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| chapter I
Signals and systems

This book is an introduction to electric network theory. The first half

of the book is devoted to network analysis and the remainder to network

synthesis and design. What are network analysis and synthesis? In a

' generally accepted definition of network analysis and synthesis, there are

three key words: the excitation, the network, and the response as depicted

in Fig. 1.1. Network analysis is concerned with determining the response,

given the excitation and the network. In network synthesis, the problem

is to design the network given the excitation and the desired response.

In this chapter we will outline some of the problems to be encountered

in this book without going into the actual details of the problems. We
will also discuss some basic definitions.

I.I SIGNAL ANALYSIS

For electric networks, the excitation and response are given in terms of
voltages and currents which are functions of time, ¢. In general, these
functions of time are called signals. In describing signals, we use the two
universal languages of electrical engineering—time and frequency. Strictly

. speaking, a signal is a function of time. However, the signal can be
described equally well in terms of spectral or frequency information. As
between any two languages, such as French and German, translation is
needed to render information given in one language comprehensible in the

Excitation Response
R | Network | ——

FIG. l.1. The objects of our concern.
|
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2 Network analysis and synthesis

s(t)

Aol—

7]
/ 2w

N

FIG. 1.2. Sinusoidal signal.

ncy, the translation is effected by the

Fourier series, the Fourier integral, and the Laplace transfor)r}. trgebsohoalll
have ample opportunity to define and st.udy these terms lgter dln e o 01;
At the moment, let us examine how a sxgpal can be ‘descrlbe in te
both frequency and time. Consider the sinusoidal signal

other. Between time and freque

s(t) = Agsin (wof + 6,) (1.1)

where A4, is the amplitude, 6, is the phase shift, and w, is the. angular
frequency as given by the equation
2 (1.2)

Wy = 7

T

d. The signal is plotted against time

i i the sinusoi .
where T is the period of Sbtained if we

in Fig. 1.2. Anequally complete description of the signal is

>
=Y

Amplitude

0 wo
Angular frequency

FIG. 1.3a. Plot of amplitude A versus angular frequency @.

wp
Angular frequency

FIG. 1.3b. Plot of phase 8 versus angular frequency .

4 Network analysis and synthesis

Alw)

—-w |0 @

FIG. |.5a. Continuous amplitude spectrum.

6(w)

- (o) w

FIG. 1.5b. Continuous phase spectrum.

pulse in Fig. 1.6 can only be described in terms of continuous spectra
through the Fourier integral transform.

1.2 COMPLEX FREQUENCY

In this section, we will consider the concept of complex frequency. As
we shall see, the complex frequency variable

s=0+jo (1.5)

is a generalized frequency variable whose real part o describes growth and
decay of the amplitudes of signals, and whose imaginary part jo is angular
frequency in the usual sense. The idea of complex frequency is developed

by examining the cisoidal signal
S(f) = A&’ (1.6)
s(t)

0 T t
FIG. 1.6. Triangular signal.
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A

L

—W —W4 —W3 —W2 =W

.

wo w1 w2 w3 wq Fw

FIG. l.4a. Discrete amplitude spectrum.

—w —w4 ~w3 ~wg —w; [0 T I | +w

FIG. 1.4b. Discrete phase spectrum.

let the angular frequency  be the independent variable. In this case, the
signal is described in terms of 4y, w,, and 8y, as shown in Fig. 1.3a, where
amplitude is plotted against frequency, and in Fig. 1.3, where phase shift
is plotted.

Now suppose that the signal is made up of 2n + 1 sinusoidal components

n
s(f) = 3 A;sin (w;t + 6,) (1.3)
i=—n

The spectral description of the signal would then contain 27 + 1 lines at
+w,, £, ..., w,, as given in Figs. 1.4a and b. These discrete spectra
of amplitude 4 versus o and phase shift 6 versus w are sometimes called
line spectra. Consider the case when the number of these spectral lines
become infinite and the intervals w;,, — w, between the lines approach
zero. Then there is no longer any discrimination between one frequency
and another, so that the discrete line spectra fuse into a continuous spectra,
as shown by the example in Figs. 1.5z and b. In the continuous case, the

sum in Eq. 1.3 becomes an integral

s(1) =f_w A(w) sin [wt + 6(w)] dw (1.4)

where A(w) is known as the amplitude spectrum and 6(w) as the phase
spectrum.

As we shall see later, periodic signals such as the sine wave in Fig. 1.2
can be described in terms of discrete spectra through the use of Fourier
series. On the other hand, a nonperiodic signal such as the- triangular

- Signals and systems 5

ImS

Jjw

Re S

FIG. 1.7. Rotating phasor.

when S(¢) is represented as a rotating phasor,® as shown in Fig. 1.7.
The angular frequency w of the phasor can then be thought of as a velocity
at the end of the phasor. In particular the velocity w is always at right
angles to the phasor, as shown in Fig. 1.7. However, consider the general
case when the velocity is inclined at any arbitrary angle v as given in
Figs. 1.84 and 1.8b. In this case, if the velocity is given by the symbol s,
we see that s is composed of a component w at right angle to the phasor S
as well as a component o, which is parallel to S. In Fig. 1.84, s has a
component —o toward the origin. As the phasor 8 spins in a counter-
clockwise fashion, the phasor decreases in amplitude. The resulting wave
for the real and imaginary parts of S(t) are damped sinusoids as given by

Re S(t) = Ae™"  cos wt
Im S(1) = Ae* sin ot (1.7

any;

)
) N

(a) (b)
FIG. 1.8. (a) Rotating phasor with exponentially decreasing amplitude. (b) Rotating
phasor with exponentially increasing amplitude.

! A phasor S is a complex number characterized by a magnitude and a phase angle
(see Appendix C).
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Re S ! s
’
Aeo’t
t
0
I 4
‘ A
A
Im S - t

FIG. l.11. Exponential signals.

which are shown in Fig. 1.9. Note that the damped sinusoid has an
exponential envelope decay, Ae~°*. In Fig. 1.8b, the phasor is shown with
a positive real component of velocity +o. Therefore, as the phasor spins,
the amplitudes of the real and imaginary parts increase exponentially
with an envelope 4e*%, as shown by Im S(¢) in Fig. 1.10.

From this discussion, it is apparent that the generalized cisoidal signal

S(1) = Ae*t = Aelotion (1.8)
FiIG. 1.9. Damped sinusoids.

describes the growth and decay of the amplitudes in addition to angular
frequency in the usual sense. When o = 0, the sinusoid is undamped, and
when jow = 0, the signal is an exponential signal

im S(t) /
/A\ Envelope = Ae?*

S(f) = Aet (1.9)

as shown in Fig. 1.11. Finally, if ¢ = jow = 0, then the signal is a constant
A. Thus we see the versatility of a complex frequency description.

|
{
1
1

1.3 NETWORK ANALYSIS

i

As mentioned before, the characterization of the excitation and response
signals in time and frequency makes up only part of the analysis problem.
The other part consists of characterizing the network itself in terms of
time and frequency, and determining how the network behaves as a signal
processer. Let us turn our attention now to a brief study of the properties
of linear networks and the general characteristics of signal processing by
a linear system.

