (and usually larger), it consumes less energy to use relays instead of direct commu-
nication: When targeting for a constant SNR at all receivers (assuming for simplicity negligible
error rates at this SNR), the radiated energy required for direct communication over a distance d
is cd” (c some constant, o > 2 the path loss coefficient); using a relay at distance d/2 reduces this
energy to 2c(d/2)“.

But this calculation considers only the radiated energy, not the actually consumed energy — in
particular, the energy consumed in the intermediate relay node. Even assuming that this relay
belongs to the WSN and is willing to cooperate, when computing the total required energy it is
necessary to take into account the complete power consumption of Section 2.2.4. It is an easy
exercise to show that energy is actually wasted if intermediate relays are used for short distances d.
Only for large d does the radiated energy dominate the fixed energy costs consumed in transmitter
and receiver electronics — the concrete distance where direct and multihop communication are in
balance depends on a lot of device-specific and environment-specific parameters. Nonetheless,
this relationship is often not considered. In fact, MIN and CHANDRAKASAN [560] classify the
misconception that multihopping saves energy as the number one myth about energy consumption
in wireless communication. Great care should be taken when applying multihopping with the end
of improved energy efficiency.

It should be pointed out that only multihop networks operating in a store and forward fashion
are considered here. In such a network, a node has to correctly receive a packet before it can forward
it somewhere. Alternative, innovative approaches attempt to exploit even erroneous reception of
packets, for example, when multiple nodes send the same packet and each individual transmission
could not be received, but collectively, a node can reconstruct the full packet. Such cooperative
relaying techniques are not considered here.
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Figure 3.3 Multiple sources and/or multiple sinks. Note how in the scenario in the lower half, both sinks and
active sources are used to forward data to the sinks at the left and right end of the network

3.1.3 Multiple sinks and sources

So far, only networks with a single source and a single sink have been illustrated. In many cases,
there are multiple sources and/or multiple sinks present. In the most challenging case, multiple
sources should send information to multiple sinks, where either all or some of the information has
to reach all or some of the sinks. Figure 3.3 illustrates these combinations.

3.1.4 Three types of mobility

In the scenarios discussed above, all participants were stationary. But one of the main virtues of
wireless communication is its ability to support mobile participants. In wireless sensor networks,
mobility can appear in three main forms:

Node mobility The wireless sensor nodes themselves can be mobile. The meaning of such mobility
is highly application dependent. In examples like environmental control, node mobility should
not happen; in livestock surveillance (sensor nodes attached to cattle, for example), it is the
common rule.

In the face of node mobility, the network has to reorganize itself frequently enough to be
able to function correctly. It is clear that there are trade-offs between the frequency and
speed of node movement on the one hand and the energy required to maintain a desired
level of functionality in the network on the other hand.

Sink mobility The information sinks can be mobile (Figure 3.4). While this can be a special case
of node mobility, the important aspect is the mobility of an information sink that is not part
of the sensor network, for example, a human user requested information via a PDA while
walking in an intelligent building.

In a simple case, such a requester can interact with the WSN at one point and complete
its interactions before moving on. In many cases, consecutive interactions can be treated as
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Figure 3.4 A mobile sink moves through a sensor network as information is being retrieved on its behalf

separate, unrelated requests. Whether the requester is allowed interactions with any node or
only with specific nodes is a design choice for the appropriate protocol layers.

A mobile requester is particularly interesting, however, if the requested data is not locally
available but must be retrieved from some remote part of the network. Hence, while the
requester would likely communicate only with nodes in its vicinity, it might have moved to
some other place. The network, possibly with the assistance of the mobile requester, must
make provisions that the requested data actually follows and reaches the requester despite
its movements [758].

Event mobility In applications like event detection and in particular in tracking applications, the

cause of the events or the objects to be tracked can be mobile.

In such scenarios, it is (usually) important that the observed event is covered by a sufficient
number of sensors at all time. Hence, sensors will wake up around the object, engaged
in higher activity to observe the present object, and then go back to sleep. As the event
source moves through the network, it is accompanied by an area of activity within the
network — this has been called the frisbee model, introduced in reference [126] (which also
describes algorithms for handling the “wakeup wavefront™). This notion is described by
Figure 3.5, where the task is to detect a moving elephant and to observe it as it moves
around. Nodes that do not actively detect anything are intended to switch to lower sleep
states unless they are required to convey information from the zone of activity to some
remote sink (not shown in Figure 3.5).

Communication protocols for WSNs will have to render appropriate support for these forms of

mobility. In particular, event mobility is quite uncommon, compared to previous forms of mobile

or wireless networks.

3.2 Optimization goals and figures of merit

For all these scenarios and application types, different forms of networking solutions can be
found. The challenging question is how to optimize a network, how to compare these solu-
tions, how to decide which approach better supports a given application, and how to turn rel-
atively imprecise optimization goals into measurable figures of merit? While a general answer
appears impossible considering the large variety of possible applications, a few aspects are fairly

evident.
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Figure 3.5 Area of sensor nodes detecting an event — an elephant [378] — that moves through the network
along with the event source (dashed line indicate the elephant’s trajectory; shaded ellipse the activity area
following or even preceding the elephant)

3.2.1 Quality of service

WSNs differ from other conventional communication networks mainly in the type of service they
offer. These networks essentially only move bits from one place to another. Possibly, additional
requirements about the offered Quality of Service (QoS) are made, especially in the context of
multimedia applications. Such QoS can be regarded as a low-level, networking-device-observable
attribute — bandwidth, delay, jitter, packet loss rate — or as a high-level, user-observable, so-called
subjective attribute like the perceived quality of a voice communication or a video transmission.
While the first kind of attributes is applicable to a certain degree to WSNs as well (bandwidth,
for example, is quite unimportant), the second one clearly is not, but is really the more important
one to consider! Hence, high-level QoS attributes corresponding to the subjective QoS attributes in
conventional networks are required.

But just like in traditional networks, high-level QoS attributes in WSN highly depend on the
application. Some generic possibilities are:

Event detection/reporting probability What is the probability that an event that actually occurred
is not detected or, more precisely, not reported to an information sink that is interested in
such an event? For example, not reporting a fire alarm to a surveillance station would be a
severe shortcoming.

Clearly, this probability can depend on/be traded off against the overhead spent in setting
up structures in the network that support the reporting of such an event (e.g. routing tables)
or against the run-time overhead (e.g. sampling frequencies).

Event classification error If events are not only to be detected but also to be classified, the error
in classification must be small.

Event detection delay What is the delay between detecting an event and reporting it to any/all
interested sinks?

Missing reports In applications that require periodic reporting, the probability of undelivered
reports should be small.
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Approximation accuracy For function approximation applications (e.g. approximating the temper-
ature as a function of location for a given area), what is the average/maximum absolute or
relative error with respect to the actual function?! Similarly, for edge detection applications,
what is the accuracy of edge descriptions; are some missed at all?

Tracking accuracy Tracking applications must not miss an object to be tracked, the reported
position should be as close to the real position as possible, and the error should be small.
Other aspects of tracking accuracy are, for example, the sensitivity to sensing gaps [923].

3.2.2 Energy efficiency

Much of the discussion has already shown that energy is a precious resource in wireless sensor
networks and that energy efficiency should therefore make an evident optimization goal. It is clear
that with an arbitrary amount of energy, most of the QoS metrics defined above can be increased
almost at will (approximation and tracking accuracy are notable exceptions as they also depend on
the density of the network). Hence, putting the delivered QoS and the energy required to do so into
perspective should give a first, reasonable understanding of the term energy efficiency.

The term “energy efficiency” is, in fact, rather an umbrella term for many different aspects of a
system, which should be carefully distinguished to form actual, measurable figures of merit. The
most commonly considered aspects are:

Energy per correctly received bit How much energy, counting all sources of energy consumption
at all possible intermediate hops, is spent on average to transport one bit of information
(payload) from the source to the destination? This is often a useful metric for periodic
monitoring applications.

Energy per reported (unique) event Similarly, what is the average energy spent to report one
event? Since the same event is sometimes reported from various sources, it is usual to
normalize this metric to only the unique events (redundant information about an already
known event does not provide additional information).

Delay/energy trade-offs Some applications have a notion of “urgent” events, which can justify
an increased energy investment for a speedy reporting of such events. Here, the trade-off
between delay and energy overhead is interesting.

Network lifetime The time for which the network is operational or, put another way, the time
during which it is able to fulfill its tasks (starting from a given amount of stored energy). It
is not quite clear, however, when this time ends. Possible definitions are:

Time to first node death When does the first node in the network run out of energy or fail
and stop operating?

Network half-life When have 50 % of the nodes run out of energy and stopped operating?
Any other fixed percentile is applicable as well.

Time to partition When does the first partition of the network in two (or more) disconnected
parts occur? This can be as early as the death of the first node (if that was in a pivotal
position) or occur very late if the network topology is robust.

! Clearly, this requires assumptions about the function to be approximated; discontinuous functions or functions with unlim-
ited first derivative are impossible to approximate with a finite number of sensors.
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Time to loss of coverage Usually, with redundant network deployment and sensors that can
observe a region instead of just the very spot where the node is located, each point
in the deployment region is observed by multiple sensor nodes. A possible figure of
merit is thus the time when for the first time any spot in the deployment region is no
longer covered by any node’s observations.

If k redundant observations are necessary (for tracking applications, for example), the
corresponding definition of loss of coverage would be the first time any spot in the
deployment region is no longer covered by at least k different sensor nodes.

Time to failure of first event notification A network partition can be seen as irrelevant if
the unreachable part of the network does not want to report any events in the first
place. Hence, a possibly more application-specific interpretation of partition is the
inability to deliver an event. This can be due to an event not being noticed because
the responsible sensor is dead or because a partition between source and sink has
occurred.

It should be noted that simulating network lifetimes can be a difficult statistical problem.

Obviously, the longer these times are, the better does a network perform. More generally, it is
also possible to look at the (complementary) distribution of node lifetimes (with what probability
does a node survive a given amount of time?) or at the relative survival times of a network (at what
time are how many percent of the nodes still operational?). This latter function allows an intuition
about many WSN-specific protocols in that they tend to sacrifice long lifetimes in return for an
improvement in short lifetimes — they “sharpen the drop” (Figure 3.6).

All these metrics can of course only be evaluated under a clear set of assumptions about the
energy consumption characteristics of a given node, about the actual “load” that the network has to
deal with (e.g. when and where do events happen), and also about the behavior of the radio channel.

3.2.3 Scalability

The ability to maintain performance characteristics irrespective of the size of the network is referred
to as scalability. With WSN potentially consisting of thousands of nodes, scalability is an evidently
indispensable requirement. Scalability is ill served by any construct that requires globally consistent
state, such as addresses or routing table entries that have to be maintained. Hence, the need to restrict
such information is enforced by and goes hand in hand with the resource limitations of sensor nodes,
especially with respect to memory.

The need for extreme scalability has direct consequences for the protocol design. Often, a penalty
in performance or complexity has to be paid for small networks as discussed in the following
Section 3.3.1. Architectures and protocols should implement appropriate scalability support rather
than trying to be as scalable as possible. Applications with a few dozen nodes might admit more-
efficient solutions than applications with thousands of nodes; these smaller applications might be
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Figure 3.6 Two probability curves of a node exceeding a given lifetime — the dotted curve trades off better
minimal lifetime against reduced maximum lifetime
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more common in the first place. Nonetheless, a considerable amount of research has been invested
into highly scalable architectures and protocols.

3.2.4 Robustness

Related to QoS and somewhat also to scalability requirements, wireless sensor networks should
also exhibit an appropriate robustness. They should not fail just because a limited number of nodes
run out of energy, or because their environment changes and severs existing radio links between
two nodes — if possible, these failures have to be compensated for, for example, by finding other
routes. A precise evaluation of robustness is difficult in practice and depends mostly on failure
models for both nodes and communication links.

3.3 Design principles for WSNs

Appropriate QoS support, energy efficiency, and scalability are important design and optimization
goals for wireless sensor networks. But these goals themselves do not provide many hints on how to
structure a network such that they are achieved. A few basic principles have emerged, which can be
useful when designing networking protocols; the description here follows partially references [246,
699]. Nonetheless, the general advice to always consider the needs of a concrete application holds
here as well — for each of these basic principles, there are examples where following them would
result in inferior solutions.

3.3.1 Distributed organization

Both the scalability and the robustness optimization goal, and to some degree also the other goals,
make it imperative to organize the network in a distributed fashion. That means that there should
be no centralized entity in charge — such an entity could, for example, control medium access or
make routing decisions, similar to the tasks performed by a base station in cellular mobile networks.
The disadvantages of such a centralized approach are obvious as it introduces exposed points of
failure and is difficult to implement in a radio network, where participants only have a limited
communication range. Rather, the WSNs nodes should cooperatively organize the network, using
distributed algorithms and protocols. Self-organization is a commonly used term for this principle.

When organizing a network in a distributed fashion, it is necessary to be aware of potential
shortcomings of this approach. In many circumstances, a centralized approach can produce solutions
that perform better or require less resources (in particular, energy). To combine the advantages,
one possibility is to use centralized principles in a localized fashion by dynamically electing, out
of the set of equal nodes, specific nodes that assume the responsibilities of a centralized agent, for
example, to organize medium access. Such elections result in a hierarchy, which has to be dynamic:
The election process should be repeated continuously lest the resources of the elected nodes be
overtaxed, the elected node runs out of energy, and the robustness disadvantages of such — even only
localized — hierarchies manifest themselves. The particular election rules and triggering conditions
for reelection vary considerably, depending on the purpose for which these hierarchies are used.
Chapter 10 will, to a large degree, deal with the question of how to determine such hierarchies in
a distributed fashion.

3.3.2 In-network processing

When organizing a network in a distributed fashion, the nodes in the network are not only passing
on packets or executing application programs, they are also actively involved in taking decisions
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about how to operate the network. This is a specific form of information processing that happens
in the network, but is limited to information about the network itself. It is possible to extend this
concept by also taking the concrete data that is to be transported by the network into account in
this information processing, making in-network processing a first-rank design principle.

Several techniques for in-network processing exist, and by definition, this approach is open to
an arbitrary extension — any form of data processing that improves an application is applicable. A
few example techniques are outlined here; they will reappear in various of the following chapters,
especially in Chapter 12.

Aggregation

Perhaps the simplest in-network processing technique is aggregation. Suppose a sink is interested
in obtaining periodic measurements from all sensors, but it is only relevant to check whether the
average value has changed, or whether the difference between minimum and maximum value is
too big. In such a case, it is evidently not necessary to transport are readings from all sensors to the
sink, but rather, it suffices to send the average or the minimum and maximum value. Recalling from
Section 2.3 that transmitting data is considerably more expensive than even complex computation
shows the great energy-efficiency benefits of this approach. The name aggregation stems from
the fact that in nodes intermediate between sources and sinks, information is aggregated into a
condensed form out of information provided by nodes further away from the sink (and potentially,
the aggregator’s own readings).

Clearly, the aggregation function to be applied in the intermediate nodes must satisfy some
conditions for the result to be meaningful; most importantly, this function should be composable.
A further classification [528] of aggregate functions distinguishes duplicate-sensitive versus insen-
sitive, summary versus exemplary, monotone versus nonmonotone, and algebraic versus holistic
(a more detailed discussion can be found in Section 12.3). Functions like average, counting, or
minimum can profit a lot from aggregation; holistic functions like the median are not amenable to
aggregation at all.

Figure 3.7 illustrates the idea of aggregation. In the left half, a number of sensors transmit
readings to a sink, using multihop communication. In total, 13 messages are required (the numbers
in the figure indicate the number of messages traveling across a given link). When the highlighted
nodes perform aggregation — for example, by computing average values (shown in the right half
of the figure) — only 6 messages are necessary.

Challenges in this context include how to determine where to aggregate results from which
nodes, how long to wait for such results, and determining the impact of lost packets.

“‘ﬂ“m o
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Figure 3.7 Aggregation example

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

Design principles for WSNs 69

Distributed source coding and distributed compression

Aggregation condenses and sacrifices information about the measured values in order not to have
to transmit all bits of data from all sources to the sink. Is it possible to reduce the number of
transmitted bits (compared to simply transmitting all bits) but still obtain the full information about
all sensor readings at the sink?

While this question sounds surprising at first, it is indeed possible to give a positive answer. It is
related to the coding and compression problems known from conventional networks, where a lot of
effort is invested to encode, for example, a video sequence, to reduce the required bandwidth [901].
The problem here is slightly different, in that we are interested to encode the information provided
by several sensors, not just by a single camera; moreover, traditional coding schemes tend to put
effort into the encoding, which might be too computationally complex for simple sensor nodes.

How can the fact that information is provided by multiple sensors be exploited to help in
coding? If the sensors were connected and could exchange their data, this would be conceivable
(using relatively standard compression algorithms), but of course pointless. Hence, some implicit,
joint information between two sensors is required. Recall here that these sensors are embedded in
a physical environment — it is quite likely that the readings of adjacent sensors are going to be
quite similar; they are correlated. Such correlation can indeed be exploited such that not simply
the sum of the data must be transmitted but that overhead can be saved here. The theoretical basis
is the theorem by SLEPIAN and WOLF [774], which carries their name. Good overview papers are
references [653, 901].

Slepian-Wolf theorem—based work is an example of exploiting spatial correlation that is com-
monly present in sensor readings, as long as the network is sufficiently dense, compared to the
derivate of the observed function and the degree of correlation between readings at two places.
Similarly, temporal correlation can be exploited in sensor network protocols.

Distributed and collaborative signal processing

The in-networking processing approaches discussed so far have not really used the ability for
processing in the sensor nodes, or have only used this for trivial operations like averaging or
finding the maximum. When complex computations on a certain amount of data is to be done,
it can still be more energy efficient to compute these functions on the sensor nodes despite their
limited processing power, if in return the amount of data that has to be communicated can be
reduced.

An example for this concept is the distributed computation of a Fast Fourier Transform (FFT)
[152]. Depending on where the input data is located, there are different algorithms available to
compute an FFT in a distributed fashion, with different trade-offs between local computation com-
plexity and the need for communication. In principle, this is similar to algorithm design for parallel
computers. However, here not only the latency of communication but also the energy consumption
of communication and computation are relevant parameters to decide between various algorithms.

Such distributed computations are mostly applicable to signal processing type algorithms; typical
examples are beamforming and target tracking applications. ZHAO and GUIBAS [924] provide a good
overview of this topic.

Mobile code/Agent-based networking

With the possibility of executing programs in the network, other programming paradigms or compu-
tational models are feasible. One such model is the idea of mobile code or agent-based networking.
The idea is to have a small, compact representation of program code that is small enough to be
sent from node to node. This code is then executed locally, for example, collecting measurements,
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and then decides where to be sent next. This idea has been used in various environments; a classic
example is that of a software agent that is sent out to collect the best possible travel itinerary by
hopping from one travel agent’s computer to another and eventually returning to the user who has
posted this inquiry. There is a vast amount of literature available on mobile code/software agents in
general, see, for example, references [98, 176, 892]. A newer take on this approach is to consider
biologically inspired systems, in particular, the swarm intelligence of groups of simple entities,
working together to reach a common goal [86, 220].

In wireless sensor networks, mobile agents and related concepts have been considered in various
contexts, mostly with respect to routing of queries and for data fusion; see, for example, references
[96, 99, 207, 663, 664, 665, 829]. Also, virtual machines for WSNs have been proposed that have
a native language that admits a compact representation of the most typical operations that mobile
code in a WSN would execute, allowing this code to be small [481].

3.3.3 Adaptive fidelity and accuracy

Section 2.3.4 has already discussed, in the context of a single node, the notion of making the
fidelity of computation results contingent upon the amount of energy available for that particular
computation. This notion can and should be extended from a single node to an entire network
[246].

As an example, consider a function approximation application. Clearly, when more sensors
participate in the approximation, the function is sampled at more points and the approximation
is better. But in return for this, more energy has to be invested. Similar examples hold for event
detection and tracking applications and in general for WSNs.

Hence, it is up to an application to somehow define the degree of accuracy of the results
(assuming that it can live with imprecise, approximated results) and it is the task of the com-
munication protocols to try to achieve at least this accuracy as energy efficiently as possible.
Moreover, the application should be able to adapt its requirements to the current status of the
network — how many nodes have already failed, how much energy could be scavenged from the
environment, what are the operational conditions (have critical events happened recently), and so
forth. Therefore, the application needs feedback from the network about its status to make such
decisions.

But as already discussed in the context of WSN-specific QoS metrics, the large variety of WSN
applications makes it quite challenging to come up with a uniform interface for expressing such
requirements, let alone with communication protocols that implement these decisions. This is still
one of the core research problems of WSN.

3.3.4 Data centricity
Address data, not nodes

In traditional communication networks, the focus of a communication relationship is usually the
pair of communicating peers — the sender and the receiver of data. In a wireless sensor network,
on the other hand, the interest of an application is not so much in the identity of a particular sensor
node, it is much rather in the actual information reported about the physical environment. This
is especially the case when a WSN is redundantly deployed such that any given event could be
reported by multiple nodes — it is of no concern to the application precisely which of these nodes
is providing data. This fact that not the identity of nodes but the data are at the center of attention
is called data-centric networking. For an application, this essentially means that an interface is
exposed by the network where data, not nodes, is addressed in requests. The set of nodes that
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is involved in such a data-centric address is implicitly defined by the property that a node can
contribute data to such an address.

As an example, consider the elephant-tracking example from Figure 3.5. In a data-centric appli-
cation, all the application would have to do is state its desire to be informed about events of a
certain type — “presence of elephant” — and the nodes in the network that possess “elephant detec-
tors” are implicitly informed about this request. In an identity-centric network, the requesting node
would have to find out somehow all nodes that provide this capability and address them explicitly.
As another example, it is useful to consider the location of nodes as a property that defines whether
a node belongs to a certain group or not. The typical example here is the desire to communicate
with all nodes in a given area, say, to retrieve the (average) temperature measured by all nodes in
the living room of a given building.

Data-centric networking allows very different networking architectures compared to traditional,
identity-centric networks. For one, it is the ultimate justification for some in-network processing
techniques like data fusion and aggregation. Data-centric addressing also enables simple expressions
of communication relationships — it is no longer necessary to distinguish between one-to-one, one-
to-many, many-to-one, or many-to-many relationships as the set of participating nodes is only
implicitly defined. In addition to this decoupling of identities, data-centric addressing also supports
a decoupling in time as a request to provide data does not have to specify when the answer should
happen — a property that is useful for event-detection applications, for example.

Apart from providing a more natural way for an application to express its requirements, data-
centric networking and addressing is also claimed to improve performance and especially energy
efficiency of a WSN. One reason is the hope that data-centric solutions scale better by being
implementable using purely local information about direct neighbors. Another reason could be the
easier integration of a notion of adaptive accuracy into a data-centric framework as the data as
well as its desired accuracy can be explicitly expressed — it is not at all clear how stating accuracy
requirements in an identity-centric network could even be formulated, let alone implemented. But
this is still an objective of current research.

Implementation options for data-centric networking

There are several possible ways to make this abstract notion of data-centric networks more concrete.
Each way implies a certain set of interfaces that would be usable by an application. The three most
important ones are briefly sketched here and partially discussed in more detail in later chapters.

Overlay networks and distributed hash tables

There are some evident similarities between well-known peer-to-peer applications [55, 480, 574,
608, 842] like file sharing and WSN: In both cases, the user/requester is interested only in looking
up and obtaining data, not in its source; the request for data and its availability can be decoupled
in time; both types of networks should scale to large numbers.

In peer-to-peer networking, the solution for an efficient lookup of retrieval of data from an
unknown source is usually to form an overlay network, implementing a Distributed Hash Table
(DHT) [686, 704, 792, 922]. The desired data can be identified via a given key (a hash) and the
DHT will provide one (or possibly several) sources for the data associated with this key. The crucial
point is that this data source lookup can be performed efficiently, requiring O (logn) steps where n
is the number of nodes, even with only distributed, localized information about where information
is stored in the peer-to-peer network.

Despite these similarities, there are some crucial differences. First of all, it is not clear how the
rather static key of a DHT would correspond to the more dynamic, parameterized requests in a WSN.
Second, and more importantly, DHTs, coming from an IP-networking background, tend to ignore
the distance/the hop count between two nodes and consider nodes as adjacent only on the basis

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

72 Network architecture

of semantic information about their stored keys. This hop-count-agnostic behavior is unacceptable
for WSNs where each hop incurs considerable communication overhead. There is some on-going
work on taking the topology of the underlying network also into account [460, 683, 846] or the
position of nodes [685, 760] when constructing the overlay network, but the applicability of this
work to WSN is still open. Chapter 12 will deal with these approaches in more detail.

Publish/Subscribe

The required separation in both time and identity of a sink node asking for information and the
act of providing this information is not well matched with the synchronous characteristics of a
request/reply protocol. What is rather necessary is a means to express the need for certain data and
the delivery of the data, where the data as such is specified and not the involved entities.

This behavior is realized by the publish/subscribe approach [251]: Any node interested in a
given kind of data can subscribe to it, and any node can publish data, along with information
about its kind as well. Upon a publication, all subscribers to this kind of data are notified of the
new data. The elephant example is then easily expressed by sink nodes subscribing to the event
“elephant detected”; any node that is detecting an elephant can then, at any later time, publish this
event. If a subscriber is no longer interested, it can simply unsubscribe from any kind of event
and will no longer be notified of such events. Evidently, subscription and publication can happen
at different points in time and the identities of subscribers and publishers do not have to be known
to each other.

Implementing this abstract concept of publishing and subscribing to information can be done
in various ways. One possibility is to use a central entity where subscriptions and publications
are matched to each other, but this is evidently inappropriate for WSNs. A distributed solution is
preferable but considerably more complicated.

Also relevant is the expressiveness of the data descriptions (their “names”) used to match pub-
lications and subscriptions. A first idea is to use explicit subjects or keywords as names, which
have to be defined up front — published data only matches to subscriptions with the same keyword
(like in the “elephant detected” example above). This subject-based approach can be extended into
hierarchical schemes where subjects are arranged in a tree; a subscription to a given subject then
also implies interest in any descendent subjects. A more general naming scheme allows to formu-
late the matching condition between subscriptions and publications as general predicates over the
content of the publication and is hence referred to as content-based publish/subscribe approach
(see e.g. reference [123] and the references therein for an introduction and overview).

In practice, general predicates on the content are somewhat clumsy to handle and restricted
expressions (also called filters) of the form (attribute, value, operator) are preferable,
where attribute corresponds to the subjects from above (e.g. temperature) and can assume
values, value is a concrete value like "25°C" or a placeholder (ALL or ANY), and operatorisa
relational operator like “=", “<”, “<”. Moreover, this formalism also lends itself very conveniently
to the expression of accuracy requirements or periodic measurement support.

The question remains where to send publication and subscription messages if a decentralized
approach is chosen — simply flooding all messages evidently defeats the purpose. MUHL et al.
[576] give an overview of various approaches, for example, flooding the subscriptions or exploiting
information contained in the content-based filters to limit propagation of messages [121, 122, 575].

Publish/subscribe networking is a very popular approach for WSN. In fact, some of the most
popular protocols are incarnations of this principle and are discussed in detail in Part II, in particular
in Chapter 12.

Databases
A somewhat different view on WSN is to consider them as (dynamic) databases [269, 303, 374, 887].
This view matches very well with the idea of using a data-centric organization of the networking
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protocols. Being interested in certain aspects of the physical environment that is surveyed by a
WSN is equivalent to formulating queries for a database.

To cast the sensor networks into the framework of relational databases, it is useful to regard
the sensors as a virtual table to which relational operators can be applied. Then, extracting the
average temperature reading from all sensors in a given room can be simply written as shown in
Listing 3.1 [528] — it should come as no surprise to anybody acquainted with the Standard Query
Language (SQL).

Listing 3.1: Example of an SQL-based request for sensor readings [528]

SELECT AVG (temperature)
FROM sensors
WHERE location = "Room 123"

Such SQL-based querying of a WSN can be extended to an easy-to-grasp interface to wireless
sensor networks, being capable of expressing most salient interaction patterns with a WSN. It is,
however, not quite as clear how to translate this interface into actual networking protocols that
implement this interface and can provide the results for such queries. In a traditional relational
database, this implementation of a query is done by determining an execution plan; the same is
necessary here. Here, however, the execution plan has to be distributed and has to explicitly take
communication costs into account.

3.3.5 Exploit location information

Another useful technique is to exploit location information in the communication protocols when-
ever such information is present. Since the location of an event is a crucial information for many
applications, there have to be mechanisms that determine the location of sensor nodes (and possibly
also that of observed events) — they are discussed in detail in Chapter 9. Once such informa-
tion is available, it can simplify the design and operation of communication protocols and can
improve their energy efficiency considerably. We shall see various examples in different protocols
in Part II.

3.3.6 Exploit activity patterns

Activity patterns in a wireless sensor network tend to be quite different from traditional networks.
While it is true that the data rate averaged over a long time can be very small when there is only
very rarely an event to report, this can change dramatically when something does happen. Once
an event has happened, it can be detected by a larger number of sensors, breaking into a frenzy
of activity, causing a well-known event shower effect. Hence, the protocol design should be able
to handle such bursts of traffic by being able to switch between modes of quiescence and of high
activity.

3.3.7 Exploit heterogeneity

Related to the exploitation of activity patterns is the exploitation of heterogeneity in the network.
Sensor nodes can be heterogenous by constructions, that is, some nodes have larger batteries,
farther-reaching communication devices, or more processing power. They can also be heterogenous
by evolution, that is, all nodes started from an equal state, but because some nodes had to perform
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more tasks during the operation of the network, they have depleted their energy resources or other
nodes had better opportunities to scavenge energy from the environment (e.g. nodes in shade are
at a disadvantage when solar cells are used).

Whether by construction or by evolution, heterogeneity in the network is both a burden and
an opportunity. The opportunity is in an asymmetric assignment of tasks, giving nodes with more
resources or more capabilities the more demanding tasks. For example, nodes with more mem-
ory or faster processors can be better suited for aggregation, nodes with more energy reserves for
hierarchical coordination, or nodes with a farther-reaching radio device should invest their energy
mostly for long-distance communication, whereas, shorter-distance communication can be under-
taken by the other nodes. The burden is that these asymmetric task assignments cannot usually
be static but have to be reevaluated as time passes and the node/network state evolves. Task reas-
signment in turn is an activity that requires resources and has to be balanced against the potential
benefits.

3.3.8 Component-based protocol stacks and cross-layer optimization

Finally, a consideration about the implementation aspects of communication protocols in WSNs
is necessary. Section 2.3.3 has already made the case for a component-based as opposed to a
layering-based model of protocol implementation in WSN. What remains to be defined is mainly
a default collection of components, not all of which have to be always available at all times
on all sensor nodes, but which can form a basic “toolbox™ of protocols and algorithms to build
upon.

In fact, most of the chapters of Part II are about such building blocks. All wireless sensor net-
works will require some — even if only simple — form of physical, MAC and link layer® protocols;
there will be wireless sensor networks that require routing and transport layer functionalities. More-
over, “helper modules” like time synchronization, topology control, or localization can be useful.
On top of these “basic” components, more abstract functionalities can then be built. As a conse-
quence, the set of components that is active on a sensor node can be complex, and will change
from application to application.

Protocol components will also interact with each other in essentially two different ways [330].
One is the simple exchange of data packets as they are passed from one component to another
as it is processed by different protocols. The other interaction type is the exchange of cross-layer
information.

This possibility for cross-layer information exchange holds great promise for protocol opti-
mization, but is also not without danger. Kawabpia and Kumar [412], for example, argue that
imprudent use of cross-layer designs can lead to feedback loops, endangering both functionality
and performance of the entire system. Clearly, these concerns should not be easily disregarded and
care has to be taken to avoid such unexpected feedback loops.

3.4 Service interfaces of WSNs

3.4.1 Structuring application/protocol stack interfaces

Looking at Section 2.3’s discussion of a component-based operating system and protocol stack
already enables one possibility to treat an application: It is just another component that can directly
interact with other components using whatever interface specification exists between them (e.g. the
command/event structure of TinyOS). The application could even consist of several components,

2 While these components do not form a layer in the strict sense of the word, it will still be useful to refer to the corresponding
functionality as that of a, say, “physical layer”.
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integrated at various places into the protocol stack. This approach has several advantages: It is
streamlined with the overall protocol structure, makes it easy to introduce application-specific code
into the WSN at various levels, and does not require the definition of an abstract, specific service
interface. Moreover, such a tight integration allows the application programmer a very fine-grained
control over which protocols (which components) are chosen for a specific task; for example, it is
possible to select out of different routing protocols the one best suited for a given application by
accessing this component’s services.

But this generality and flexibility is also the potential downside of this approach. The allowing of
the application programmer to mess with protocol stacks and operating system internals should not
be undertaken carelessly. In traditional networks such as the Internet, the application programmer
can access the services of the network via a commonly accepted interface: sockets [791]. This
interface makes clear provisions on how to handle connections, how to send and receive packets,
and how to inquire about state information of the network.? This clarity is owing to the evident tasks
that this interface serves — the exchange of packets with one (sometimes, several) communication
peers.

Therefore, there is the design choice between treating the application as just another component or
designing a service interface that makes all components, in their entirety, accessible in a standardized
fashion. These two options are outlined by Figure 3.8. A service interface would allow to raise
the level of abstraction with which an application can interact with the WSN — instead of having
to specify which value to read from which particular sensor, it might be desirable to provide an
application with the possibility to express sensing tasks in terms that are close to the semantics
of the application. In this sense, such a service interface can hide considerable complexity and is
actually conceivable as a “middleware” in its own right.

Clearly, with a tighter integration of the application into the protocol stack, a broader optimiza-
tion spectrum is open to the application programmer. On the downside, more experience will be
necessary than when using a standardized service interface. The question is therefore on the one
hand the price of standardization with respect to the potential loss of performance and on the other
hand, the complexity of the service interface.

In fact, the much bigger complexity and variety of communication patterns in wireless sensor
networks compared to Internet networks makes a more expressive and potentially complex service
interface necessary. To better understand this trade-off, a clearer understanding of expressibility
requirements of such an interface is necessary.

Application

‘ Hardware abstraction ‘ ‘ Hardware abstraction ‘

Figure 3.8 Two options for interfacing an application to a protocol stack: As just another component or via
a deliberately designed, general service interface

31t is certainly correct to argue that the socket interface has its shortcomings and open issues, especially with regard to
wireless communication. But these issues are mostly related to the wish to access lower-layer information, for example, received
signal strength information, which is not directly exposed by the interface, but only via various, nonstandard workarounds.
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3.4.2 Expressibility requirements for WSN service interfaces

The most important functionalities that a service interface should expose include:

e Support for simple request/response interactions: retrieving a measured value from some sensor
or setting a parameter in some node. This is a synchronous interaction pattern in the sense that
the result (or possibly the acknowledgment) is expected immediately. In addition, the responses
can be required to be provided periodically, supporting periodic measurement-type applications.

e Support for asynchronous event notifications: a requesting node can require the network to inform

it if a given condition becomes true, for example, if a certain event has happened. This is an
asynchronous pattern in the sense that there is no a priori relationship between the time the
request is made and the time the information is provided.
This form of asynchronous requests should be accompanied by the possibility to cancel the
request for information. It can be further refined by provisions about what should happen after
the condition becomes true; a typical example is to request periodic reporting of measured values
after an event.

e For both types of interactions, the addressees should be definable in several ways. The simplest
option is an explicit enumeration of the single or multiple communication peers to whom a
(synchronous or asynchronous) request is made — this corresponds to the peer address in a socket
communication.