Signals and systems 9
8 Network analysis and synthesis

e(t) (t)

BASIC DEFINITIONS

Linear . -
A| system (network) is linear if (a) the prmmple 0
. ciple of proportionality hold. /
(b)l;hili:ns?;grposigoxf principle, if, for a given ne'twork, [el(_tt),tri':)(;)] le:r ;
[e (t); ro(t)] are excitation-response pairs, then if th:: j—xil(?:) by 1he
e(zt) ; zl(t) 4 e,(t), the response wqulq be r(t)e=cr;((2) w; er;: b o /.
“tionality principle, if the excitation were Caexlh); '
PfOPOTtIOHE 1 ythFc)e resg)onse would be Cyry(2), ie., the constant of'proporf
o B 1 twork. The two conditions © ) Il
tionality Cj is preserved by the linear netw '

. . —> System |——> Bpr=———=-=77
. - ized in Fig. 1.12. oo /¥—-—
linearity are SumMmarizs < that the excitation and response
iti a linear network is that the . : 0 T, t 0 T
Another definition Of a linear differential equation. We shall Ty T+T 1 t

etwork are related by . : .
gfsg\;:s r'zhis definition in Chapter 4 on differential equations.

f superposition and A

—> System [——> Bf--

FIG. L.13. Time-invariant system.

ive . work is excitation and response remains the same. Thus must be true for an
Pa§s| twork is passive? if (@) the energy delivered to the net : e fp at ; y
A linear netw P and (b) if no voltages or currents ; choice of points of excitation and response.

i rbitrary excitation, if no vo :
OB o oy ¢ . fore an excitation 18 applied.

: i Causal
1 any two terminals be i ) e ) .. .
appear between any We say a system is causal if its response is nonanticipatory, i.e., if
iprocal . ; itation and i
Aie;::l:work is said to be reciprocal if when the points of excitati ‘ e(ty=0 t<T

i the relationship between o
measurement of response are interchanged, . o <t )

In other words, a system is causal if before an excitation is applied at
Creft) System __ﬁr_l(ﬁ_, t = T, the response is zero for —oo < ¢t < 7.

L_____. Time invariant

A system is time invariant if e(t) — r(f) implies thate(t &= T) —>r(t £ T),
where the symbol — means “gives rise to.”” To understand the concept
Coraft) of time invariance in a linear system, let us suppose that initially the
Caea(® | system B A - excitation is introduced at ¢ = 0, which gives rise to a response r(t). If

; the excitation were introduced at 1 = T, and if the shape of the response
waveform were the same as in the first case, but delayed by a time T
(Fig. 1.13), then we could say the system is time invariant. Another way
of looking at this concept is through the fact that time-invariant systems
contain only elements that do not vary with time. It should be mentioned
here that linear systems need not be time invariant.

| I

Cyri(t) + Cara(t)
Ciey(t) + Caex(t) system 1ralt)

Derivative property :
- From the time-invariant property we can show that, if e(#) at the input
gives rise to r(t) at the output (Fig. 1.14), then, if the input were €'(¢),

FIG. 1.12. Linear system.

G. RalsbeCk A Deﬁnltlon Of Passive L“leal NetWOIkS 1mn Ie!]nS Of Ilnle and
>

10-1514.
Energy,” J. APPI' Phys., 25 (Dec. 1954), 15
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12

e(t) r(t)
J'ole('r) dT fotr(f) dr

FIG. 1.14. Some implications of linear time-invariant systems.

i.e., the derivative of e(t), the response would be r'(¢). The proof is quite

simple. Consider an excitation e(f + €) where € is a real quantity. BY the
time-invariant property, the responsé would be r(t + €). Now suppose the

excitation were
(1.11)

er(t) = 1 (e(t + &) — €]

then according to the linearity and time-invariant properties, the response

would be 1
ri(t) = - [t + €) — r(N] (1.12)
Taking the limit as € — 0, we see that
lim e,(t) = 5— e(?)
€0 d’ (1.13)
lim ry(t) = — 1t
el—»o ri(t) dt r(1)

We can extend this idea to higher derivatives as well as for the integrals of

e(t) and r(1), as shown in Fig. 1.14.
ldeal models
Let us now examine some i
systems given in the following a
useful in signal processing.

dealized models of linear systems. The
1l have properties wh

Network analysis and synthesis

r(t)

r(t)

T1+2t

Ty +1

(d)
ut. (c) Integrator output. (d)

FIG. 1.20. (@) Amplifier output. (b) Differentiator outp

Delayed output.

ldeal elements

In the analysis of €
models of physical circui
are the resistor R, given in
the inductor L, expressed 1

lectric networks, we use idealized linear mathematical
¢ elements. The elements most often encountered

ohms, the capacitor C, given in farads, and
n henrys. The endpoints of the elements are

called terminals. A port is defined as any pair of two termin.als into which
energy is supplied or withdrawn or where network variables may be
measured 0T observed. In Fig. 1.21 we have an example of 2 two-port

network.
The energy sources
current ot voltage sources,

that make up the excitation functions aré ideal

as shown in Figs. 1.22a

Response

Two-port
measurement

Energy
network

source

FIG. 1.21. Two-port network.
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e(t)
) ) Amplifier | K€y

FIG. L.15. Ampilifier.

f(t)
—_—> d
K | Sme— K____‘i/ ()
t

FIG. 1.16. Differentiator.

&‘——)' K i ¢
J, k[ mar

FIG. L.17. Integrator.

1)
B o |20

FIG. 1.18. Time-delay network.

e(t)
11—

|
0 ] 2 ;

FIG. I.19. Excitation function.

1. Amplifier: An ampli
: plifier scales up th : .

r (‘% =DI.<€(t)> “{here K is a constant (Fig. l.i 51;1 agnitude of the input, 1
" . yferentt(-ztor; The input Signal iS diﬂerentiated a d .

P down (Fig. 1.16). nd possibly scaled

. Integrator: The 3 :

Fig. 1.17. output is the integral of the input, as shown in

4. Time delayer: The i

: output is del .

same wave shape as the input (Fig. 12'1{231‘ R SO HRHGERES e

Su .
Thenpgﬁesz ;\;; lfilsk;)trh:atrﬁanfgular pulse in Fig. 1.19 as the input signal
. . C . . o
in Figs. 1.20a-1.204. of the four systems just described are shown

Signals and systems 13

EEE—

v(t) i) <>

b— o
FIG. 1.22b. Current source.

FIG. 1.22a. Voltage source.

indicated for the volta
ge source and the directi
source Hrar ion of flow for
voltage 2;‘; r'izb_ltrarlly assumed for reference purposes onl theAch;ent
Itk in:is an energy source that provides, at a given Pgr.t a Ll ; -
words “curre tfpenc;i o of the current at that port. If we intercha y tilgle
. nt” and “‘voltage” in o nge the
ideal current source. ® thetlast deniition; weshendoihean,
In network i e
that exist betwigiljt,lslles,ctuhi PrthIP;l 1 problem is to find the relatiquehips
T rrents and volta

Certain s ) ges at the ports of th
serve as ?;gle' VOltage-c.urrent relationships for the Ifetwork eleer:nlel:ettwork.
e Cur?;ntg equations for the elements themselves. For e)I(l oo
RLand C elgrr?ear;d voltages are expressed as functions of time u?:;}zif ’

nts, shown in Fig. 1.23, are defined by the eql;ations :

o(t) = Ri(1) of  i(f) = liv(t)
_ ., di(n)
ot) = L 4 ' ‘
- or (1) = %J; o(@) dz + i(0) (1.14)
1t
o(t) = —C—J; i(®) dz + v(0) or i()=C d;—(t)
H

con
lnt rati

Expressed i
pressed as a function of the complex frequency variable s, the equations

i i(t) o)
+ + > i—»—
v(t) >
3 R v(t) gl‘ v(t) 1 o
= | -
o =
(a) (b) (@)

FIG. 1.23. (a) Resistor. (b) Inductor. (c) Capacitor
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I(s) I(s) I(s)
O———
+ + +
a
V(s) ER Vi(s) sL  V(s) sC
- — -
(a) (b) (c)

FIG. 1.24. () Resistor. (b) Inductor. (c) Capacitor.

defining the R, L, and C elements, shown in Fig. 1.2
initial conditions for the moment)

V(s) = RI(s) or I(s) = % V(s)

V(s) = sLI(s)

V(s)=;%1(s) o I(s) = sCV(s)

We see that in the time domain,
the voltage-current relationships are givenin
On the other hand, in the comp
reiationships for the elements ar¢
Algebraic equations are, in most cases, ily
equations. Herein lies the raison d’étre for d'escrlbm _
in the frequency domain as well as in the time domain.

When a network is made_up of an interco

elements, the net :
The response R(s) and the excitation E(s) a

R(s) = H(s) E(5)-

re related by the equation

In network analysis, we are given E(s), and we can obt
from the network. Our task is to determine R(s).

1.4 NETWORK SYNTHESIS
We will now briefly i

synthesis. In network synthesis, we are gi
excitation E(s), and we are required to syn

16 Network analysis and synthesis

r——_————j‘ Ii(s) Iy(s)
10— : _L | _c:———)—— —<——g
Y(s}) —— | __l_ 4 % 3 } Vi(s) .Tr\:\g:;l%?{(‘t Va(s)
10— 1 o~ -

] | o———— ————o

(R )

FIG. 1.27. Network realiza- FIG. 1.28. Two-port network.

tion for Y(s).

Our task is to synthesize a network equivalent to the network in the black
box. From a close scrutiny of the driving-point admittance Y(s), we see
that a possible solution might consist of a resistor of 3 Q in parallel with
a capacitor of 4 farads, as seen in Fig. 1.27.

The problem of driving-point synthesis, as shown from the examples
just given, consists of decomposing a given immittance function into
basic recognizable parts (such as 3 + 4s). Before we proceed with the
mechanics of decomposition, we must first determine whether the function
is realizable, i.e., can it be synthesized in terms of positive resistances,
inductances, and capacitances? It will be shown that realizable driving-
point immittances belong to a class of functions known as positive real or,
simply, p.r. functions. From the properties of p.r. functions, we can test a
given driving-point function for realizability. (The Appendices present a
short introduction to complex variables as well as the proofs of some
theorems on positive real functions.) With a knowledge of p.r. functions,
we then go on to examine special driving-point functions. These include
functions which can be realized with two kinds of elements only—the L-C,
R-C, and R-L immittances.

Next we proceed to the synthesis of transfer functions. According to
the IRE Standards on passive linear networks,* a transfer function or
transmittance is a system function for which the variables are measured at
different ports. There are many different forms which a transfer function
might take. For example, consider the two-port network in Fig. 1.28.
If the excitation is J,(s) and the response Vy(s), the transfer function is a
transfer impedance

Zu(s) = —?% (1.22)

On the other hand, if ¥,(s) were the excitation and ¥(s) the response, then
we would have a voltage-ratio transfer function

H(s) = IYZT(:)) (1.23)

4 Loc. cit.
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4, are (ignoring

or  I(s) = ;1,j ¥(s) (1.15)

i.e., where the independent variable is ¢,
terms of differential equations.

lex-frequency domain, the voltage-current
expressed in algebraic equations.
more easily solved than differential
g signals and networks

nnection of linear circuit
work is described by its system or transfer function H(s).

(1.16)

ain H(s) directly

ntroduce some of the problems germane to network
ven the response R(s) and the
thesize the network from the
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I(s) V(s) R

FIG. 1.26. Black box.

FIG. 1.25. Driving-point impedance
Z(s) = R.

system function
R(s)
H(s) = —~*
)=7 ©

Since R(s) and E(s) are voltages or currents, then H(s) is denoted generally
as an immittance if R(s) is a voltage and E(s) is a current, or vice versa.
A driving-point immittance® is defined to be a function for which the
variables are measured at the same port. Thus a driving-point impedance
Z(s) at a given port is the function

(1.17)

V(s)
‘ I(s)
where the excitation is a current I(s) and the response is a voltage V(s), as
shown in Fig. 1.25. When we interchange the words “current” and
“yoltage” in the last definition, we then have a driving-point admittance.
An example of a driving-point impedance is the network in Fig. 1.25,
where

Z(s) = (1.18)

Yo _
Z(s) 1) R (1.19)
Now suppose the resistor in Fig. 1.25 were enclosed in a “black box.”
We have no access to this black box, except at the terminals 1-1” in Fig.
1.26. Our task is to determine the network in the black box. Suppose we
are given the information that, for a given excitation I(s), the voltage
response ¥(s) is proportional to I(s) by the equation

V(s) = K I(s) (1.20)

An obvious solution, though not unique, is that the network consists of a
resistor of value R = K Q. Suppose next that the excitation is a voltage
V(s), the response is a current J(s), and that

Y(s) = —f/% =3+ 4s B¢ 1))

3 IRE Standards on Circuits ‘‘Linear Passive Networks,” Proc. IRE, 48, No, 9
(Sept. 1960), 1608-1610.

3

IR
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0 we w
FIG. 1.29. Ideal amplitude spectrum for low-pass filter.

As for driving-point functions, there are certain properties which a
transfer function must satisfy in order to be realizable. We shall study
these realizability conditions and then proceed to the synthesis of some
simple transfer functions.