More interesting is the question of how to express data centricity. One option, closely related to
the publish/subscribe approach discussed in Section 3.3.4, is the implicit definition of peers by
some form of a membership function of an abstract group of nodes. Possible examples for such
membership functions include:

e Location — all nodes that are in a given region of space belong to a group.

e Observed value — all nodes that have observed values matching a given predicate belong to a
group. An example would be to require the measured temperature to be larger than 20°C.
Along with these groups, the usual set-theoretic operations of intersection, union, or difference

between groups should be included in the service interface as well.
Because of this natural need for a service interface semantics that corresponds to the publish/
subscribe concept, this approach is a quite natural, but not the only possible, fit with WSNs.

e In-networking processing functionality has to be accessible. For an operation that accesses an
entire group of nodes, especially when reading values from this group (either synchronously or
asynchronously), it should be possible to specify what kind of in-network processing should be
applied to it. In particular, processing that modifies the nature of the result (i.e., data fusion)
must be explicitly allowed by the requesting application.

In addition, it can be desirable for an application to be able to infuse its own in-network processing
functions into the network. For example, a new aggregation function could be defined or a specific
mobile agent has to be written by the application programmer anyway.

In-network processing and application-specific code may also be useful to detect complex events:
events that cannot be detected locally, by a single sensor, but for which data has to be exchanged
between sensors.

e Related to the specification of aggregation functions is the specification of the required accuracy
of a result. This can take on the form of specifying bounds on the number of group members
that should contribute to a result, or the level of compression that should be applied. Hand in
hand with required accuracy goes the acceptable energy expenditure to produce a given piece of
information.

e Timeliness requirements about the delivery of data is a similar aspect. For example, it may be
possible to provide a result quickly but at higher energy costs (e.g. by forcing nodes to wake
up earlier than they would wake up anyway) or slowly but at reduced energy costs (e.g. by
piggy-backing information on other data packets that have to exchanged anyway).
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In general, any trade-offs regarding the energy consumption of any possible exchange of data
packets should be made explicit as far as possible.

e The need to access location, timing, or network status information (e.g. energy reserves available

in the nodes or the current rate of energy scavenging) via the service interface.
It may also be useful to agglomerate location information into higher-level abstractions to be
able to talk about objects that correspond to a human view of things, for example, “room 123”.
Similarly, facts like the administrative entity a sensor network belongs to can be practically
important [751].

e To support the seamless connection of various nodes or entire networks as well as the simple
access to services in an “unknown” network, there is a need for an explicit description of the
set of available capabilities of the node/the network — for example, which physical parameters
can be observed or which entities can be controlled. SGror et al. [751] argue for a “concept
repository” for this purpose.

e Security requirements as well as properties have be somehow expressed.

e While not a direct part of an actual service interface, additional management functionality, for
example, for updating components, can be convenient to be present in the interface as well.

To avoid confusion, it is worthwhile to point out that the design of synchronous or asyn-
chronous interface semantics has very little to do with a blocking or nonblocking design of the
actual service invocation. It is, for example, easy to implement an asynchronous semantics with
blocking invocations as long as the operating system provides threads. These really are separate
issues.

3.4.3 Discussion

Evidently, the wealth of options that a general-purpose interface to WSNs would have to offer is
vast. Looking at the overall picture, three key issues — data centricity, trade-offs against energy,
and accuracy — make these networks quite different from all existing network types and how to
offer them in a convenient service interface to an application programmer is anything but clear. It
is hence perhaps not so surprising that there has only been relatively little work on a systematic
approach to service interfaces for WSN.

One attempt has been undertaken by ScGror et al. [751], who start from a relatively conserva-
tive client/server interface paradigm and use it to arrange a “query manager” and a “command
interface”, embellished by additional sets of parameters. While their parameter sets are rela-
tively extensive and can incorporate most of the issues above, it is not clear that this API can
indeed support all types of programming models in WSNs. It is, in particular, unclear how
to extend in-network processing functionalities (e.g. write new aggregation functions) based on
their API, how to control energy trade-offs, or how to select from an application one out of
several components that are suitable for a given tasks (e.g. select one of several routing
protocols).

Some of the candidates for data centricity, in particular, publish/subscribe and databases, are
relatively close to meeting all these requirements for a service interface, but all of them still need
extensions. The publish/subscribe interface, for example, can be extended by subscriptions that
express accuracy and tasking aspects. Akin to publish/subscribe is the notion of events where an
application can express interests in single events or in certain complex events. One example is the
DSWare system [490]. Also, the database approach appears promising.

On the basis of the idea of mobile agents, the SensorWare system [96] provides a set of simple
commands, in particular, query, send, wait, value, and replicate. These commands allow
mobile code to send itself to some other node, to replicate it into the network by sending itself
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to the “children” of a node, or to wait for the results returned from these children. This provides
considerable flexibility, but is still a fairly low level of programming.

One example for a highly application-specific way of defining service requests is EnviroTrack
[2], which is specialized to the tracking of mobile objects. It allows to define ‘“contexts” for
certain tracking tasks, which have activation functions and “reporting” objects, resulting in an
extremely compact expression of the service request, which then has to be transformed into concrete
interactions of sensor nodes.

As one example for another research approach, consider the attempt to model the behavior
and characteristics of sensor networks as a set of Unified Modeling Language (UML) schemes,
resulting in the “Sensor Modeling Language” (SensorML) [749]. As this effort is driven by specific
application requirements (geosciences and earth-observing satellites), it concentrates mostly on the
description of the capabilities of individual sensors, but makes provisions to express, for example,
accuracy and data processing. The big advantage here is the potential to describe the “meaning” of
measured parameters explicitly. Another example for such an approach is to use the DARPA Agent
Markup Language (DAML) as an explicit description language for the capabilities of heterogeneous
sensors [384]. How such UML-based concepts could be applied to entire networks is, however,
completely open.

Looking at the high complexity of service interfaces necessary to harness all the possible options
and requirements of how an application might want to interact with a protocol stack, it is rather
questionable whether the existing, quite heavy-weight, but still limited, proposals for service inter-
faces are the last word on the topic. A better understanding in structuring this interaction is still
necessary. Moreover, the price to pay in performance optimization when using a predefined ser-
vice interface still has to be weighted against the danger of inexperienced application programmers
messing with the protocol stack’s internals.

3.5 Gateway concepts
3.5.1 The need for gateways

For practical deployment, a sensor network only concerned with itself is insufficient. The network
rather has to be able to interact with other information devices, for example, a user equipped with a
PDA moving in the coverage area of the network or with a remote user, trying to interact with the
sensor network via the Internet (the standard example is to read the temperature sensors in one’s
home while traveling and accessing the Internet via a wireless connection). Figure 3.9 shows this
networking scenario.

To this end, the WSN first of all has to be able to exchange data with such a mobile device or with
some sort of gateway, which provides the physical connection to the Internet. This is relatively
straightforward on the physical, MAC, and link layer — either the mobile device/the gateway is
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Figure 3.9 A wireless sensor network with gateway node, enabling access to remote clients via the Internet
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equipped with a radio transceiver as used in the WSN, or some (probably not all) nodes in the WSN
support standard wireless communication technologies such as IEEE 802.11. Either option can be
advantageous, depending on the application and the typical use case. Possible trade-offs include the
percentage of multitechnology sensor nodes that would be required to serve mobile users in com-
parison with the overhead and inconvenience to fit WSN transceivers to mobile devices like PDAs.

The design of gateways becomes much more challenging when considering their logical design.
One option to ponder is to regard a gateway as a simple router between Internet and sensor network.
This would entail the use of Internet protocols within the sensor network. While this option has
been considered as well [215] and should not be disregarded lightly, it is the prevalent consensus
that WSNs will require specific, heavily optimized protocols. Thus, a simple router will not suffice
as a gateway.

The remaining possibility is therefore to design the gateway as an actual application-level gate-
way: on the basis of the application-level information, the gateway will have to decide its action. A
rough distinction of the open problems can be made according to from where the communication
is initiated.

3.5.2 WSN to Internet communication

Assume that the initiator of a WSN—Internet communication resides in the WSN (Figure 3.10) — for
example, a sensor node wants to deliver an alarm message to some Internet host. The first problem
to solve is akin to ad hoc networks, namely, how to find the gateway from within the network.
Basically, a routing problem to a node that offers a specific service has to be solved, integrating
routing and service discovery [139, 420, 435, 696, 799].

If several such gateways are available, how to choose between them? In particular, if not all
Internet hosts are reachable via each gateway or at least if some gateway should be preferred for
a given destination host? How to handle several gateways, each capable of IP networking, and the
communication among them? One option is to build an IP overlay network on top of the sensor
network [946].

How does a sensor node know to which Internet host to address such a message? Or even worse,
how to map a semantic notion (“Alert Alice”) to a concrete IP address? Even if the sensor node does
not need to be able to process the IP protocol, it has to include sufficient information (IP address
and port number, for example) in its own packets; the gateway then has to extract this information
and translate it into IP packets. An ensuing question is which source address to use here — the
gateway in a sense has to perform tasks similar to that of a Network Address Translation (NAT)
device [225].

Alert Alice

Alice’s desktop
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\m Q)
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w—— e ml Mo
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nodes

Alice’s PDA

Figure 3.10 An event notification to “Alice” needs decisions about, among others, gateway choice, mapping
“Alice” to a concrete IP address, and translating an intra-WSN event notification message to an Internet
application message
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Figure 3.11 Requesting sensor network information from a remote terminal entails choices about which
network to address, which gateway node of a given network, and how and where to adapt application-layer
protocol in the Internet to WSN-specific protocols

3.5.3 Internet to WSN communication

The case of an Internet-based entity trying to access services of a WSN is even more challenging
(Figure 3.11). This is fairly simple if this requesting terminal is able to directly communicate with
the WSN, for example, a mobile requester equipped with a WSN transceiver, and also has all the
necessary protocol components at its disposal. In this case, the requesting terminal can be a direct
part of the WSN and no particular treatment is necessary.

The more general case is, however, a terminal “far away” requesting the service, not immediately
able to communicate with any sensor node and thus requiring the assistance of a gateway node.
First of all, again the question of service discovery presents itself — how to find out that there
actually is a sensor network in the desired location, and how to find out about the existence of a
gateway node?

Once the requesting terminal has obtained this information, how to access the actual services?
Clearly, addressing an individual sensor (like addressing a communication peer in a traditional
Internet application) both goes against the grain of the sensor network philosophy where an indi-
vidual sensor node is irrelevant compared to the data that it provides and is impossible if a sensor
node does not even have an IP address.

The requesting terminal can instead send a properly formatted request to this gateway, which
acts as an application-level gateway or a proxy for the individual/set of sensor nodes that can
answer this request; the gateway translates this request into the proper intrasensor network protocol
interactions. This assumes that there is an application-level protocol that a remote requester and
gateway can use and that is more suitable for communication over the Internet than the actual sensor
network protocols and that is more convenient for the remote terminal to use. The gateway can
then mask, for example, a data-centric data exchange within the network behind an identity-centric
exchange used in the Internet.

It is by no means clear that such an application-level protocol exists that represents an actual
simplification over just extending the actual sensor network protocols to the remote terminal, but
there are some indications in this direction. For example, it is not necessary for the remote terminal
to be concerned with maintaining multihop routes in the network nor should it be considered as “just
another hop” as the characteristics of the Internet connection are quite different from a wireless hop.

In addition, there are some clear parallels for such an application-level protocol with so-called
Web Service Protocols, which can explicitly describe services and the way they can be accessed. The
Web Service Description Language (WSDL) [166], in particular, can be a promising starting point
for extension with the required attributes for WSN service access — for example, required accuracy,
energy trade-offs, or data-centric service descriptions. Moreover, the question arises as to how to
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Figure 3.12 Connecting two WSNs with a tunnel over the Internet

integrate WSN with general middleware architectures [699] or how to make WSN services acces-
sible from, say, a standard Web browser (which should be an almost automatic by-product of using
WSDL and related standards in the gateway). However, research here is still in its early infancy
[384, 508, 656]. Also, once a general-purpose service interface to WSNs is commonly accepted
(such as [751]), this will have a clear impact on how to access WSN services from afar as well.

3.5.4 WSN tunneling

In addition to these scenarios describing actual interactions between a WSN and Internet terminals,
the gateways can also act as simple extensions of one WSN to another WSN. The idea is to build a
larger, “virtual” WSN out of separate parts, transparently “tunneling” all protocol messages between
these two networks and simply using the Internet as a transport network (Figure 3.12) [751]. This
can be attractive, but care has to be taken not to confuse the virtual link between two gateway
nodes with a real link; otherwise, protocols that rely on physical properties of a communication
link can get quite confused (e.g. time synchronization or localization protocols).

Such tunnels need not necessarily be in the form of fixed network connections; even mobile
nodes carried by people can be considered as means for intermediate interconnection of WSNs
[292]. FaLL [252] also studies a similar problem in a more general setting.

3.6 Conclusion

The main conclusion to draw from this chapter is the fact that wireless sensor networks and their
networking architecture will have many different guises and shapes. For many applications, but by
no means all, multihop communication is the crucial enabling technology, and most of the WSN
research as well as the following part of this book are focused on this particular form of wireless
networking.

Four main optimization goals — WSN-specific forms of quality of service support, energy effi-
ciency, scalability, and robustness — dominate the requirements for WSNs and have to be carefully
arbitrated and balanced against each other. To do so, the design of WSNs departs in crucial aspects
from that of traditional networks, resulting in a number of design principles. Most importantly,
distributed organization of the network, the use of in-network processing, a data-centric view of
the network, and the adaptation of result fidelity and accuracy to given circumstances are pivotal
techniques to be considered for usage.

The large diversity of WSNs makes the design of a uniform, general-purpose service interface
difficult; consequently, no final solutions to this problem are currently available. Similarly, the
integration of WSNss in larger network contexts, for example, to allow Internet-based hosts a simple
access to WSN services, is also still a fairly open problem.
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4

Physical layer

Objectives of this Chapter

This chapter is devoted to the physical layer, that is, those functions and components of a sensor
node that mediate between the transmission and reception of wireless waveforms and the processing
of digital data in the remaining node, including the higher-layer protocol processing.

It is a commonly acknowledged truth that the properties of the transmission channel and the
physical-layer shape significant parts of the protocol stack. The first goal of this chapter is therefore
to provide the reader with a basic understanding of some fundamental concepts related to digital
communications over wireless channels.

The second important goal is to explain how the specific constraints of wireless sensor networks
(regarding, for example, energy and node costs) in turn shape the design of modulation schemes
and transceivers. The reader should get an understanding on some of the fundamental trade-offs
regarding transmission robustness and energy consumption and how these are affected by the
power-consumption properties of transceiver components.

Chapter Outline
4.1 Introduction 85
4.2 Wireless channel and communication fundamentals 86
4.3 Physical layer and transceiver design considerations in WSNs 103
4.4 Further reading 109

4.1 Introduction

The physical layer is mostly concerned with modulation and demodulation of digital data; this task
is carried out by so-called transceivers. In sensor networks, the challenge is to find modulation
schemes and transceiver architectures that are simple, low cost, but still robust enough to provide
the desired service.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright © 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5
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The first part of this chapter explains the most important concepts regarding wireless channels
and digital communications (over wireless channels); its main purpose is to provide appropriate
notions and to give an insight into the tasks involved in transmission and reception over wireless
channels. We discuss some simple modulation schemes as well.

In the second part, we discuss the implications of the specific requirements of wireless sensor net-
works, most notably the scarcity of energy, for the design of transceivers and transmission schemes.

4.2 Wireless channel and communication fundamentals

This section provides the necessary background on wireless channels and digital communication
over these. This is by no means an exhaustive discussion; it should just provide enough background
and the most important notions to understand the energy aspects involved. Wireless channels are
discussed in some more detail in references [124, 335, 620, 682, 744], some good introductory books
on digital communication in general are references [772], [661], and more specific for wireless
communications and systems are references [682, 848].

In wireless channels, electromagnetic waves propagate in (nearly) free space between a trans-
mitter and a receiver. Wireless channels are therefore an unguided medium, meaning that signal
propagation is not restricted to well-defined locations, as is the case in wired transmission with
proper shielding.

4.2.1 Frequency allocation

For a practical wireless, RF-based system, the carrier frequency has to be carefully chosen. This
carrier frequency determines the propagation characteristics — for example, how well are obstacles
like walls penetrated — and the available capacity. Since a single frequency does not provide any
capacity, for communication purposes always a finite portion of the electromagnetic spectrum,
called a frequency band, is used. In radio-frequency (RF) communications, the range of usable
radio frequencies in general starts at the Very Low Frequency (VLF) range and ends with the
Extremely High Frequency (EHF) range (Figure 4.1). There is also the option of infrared or optical
communications, used, for example, in the “Smart Dust” system [392]. The infrared spectrum is
between wavelengths of 1 mm (corresponding to 300 GHz') and 2.5 um (120 THz), whereas the
optical range ends at 780 nm (~385 THz).