The most important aspect of transfer function synthesis is filter design.
A filter is defined as a network which passes a certain portion of a fre-
quency spectrum and blocks the remainder of the spectrum. By the term
“blocking,” we imply that the magnitude response |H(jw)| of the filter is
approximately zero for that frequency range. Thus, an ideal Jow-pass
filter is a network which passes all frequencies up to a cutoff frequency
w¢, and blocks all frequencies above w¢, as shown in Fig. 1.29.

One aspect of filter design is to synthesize the network from the transfer
function H(s). The other aspect deals with the problem of obtaining a
realizable transmittance H(s) given the specification of, for example, the
magnitude characteristic in Fig. 1.29. This part of the synthesis is generally
referred to as ‘the approximation problem. Why the word *“approxi-
mation?” Because frequency response characteristics of the R, L, and C
elements are continuous (with the exception of isolated points called
resonance points), a network containing these elements cannot be made to
cut off abruptly at w in Fig. 1.29. Instead, we can realize low-pass filters
which have the magnitude characteristics of Fig. 1.30. In connection with

| Htjw)| | H(jew)!

w

FiG. 1.30. Realizable low-pass filter characteristics.
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the filter design problems, we will discuss certain problems in magnitz{de
and frequency normalization S0 that, in designing a filter, we deal with
element valuessuchas R = 0.5ohmand C = 2 faradsinstead of “practical”
element values of, for example, R = 500,000 ohms and C = 2 picofarads
(pico = 1072%). Also we will study a method whereby low-pass filter
designs might be transformed into high-pass, band-pass, and band-
elimination filters. The mathematical basis of this method is called
frequency transformation. ‘

We next discuss some aspects of analysis and synthesis in which the
excitation and response functions are given in terms of power rather'than
of voltage and current. We will examine the power-transfer properties of
linear networks, using scattering parameters, which describe the incident
and reflected power of the network at its ports. ‘

Finally, in Chapter 15, we will examine some of the many uses .of high-
speed digital computers in circuit analysis and design. In gddxtlon toa
general survey of the field, we will also study some specific computer

programs in circuit analysis.

Problems

1.1 Draw the line spectra for the signal

s(#) = 3sin (t +777f) + 4sin (2t —g) + 65in 3¢

1.2 Find the response to the excitation sin ¢ into a sampler that closes every

Kn/4 seconds where K = 0,1,2,.... Draw the response for0 <t < 2m.

1.3 Find the response to the excitation shown in the figure when the network

is (a) an ideal differentiator; (b) an ideal integrator.

e(t)

PROB. 1.3
1.4 If the system function of a network is given as

1
HO) = 55726 +3)

chapter 2
Signals and waveforms

Our main concern in this chapter is the characterization of signals as
functions of time. In previous studies we have dealt with d-c signals
that were constant with time, or a-c signals which were sinusoids of
constant amplitude, such as s(t) = 4 sin (w? + 6). Inengineering practice,
the class of signals encountered is substantially broader in scope than
simple a-c or d-c signals. To attempt to characterize each member of
the class is foolhardy in view of the almost infinite variety of signals
encountered. Instead, we will deal only with those signals that can be
characterized in simple mathematical terms and which serve as building
blocks for a large number of other signals. We will concentrate on formu-
lating analytical tools to aid us in describing signals, rather than deal with
the representation of specific signals. Because of time and space limita-
tions, we will cover only signals which do not exhibit random behavior,
i.e., signals which can be explicitly characterized as functions of time.
These signals are often referred to as deterministic signals. Let us first
discuss certain qualitative aspects of signals in general.

2.1 GENERAL CHARACTERISTICS OF SIGNALS

In this section we will examine certain behavior patterns of signals.
Once these patterns are established, signals can be classified accordingly,
and some simplifications result. The adjectives which give a general
qualitative description of a signal are periodic, symmetrical, and continuous.
Let us discuss these terms in the given order. '

First, signals are either periodic or aperiodic. If a signal is periodic, then
it is described by the equation

s(t) = s(t £ kT)
20

k=0,1,2,... 2.1
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find the response R(s) if the excitation is

E(s) =2

1.5 Given the driving-point functions find their simplest network realiz-
ations.

@ Z(s) =3 +23+%

®) Y(s) =25 + 73:_2

© Z6) =3 + 5o

%) Y(s) = 3_5_13 + S%Z

1.6 For the network shown, write the mesh equation in terms of (a) differential
equations and (b) the complex-frequency variable s.

R L
MAN—TTT—
+ q

PROB. 1.6

Y

1.7_ For the network shown, write the node equation in terms of (@) differential
equations and (b) complex-frequency form. '

® F o 2

PROB. 1.7

1.8 Sggpose the response of a linear system to an excitation e(f) were
r(f) = 3¢-4¢, What would the response be to an excitation of e(t — 2)?

Signals and waveforms 21

FIG. 2.1. Square wave.

where T is the period of the signal. The sine wave, sin ¢, is periodic with
period T'= 2. Another example of a periodic signal is the square wave
given in Fig. 2.1. On the other hand, the signals given in Fig. 2.2 are
aperiodic, because the pulse patterns do not repeat after a certain finite
interval 7. Alternatively, these signals may be considered “periodic™ with
an infinite period.

Next, consider the symmetry properties of a signal. The key adjectives
here are even and odd. A signal function can be even or odd or neither.
An even function obeys the relation

. s(t) = s(—1) (2.2)

For an odd function

s(t) = —s(—1) (2.3)

For example, the function sin ¢ is odd, whereas cos ¢ is even. The square
pulse in Fig. 2.2a is even, whereas the triangular pulse is odd (Fig. 2.2b).
Observe that a signal need not be even or odd. Two examples of signals
of this=type are shown in Figs. 2.3a and 2.4a. It is significant to note,
however, that any signal s(f) can be resolved into an even component s,(f)
and an odd component s,(¢) such that '

s(2) = 5,(1) + 5,(t) 2.4

- For example, the signals in Figs. 2.3a and 2.4a can be decomposed into
- 0dd and even components, as indicated in Figs. 2.3b, 2.3, 2.4b,'and 2.4c.

s(t)

sml/l

—1[/]0 1 ¢

(a) (b)
FIG. 2.2. (a) Even function. (6) Odd function.

I
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0 *
—1
1
2 0 t
1
-1 0 / t
-1
2 (a)
(a)
se(t)
' 3
se(t)
1
z 0 ¢
-1 0 1t
® ()
solt) soft)
1 1
2 2
1
-1 0 ¢ 0 1 g
1 w2
2
(© (c)

FIG. 2.4. Decomposition into
even and odd components.
(a) Unit step function. (b)
Even part of unit step. (¢)
0dd part of unit step.

FIG. 2.3. Decomposition into
odd and even components.
(@) Original function. (b)
Even part. (c) Odd part.

From Eq. 2.4 we observe that
s(—1) = s,(—1) + so(=1)

2.5)

= 5.0 = 540 (
Consequently, the odd and even parts of the signal can be expressed as
s(t) = }s() + s(—1)] | (2.6)

so(t) = $ls(8) — s(=1)]

Consider the signal s(¢), shown in Fig. 2.5a. The function s(—1) is equal
to s(t) reflected about the ¢ = 0 axis and is given in Fig. 2.5b. We then
obtain 5,(¢) and so(#) as shown in Figs. 2.5¢ and d, respectively.

24  Network analysis and synthesis

s(t)

K+—— L.

0 Ty T2 ¢

FIG. 2.7. Signal with two discontinuities.

f(0+) and f(0—) are
fO0+) = lirr;f(e)
. (2.9
f(0-) = llIT;f(—e)
For example, the square pulse in Fig. 2.7 has two discontinuities, at 7; and
T,. The height of the discontinuity at 7} is

S(T,+) — s(Ty—) = K (2.10)

Similarly, the height of the discoptinuity at T, is —K.

2.2 GENERAL DESCRIPTIONS OF SIGNALS

e domain descriptions of signals.
s of the following terms: time
and crest factor. The term, time
the remaining four

In this section we consider various tim
In particular, we examine the meaning
constant, rms value, d-c value, duty cycle,
constant, refers only to exponential waveforms;
terms describe only periodic waveforms.

Time constant )
In many physical problems, it is important to know how quickly a

waveform decays. A useful measure of the decay of an exponential is the
time constant T. Consider the exponential waveform described by

r(t) = Ke 7 u(t) (2.11)

From a plot of r(?) in Fig. 2.8, we see that when ¢ =T,
r(T) = 0.37r(0) (2.12)
Also r(4T) = 0.02r(0) (2.13)

Downloaded From : www.EasyEngineering.net

AT

E
b

PRI ™ WA

e

DownIoadg%ﬁgmhmmﬁpginegging.het

s(t)| - s(—t)
1 1
0 1 t -1 0 t
(a) (b)
Se(t) so(t)
1
2 1
2
-1
=1 0 1 ¢ 0 1 ¢
1
2
(c) (d)

FIG. 2.5. Decomposition into odd and even components from s(¢) and s(—1).

Now let us turn our attention to the continuity property of signals.
Consider the signal shownin Fig. 2.6. At¢ = T, the signal is discontinuous.
The height of the discontinuity is

fT+)—f(T—)=4 X))

where f(T+) =lim f(T+ ¢€)
€0

S(T=) =limf(T— ) @9

and € is a real positive quantity. In particular, we are concerned with
. discontinuities in the neighborhood of ¢t = 0. From Eq. 2.8, the points

f)
A{

|
I
]
L
0 T t

FIG. 2.6. Signal with discontinuity.
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1.00

0.75

r(t)
0.50

0.37 ——__\ ________ =~ _| _ _
0.25 x . i

002b——— —-——_>$J~£

0 1 2 3 4 5

FIG. 2.8. Normalized curve for time constant 7" = 1,

Observe that the larger the time constant, the longer it requires for the
\x./avcform to reach 379, of its peak value. In circuit analysis, common
time constants are the factors RC and R/L.

RMS Value
The rms Or root mean square value of a periodic waveform e(t) is defined

erms = [—% fo ") d:J%

where T is the period. If the waveform is not periodic, the term rms does
not apply. As an example, let us calculate the rms voltage for the periodic

as
(2.14)

- waveform in Fig. 2.9.

1 fT/z(zA )2 JT “

e, = {— —t 2

rms {T{ 0 T ar + 7/2 4 d{l}
1442|772 T %3
{"['—2!— + A% J}

TLT® 3o T/

A2 2\ }¢

6 2
= \/5/_3Av

Il

(2.15)

D-C Value
'ljhe d-c value of a waveform has meaning only when the waveform is
periodic. It is the average value of the waveform over one period

T
eae = —;; f e dr (2.16)
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Je(t)

2T ¢

©
P
~

&

F1G. 2.9. Periodic waveform.

The square wave in Fig. 2.1 has zero d-c value, whereas the waveform 1n

Fig. 2.9 has a d-c value of

o =l[f£_£]=_év (2.17)
T rls 2 4
Duty cycle . )
The ¥ern); duty cycle, D, is defined as the ratio of the time duration of the
positive cycle £, of periodic waveform to the period, T, that 1s,
p="1 (2.18)
T

omes important in dealing with wave-

10, where most of the energy is con-
The rms voltage of the waveform

The duty cycle of a pulse traiq bec
forms of the type shown in Fig. 2.
centrated in a narrow pulse of width fo.

1‘: in Fig. 2.10 is e
rms = (}fo A dt)
= AJt|T
= AJD
A A
e
e —— i

FIG. 2.10. Periodic waveform with small duty cycle.

(2.19)

28 Network analysis and synthesis
Since crest factor CF = e,/erms, We have

_ el =D)
SR e,/ D(1 — D) (2.26)

=.,/1/D—1
. 1
For example, if D = 100

i
CF= o1 (2.27)

1
If D= 15600
CF = /10,000 — 1 =~ 100 (2.28)

A voltmeter with high crest factor is able to read accurgtely rms values.of
signals whose waveforms differ from sinusoids, in particular, signals with
low duty factor. Note that the smallest value of crest factor occurs for

the maximum value of D, that is, Dmax = 0.5,
CF,pyp = N1/ Dmax — 1 029
=1 '

2.3 THE STEP FUNCTION AND ASSOCIATED WAVEFORMS

The unit step function u() shown in Fig. 2.12 is defined as
w(t)y=0 1 <0
=1 t>0

The physical analogy of 2 unit step excitation corresponds to a swi?ch S,
which closes at # = 0 and connects a d-c battery of 1 volt to a given circult,
as shown in Fig. 2.13. Note that the unit step is zero whenever the

(2.30)

u(t)
1 .
+ Switch
v — Network
0 t
FIG. 2.12. Unit step function. FIG. 2.13. Network analog of unit step.
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]

FIG. 2.11. Periodic waveform with zero d-c and small duty cycle.

We see that the smaller the duty cycle, the smaller the rms voltage. The
square wave in Fig. 2.1 has a 507 duty cycle.

Crest factor

Crest factor* is defined as the ratio of the peak voltage of a periodic
waveform to the rms value (with the d-c component removed). Explicitly,
for any waveform with zero d-c such as the one shown in Fig. 2.11—crest
factor, CF, is defined as

€p

CF =-% or

€rms €rms

(2.20)

whichever is greater. For the waveform in Fig. 2.11, the peak-to-peak
voltage is defined as
€rp = € T & (2.21)

Since the waveform has zero d-c value

ety = e(T — o) (2.22)
- Also, e, = ey, D | (2.23)
\ e, = e,,(1 — D) (2.24)

“The rms value of the waveform is

_(e,,f(l — D)*ty + e,,"DX(T — to))%
€rms =

T (2.25)

= ezw\/D(l B D)

! G. Justice, “*The Significance of Crest Factor,” Hewlett-Packard Journal, 15, No. 5
(Jan., 1964), 4-5.
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s(t)
s(t)
1 — u(t—a) 4 ——
0 a t Y 1 2 ¢
FIG. 2.14. Shifted step function. FIG. 2.15. Square pulse.

argument (f) within the parentheses is negative, and is unity when the
argument (¢) is greater than zero. Thus the function u(r — @), where
a > 0, is defined by

u(t—a)=0 t<a

—1 t>a (2.31)

and is shown in Fig. 2.14, Note that the jump discontinuity of the step
occurs when the argument within the parentheses is zero. This forms the
basis of the shifting property of the step function. Also, the height of the
jump discontinuity of the step can be scaled up or down by the multiplica-
tion of a constant K.