3 kHz 30kHz 300kHz 3 MHz 30MHz 300MHz 3GHz 30 GHz 300 GHz

VLF LF MF HF VHF | UHF | SHF | EHF

100 km 10 km 1 km 100 m 10m im 10cm 1cm 1 mm

VLF = Very low frequency

LF = Low frequency

MF = Medium frequency

HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Super high frequency
EHF = Extremely high frequency

Figure 4.1 Electromagnetic spectrum — radio frequencies

! Assuming that the speed of light is 300,000,000 m/s.
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Table 4.1 Some of the ISM bands

Frequency Comment

13.553-13.567 MHz
26.957-27.283 MHz
40.66-40.70 MHz

433-464 MHz Europe

902-928 MHz Only in the Americas

2.4-2.5GHz Used by WLAN/WPAN technologies
5.725-5.875 GHz Used by WLAN technologies
24-24.25 GHz

The choice of a frequency band is an important factor in system design. Except for ultraw-
ideband technologies (see Section 2.1.4), most of today’s RF-based systems work at frequencies
below 6 GHz. The range of radio frequencies is subject to regulation to avoid unwanted interfer-
ence between different users and systems. Some systems have special licenses for reserved bands;
for example, in Europe, the GSM system can exclusively use the GSM 900 (880-915MHz) and
GSM 1800 (1710—1785MHz) bands.?> There are also licensefree bands, most notably the Indus-
trial, Scientific, and Medical (ISM) bands, which are granted by the ITU for private and unlicensed
use subject to certain restrictions regarding transmit power, power spectral density, or duty cycle.
Table 4.1 lists some of the ISM frequency bands. Working in an unlicensed band means that one
can just go to a shop, buy equipment, and start to transmit data without requiring any permission
from the government/frequency allocation body. It is not surprising that these bands are rather
popular, not only for sensor networks but also for/in other wireless technologies. For example, the
2.4-GHz ISM band is used for IEEE 802.11, Bluetooth, and IEEE 802.15.4.

Some considerations in the choice of frequency are the following:

e In the public ISM bands, any system has to live with interference created by other systems (using
the same or different technologies) in the same frequency band, simply because there is no usage
restriction. For example, many systems share the 2.4-GHz ISM band, including IEEE 802.11b
[466, 467], Bluetooth [318, 319], and the IEEE 802.15.4 WPAN [468] — they coexist with each
other in the same band. Therefore, all systems in these bands have to be robust against interference
from other systems with which they cannot explicitly coordinate their operation. Coexistence
needs to be approached both on the physical and the MAC layer [154, 359, 360, 469]. On
the other hand, requesting allocation of some exclusive spectrum for a specific sensor network
application from the competent regulatory organizations is a time consuming and likely futile
endeavor.

e An important parameter in a transmission system is the antenna efficiency, which is defined as
the ratio of the radiated power to the total input power to the antenna; the remaining power is
dissipated as heat. The small form factor of wireless sensor nodes allows only small antennas.
For example, radio waves at 2.4 GHz have a wave length of 12.5 cm, much longer than the
intended dimensions of many sensor nodes. In general, it becomes more difficult to construct
efficient antennas as the ratio of antenna dimension to wavelength decreases. As the efficiency
decreases, more energy must be spent to achieve a fixed radiated power. These problems are
discussed in some detail in reference [115, Chap. 8].

2http://www.gsmworld.com/technology/spectrum/frequencies.shtml
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4.2.2 Modulation and demodulation

When digital computers communicate, they exchange digital data, which are essentially sequences
of symbols, each symbol coming from a finite alphabet, the channel alphabet. In the process
of modulation, (groups of) symbols from the channel alphabet are mapped to one of a finite
number of waveforms of the same finite length; this length is called the symbol duration. With
two different waveforms, a binary modulation results; if the size is m € N, m > 2, we talk about
m-ary modulation. Some common cases for the symbol alphabet are binary data (the alphabet being
{0, 1}) or bipolar data ({—1, 1}) in spread-spectrum systems.

When referring to the “speed” of data transmission/modulation, we have to distinguish between
the following parameters:

Symbol rate The symbol rate is the inverse of the symbol duration; for binary modulation, it is
also called bit rate.

Data rate The data rate is the rate in bit per second that the modulator can accept for transmission;
it is thus the rate by which a user can transmit binary data. For binary modulation, bit rate
and data rate are the same and often the term bit rate is (sloppily) used to denote the data
rate.

For m-ary modulation, the data rate is actually given as the symbol rate times the number of bits
encoded in a single waveform. For example, if we use 8-ary modulation, we can associate with
each waveform one of eight possible groups of three bits and thus the bit rate is three times the
symbol rate. The fundamentals of modulation and several modulation schemes are discussed in
textbooks on digital communications, for example, references [78, 661, 772].

Modulation is carried out at the transmitter. The receiver ultimately wants to recover the trans-
mitted symbols from a received waveform. The mapping from a received waveform to symbols
is called demodulation. Because of noise, attenuation, or interference, the received waveform is
a distorted version of the transmitted waveform and accordingly the receiver cannot determine the
transmitted symbol with certainty. Instead, the receiver decides for the wrong symbol with some
probability, called the symbol error rate. For digital data represented by bits, the notion of bit
error rate (BER) is even more important: it describes the probability that a bit delivered to a higher
layer is incorrect. If binary modulation is used, bit error probability and symbol error probability are
the same; in case of m-ary modulation they can differ: even if a symbol is demodulated incorrectly,
the delivered group of bits might be correct at some places (as long as the SNR is not too low,
it is often acceptable to assume that an incorrect symbol maps to only a single incorrect bit). All
upper layers are primarily interested in the bit error probability.

The most common form of modulation is the so-called bandpass modulation, where the infor-
mation signal is modulated onto a periodic carrier wave of comparably high frequency [772, Chap.
3]. The spectrum used by bandpass modulation schemes is typically described by a center fre-
quency f. and a bandwidth B, and most of the signal energy can be found in the frequency
range [ fe — %, fe+ g].3 The carrier is typically represented as a cosine wave, which is uniquely
determined by amplitude, frequency, and phase shift.* Accordingly, the modulated signal s(r) can,
in general, be represented as:

5(1) = A(t) - cos(w (1) + ¢ (1)),

3 For theoretical reasons, it is not possible to have perfectly band-limited digital signals; there is always some minor signal
energy leaking into neighboring frequency bands. For example, the spectrum occupied by a rectangular pulse can be described
by a function similar to sin(x)/x, which has nonzero values almost everywhere.

4 There are three main advantages of bandpass modulation over digital baseband modulation like, for example, pulse
modulation: it is technically comparably easy to generate sinusoids; one does not need to build huge antennas to transmit a
5-kHz data signal efficiently, and by choice of nonoverlapping bands, multiple users can transmit in parallel, which would not
be possible in case of baseband modulation.
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Figure 4.2 Amplitude shift keying (ASK) example

where A(t) is the time-dependent amplitude, w(¢) is the time-dependent frequency, and ¢ (¢) is the
phase shift. Accordingly, there are three fundamental modulation types: Amplitude Shift Keying
(ASK), Phase Shift Keying (PSK) and Frequency Shift Keying (FSK), which can be used as they
are or in combination.

In ASK, the waveforms s;(-) for the different symbols are chosen as:

2E;(1)
si(t) = —— cos [wot + @],

where wq is the center frequency, ¢ is an arbitrary constant initial phase, and E; () is constant
over the symbol duration [0, 7] and assumes one of m different levels. The particular form of the
amplitude @ is a convention; it displays explicitly the symbol energy E. An example for
ASK modulation is shown in Figure 4.2, where the binary data string 110100101 is modulated,
using Eo(r) = 1 and E;(t) = 2 for all ¢ to represent logical zeros and ones. A special case of ASK
modulation is a scheme with a binary channel alphabet where zeros are mapped to no signal at all,
Eo(t) =0, and E;(¢t) = 1 for all ¢. Since it corresponds to switching off the transmitter, it is called
On-Oft-Keying (OOK).
In PSK, we have:

2F
si(1) = 08 [wot + ¢ ()],

where wy is the center frequency, E is the symbol energy, and ¢;(¢) is one of m different constant
values describing the phase shifts. The same binary data as in the ASK example is shown using
PSK in Figure 4.3. Two popular PSK schemes are BPSK and QPSK; they are used, for example,
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Figure 4.3 Phase shift keying (PSK) example

for the 1-Mbps and 2-Mbps modulations in IEEE 802.11 [467]. In BPSK, phase shifts of zero and
7 are used and in QPSK, four phase shifts of 0, 7, 7 and 37” are used.’
In FSK, we have:

[2E
si(t) = 7~COS[wi(t)~t+¢],

where w;(t) is one of n different frequencies, E is the symbol energy, and ¢ is some constant
initial phase. Figure 4.4 repeats the above example with FSK modulation.

Clearly, these basic types can be mixed. For example, Quadrature Amplitude Modulation (QAM)
combines amplitude and phase modulation, using two different amplitudes and two different phases
to represent two bits in one symbol.

4.2.3 Wave propagation effects and noise

Waveforms transmitted over wireless channels are subject to several physical phenomena that all
distort the originally transmitted waveform at the receiver. This distortion introduces uncertainty
at the receiver about the originally encoded and modulated data, resulting ultimately in bit errors.

Reflection, diffraction, scattering, doppler fading
The basic wave propagation phenomena [682, Chap. 3] are:
Reflection When a waveform propagating in medium A hits the boundary to another medium

B and the boundary layer between them is smooth, one part of the waveform is reflected

3> More precisely, IEEE 802.11 uses Differential Binary Phase Shift Keying (DBPSK) and Differential Quaternary Phase
Shift Keying (DQPSK). In these differential versions, the information is not directly encoded in the phase of a symbol’s
waveform, but in the difference between phases of two subsequent symbols’ waveforms.
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Figure 4.4 Frequency shift keying (FSK) example
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Figure 4.5 Illustration of wave propagation phenomena

back into medium A, another one is transmitted into medium B, and the rest is absorbed
(Figure 4.5(a)). The amount of reflected/transmitted/absorbed energy depends on the mate-
rials and frequencies involved.

Diffraction By Huygen’s principle, all points on a wavefront can be considered as sources of a
new wavefront. If a waveform hits a sharp edge, it can by this token be propagated into a
shadowed region (Figure 4.5(b)).

Scattering When a waveform hits a rough surface, it can be reflected multiple times and diffused
into many directions (Figure 4.5(c)).

Doppler fading When a transmitter and receiver move relative to each other, the waveforms
experience a shift in frequency, according to the Doppler effect. Too much of a shift can
cause the receiver to sample signals at wrong frequencies.

Radio antennas radiate their signal into all directions at (nearly) the same strength, or they
have a preferred direction characterized by a beam. In the first case, we have omnidirectional
antennas,and in the second, we speak of directed antennas. In either case, it is likely that not
only a single but multiple copies of the same signal would reach the receiver over different paths
with different path lengths and attenuation (Figure 4.6), where a direct path or Line Of Sight
(LOS) path and a reflected, or Non line Of Sight (NLOS) path are shown.
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Figure 4.6 Multipath propagation

The signal at the receiver is therefore a superposition of multiple and delayed copies of the
same signal. A signal actually occupies a certain spectrum, which can be represented by Fourier
techniques. The different signal copies have different relative delays, which translate for each
frequency component of the signal into different relative phase shifts at the receiver. Depending
on the relative phase shift of the signal components, destructive or constructive interference can
occur. If the channel treats all frequency components of a signal in “more or less the same way”
(i.e., their amplitudes at the receiver are strongly correlated [682, Sec. 5.4]), we have frequency-
nonselective fading, also often called flat fading; otherwise, we have a frequency-selective
channel. The frequency (non-)selectivity of a channel is closely related to its time dispersion
or delay spread, more exactly to the RMS delay spread value.® The coherence bandwidth cap-
tures, for a given propagation environment, the range of frequencies over which a channel can
be considered flat; it is defined as the inverse of the RMS delay spread times a constant fac-
tor. A channel is a flat fading channel if the full signal bandwidth is smaller than the coherence
bandwidth.

For wireless sensor networks with their small transmission ranges (leading to small RMS delay
spread) and their comparably low symbol rates, it is reasonable to assume flat fading channels.

When transmitter and receiver move relatively to each other, the number and relative phase offset
of the multiple paths changes over time and the received signal strength can fluctuate on the order
of 30—40dB within short time; this is called fast fading or multipath fading. Depending on the
relative speed, the fluctuations occur at timescales of tens to hundreds of milliseconds.”

The importance of fading is its impact on the receiver. Since any receiver needs a minimum
signal strength to have a chance for proper demodulation, a fade with its resulting drop in received
signal strength is a source of errors. When the signal strength falls below this threshold because of
fast fading, this is called a deep fade. When judging fast fading channels, specifically the rate at
which the signal falls below this threshold (the level-crossing rate) and the duration of the deep
fades are important. Qualitatively, fading channels tend to show bursty errors, that is, symbol
errors tend to occur in clusters separated by errorfree periods.

Another source of errors (predominantly) caused by multipath propagation is InterSymbol
Interference (ISI): When the transmitter transmits its symbols back-to-back, the presence of multiple
paths with different delays can lead to a situation where waveforms belonging to some symbol s,
and reaching the receiver on an Line Of Sight (LOS) path overlap with delayed copies of previously
sent symbols s,_1, s;_2, . ... The severity of ISI depends on the relationship between the symbol
duration and the RMS delay spread.

6 To characterize time dispersion of a multipath channel, the channel impulse response can be used: The transmitter emits
a very short pulse and the receiver records the incoming pulses and their signal strength. The first received pulse corresponds
to the shortest path and all subsequent pulses are from longer paths and likely attenuated. The time difference between the
delayed pulses and the reference pulse are called excess delays, the mean excess delay is defined as the weighted average
of the excess delays (using the pulse amplitudes as weights), and the RMS delay spread (root mean square) is the standard
deviation of the weighted excess delays [682, Chap. 5].

7 Example: For 2.4 GHz, the wavelength is 12.5 cm, and accordingly a change of 6.25 cm in the path length difference
of two paths suffices to move from amplification (constructive interference) to cancellation (destructive interference) or vice
versa.
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Path loss and attenuation

Wireless waveforms propagating through free space are subject to a distance-dependent loss of
power, called path loss. The received power at a distance of d > dyp m between transmitter and
receiver is described by the Friis free-space equation (compare reference [682, p.107], reflections
are not considered):

Py-G;- G- A2
Prcvd(d) :t();n)zt—der

_PuGre Gt (o)t (0
= (4n)2d§L d = Lrevd\&0 d s

where Py is the transmission power, G, and G, are the antenna gains® of transmitter and receiver,
do is the so-called far-field distance, which is a reference distance’ depending on the antenna
technology, d > dy is the distance between transmitter and receiver, A is the wavelength and
L > 1 summarizes losses through transmit/receive circuitry. Note that this equation is only valid
for d > dy. For environments other than free space, the model is slightly generalized:

4.1)

d Y
Prcvd(d) = Prcvd(dO) : (f) s (42)

where y is the path-loss exponent, which typically varies between 2 (free-space path loss) and 5
to 6 (shadowed areas and obstructed in-building scenarios [682, Table 4.2]). However, even values
y < 2 are possible in case of constructive interference. The path loss is defined as the ratio of the

radiated power to the received power ﬁ and, starting from Equation 4.2, can be expressed in
decibel as:
d
PL(d)[dB] = PL(dp)[dB] + 10y log,, - (4.3)
0

This is the so-called log-distance path loss model. PL(dp)[dB] is the known path loss at the
reference distance.

We can draw some first conclusions from this equation. First, the received power depends on
the frequency: the higher the frequency, the lower the received power. Second, the received power
depends on the distance according to a power law. For example, assuming a path-loss exponent
of 2, a node at a distance of 2d to some receiver must spent four times the energy of a node at
distance d to the same receiver, to reach the same level of received power P.yq. Since, in general,
the bit/symbol error rate at the receiver is a monotone function of the received power Pycyq, higher
frequencies or larger distances must be compensated by an appropriate increase in transmitted power
to maintain a specified P.yq value. This will be elaborated further on in the following sections of
this chapter.

An extension of the log-distance path-loss model takes the presence of obstacles into account.
In the so-called lognormal fading, the deviations from the log-distance models due to obstacles

8 Antenna gain: For directional antennas, this gives the ratio of the received power in the main direction to what would
have been received from an isotropic/omnidirectional antenna (using the same transmit power).

9 dy is for cellular systems with large coverage in the range of 1 km; for short range systems like WLANS, it is in the range
of 1 m [682, p. 139].
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are modeled as a multiplicative lognormal random variable. Equivalently, the received power can
be expressed in dB as:

PL(d)[dB] = PL(dp)[dB] + 10y log,, (g) + X, [dB], 4.4)
0

where X, is a zero-mean Gaussian random variable with variance o2, also called the shadowing
variance.

Significant variations in the distance between transmitter and receiver or the movement beyond
obstacles lead to variations of the long-term mean signal strength at the receiver. Movements
and “distance hops” happen at timescales of (tens of) seconds to minutes and the variations are
accordingly referred to as slow fading.

Besides path loss, there is often also attenuation. Most signals are not transmitted in a vacuum
but in some media, for example, air, cables, liquids, and so on. In outdoor scenarios, there may
also be fog or rain. These media types introduce additional, frequency-dependent signal attenuation.
However, since attenuation obeys also a power law depending on the distance, it is only rarely
modeled explicitly but accounted for in the path-loss exponent of the log-distance model.

Noise and interference

In general, interference refers to the presence of any unwanted signals from external (w.r.t. trans-
mitter and receiver) sources, which obscure or mask a signal. These signals can come from other
transmitters sending in the same band at the same time (multiple access interference) or from other
devices like microwave ovens radiating in the same frequency band. In co-channel interference,
the interference sources radiates in the same or in an overlapping frequency band as the transmitter
and receiver node under consideration. In adjacent-channel interference, the interferer works in a
neighboring band. Either the interferer leaks some signal energy into the band used by transmitter
and receiver or the receiver has imperfect filters and captures signals from neighboring bands.

An important further phenomenon is thermal noise or simply noise. It is caused by thermal
motions of electrons in any conducting media, for example, amplifiers and receiver/transmitter
circuitry. Within the context of digital receivers, noise is typically measured by the single-sided
noise Power Spectral Density (PSD)!” Ny given by [772, Sec. 4]:

Watts
No=K-T

Hertz

where K is Boltzmanns constant (= 1.38 - 1023 J/K) and T is the so-called system temperature in
Kelvin. The thermal noise is additive, that is, the received signal r(¢) can be represented as a sum
of the transmitted signal s(f) (as it arrives at the receiver after path loss, attenuation, scattering,
and so forth) and the noise signal n(z):

r(t) =s() +n(t) 4.5)

and furthermore this noise is Gaussian, that is, n(¢) has a Gaussian/normal distribution with zero
mean and finite variance o> for all 7. A very important property of Gaussian noise is that its PSD
can be assumed constant (with value Ny/2 over all frequencies of practical interest). A process with
constant PSD is also called white noise. Hence, thermal noise is also often referred to as Additive
White Gaussian Noise (AWGN).

10 Technically, the PSD of a wide-sense-stationary random process n() is the Fourier transform of the process’s autocorre-
lation function; intuitively, the PSD describes the distribution of a signal’s power in the frequency domain.
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Symbols and bit errors

The symbol/bit error probability depends on the actual modulation scheme and on the ratio of the
power of the received signal (Pvq) to the noise and interference power. When only AWGN is
considered, this ratio is called Signal-to-Noise Ratio (SNR) and is given in decibel as:

P
SNR = 1010g10< ;Vd>
0

where Ny is the noise power and Py.q is the average received signal power. When other sources
of interference are considered, too, often the Signal to Interference and Noise Ratio (SINR) is
important:

P
SINR = 10logy [ ——0—
No+2 i 1i

where Nj is the noise power and [; is the power received from the i-th interferer.

The SINR describes the power that arrives at the receiver and is thus related to the symbols
sent over the channel. In the end, the symbols are not relevant; the data bits are. To correctly
demodulate and decode an arriving bit, the energy per such a bit E, in relation to the noise energy
Ny is relevant. This ratio E;/Ny has a close relationship to the SNR (or SINR, when interference
is treated as noise) [772, Sec. 3.7]:

E 1 P |
ZP—SNR.—= = _ (4.6)
No R~ No R

where R is the bit rate. It will be useful later on in this chapter to look also at the bandwidth W
occupied by the modulated signal and to use the bandwidth efficiency ngw = % (in bit/s/Hz) as
a measure of a modulation scheme’s efficiency. This can be used to rewrite Equation 4.6 as:

E_Prcvd~ 1
No No nw W'

4.7)

An important distinction not directly concerning modulation but concerning the receiver is the
one between coherent detection and noncoherent detection. In coherent detection, the receiver has
perfect phase and frequency information, for example, learned from preambles or synchronization
sequences (see also Section 4.2.6). In general, coherent receivers are much more complex than
noncoherent ones, but need lower signal-to-noise ratios to achieve a given target Bit-Error Rate
(BER).

If we prescribe a desired maximum BER, we can, for many modulation schemes, determine
some minimum SNR needed to achieve this BER on an AWGN channel. To illustrate this, we
show in Figure 4.7 the BER versus the ratio £,/Ny given in decibel for coherently detected binary
PSK and binary FSK. The qualitative behavior of such BER versus E,/Ny is the same for all
popular modulation types. For example, with BPSK, the E}, /Ny ratio must be larger than 4 dB to
reach a BER of at least 1073, The noise power is fixed, so we have to tune the received power
Pycvq to achieve the desired SNR. For given antennas, this can only be achieved by increasing the
radiated power at the transmitter Pi; compare Equation 4.1. An alternative is clearly to use better
modulation schemes.

The choice of modulation schemes for wireless sensor networks is discussed in Section 4.3.2.
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Figure 4.7 Bit error rate for coherently detected binary PSK and FSK

4.2.4 Channel models

For investigation of modulation or error control schemes, models for wireless channels are needed
[36]. Because of the apparent complexity of real wireless channels, mostly stochastic models
are used, which replace complex and tedious modeling of propagation environments by random
variables. At the lowest level, such models work on the level of waveforms, describing the received
signal. “Higher”, more abstract models describe the statistics of symbol or bit errors or even of
packet errors. These models are more amenable for investigation of network protocols, where often
thousands or millions of packets are transmitted.

Signal models

We have already seen one waveform model, the AWGN model, having a constant SNR. As a
reminder, this model expresses the received signal r(¢) as:

r(t) = s@) + n(1),

where s(¢) is the transmitted signal and n(¢) is white Gaussian noise. One important property of
this model is that the SNR is constant throughout. The simplicity of this model eases theoretical
analysis; however, it is not appropriate to model time-varying channels like fading channels.
There are other popular models, specifically for frequency-nonselective fading channels [80].
These models assume that the SNR is a random variable, fluctuating from symbol to symbol or
from block to block [79]. In the Rayleigh fading model, it is assumed that there is no LOS path.
Instead, a large number of signal copies with stochastically independent signal amplitudes of the
same mean value overlap at the receiver. By virtue of the central limit theorem, it can be shown that
the amplitude of the resulting signal has a Rayleigh distribution, whereas the phase is uniformly
distributed in [0, 277]. A second popular model is the Rice fading model, which makes the same
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assumptions as the Rayleigh fading model, but additionally a strong LOS component is present.
Such a fading channel together with AWGN can be represented as:

() =R-e¥ - s(t) +n@)

where again n(t) is white Gaussian noise and R - ¢'? is a Gaussian random variable such that R
has a Rice or Rayleigh probability density function.

Digital models

In the AWGN channel, each transmitted symbol is erroneous with a certain fixed error probability,
and errors of subsequent symbols are independent. If these two conditions hold true and if in
addition the error probability does not depend on the symbol value, we have a Binary Symmetric
Channel (BSC) [180].

There have been several efforts to find good stochastic models for (Rayleigh) fading channels
on the bit/symbol level. These models try to capture the tendency of fading channels to have bursty
errors. Often, such channels are modeled as Markov chains with the states of the chain corre-
sponding to different channel “quality levels”. For example, the popular two-state Gilbert—Elliot
model [231, 290] describes the alternation between deep fades and good periods in a fading chan-
nel. WANG and MoOAYERI [858] discuss how the parameters of an N-state Markov chain describing
the received signal level can be derived under Rayleigh fading assumptions from simple physi-
cal parameters like wavelength, relative speed of the nodes, and others. A more general class of
models, which has also often been used, are Hidden Markov Models (HMMs); see, for instance,
reference [241, 834].

WSN-specific channel models

One design constraint of wireless sensor networks is the intention to use small transmission power
(and consequently the radiated power) — on the order of 1 dBm [855] — with the hope to save
energy by leveraging multihop communication. The choice of a small transmit power has several
consequences for the channel characteristics:

e By the Friis equation (Equation 4.1), a small transmit power implies a small range.

e Having a small transmission range means that the rms delay spread will be in the range of
nanoseconds [682, Table 5.1], which is small compared to symbol durations in the order of
milli- or microseconds. Since in addition the data rates are moderate, it is reasonable to expect
frequency nonselective fading channels with noise [762] and a low-to-negligible degree of ISI.
Accordingly, no special provisions against ISI like equalizers are needed.

SOHRABI et al. [779] present measurements of the near-ground propagation conditions for a
200-MHz frequency band between 800 MHz and 1000 MHz in various environments. These mea-
surements comprise the path-loss exponents y, shadowing variance o2, the reference path loss
PL(dy)[dB] at dy = 1 m and the coherence bandwidth. The measurement sites under consideration
include parking lots, hallways, engineering buildings and plant fences, covering distances between
1 and 30 m. Mobility was not considered. The average path-loss exponents (the average is formed
over the range of frequencies), the average shadowing variance, and the ranges of the reference
path loss PL(dy)[dB] are quoted in Table 4.2. It is interesting to note that the average path-loss
exponents can range from y = 1.9 up to y = 5. It is also interesting to note that already at a
distance of 1 m the signal has lost between 30 and 50dB. The coherence bandwidth depends
strongly on the environment as well as on the distance; with increasing distance, the coherence
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Table 4.2 Average path-loss exponents, shadowing variance,
and range of path loss at reference distances for near-ground
measurements in 800—1000 MHz [779]

Location Average Average Range of
of y of 02 [dB]  PL(1m)[dB]

Engineering building 1.9 5.7 [—50.5, —39.0]
Apartment hallway 2.0 8.0 [—38.2, —=35.0]
Parking structure 3.0 7.9 [—36.0, —32.7]
One-sided corridor 1.9 8.0 [—44.2, —33.5]
One-sided patio 3.2 3.7 [—39.0, —34.2]
Concrete canyon 2.7 10.2 [—48.7, —44.0]
Plant fence 4.9 9.4 [—38.2, —34.5]
Small boulders 3.5 12.8 [—41.5, —=37.2]
Sandy flat beach 4.2 4.0 [—40.8, —37.5]
Dense bamboo 5.0 11.6 [—38.2, —35.2]
Dry tall underbrush 3.6 8.4 [—36.4, —33.2]

bandwidth decreases, but is for many scenarios in the range of 50 MHz and beyond. Accordingly,
low-bandwidth channels in this frequency range can be considered as frequency nonselective. Other
references propose path-loss values in the range of y = 4 [245, 648]. In reference [563], the param-
eters PL(1m)[dB] = —30 and y = 3.5 are used to model transmission using the ©#AMPS-1 nodes
(2.4 GHz, 1 Mbps FSK transceiver).

4.2.5 Spread-spectrum communications

In spread-spectrum systems [293, 297, 557], the bandwidth occupied by the transmitted waveforms
is much larger than what would be really needed to transmit the given user data.'! The user signal is
spreaded at the transmitter and despreaded at the receiver. By using a wideband signal, the effects of
narrowband noise/interference are reduced. Spread-spectrum systems offer an increased robustness
against multipath effects but pay the price of a more complex receiver operation compared to
conventional modulation schemes.

The two most popular kinds of spread-spectrum communications are Direct Sequence Spread
Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

Direct sequence spread spectrum

In Direct Sequence Spread Spectrum (DSSS), the transmission of a data bit of duration 7, is replaced
by transmission of a finite chip sequence ¢ = cjc; ... c, with ¢; € {0, 1} if the user bit is a logical
one, or c|c; ...c, if it is a logical zero (¢; is the logical inverse of ¢;). Each chip ¢; has duration
t. = t,/n, where n is called the spreading factor or gain. Each chip is then modulated with a
digital modulation scheme like BPSK or QPSK. Since the spectrum occupied by a digital signal
is roughly inverse of the symbol duration, the spectrum of the chip sequence is much wider than
the spectrum the user data signal would require in case of direct modulation. The intention is that
the chip duration becomes smaller than the average or RMS delay spread value and the channel
becomes, thus, frequency selective. Therefore, when multipath fading is present, a chip sequence
¢ coming from an LOS and a delayed copy ¢ (of the same chip sequence overlap, and the delay

! Information theorists would say that the Fourier bandwidth (describing the occupied spectrum) is much larger than the
Shannon bandwidth (describing the number of dimensions of the signal space used per second) [542].
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Figure 4.8 Direct sequence spread-spectrum example

difference (the lag) between these amounts to more than one chip duration. This is exploited by
proper design of the chip sequences: these are pseudorandom sequences chosen such that the
autocorrelation between a chip sequence and a lagged version of itself has a peak for lag zero and
almost vanishes for all nonzero lags.

To explain this, consider the example shown in Figure 4.8. Both a direct LOS path and a reflected
path are present, with the lag corresponding to three chip durations. The direct LOS chip sequence
is given by ¢ =cjcy...c, followed by ¢! =¢1¢...¢,, whereas the chip sequence from the
reflected path starts with a lag of three chips. Somewhat simplified, the operation of the receiver
can be described as follows (coherent matched filter receiver): Let us assume that the receiver is
synchronized to the direct LOS path. It compares the incoming chip sequence with the well-known
reference sequence ¢ by computing the inner product (term-wise multiplication and final summation
in terms of modulo-2 operations). If the received sequence is the same as ¢, then this operation
yields the value n, if the incoming chip sequence is ¢!, then the result is —n. By proper choice
of the chip sequence, it can be achieved that the inner product formed between the chip sequence
and a shifted/lagged version of it assumes absolute values smaller than n. For example, the 11-chip
Barker sequence used in IEEE 802.11 [467] assumes for all shifted versions only the values —1,
0, or 1.2 Delayed copies distort the direct signal in the same way as AWGN does. Thus, DSSS
increases robustness against multipath effects.

However, there are also downsides. First, receivers must be properly synchronized with the
transmitter, and second, there is the issue of management of chip sequences. In systems like
IEEE 802.11 with DSSS Physical Layer (PHY) or IEEE 802.15.4, there is only a single chip
sequence used by all nodes. Proper measures at the MAC level must be taken to avoid collisions.
It is also possible to assign different chip sequences or codes to different users, which then can
transmit in parallel and create only minor distortion to each other. Such an approach is called
Code Division Multiple Access (CDMA) and is used, for example, in UMTS [847]. However,
immediately the question how codes are assigned to nodes (“code management”) comes up.

Frequency hopping spread spectrum

In Frequency Hopping Spread Spectrum (FHSS) systems like Bluetooth [318, 319] and the (out-
dated) FHSS version of IEEE 802.11, the available spectrum is subdivided into a number of
equal-sized subbands or channels (not to be confused with the physical channels discussed above);
Bluetooth and IEEE 802.11 divide their spectrum in the 2.4-GHz range into 78 subbands 1-MHz
wide. The user data is always transmitted within one channel at a time; its bandwidth is thus lim-
ited. All nodes in a network hop synchronously through the channels according to a prespecified

12 When the inner product of a chip sequence with a shifted version of itself assumes “large” values only for lag zero, but
comparably small values for all other lags, it is also called nearly orthogonal.
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schedule. This way, a channel currently in a deep fade is left at some point in time and the nodes
switch to another, hopefully, good channel. Different networks can share the same geographic area
by using (mostly) nonoverlapping hopping schedules.

As an example, the FHSS version of IEEE 802.11 hops with 2.5 Hz and many packets can be
transmitted before the next hop. In Bluetooth, the hopping frequency is 1.6 kHz and at most one
packet can be transmitted before the next hop. Packets can have lengths corresponding to one,
three, or five hops. During a longer packet, hopping is suppressed — the packet is transmitted at
the same frequency. Once a packet is finished, the systems continues with the frequency it would
have reached if the long packet had been absent.

4.2.6 Packet transmission and synchronization

The MAC layer above the physical layer uses packets or frames as the basic unit of transmission.'?

From the perspective of the MAC layer, such a frame has structure; for the transceiver, however,
it is just a block of bits. Transceivers perform the functions of modulation and demodulation along
with associated high- and intermediate-frequency processing, typically in hardware, and provide an
interface to the physical layer. They are discussed in Section 2.2.4.

The receiver must know certain properties of an incoming waveform to make any sense of
it and to detect a frame, including its frequency, phase, start and end of bits/symbols, and start
and end of frames [772, Chap. 8], [286]. What is the root of this synchronization problem?
The generation of sinusoidal carriers and of local clocks (with respect to which symbol times are
expressed) involves oscillators of a certain nominal frequency. However, because of production
inaccuracies, temperature differences, aging effects, or any of several other reasons, the actual
frequency of oscillators deviates from the nominal frequency. This drift is often expressed in parts
per million (ppm) and gives the number of additional or missing oscillations a clock makes in the
amount of time needed for one million oscillations at the nominal rate. As a rule of thumb, the
cheaper the oscillator, the more likely are larger drifts.

To compensate this drift, the receiver has to learn about the frequency or time base of the
transmitter. The receiver has to extract synchronization information from the incoming waveform.
An often-found theme for such approaches is the distinction between training (or acquisition)
and tracking phases. Frames are equipped with a well-known training sequence that allows the
receiver to learn about the detailed parameters of the transmitter, for example, its clock rate — the
receive can “train” its parameters. This training sequence is often placed at the beginning of frames
(for example, in IEEE 802.11 [467] or IEEE 802.15.4 [468]), but sometimes it is placed in the
middle (e.g. in GSM [848]). In the first case we speak of a preamble, and in the second case
of a midamble. In either case, the training sequence imposes some overhead. As an example, in
IEEE 802.15.4, the preamble consists of 32 zero bits.

After the receiver has successfully acquired initial synchronization from the training sequence,
it enters a tracking mode, continuously readjusting its local oscillator.