With the use of the change of amplitude and the shifting properties of
the step function, we can proceed to construct a family of pulse waveforms.
For example, the square pulse in Fig. 2.15 can be constructed by the sum
of two step functions

s(t) = 4u(t — 1) + (—4) u(t — 2) (2.32)

as given in Fig. 2.16. The “staircase” function, shown in Fig. 2.17, is
characterized by the equation

2
s(t) =kzou(t — kT) (2.33)
s(t)
)
0 1 2 t
Y I

FIG. 2.16. Construction of square pulse by step function.
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s(t) s(t)
\
- . S
N A 21— - '/_ 3. Y . -
=
1
T S D T
0 T 27 t
FIG. 2.17. Staircase function.
0 2T 3T r

FIG. 2.19. Sine pulse.

Finally, let us construct the square wave in Fig. 2.1. Using the shifting
property, we see that the square wave is given by (for t 2 0)

s(t) = u(t) — 2u(t — T) + 2u(t — 27) — 2u(t —3T)+ - (2.34)
A simpler way to represent the square wave is by using the property

that the step function is zero whenever its argument is negative. Restricting
ourselves to the interval ¢ > 0, the function

s(t) = u(sin 7—;—{) ' (2.35)

is zero whenever sin (7#/T) is negative, as seen l?y the waveform 1n FlgCi
2.18. Itis now apparent that the square wave in Fig. 2.1 can be represente

" s(t) = u(sin E’I_f) — u(——sin %‘) (2.36)

R Another method of describing the square wave is to consider a geperaliz-
' ation of the step function known as the sgn function (pronounced signum).
bl The sgn function is defined as
' mlOl=1  [©>0
=0 fH=0 (2.37)
=—1 f(H<o0

Thus the square wave in Fig. 2.1 is simply expressed as

s(t) = sgn (sin 1’15) (2.38)

Returning to the shifting property of the step function, we see that the
single sine pulse in Fig. 2.19 can be represented as

s(f) = sin "—T—’ [u(t — 2T) — u(t — 3T)] (2.39)

The step function is also extremely useful in representing the shifted or
delayed version of any given signal. For example, consider the unit ramp
Sunction '

p(t) = t u(t) (2.40)

shown in Fig. 2.20. Suppose the ramp is delayed by an amount ¢ = g, as
shown in Fig. 2.21. How do we represent the delayed version of ramp?

s(t)

s(t)

:

0 T 2T 3T 4T ¢
FIG. 2.18. The signal u(sin mt|T).

— e —— —_——

¢

FIG. 2.20. Ramp function with zero time shift.
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s(t) \H
2
I I 1+
|
|
- < 4 - 0 1 2 t
FIG. 2.23. Triangular puise.

FIG. 2.21. Ramp function with time shift = a.

As a final example, consider the waveform in Fig. 2.23, whose com-
ponent parts are given in Fig. 2.24. For increasing ¢, the first nonzero
oty = 1’ u(t’) (2.41) component is the function 2(¢ — 1) u(z — 1), which represents the straight
line of slope 2 at 1 = 1. At ¢ = 2, the rise of the straight line is to be
arrested, so we add to the first component a termequalto —2(t — 2) u(t — 2)
with a slope of —2. The sum is then a constant equal to 2. We then add a
term —2u(¢ — 2) to bring the level down to zero. Thus,

First, let us replace the variable ¢ by a new variable ¢’ = t — a. Then

When p(t) is plotted against ¢/, the resulting curve is identical to t_he pl?t
of s(¢) versus ¢ in Fig. 2.20. If, however, we substitute ¢+ — a = ¢"in p(t’),
we then have

p(t)y = —ault — a) (2.42)
. =20t —1 — 1) - — —2) — —
When we plot p(t') against ¢, we have the delayed version of p(f) shown in s(®) ( Yu(t — 1) — 22 — 2 u(t — 2) — 2u(t — 2) (2.45)
Fig. 2.21. . :
From the preceding discussion, it is clear that if any signal f(¢) u(t) is B 24 THE UNIT IMPULSE

delaved by a time T, the delayed or shifted si nal is given by )
; elayed by a lm Y & T The unit impulse, or delta function, is a mathematical anomaly. P. A. M.
| f@Yy=ft—Tuit—T) (2.43) b & Dirac first used it in his writings on quantum mechanics.? He defined the

For example, let us delay the function (sin wt/T) u(t) by a period T. Then
the delayed function s(¢'), shown in Fig. 2.22, is

7
7

s(t)

| 20t=Duft~1)
| s(t') = [sin 177: (t — T)}u(t - T) (2.44)

{

|

‘e s() 2

3 0 1 t
: 1+

i —2u(t=2){ \~2(t=2)u(t—2)
| 0 T 2T 3T 4T\ t

H ' \

| -1 FIG. 2.24. Decomposition of the triangular pulse in Fig. 2.23.

FIG. 2.22. Shifted sine wave. *P. A. M. Dirac, The Principles of Quantuim Mechanics Oxford University Press, 1930.

|

{ Downloaded From : www.EasyEngineering.net Downloaded From : www.EasyEngineering.net



http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net . ! Downloadeigreden ﬁyﬁngineeﬁng.net
34  Network analysis and synthesis : ' and Whanvie

&=

delta function &(r) by the equations

f T sy di =1 : (2.46)
™ s =0 for 150 (2.47)
Its most important property is the sifting properiy, expressed by

fco () 8(t) dt = £(0) (2.48)

In this section we will examine the unit impulse from a nonrigorous |
approach. Those who prefer a rigorous thatment shoulc} re_:ferhtot L
Appendix B for development of this discu§sxon. Th§ matepz'd in dt s.
appendix is based on the theory of generalized functions originate hy . 612
G. Temple.* In Appendix B it is shown that the unit impulse is the ;

derivative of the unit step 8(1) = (1) (2.49) aq

— £,

p—

SR,

8¢,

82,0

&, (0

At first glance this statement is doubtful. After gll, th§ d?rivatnve'of the
unit step és zero everywhere except at the jump discontinuity, and it dqes
not even exist at that point! However, consider the function g{t) in Fx'g. |
2.25. Tt is clear that as e goes to zero, g (t) approaches a unit step, that is, _ P ;
FIG. 2.27. The sequence {g. (#)}-

lim g(() = u(?) (2.50)

€=0

Taking the derivative of g.(t), we obtain g’ (¢), which is defined by the values of €, as shown in Fig. 2.27. The sequence has the following
‘ equations 1 : property:
| g = - ; 0<t<Le (2.51)
| ik —0; t<0, t>¢

as shown in Fig. 2.26. Now let € take on a sequence of values ¢; such tlllat
€; > €;;,. Consider the sequence of functions {g"‘,(t)} for decreasing

t2>0

lim | g (Ddt=1 (2.52)

€;—0JV21<0

where ¢, and ¢, are arbitrary real numbers. For every nonzero value of ¢,
there corresponds a well-behaved function (i.e., it does not “blow up”)
g’ (). As e, approaches zero,

, ' (04F)—>

£.(0) gelt) g'e(0+) - (2.53)
o so that the limit of the sequence is not defined in the classical sense.
H  — + Another sequence of functions which obeys the property given in Eq.