Important synchronization problems are:

Carrier synchronization The receiver has to learn the frequency and, for coherent detection
schemes, also the phase of the signal. A frequency drift can be caused by oscillators or
by Doppler shift in case of mobile nodes. One way to achieve frequency synchronization
is to let the transmitter occasionally send packets with known spectral shape and to let the
receiver scan some portion of the spectrum around the nominal frequency band for this
shape; for example, in the GSM system, special frequency correction bursts are used to

13 In OSI terminology, this would be MAC PDUs. In fact, packets and frames are two words for the same thing; however,
the word frame tends to be used more often when discussing lower layers.
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this end [848, Chap. 3]. The phase varies typically much faster than the frequency; accord-
ingly, phase synchronization must be done more often than frequency synchronization [286].
Phase synchronization can be avoided in noncoherent detection schemes but at the price of
a higher BER at the same transmit power.

Bit/symbol synchronization Having acquired carrier synchronization, the receiver must determine
both the symbol duration as well as the start and end of symbols to demodulate them
successfully. The continuous readjustment in the tracking phase requires sufficient “stimuli”
indicating symbol bounds. This can be explained with the example of OOK, where logical
zeros are modulated as the absence of any carrier. If a long run of zeros occurs in the data,
the receiver clock gets no stimulus for readjustment and may drift away from the transmitter
clock, this way adding spurious symbols or skipping symbols. For example, for the RF
Monolithics TR1000 transceiver used in the Mica motes, more than four consecutive zero or
one bits should be avoided [351]. This situation can be avoided by choosing coding schemes
with a sufficient number of logical ones, by bit-stuffing techniques, or by secrambling where
the data stream is shifted through a linear-feedback shift register. The scrambling technique
is, for example, applied in IEEE 802.11 and no extra symbols have to be sent. The other
schemes incur some overhead symbols.

Frame synchronization The receiver of a frame must be able to detect where the frame starts
and where it ends, that is, the frame bounds. Frame synchronization assumes that bit/symbol
synchronization is already acquired. There are several techniques known for framing [327],
including time gaps, length fields, usage of special flag sequences along with bit-stuffing
techniques to avoid the occurrence of these sequences in the packet data, and others. One
technique to mark the start of a frame is the approach of IEEE 802.15.4, where the preamble
is immediately followed by a well-known Start Frame Delimiter (SFD). This SFD is part
of the physical layer header, not of the data part, and thus no measures to avoid the SFD
pattern in the data part have to be taken.

Let us discuss a simple example (Figure 4.9). In the Mica motes [351], one option for modulation
is OOK. Accordingly, bits are represented by two transmission power levels: a power level of zero
corresponds to a logical zero, whereas a nonzero power level corresponds to a logical one (ignoring
the noise floor). A packet consists of a preamble, a start frame delimiter, and a data part. A long
idle period on the medium is interpreted as boundary between packets. Within such a long idle
period, the receiver of a packet needs to sample the medium for activity only occasionally. The
time between samples must be smaller than the preamble length not to miss it, but large enough

<+— Access delay —» Preamble SFD Information bits

Transmitted bits | |_|

Receiver sampling
activity

Slow sampling, Find SFD and
no signal found yet acquire synch Sample information bits

Figure 4.9 Example for sampling and synchronization (adapted from reference [351, Fig. 5])
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to keep the energy costs induced by sampling. When sampling reveals activity in the channel, its
frequency is increased to find the end of the preamble and to derive the length of a transmitted bit
from the SFD. Once this information is determined, the receiver samples the medium in the mid
of the data bits. To avoid the presence of long idle periods in the data part and misinterpretation
as packet boundary, the length of runs of zeros (and ones) must be bounded, for example, by four.
This has to be achieved by proper transformation of the user data.

4.2.7 Quality of wireless channels and measures for improvement

As opposed to wired channels, wireless channels often have a poorer quality in terms of bit/symbol
error rate. The actual channel quality depends on many factors, including frequency, distance
between transmitter and receiver, and their relative speed, propagation environment (number of
paths and their respective attenuation), technology, and much more. Consequently, there is no such
thing as “the” wireless channel. Many measurements of error rates have appeared in the literature;
two of them are references [13, 223].

A great deal of work has been devoted to improve transmission quality on wireless channels,
working on the physical as well as on higher layers and in many cases not taking energy concerns
or other constraints specific for wireless sensor networks into account. Some of the mechanisms
developed are the following:

Optimization of transmission parameters The choice of modulation scheme as well as the choice
of radiated power (within legal constraints) can influence the BER significantly. Another
control knob is the choice of packet sizes and the structure of packets. This is discussed in
Chapter 6.

Diversity mechanisms All diversity techniques [682, Chap. 7], [625] seek to obtain and exploit
statistically independent (or at least uncorrelated) replicas of the same signal. Simply speak-
ing, it is hoped that even if one replica is in a deep fade and delivers symbol errors, another
replica is currently good. The receiver tries to pick the best of all replicas. In explicit diver-
sity schemes, the multiple copies are explicitly created by the transmitter, by sending the
same packet over another frequency, during another time slot, or sending it into another
spatial direction. In implicit diversity schemes, the signal is sent only once, but multiple
copies are created in the channel through multipath propagation. In either case, the receiver
needs mechanisms to take advantage of the multiple copies. One simple example is the
so-called receive diversity, where the receiver is equipped with two or more appropriately
spaced antennas and the receiver combines the different signals (e.g. by so-called selection
combining: pick the signal with the best quality; or by maximum ratio combining: sum
up all signals, weighted by their quality). Receive diversity works best when the signals at
the two antennas are independent or at least uncorrelated. As a rule of thumb, this can be
achieved with an antenna spacing of at least 40—50 % of the wavelength [682, Chap. 5].

Equalization Equalization techniques [682, Chap. 7], [660] are useful to combat InterSymbol
Interference (ISI). Equalization works as follows: The transmitter sends a well-known symbol
pattern/waveform, the so-called training sequence. The equalizer at the receiver works in
two modes: training and tracking. During the training phase, the equalizer analyzes the
received version of the well-known pattern, learns the mode of distortion, and computes
an algorithm for “inverting” the distortion. In the tracking phase, the remaining packet is
analyzed by applying the inversion algorithm to it and the equalizer continually readjusts
the inversion algorithm. Equalization requires some signal processing at the receiver and the
channel is assumed to be stationary during the packet transmission time. As a side effect,
the training sequence can also be used to acquire bit synchronization.
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Forward error correction (FEC) The transmitter accepts a stream or a block of user data bits or
source bits, adds suitable redundancy, and transmits the result to the receiver. Depending
on the amount and structure of the redundancy, the receiver might be able to correct some
bit/symbol errors. It is known that AWGN channels have a higher capacity than Rayleigh
fading channels and many coding schemes achieve better BER performance on AWGN than
on fading channels with their bursty errors [79]. The operation of interleaving applies a
permutation operation to a block of bits, hoping to distribute bursty errors smoothly and
letting the channel “look™ like an AWGN channel. FEC is discussed in some more detail in
Section 6.2.3.

ARQ The basic idea of ARQ protocols [322, 511] can be described as follows: The transmitter
prepends a header and appends a checksum to a data block. The resulting packet is then
transmitted. The receiver checks the packet’s integrity with the help of the checksum and
provides some feedback to the transmitter regarding the success of packet transmission. On
receiving negative feedback, the transmitter performs a retransmission. ARQ protocols are
discussed in Section 6.2.2.

4.3 Physical layer and transceiver design
considerations in WSNs

So far, we have discussed the basics of the PHY without specific reference to wireless sensor
networks. Some of the most crucial points influencing PHY design in wireless sensor networks are:

Low power consumption.

As one consequence: small transmit power and thus a small transmission range.

As a further consequence: low duty cycle. Most hardware should be switched off or operated in
a low-power standby mode most of the time.

Comparably low data rates, on the order of tens to hundreds kilobits per second, required.
Low implementation complexity and costs.

Low degree of mobility.

A small form factor for the overall node.

In this section, we discuss some of the implications of these requirements.
In general, in sensor networks, the challenge is to find modulation schemes and transceiver
architectures that are simple, low-cost but still robust enough to provide the desired service.

4.3.1 Energy usage profile

The choice of a small transmit power leads to an energy consumption profile different from other
wireless devices like cell phones. These pivotal differences have been discussed in various places
already but deserve a brief summary here.

First, the radiated energy is small, typically on the order of 0 dBm (corresponding to 1 mW).
On the other hand, the overall transceiver (RF front end and baseband part) consumes much more
energy than is actually radiated; WANG et al. [855] estimate that a transceiver working at frequencies
beyond 1 GHz takes 10 to 100mW of power to radiate 1 mW. In reference [115, Chap. 3], similar
numbers are given for 2.4-GHz CMOS transceivers: For a radiated power of 0 dBm, the transmitter
uses actually 32 mW, whereas the receiver uses even more, 38 mW. For the Mica motes, 21 mW
are consumed in transmit mode and 15 mW in receive mode [351]. These numbers coincide well

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

104 Physical layer

with the observation that many practical transmitter designs have efficiencies below 10 % [46] at
low radiated power.

A second key observation is that for small transmit powers the transmit and receive modes
consume more or less the same power; it is even possible that reception requires more power
than transmission [670, 762]; depending on the transceiver architecture, the idle mode’s power
consumption can be less or in the same range as the receive power [670]. To reduce average power
consumption in a low-traffic wireless sensor network, keeping the transceiver in idle mode all the
time would consume significant amounts of energy. Therefore, it is important to put the transceiver
into sleep state instead of just idling. It is also important to explicitly include the received power
into energy dissipation models, since the traditional assumption that receive energy is negligible is
no longer true.

However, there is the problem of the startup energy/startup time, which a transceiver has to
spend upon waking up from sleep mode, for example, to ramp up phase-locked loops or voltage-
controlled oscillators. During this startup time, no transmission or reception of data is possible [762].
For example, the £AMPS-1 transceiver needs a startup time of 466 Us and a power dissipation
of 58 mW [561, 563]. Therefore, going into sleep mode is unfavorable when the next wakeup
comes fast. It depends on the traffic patterns and the behavior of the MAC protocol to schedule
the transceiver operational state properly. If possible, not only a single but multiple packets should
be sent during a wakeup period, to distribute the startup costs over more packets. Clearly, one can
attack this problem also by devising transmitter architectures with faster startup times. One such
architecture is presented in reference [855].

A third key observation is the relative costs of communications versus computation in a sen-
sor node. Clearly, a comparison of these costs depends for the communication part on the BER
requirements, range, transceiver type, and so forth, and for the computation part on the processor
type, the instruction mix, and so on. However, in [670], a range of energy consumptions is given
for Rockwell’s WIN nodes, UCLA’s WINS NG 2.0 nodes, and the MEDUSA 1II nodes. For the
WIN nodes, 1500 to 2700 instructions can be executed per transmitted bit, for the MEDUSA 1I
nodes this ratio ranges from 220:1 up to 2900:1, and for the WINS NG nodes, it is around 1400:1.
The bottom line is that computation is cheaper than communication!

4.3.2 Choice of modulation scheme

A crucial point is the choice of modulation scheme. Several factors have to be balanced here: the
required and desirable data rate and symbol rate, the implementation complexity, the relationship
between radiated power and target BER, and the expected channel characteristics.

To maximize the time a transceiver can spend in sleep mode, the transmit times should be
minimized. The higher the data rate offered by a transceiver/modulation, the smaller the time
needed to transmit a given amount of data and, consequently, the smaller the energy consumption.

A second important observation is that the power consumption of a modulation scheme depends
much more on the symbol rate than on the data rate [115, Chap. 3]. For example, power consumption
measurements of an IEEE 802.11b Wireless Local Area Network (WLAN) card showed that the
power consumption depends on the modulation scheme, with the faster Complementary Code
Keying (CCK) modes consuming more energy than DBPSK and DQPSK; however, the relative
differences are below 10 % and all these schemes have the same symbol rate. It has also been found
that for the £ AMPS-1 nodes the power consumption is insensitive to the data rate [762].

Obviously, the desire for “high” data rates at “low” symbol rates calls for m-ary modulation
schemes. However, there are trade-offs:

e m-ary modulation requires more complex digital and analog circuitry than 2-ary modulation
[762], for example, to parallelize user bits into m-ary symbols.
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Table 4.3 Bandwidth efficiency ngw and Ej;/Ny[dB] required at the receiver
to reach a BER of 107 over an AWGN channel for m-ary orthogonal FSK and
PSK (adapted from reference [682, Chap. 6])

m 2 4 8 16 32 64
m-ary PSK:npw 0.5 1.0 1.5 2.0 2.5 3.0
m-ary PSK:E}, /Ny 10.5 10.5 14.0 18.5 234 28.5
m-ary FSK:npw 0.40 0.57 0.55 0.42 0.29 0.18
m-ary FSK:E}, /Ny 13.5 10.8 9.3 8.2 7.5 6.9

e Many m-ary modulation schemes require for increasing m an increased Ej,/Ny ratio and conse-
quently an increased radiated power to achieve the same target BER; others become less and less
bandwidth efficient. This is exemplarily shown for coherently detected m-ary FSK and PSK in
Table 4.3, where for different values of m, the achieved bandwidth efficiencies and the Ej;/Ny
required to achieve a target BER of 107° are displayed. However, in wireless sensor network
applications with only low to moderate bandwidth requirements, a loss in bandwidth efficiency
can be more tolerable than an increased radiated power to compensate Ej;/Ny losses.

e It is expected that in many wireless sensor network applications most packets will be short, on
the order of tens to hundreds of bits. For such packets, the startup time easily dominates overall
energy consumption, rendering any efforts in reducing the transmission time by choosing m-ary
modulation schemes irrelevant.

Let us explore the involved trade-offs a bit further with the help of an example.

Example 4.1 (Energy efficiency of m-ary modulation schemes) Our goal is to transmit data over
a distance of d = 10m at a target BER of 107° over an AWGN channel having a path-loss
exponent of y = 3.5 (corresponding to the value determined in reference [563]). We com-
pare two families of modulations: coherently detected m-ary PSK and coherently detected
orthogonal m-ary orthogonal FSK. For these two families we display in Table 4.3, the band-
width efficiencies npw and the Ej /Ny in dB required at the receiver to reach a BER of 10°°
over an AWGN channel.

From the discussion in Section 4.2.3, the relationship between E} /Ny and the received power
at a distance d is given as:

%ZSNR%:%‘(‘”%

0 0

_ 1 PyG-Gp 2 (do)y “+-8)
~ No-R  (4m)?-d) L d) "’

which can be easily solved for Py given a required E,/Ny value and data rate R. We denote
the solution as P (%, R). One example: From Table 4.3 we obtain that 16-PSK requires an

Ey/ Ny of 18.5dB to reach the target BER. When fixing the parameters G; = G, = L = 1,
A =12.5cm (according to a 2.4 GHz transceiver), reference distance dy = 1 m, distance
d = 10m, a data rate of R = 1 Mbps, and a noise level of Ny = —180dB this corresponds
to Py (18.5dB, R) ~ 2.26 mW.

We next utilize a transceiver energy consumption model developed in references [762, 855]
that incorporates startup energy and transmit energy. In this model, it is assumed that during
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the startup time mainly a frequency synthesizer is active, consuming energy Prs, while
during the actual waveform transmission power is consumed by the frequency synthesizer,
the modulator (using Pyop), and the radiated energy Pi(-,-). The power amplifier is not
explicitly considered. Using reference [855], we assume Prs = 10mW, Pyiop = 2mW and
a symbol rate of B =1 M symbols/sec. The duration of the startup time is T,y. For the
case of binary modulation, we assume the following energy model:

E,
Ebinary ﬁ» B | = Prs - Tstant
0

+( Paon + Prs + Po (22, B) ) 2
MOD FS tx N()’ Bs

where 7 is the number of data bits to transmit in a packet. For the case of m-ary modulation,
it is assumed that the power consumption of the modulator and the frequency synthesizer
are increased by some factors « > 1, 8 > 1, such that the overall energy expenditure is:

Ej
Em»ary (FO’ B - 10g2 m) = B Prs - Tyt

n

Ep
P cPrs + P [ =2, B -1 P
+<" e “‘(No ng’")) B -logy(m)

Accepting the value § = 1.75 from reference [855] for both PSK and FSK modulation, one
g’:ﬂ:ﬁ%; to measure the energy advantage or disadvantage of m-
ary modulation over binary ymodulation. As an example, we show this ratio in Figure 4.10
for varying m € {4, 8, 16, 32, 64}, with « = 2.0, a startup time of 466 Us, and two different
packet sizes, 100 bits and 2000 bits. The two upper curves correspond to a packet size of 100
bits; the two lower curves correspond to the packet size of 2000 bits. Other results obtained
with a shorter startup time of 100 us or @ = 3.0 look very similar. One can see that for
large packet sizes m-ary FSK modulation is favorable, since the actual packet transmission
times are shortened and furthermore the required E,/Ny decreases for increasing m, at the
expense of a reduced bandwidth efficiency, which translates into a wider required spectrum
(the FSK scheme is orthogonal FSK). For m-ary PSK, only certain values of m give an
energy advantage; for larger m the increased Ej,/Np requirements outweigh the gains due
to reduced transmit times. For small packet sizes, the binary modulation schemes are more
energy efficient for both PSK and FSK, because the energy costs are dominated by the startup
time. If one reduces B to B = 1 (assuming no extra energy consumption of the frequency
synthesizer due to m-ary modulation), then m-ary modulation would, for all parameters under
consideration, be truly better than binary modulation. The results presented in reference [855]
indicate that the advantage of m-ary modulation increases as the startup time decreases. For
shorter startup times also the packet lengths required to make m-ary modulation pay out are
smaller.

can evaluate the ratio

Can we conclude from this that it is favorable to use large packets? Unfortunately, the
answer is: it depends. As we will see in Chapter 6, longer packets at the same bit error rate
and without employing error-correction mechanisms lead to higher packet error rates, which
in turn lead to retransmitted packets, easily nullifying the energy gains of choosing m-ary
modulation. A careful joint consideration of modulation and other schemes for increasing
transmission robustness (FEC or ARQ schemes) is needed.

But it can be beneficial to transmit multiple short packets during a single wakeup period,
thus achieving a lower relative influence of the startup costs per packet [562].
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Figure 4.10 Comparison of the energy consumption of m-ary FSK/PSK to binary FSK/PSK for o = 2.0 and
startup time of 466 us.

Clearly, this example provides only a single point in the whole design space. The bottom line
here is that the choice of modulation scheme depends on several interacting aspects, including
technological factors (in the example: «, ), packet size, target error rate, and channel error model
(in reference [855], a similar example is carried out for the case of Rayleigh fading). The optimal
decision would have to properly balance the modulation scheme and other measures to increase
transmission robustness, since these also have energy costs:

e With retransmissions, entire packets have to be transmitted again.

e With FEC coding, more bits have to be sent and there is additional energy consumption for coding
and decoding. While coding energy can be neglected, and the receiver needs significant energy for
the decoding process [563]. This is especially cumbersome if the receiver is a power-constrained
node. Coding and retransmission schemes are discussed in more detail in Chapter 6.

e The cost of increasing the radiated power [855] depends on the efficiency of the power ampli-
fier (compare Section 2.2.4), but the radiated power is often small compared to the overall
power dissipated by the transceiver, and additionally this drives the PA into a more efficient
regime. !4

In [670], a similar analysis as in our example has been carried out for m-ary QAM. Specifically,
the energy-per-bit consumption (defined as the overall energy consumption for transmitting a packet
of n bits divided by n) of different m-ary QAM modulation schemes has been investigated for
different packet sizes, taking startup energy and the energy costs of power amplifiers as well as
PHY and MAC packet overheads explicitly into account. For the particular setup used in this

14 Of course, one disadvantage of using an increased transmit power is an increased interference for other transmissions and
thus a decreased overall network capacity. However, this plays no role during low-load situations, which prevail in wireless
sensor networks — unless event storms or other correlated traffic models are present.
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investigation, 16-QAM seems to be the optimum modulation schemes for all different sizes of the
user data.

4.3.3 Dynamic modulation scaling

Even if it is possible to determine the optimal scheme for a given combination of BER target,
range, packet sizes and so forth, such an optimum is only valid for short time; as soon as one of
the constraints changes, the optimum can change, too. In addition, other constraints like delay or
the desire to achieve high throughput can dictate to choose higher modulation schemes.

Therefore, it is interesting to consider methods to adapt the modulation scheme to the current
situation. Such an approach, called dynamic modulation scaling, is discussed in reference [738].
In particular, for the case of m-ary QAM and a target BER of 107>, a model has been developed
that uses the symbol rate B and the number of levels per symbol m as parameters. This model
expresses the energy required per bit and also the achieved delay per bit (the inverse of the data
rate), taking into account that higher modulation levels need higher radiated energy. Extra startup
costs are not considered. Clearly, the bit delay decreases for increasing B and m. The energy per
bit depends much more on m than on B. In fact, for the particular parameters chosen, it is shown
that both energy per bit and delay per bit are minimized for the maximum symbol rate. With
modulation scaling, a packet is equipped with a delay constraint, from which directly a minimal
required data rate can be derived. Since the symbol rate is kept fixed, the approach is to choose the
smallest m that satisfies the required data rate and which thus minimizes the required energy per
bit. Such delay constraints can be assigned either explicitly or implicitly. One approach explored in
the paper is to make the delay constraint depend on the packet backlog (number of queued packets)
in a sensor node: When there are no packets present, a small value for m can be used, having low
energy consumption. As backlog increases, m is increased as well to reduce the backlog quickly
and switch back to lower values of m. This modulation scaling approach has some similarities to
the concept of dynamic voltage scaling discussed in Section 2.2.2.

4.3.4 Antenna considerations

The desired small form factor of the overall sensor nodes restricts the size and the number of
antennas. As explained above, if the antenna is much smaller than the carrier’s wavelength, it
is hard to achieve good antenna efficiency, that is, with ill-sized antennas one must spend more
transmit energy to obtain the same radiated energy.

Secondly, with small sensor node cases, it will be hard to place two antennas with suitable
distance to achieve receive diversity. As discussed in Section 4.2.7, the antennas should be spaced
apart at least 40—50 % of the wavelength used to achieve good effects from diversity. For 2.4 GHz,
this corresponds to a spacing of between 5 and 6 cm between the antennas, which is hard to achieve
with smaller cases.

In addition, radio waves emitted from an antenna close to the ground — typical in some appli-
cations — are faced with higher path-loss coefficients than the common value o = 2 for free-space
communication. Typical attenuation values in such environments, which are also normally charac-
terized by obstacles (buildings, walls, and so forth), are about o = 4 [245, 648].

Moreover, depending on the application, antennas must not protrude from the casing of a node,
to avoid possible damage to it. These restrictions, in general, limit the achievable quality and
characteristics of an antenna for wireless sensor nodes.

Nodes randomly scattered on the ground, for example, deployed from an aircraft, will land in
random orientations, with the antennas facing the ground or being otherwise obstructed. This can
lead to nonisotropic propagation of the radio wave, with considerable differences in the strength
of the emitted signal in different directions. This effect can also be caused by the design of an
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antenna, which often results in considerable differences in the spatial propagation characteristics
(so-called lobes of an antenna).

Antenna design is an issue in itself and is well beyond the scope of this book. Some specific
considerations on antenna design for wireless sensor nodes are discussed in [115, Chap. 8].

4.4 Further reading

Jointly optimizing coding and modulation BIGLIERI et al. [79] consider coding and modulation
from an information-theoretic perspective for different channel models, including the AWGN,
flat fading channels and block fading channels. Specifically, the influence of symbol-by-
symbol power control at the transmitter in the presence of channel-state information such
that deep fades are answered with higher output powers (“channel inversion”), of receiver
diversity and interleaving and of coding schemes with unequal protection (i.e., user bits of
different importance are encoded differently) on the channel capacity are discussed. One
particularly interesting result is that the capacity of a Rayleigh fading channel with power
control can be higher than the capacity of an AWGN channel with the same average radiated
power.

DSSS in WSN Some efforts toward the construction of DSSS transceivers for wireless sensor
networks with their space and power constraints are described in references [155, 280,
281]. In addition, MYERS et al. [580] discuss low-power spread-spectrum transceivers for
IEEE 802.11.

Energy efficiency in GSM Reducing energy consumption is an issue not only in wireless sensor
networks but also in other types of systems, for example, cellular systems. For the interested:
advanced signal processing algorithms for reducing power consumption of GSM transceivers
are discussed in references [525].
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Objectives of this Chapter

Medium Access Control (MAC) protocols solve a seemingly simple task: they coordinate the times
where a number of nodes access a shared communication medium. An “unoverseeable” number
of protocols have emerged in more than thirty years of research in this area. They differ, among
others, in the types of media they use and in the performance requirements for which they are
optimized.

This chapter presents the fundamentals of MAC protocols and explains the specific requirements
and problems these protocols have to face in wireless sensor networks. The single most important
requirement is energy efficiency and there are different MAC-specific sources of energy waste to
consider: overhearing, collisions, overhead, and idle listening. We discuss protocols addressing one
or more of these issues. One important approach is to switch the wireless transceiver into a sleep
mode. Therefore, there are trade-offs between a sensor network’s energy expenditure and traditional
performance measures like delay and throughput.

Chapter Outline
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5.2 Low duty cycle protocols and wakeup concepts 120
5.3 Contention-based protocols 129
5.4 Schedule-based protocols 133
5.5 The IEEE 802.15.4 MAC protocol 139
5.6 How about IEEE 802.11 and bluetooth? 145
5.7 Further reading 146
5.8 Conclusion 148

Medium Access Control (MAC) protocols is the first protocol layer above the Physical Layer (PHY)
and consequently MAC protocols are heavily influenced by its properties. The fundamental task of
any MAC protocol is to regulate the access of a number of nodes to a shared medium in such a way
that certain application-dependent performance requirements are satisfied. Some of the traditional
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performance criteria are delay, throughput, and fairness, whereas in WSNs, the issue of energy
conservation becomes important.

Within the OSI reference model, the MAC is considered as a part of the Data Link Layer (DLL),
but there is a clear division of work between the MAC and the remaining parts of the DLL.
The MAC protocol determines for a node the points in time when it accesses the medium to
try to transmit a data, control, or management packet to another node (unicast) or to a set of
nodes (multicast, broadcast). Two important responsibilities of the remaining parts of the DLL
are error control and flow control. Error control is used to ensure correctness of transmission
and to take appropriate actions in case of transmission errors and flow control regulates the rate
of transmission to protect a slow receiver from being overwhelmed with data. The link layer is
discussed in Chapter 6.

In this chapter, we first give a brief introduction to MAC protocols in general and to the par-
ticular requirements and challenges found in wireless sensor networks (Section 5.1). Most notably,
the issue of energy efficiency is the prime consideration in WSN MAC protocols, and therefore,
we concentrate on schemes that explicitly try to reduce overall energy consumption. One of the
main approaches to conserve energy is to put nodes into sleep state whenever possible. Protocols
striving for low duty cycle or wakeup concepts (Section 5.2) are designed to accomplish this. Other
important classes of useful MAC protocols are contention-based (Section 5.3) and schedule-based
protocols (Section 5.4). The IEEE 802.15.4 protocol combines contention- and schedule-based ele-
ments and can be expected to achieve significant commercial impact; it is discussed in Section 5.5.
The question why other commercially successful protocols like IEEE 802.11 and Bluetooth are not
the primary choice in wireless sensor networks is touched in Section 5.6. The final Section 5.8 con-
tains some concluding remarks and a comparison of the different protocols discussed in this chapter.

5.1 Fundamentals of (wireless) MAC protocols

In this section, we discuss some fundamental aspects and important examples of wireless MAC
protocols, since the protocols used in wireless sensor networks inherit many of the problems and
approaches already existing for this more general field.

MAC protocols are an active research area for more than 30 years now [5], and there exists a
huge body of literature. Some survey papers covering MAC protocols in general as well as wireless
MAC protocols can be found in references [7, 18, 23, 143, 311, 390, 579]. General introductions
into MAC protocols can be found in references [6, 68, 709, 808]. Energy aspects were not one
of the top priorities in earlier research on MAC protocols (this is not to say they have not been
addressed [886]), but with the advent of wireless sensor networks, energy has been established as
one of the primary design concerns.

5.1.1 Requirements and design constraints for wireless MAC protocols

Traditionally, the most important performance requirements for MAC protocols are throughput
efficiency, stability, fairness, low access delay (time between packet arrival and first attempt to
transmit it), and low transmission delay (time between packet arrival and successful delivery), as
well as a low overhead. The overhead in MAC protocols can result from per-packet overhead (MAC
headers and trailers), collisions, or from exchange of extra control packets. Collisions can happen if
the MAC protocol allows two or more nodes to send packets at the same time. Collisions can result
in the inability of the receiver to decode a packet correctly, causing the upper layers to perform a
retransmission. For time-critical applications, it is important to provide deterministic or stochastic
guarantees on delivery time or minimal available data rate. Sometimes, preferred treatment of
important packets over unimportant ones is required, leading to the concept of priorities.
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The operation and performance of MAC protocols is heavily influenced by the properties of the
underlying physical layer. Since WSNs use a wireless medium, they inherit all the well-known
problems of wireless transmission. One problem is time-variable, and sometimes quite high, error
rates, which is caused by physical phenomena like slow and fast fading, path loss, attenuation, and
man-made or thermal noise (see Chapter 4 and [682, Chapters 4 & 5]). Depending on modulation
schemes, frequencies, distance between transmitter and receiver, and the propagation environment,
instantaneous bit error rates in the range of 1073...1072 can easily be observed [213, 223, 594,
882].

As explained in Chapter 4, the received power Py..q decreases with the distance between trans-
mitting and receiving node. This path loss combined with the fact that any transceiver needs a
minimum signal strength to demodulate signals successfully leads to a maximum range that a
sensor node can reach with a given transmit power. If two nodes are out of reach, they can-
not hear each other. This gives rise to the well-known hidden-terminal/exposed-terminal problems
[823]. The hidden-terminal problem occurs specifically for the class of Carrier Sense Multiple
Access (CSMA) protocols, where a node senses the medium before starting to transmit a packet.
If the medium is found to be busy, the node defers its packet to avoid a collision and a subsequent
retransmission. Consider the example in Figure 5.1. Here, we have three nodes A, B, and C that
are arranged such that A and B are in mutual range, B and C are in mutual range, but A and C
cannot hear each other. Assume that A starts to transmit a packet to B and some time later node C
also decides to start a packet transmission. A carrier-sensing operation by C shows an idle medium
since C cannot hear A’s signals. When C starts its packet, the signals collide at B and both packets
are useless. Using simple CSMA in a hidden-terminal scenario thus leads to needless collisions.

In the exposed-terminal scenario, B transmits a packet to A, and some moment later, C wants
to transmit a packet to D. Although this would be theoretically possible since both A and D would
receive their packets without distortions, the carrier-sense operation performed by C suppresses
C’s transmission and bandwidth is wasted. Using simple CSMA in an exposed terminal scenario
thus leads to needless waiting.

Two solutions to the hidden-terminal and exposed-terminal problems are busy-tone solutions
[823] and the RTS/CTS handshake used in the IEEE 802.11 WLAN standard [815] and first
presented in the MACA [407]/MACAW [75] protocols. These will be described in Section 5.1.2
in the context of CSMA protocols.

On wired media, it is often possible for the transmitter to detect a collision at the receiver
immediately and to abort packet transmission. This feature is called collision detection (CD) and is
used in Ethernet’s CSMA/CD protocol to increase throughput efficiency. Such a collision detection
works because of the low attenuation in a wired medium, resulting in similar SNRs at transmitter
and receiver. Consequently, when the transmitter reads back the channel signal during transmission
and observes a collision, it can infer that there must have been a collision at the receiver too. More
importantly, the absence of a collision at the transmitter allows to conclude that there has been no

Figure 5.1 Hidden-terminal scenario (circles indicate transmission & interference range)
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collision at the receiver during the packet transmission.! In a wireless medium, neither of these
two conclusions holds true — the interference situation at the transmitter does not tell much about
the interference situation at the receiver. Furthermore, simple wireless transceivers work only in
a half-duplex mode, meaning that at any given time either the transmit or the receive circuitry is
active but not both.> Therefore, collision detection protocols are usually not applicable to wireless
media.

Another important problem arises when there is no dedicated frequency band allocated to a
wireless sensor network and the WSN has to share its spectrum with other systems. Because of
license-free operations, many wireless systems use the so-called ISM bands, with the 2.4 GHz
ISM band being a prime example. This specific band is used by several systems, for example, the
IEEE 802.11/IEEE 802.11b WLANS [466, 815], Bluetooth [318], and the IEEE 802.15.4 WPAN.
Therefore, the issue of coexistence of these systems arises [154, 359, 360, 469].

Finally, the design of MAC protocols depends on the expected traffic load patterns. If a WSN
is deployed to continuously observe a physical phenomenon, for example, the time-dependent
temperature distribution in a forest, a continuous and low load with a significant fraction of periodic
traffic can be expected. On the other hand, if the goal is to wait for the occurrence of an important
event and upon its occurrence to report as much data as possible, the network is close to idle for a
long time and then is faced with a bulk of packets that are to be delivered quickly. A high MAC
efficiency is desirable during these overload phases. An example for this class of applications is
wildfire observation [742].

5.1.2 Important classes of MAC protocols

A huge number of (wireless) MAC protocols have been devised during the last thirty years. They
can be roughly classified into the following classes [311]: fixed assignment protocols, demand
assignment protocols, and random access protocols.

Fixed assignment protocols

In this class of protocols, the available resources are divided between the nodes such that the
resource assignment is long term and each node can use its resources exclusively without the
risk of collisions. Long term means that the assignment is for durations of minutes, hours, or
even longer, as opposed to the short-term case where assignments have a scope of a data burst,
corresponding to a time horizon of perhaps (tens of) milliseconds. To account for changes in the
topology — for example, due to nodes dying or new nodes being deployed, mobility, or changes in
the load patterns — signaling mechanisms are needed in fixed assignment protocols to renegotiate
the assignment of resources to nodes. This poses questions about the scalability of these protocols.

Typical protocols of this class are TDMA, FDMA, CDMA, and SDMA. The Time Division
Multiple Access (TDMA) scheme [708] subdivides the time axis into fixed-length superframes
and each superframe is again subdivided into a fixed number of time slots. These time slots are
assigned to nodes exclusively and hence the node can transmit in this time slot periodically in
every superframe. TDMA requires tight time synchronization between nodes to avoid overlapping
of signals in adjacent time slots. In Frequency Division Multiple Access (FDMA), the available
frequency band is subdivided into a number of subchannels and these are assigned to nodes,
which can transmit exclusively on their channel. This scheme requires frequency synchronization,

! When two distant nodes A and B send very short packets at the same time, it may happen that A finishes its packet
transmission before the signal from B’s packet actually arrives (due to the propagation delay). In this case, neither A nor
B would see any collision but nodes halfway between A and B would. Only when packets are long enough or the distance
between nodes is suitably bounded, nodes A and B have a chance to detect collisions and react upon them.