2.52 is the sequence {f, (1)} in Fig. 2.28. We now define the unit impulse
(t) as the class of all sequences of functions which obey Eq. 2.52. In

2

L o 7 particular, we define
Ll 0 <€ ¢ € : >0 ” >0
It FIG. 2.25. Unit step when ¢ — 0. FIG. 2.26. Derivative of g(t) in f d(t) dt = lim f g'e(t) dt
' Fig. 2.25. 21<0 €=0J8;<0 @ 54)
‘ 22>0 ’
il A - 228 £ Jim f.() dt
‘ 3 G, Temple, *“The Theory of Generalized Functions,” Proc. Royal Society, A, » ety €

1955, 175-190.
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Continuing with this heuristic treatment, we say that the area ‘“under”
the impulse is unity, and, since the impulse is zero for ¢ = 0, we have

f sy dt = f Ty dt =1 (2.56)

Thus the entire area of the impulse is “concentrated” at 1 = 0. Con-
sequently, any integral that does not integrate through ¢ = 0 is zero,

o— +oo
as seen by f 8(t) dt =f d)dt=0 s(t)
— 0
i 2.57)

The change of scale and time shift properties &
discussed earlier also apply for the impulse
function. The derivative of a step function

s(t)=Au(t=a)

0 a ¢
. ] s(t) = Au(t — a) (2.58)
| é yields an impulse function -
S(t) = A 8(t — a) (2.59) 4
which is shown.in Fig. 2.29. Graphically, we
represent an impulse function by an arrow- 0 a :

head pointing upward, with the constant
multiplier 4 written next to the arrowhead.
Note that A4 is the area under the impulse FiG.2.29

A (t — a).

Consider the implications of Eqs. 2.58 and 2.59. From these equations
we see that the derivative of the step at the jump discontinuity of height 4
yields an impulse of area A at that same point ¢ = 7. Generalizing on this
argument, consider any function f(¢) with a jump discontinuity at ¢ = 7.
- Then the derivative, f'(f) must have an impulse at = T. As an example,
consider f(¢) in Fig. 2.30. At ¢ = T, f(¢) has a discontinuity of height 4,

sSt)=Ab(t—a)

—€; —€ —€y €n € +€ t
FIG. 2.28. The sequence { fe (D} flt)
It should be stressed that this is not a rigorous definition (Vflh%ch, as
stated previously, is found in Appendix .B) but merely a ‘1‘1eurxspc Sne.
From the previous definition we can think of the delta “function™ as
having the additional properties, o i |

8(0) = (2.55)

() =0 for t £0 FIG. 2.30. Function with discontinuity at 7.
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which is given as
A = f(T+) = f(T-) (260

Let us define f;(f) as being equal to f(#) for { < T, and having the
same shape as f(t), but without the discontinuity for ¢ > T, that is,

f@=f@)— Ault —T) (2.61)

The derivative f'(t) is then
f@y=r10+ A6t —=T) (2.62)

The following example illustrates this point more clearly. In Fig. 2.31a,
the function f(#) is
fiy=4 ut—a)— A4 u(t — b) (2.63)

Its derivative is fiy=406@t— a) — A 8(t — b) (2.64)

and is shown in Fig. 2.31b. Since f(¢) hastwo discontinuities, att = a and
{ = b, its derivative must have impulses at those points. The coefficient of

the impulse at ¢ = b is negative because

Downloa8igh#romnd wefEés}Engiriééring.net

wAs S. s_ecox}d exan?ple, cqnsider the function g(¢) shown in Fig. 2.32a
e obtain g .(t) by inspection, and note that the discontinuit a't =1
produces the impulse in g'(z) of area yaer=t

as given in Fig. 2.326. gl+) —gll=) =2 (2.66)
Another interesti . o
integral resting property of the impulse function is expressed by the
+c0 .
_J® 8= Tydt = f(T) 2.67)

This integral is easily evaluated if w i
e consid — —
t # T. Therefore, the product nsider that 6z — 7)) = 0 for all

fOt—T)=0 allt#T (2.68)

If f(2) is single-valued at 1 = :
FAIY agin ued at 1 = T, f(T) can be factored from the integral so

‘\ e[ a6~y =g (2.69)

Figure 2.33 shows f(z) and 6(z — T), wh i
! . —7), ere f(H) 1 i =
If f(2) has a discontinuity at 7 = 7, the integ{;(l) ¢ contmuons w1 =1

¥
i fo+) —f6-) = —4 (265) [ o = mya

b -
" I is not defined because the value of f(7T) i i i
‘ i . " the following examples. f(T) is not uniquely given. Consider
', “ 2 4 Example 2.1
‘X . f(t) = giwt

’ 1 a b t 2 f e0t(t — T)dt = efoT (2.70)
(@) ~ Example 2.2 -

] | — M

o) | 0 1 ‘ 4o A

| (@ J' sinté(z _’_’)d, _ L @.71)

| A £ - 4 V2

‘; 1\2 f(

: t)

| b 2 8t =1T)

4 a t

k fit)

i L_ A 0 1 t

FIG. 2.31. (@) Square pulse. FIG. 2.32. (a) Signal. 0 T 7
(b) Derivative of square pulse. (b) Derivative. FIG. 233
40  Network analysis and synthesis -
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where f’(T) is the derivative of f(¢) evaluated at ¢ = T where, again, we

assume that f(¢#) is continuous. E i
by parts. Thus, quation 2.74 can be proved by integration

N

|

N

£t

Y

N
S

f_w ) 8t — Ty dt = () &t — T)

_w—f: f®t— T)de

0
/ (2.75
FIG. 2.34. Impulse scanning. = —f"(T). )
It i
Consider next the case where f (1) is continuous for — o0 < t < oo. Let can be shown in general that
us direct our attention to the integral ~ _
f_m F(1) 8™t — T) dt = (—=1)*"Y(T) (2.76)

f f(t) 8(t — T) dt = f(T) (2.72)
E which holds for all ¢ in this case. If T were varied from —< t0 0, (\5’\21’1)61; 2‘b) and { (m) degot‘? nt'h derivatives. The higher order derivatives of
| then f(f) would be reproduced in its entirety. An operation of this sort e evaluated in similar fashion.
corresponds to scanning the function /() by moving a sheet of paper with

a thin slit across a plot of the function, as shown in Fig. 2.34.
Let us now examine higher order derivatives of the unit step function.