2 This way, transmit and receive circuitry can share components, leading to reduced transceiver complexity.
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relatively narrowband filters, and the ability of a receiver to tune to the channel used by a transmitter.
Accordingly, an FDMA transceiver tends to be more complex than a TDMA transceiver. In Code
Division Multiple Access (CDMA) schemes [293, 297, 700], the nodes spread their signals over
a much larger bandwidth than needed, using different codes to separate their transmissions. The
receiver has to know the code used by the transmitter; all parallel transmissions using other codes
appear as noise. Crucial to CDMA is the code management. Finally, in Space Division Multiple
Access (SDMA), the spatial separation of nodes is used to separate their transmissions. SDMA
requires arrays of antennas and sophisticated signal processing techniques [476] and cannot be
considered a candidate technology for WSNss.

Demand assignment protocols

In demand assignment protocols, the exclusive allocation of resources to nodes is made on a
short-term basis, typically the duration of a data burst. This class of protocols can be broadly
subdivided into centralized and distributed protocols. In central control protocols (examples are the
HIPERLANY/2 protocol [209, 247, 248, 249, 250], DQRUMA [408], or the MASCARA protocol
[621]; polling schemes [757, 805, 824] can also be subsumed under this class), the nodes send
out requests for bandwidth allocation to a central node that either accepts or rejects the requests.
In case of successful allocation, a confirmation is transmitted back to the requesting node along
with a description of the allocated resource, for example, the numbers and positions of assigned
time slots in a TDMA system and the duration of allocation. The node can use these resources
exclusively. The submission of requests from nodes to the central station is often donecontention
based, that is, using a random access protocol on a dedicated (logical) signaling channel. Another
option is to let the central station poll its associated nodes. In addition, the nodes often piggyback
requests onto data packets transmitted in their exclusive data slots, thus avoiding transmission of
separate request packets. The central node needs to be switched on all the time and is responsible
for resource allocation. Resource deallocation is often done implicitly: when a node does not use
its time slots any more, the central node can allocate these to other nodes. This way, nodes do not
need to send extra deallocation packets. Summarizing, the central node performs a lot of activities,
it must be constantly awake, and thus needs lots of energy. This class of protocols is a good choice
if a sufficient number of energy-unconstrained nodes are present and the duties of the central station
can be moved to these. An example is the IEEE 802.15.4 protocol discussed in Section 5.5. If there
are no unconstrained nodes, a suitable approach is to rotate the central station duties among the
nodes like, for example, in the LEACH protocol described in Section 5.4.1.

An example of distributed demand assignment protocols are token-passing protocols like
IEEE 802.4 Token Bus [372]. The right to initiate transmissions is tied to reception of a small
special token frame. The token frame is rotated among nodes organized in a logical ring on top
of a broadcast medium. Special ring management procedures are needed to include and exclude
nodes from the ring or to correct failures like lost tokens. Token-passing protocols have also been
considered for wireless or error-prone media [387, 535, 883], but they tend to have problems with
the maintenance of the logical ring in the presence of significant channel errors [883]. In addition,
since token circulation times are variable, a node must always be able to receive the token to avoid
breaking the logical ring. Hence, a nodes transceiver must be switched on most of the time. In
addition, maintaining a logical ring in face of frequent topology changes is not an easy task and
involves significant signaling traffic besides the token frames themselves.

Random access protocols

The nodes are uncoordinated, and the protocols operate in a fully distributed manner. Random access
protocols often incorporate a random element, for example, by exploiting random packet arrival
times, setting timers to random values, and so on. One of the first and still very important random
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access protocols is the ALOHA or slotted ALOHA protocol, developed at the University of Hawaii
[5]. In the pure ALOHA protocol, a node wanting to transmit a new packet transmits it immediately.
There is no coordination with other nodes and the protocol thus accepts the risk of collisions at
the receiver. To detect this, the receiver is required to send an immediate acknowledgment for a
properly received packet. The transmitter interprets the lack of an acknowledgment frame as a sign
of a collision, backs off for a random time, and starts the next trial. ALOHA provides short access
and transmission delays under light loads; under heavier loads, the number of collisions increases,
which in turn decreases the throughput efficiency and increases the transmission delays. In slotted
ALOHA, the time is subdivided into time slots and a node is allowed to start a packet transmission
only at the beginning of a slot. A slot is large enough to accommodate a maximum-length packet.
Accordingly, only contenders starting their packet transmission in the same slot can destroy a node’s
packet. If any node wants to start later, it has to wait for the beginning of the next time slot and has
thus no chance to destroy the node’s packet. In short, the synchronization reduces the probability
of collisions and slotted ALOHA has a higher throughput than pure ALOHA.

In the class of CSMA protocols [422], a transmitting node tries to be respectful to ongoing
transmissions. First, the node is required to listen to the medium; this is called carrier sensing. If
the medium is found to be idle, the node starts transmission. If the medium is found busy, the node
defers its transmission for an amount of time determined by one of several possible algorithms. For
example, in nonpersistent CSMA, the node draws a random waiting time, after which the medium
is sensed again. Before this time, the node does not care about the state of the medium. In different
persistent CSMA variants, after sensing that the medium is busy, the node awaits the end of the
ongoing transmission and then behaves according to a backoff algorithm. In many of these backoff
algorithms, the time after the end of the previous frame is subdivided into time slots. In p-persistent
CSMA, a node starts transmission in a time slot with some probability p and with probability 1 — p
it waits for another slot.> If some other node starts to transmit in the meantime, the node defers and
repeats the whole procedure after the end of the new frame. A small value of p makes collisions
unlikely, but at the cost of high access delays. The converse is true for a large value of p.

In the backoff algorithm executed by the IEEE 802.11 Distributed Coordination Function (DCF),
a node transmitting a new frame picks a random value from the current contention window and
starts a timer with this value. The timer is decremented after each slot. If another node starts in the
meantime, the timer is suspended and resumed after the next frame ends and contention continues.
If the timer decrements to zero, the node transmits its frame. When a transmission error occurs
(indicated, for example, by a missing acknowledgment frame), the size of the contention window is
increased according to a modified binary exponential backoff procedure.* While CSMA protocols
are still susceptible to collisions, they have a higher throughput efficiency than ALOHA protocols,
since ongoing packets are not destroyed when potential competitors hear them on the medium.

As explained above, carrier-sense protocols are susceptible to the hidden-terminal problem since
interference at the receiver cannot be detected by the transmitter. This problem may cause packet
collisions. The energy spent on collided packets is wasted and the packets have to be retransmitted.
Several approaches have appeared [268] to solve or at least to reduce the hidden-terminal problem;
we present two important ones: the busy-tone solution and the RTS/CTS handshake.

In the original busy-tone solution [823], two different frequency channels are used, one for the
data packets and the other one as a control channel. As soon as a node starts to receive a packet
destined to it, it emits an unmodulated wave on the control channel and ends this when packet

3 The special case p = 1 amounts to a node that always starts transmission when the preceding packet ends, surely creating
collisions when two or more nodes want to transmit. This choice is best accompanied by a collision detection and resolution
facility, like, for example, in Ethernet.

“In the binary exponential backoff procedure, the contention window is doubled after each collision/transmission error as
indicated by lack of an immediate acknowledgment. In the truncated binary exponential backoff procedure, the contention
window is doubled until an upper bound is reached. Afterward it stays constant.
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reception is finished. A node that wishes to transmit a packet first senses the control channel for
the presence of a busy tone. If it hears something, the node backs off according to some algorithm,
for example similar to nonpersistent CSMA. If it hears nothing, the node starts packet transmission
on the data channel. This protocol solves both the hidden- and exposed-terminal problem, given
that the busy-tone signal can be heard over the same distance as the data signal. If the busy tone
is too weak, a node within radio range of the receiver might start data transmission and destroy
the receiver’s signal. If the busy tone is too strong, more nodes than necessary suppress their
transmissions. The control channel does not need much bandwidth but a narrow bandwidth channel
requires good frequency synchronization. A solution with two busy tones, one sent by the receiver
and the other by the transmitter node, is discussed in [203, 321]. Another variant of the busy-tone
approach is used by PAMAS, discussed in Section 5.3.2.

The RTS/CTS handshake as used in IEEE 802.11 [815] is based on the MACAW protocol
[75] and is illustrated in Figure 5.2. It uses only a single channel and two special control packets.
Suppose that node B wants to transmit a data packet to node C. After B has obtained channel
access (for example after sensing the channel as idle), it sends a Request To Send (RTS) packet to
C, which includes a duration field indicating the remaining length of the overall transaction (i.e.,
until the point where B would receive the acknowledgment for its data packet). If C has properly
received the RTS packet, it sends a Clear To Send (CTS) packet, which again contains a duration
field. When B receives the CTS packet, it starts transmission of the data packet and finally C
answers with an acknowledgment packet. The acknowledgment is used to tell B about the success
of the transmission; lack of acknowledgment is interpreted as collision (the older MACA protocol
[407] lacks the acknowledgment). Any other station A or D hearing either the RTS, CTS, data
or acknowledgment packet sets an internal timer called Network Allocation Vector (NAV) to the
remaining duration indicated in the respective frame and avoids sending any packet as long as this

A B () D
<l £, vl gl
........ RTS
;
CTS _g-...
NAYV indicates
busy medium
NAV indicates
\ busy medium
Ack
A

Figure 5.2 RTS/CTS handshake in IEEE 802.11
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timer is not expired. Specifically, nodes A and D send no CTS answer packets even when they
have received a RTS packet correctly. This way, the ongoing transmission is not distorted.

Does this scheme eliminate collisions completely? No, there still exist some collision scenarios.
First, in the scenario described above, nodes A and C can issue RTS packets to B simultaneously.
However, in this case, only the RTS packets are lost and no long data frame has been transmitted.
Two further problems are illustrated in Figure 5.3 [668]: In the left part of the figure, nodes A and
B run the RTS-CTS-Data-Ack sequence, and B’s CTS packet also reaches node C. However, at
almost the same time, node D sends an RTS packet to C, which collides at node C with B’s CTS
packet. This way, C has no chance to decode the duration field of the CTS packet and to set its
NAV variable accordingly. After its failed RTS packet, D sends the RTS packet again to C and C
answers with a CTS packet. Node C is doing so because it cannot hear A’s ongoing transmission
and has no proper NAV entry. C’s CTS packet and A’s data packet collide at B. In the figure’s
right part, the problem is created by C starting its RTS packet to D immediately before it can sense
B’s CTS packet, which C consequently cannot decode properly. One solution approach [668] is to
ensure that CTS packets are longer than RTS packets. For an explanation, consider the right part
of Figure 5.3. Here, even if B’s CTS arrives at C immediately after C starts its RTS, it lasts long
enough that C has a chance to turn its transceiver into receive mode and to sense B’s signal. An
additional protocol rule states that in such a case node C has to defer any further transmission for
a sufficiently long time to accommodate one maximum-length data packet. Hence, the data packet
between A and B can be transmitted without distortion. It is not hard to convince oneself that the
problem in the left half of Figure 5.3 is eliminated too.

A further problem of the RTS/CTS handshake is its significant overhead of two control packets
per data packet, not counting the acknowledgment packet. If the data packet is small, this overhead
might not pay off and it may be simpler to use some plain CSMA variant. For long packets, the
overhead of the RTS/CTS handshake can be neglected, but long packets are more likely to be
hit by channel errors and must be retransmitted entirely, wasting precious energy (channel errors
often hit only a few bits). A good compromise is to fragment a large packet like, for example, in

g A g B g s C g 5 D g A g B g C g D
RTS
RTS
Data RTS % cTS
CTS Data
Ack

Figure 5.3 Two problems in RTS/CTS handshake [668]
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IEEE 802.11 or in the S-MAC protocol discussed in Section 5.2.2 and to use the RTS/CTS only
once for the whole set of fragments.

5.1.3 MAC protocols for wireless sensor networks

In this section, we narrow down the specific requirements and design considerations for MAC
protocols in wireless sensor networks.

Balance of requirements

For the case of WSNss, the balance of requirements is different from traditional (wireless) networks.
Additional requirements come up, first and foremost, the need to conserve energy. The importance
of energy efficiency for the design of MAC protocols is relatively new and many of the “classical”
protocols like ALOHA and CSMA contain no provisions toward this goal. Some papers covering
energy aspects in MAC protocols are references [143, 299, 886]. Other typical performance figures
like fairness, throughput, or delay tend to play a minor role in sensor networks. Fairness is not
important since the nodes in a WSN do not represent individuals competing for bandwidth, but
they collaborate to achieve a common goal. The access/transmission delay performance is traded
against energy conservation, and throughput is mostly not an issue either.

Further important requirements for MAC protocols are scalability and robustness against frequent
topology changes, as caused for example by nodes powering down temporarily to replenish their
batteries by energy scavenging, mobility, deployment of new nodes, or death of existing nodes.
The need for scalability is evident when considering very dense sensor networks with dozens or
hundreds of nodes in mutual range.

Energy problems on the MAC layer

As we have discussed in Chapters 2 and 4, a nodes transceiver consumes a significant share of
energy. Recall that a transceiver can be in one of the four main states (Section 2.1.4): transmitting,
receiving, idling, or sleeping. Section 2.2.4 has discussed the energy-consumption properties of
some transceiver designs in the different operational states. In a nutshell, the lessons are: Transmit-
ting is costly, receive costs often have the same order of magnitude as transmit costs, idling can be
significantly cheaper but also about as expensive as receiving, and sleeping costs almost nothing
but results in a “deaf” node. Applying these lessons to the operations of a MAC protocol, we can
derive the following energy problems and design goals [915]:

Collisions collisions incur useless receive costs at the destination node, useless transmit costs at the
source node, and the prospect to expend further energy upon packet retransmission. Hence,
collisions should be avoided, either by design (fixed assignment/TDMA or demand assign-
ment protocols) or by appropriate collision avoidance/hidden-terminal procedures in CSMA
protocols. However, if it can be guaranteed for the particular sensor network application at
hand that the load is always sufficiently low, collisions are no problem.

Overhearing Unicast frames have one source and one destination node. However, the wireless
medium is a broadcast medium and all the source’s neighbors that are in receive state hear
a packet and drop it when it is not destined to them; these nodes overhear the packet.
References [668, 915] show that for higher node densities overhearing avoidance can save
significant amounts of energy. On the other hand, overhearing is sometimes desirable, for
example, when collecting neighborhood information or estimating the current traffic load for
management purposes.
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Protocol overhead Protocol overhead is induced by MAC-related control frames like, for example,
RTS and CTS packets or request packets in demand assignment protocols, and furthermore
by per-packet overhead like packet headers and trailers.

Idle listening A node being in idle state is ready to receive a packet but is not currently receiving
anything. This readiness is costly and useless in case of low network loads; for many radio
modems, the idle state still consumes significant energy. Switching off the transceiver is a
solution; however, since mode changes also cost energy, their frequency should be kept at
“reasonable” levels. TDMA-based protocols offer an implicit solution to this problem, since
a node having assigned a time slot and exchanging (transmitting/receiving) data only during
this slot can safely switch off its transceiver in all other time slots.

Most of the MAC protocols developed for wireless sensor networks attack one or more of these
problems to reduce energy consumption, as we will see in the next sections.

A design constraint somewhat related to energy concerns is the requirement for low complexity
operation. Sensor nodes shall be simple and cheap and cannot offer plentiful resources in terms
of processing power, memory, or energy. Therefore, computationally expensive operations like
complex scheduling algorithms should be avoided. The desire to use cheap node hardware includes
components like oscillators and clocks. Consequently, the designer of MAC protocols should bear
in mind that very tight time synchronization (as needed for TDMA with small time slots) would
require frequent resynchronization of neighboring nodes, which can consume significant energy.
Time synchronization issues are discussed in Chapter 8.

Structure of the following discussion

In the following sections, we discuss a number of different MAC protocols proposed for wireless
sensor networks because of their ability to conserve energy. The presentation in the following
sections is not structured according to the above discussed classes of MAC protocols (fixed assign-
ment, demand assignment, random access) but instead it is according to the way they attack one
or more of the energy problems.

In Section 5.2, we discuss protocols that explicitly attack the idle listening problem by applying
periodic sleeping or even wakeup radio concepts.

Some other protocols are classified into either contention-based or schedule-based protocols.
This distinction is to be understood by the number of possible contenders upon a transmit oppor-
tunity toward a receiver node:

e In contention-based protocols (Section 5.3), any of the receiver’s neighbors might try its luck at
the risk of collisions. Accordingly, those protocols contain mechanisms to avoid collisions or to
reduce their probability.

e In schedule-based protocols (Section 5.4), only one neighbor gets an opportunity and collisions
are avoided. These protocols have a TDMA component, which provides also an implicit idle
listening avoidance mechanism: when a node knows its allocated slots and can be sure that it
communicates (transmits/receives) only in these slots, it can safely switch off its receiver at all
other times.

In Section 5.5, we discuss the IEEE 802.15.4 protocol, which combines elements of schedule- and
contention-based protocols and can be expected to achieve some commercial impact.

5.2 Low duty cycle protocols and wakeup concepts

Low duty cycle protocols try to avoid spending (much) time in the idle state and to reduce the
communication activities of a sensor node to a minimum. In an ideal case, the sleep state is left
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Figure 5.4 Periodic wakeup scheme

only when a node is about to transmit or receive packets. A concept for achieving this, the wakeup
radio, is discussed in Section 5.2.4. However, such a system has not been built yet, and thus, there
is significant interest to find alternative approaches.

In several protocols, a periodic wakeup scheme is used. Such schemes exist in different flavors.
One is the cycled receiver approach [503], illustrated in Figure 5.4. In this approach, nodes spend
most of their time in the sleep mode and wake up periodically to receive packets from other nodes.
Specifically, a node A listens onto the channel during its listen period and goes back into sleep
mode when no other node takes the opportunity to direct a packet to A. A potential tra