Here we represent the unit impulse by the function f,(f) in Fig. 2.28,

Problems

2. i .
1 Resolve the waveforms in the figure into odd and even components

which, as € — 0, becomes the unit impulse. The derivative of f,(?) is given o(t) s()
4 in Fig. 2.35. Ase approaches zero, f'dt) approaches the derivative of the : 1
i unit impulse ¢'(), which consists of a pair of impulses as seen in Fig. 2.36. !
! The area under &'(¢), which is sometimes called a doublet, is equal to zero. : I
11 Thus, =1 0 1 ¢ l
i " -1 0 1 ¢
J &(tydt=0 (2.73) :
- - . b (a) -
i The other significant property of the doublet is *)
0
il [* s 56— ar= = (74 o o
2
1 fe(®)
€
1
1
€ S AN [
~¢€ 0 ¢ 0 t
0
! 2t -1 0 1 ¢
‘ ' _61_2 L
FIG. 2.35. Unit doubles as ¢ — 0. FIG. 2.36. The doublet ()
(). (d)
PROB. 2.1
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2.2  Write the equation fi

Network analysis and synthesis

or the waveforms in the figure using shifted step

functions.

Downloaded From : www.EasyEngineering.net

for the derivatives, using shifted step

f(t)

PROB. 2.2

he waveforms in Prob. 2.2 and write the equations

and/or impulse functions.
(#) given in the figure, plot carefully

2.3 Find the derivative of t

2.4 For the waveform f'

t
J f(dr
—c0
for a value of t > T.
f(t)
26(t)
1
(i,
___0____——. ;
YKo(t—T)
PROB. 2.5

chapter 3

The frequency domain:
Fourier analysis

3.‘I INTRODUCTION

One of the most common classes of signals encountered are periodic

signals. If T is the period of the signal, then

s()=s(t £ nT) n=012... (3.1)

In addition to being periodic, if s(f) has only a finite number of discon-

tinuities in any finite period and if the integral

at+T
f Is(t)] dt

is finite (where « is an arbitrary real number), then s(f) can be expanded
into the infinite trigonometric series

a .
s(t) = §° + a, cos wt + a; cos 2wt + - 52
4 b, sin wt + by sin 2wt + - - -

where = 27/T. This trigonometric series is generally referred to as the
Fourier series. In compact form, the Fourier series is

s(t) = 92—0 + i (a, cos nwt + b, sin nwt) (3.3)
n=1

It is apparent from Egs. 3.2 and 3.3 that, when s(f) is expanded .in a
Fourier series, we can describe s(f) completely in terms of the coefficients
46 '

£
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2.5 For the waveform f(#), shown in the figure, determine what value K
must be so that i

(@) fmf(t) dt =0
® f " fyde =0
0+

2.6 For the waveforms shown in the figure, express in terms of elementary
time functions, that is, 1™, u(t — 1), 6(t — to), (@) f(1) (b) f'(1) () J‘HA f()dr
Sketch the waveforms for (b) and (c) neatly. -

fv)
ft)

20

o (i)
PROB. 2.6
2.7 Prove that

@ 5(@) = —5(—2)
® —8@) == 5@)
© . fwxa(w)dx -0

2.8 The waveform f(#) in the figure is defined as
3
f(f)=’€—3(f—€)2, 0Lt Le

=0, elsewhere

Show that as ¢ — 0, f(#) becomes a unit impulse.

ajw

f=3-o’

0 €

PROB. 2.8

The frequency domain: Fourier analysis 47

of its harmonic terms, a, a,, @, . . . , by, by, . . . . These coefficients con-
stitute a frequency domain description of the signal. Our task now is to
derive the equations for the coefficients a;, b, in terms of the given signal
function s(#). Let us first discuss the mathematical basis of Fourier series,
the theory of orthogonal sets.

3.2 ORTHOGONAL FUNCTIONS

Consider any two functions f(#) and f,(¢) that are not identically zero.
Then if

T2
J.T LD f() dt =0 (3.4)

we say that f1(¢) and f,(?) are orthogonal over the interval [T}, T,]. For
example, the functions sin ¢ and cos ¢t are orthogonal over the interval

m2m <t < (n+ 1)2m. Consider next a set of real functions {¢,(?),
é5(1), . . ., po(1)}. If the functions obey the condition

T
Godd=[ B $0a=0, i) (35)
1
then the set {¢,} forms an orthogonal set over the interval [T}, T,]. In
Eq. 3.5 the integral is denoted by the inner product (¢, ¢,). For conven-
ience here, we use the inner product notation in our discussions.
The set {¢,} is orthonormal over [Ty, T,] if

(s d)=0 i#]
o (3.6)
=1 i=j
The norm of an element ¢, in the set {¢,} is defined as
1 T2 23
I = Gho 8 = ([ 020 1) G

We can normalize any orthogonal set {¢,, ¢, .
term ¢, by its norm [|¢|l.

.., $,} by dividing each

Example 3.1. The Laguerre set,! which has been shown to be very useful in
time domain approximation, is orthogonal over [0, «]. The first four terms

! W. H. Kautz, “‘Transient Synthesis in the Time Domain,” Trans. IRE on Circuit
Theory, CT-1, No. 3 (Sept. 1954), 29-39.
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of the Laguerre set are
$i(t) = e
$o(t) = e ™[I — 2(an)]

$o(t) = e %1 — 4(at) + 2(at)’] (3.8)
B4(t) = e[l — 6at + 6(at)? — 5(at)’]
To show that the set is orthogonal, let us consider the integral
f N (1) () dt = f c‘oe‘z‘“[l — 4(ar) + 2(at)?l dt 3.9
0 0
Letting + = at, we have
1 5]
(¢1, $3) = ‘&f e (1 —4r + 2% dr
° (3.10)
R R b B ] —0
=alz7*\a) T8)] T
The norms of ¢,(¢) and ¢,(¢) are
([ gat ) = L 311
|[¢1“=(Le f) =V \ (3.11)
) v
1o = {[["erme1 = e + sarra
0 (3.12)

" V2a
It is not difficult to verify that the norms of all the elements in the set are also
equal to 1/V'2a. Therefore, to render the Laguerre set orthonormal, we divide

each element ¢, by 1/V2a.

3.3 APPROXIMATION USING ORTHOGONAL FUNCTIONS

In this section we explore some of the uses of orthogonal functions in
the linear approximation of functions. The principal problem is that of
approximating a function f(¢) by a sequence of functions f,(t) such that the
mean squared error

T2
e=1im | [f(f) —f()]*dt=0
1

n—w

(3.13)

50  Network analysis and synthesis
Since the set {¢;} is orthonormal, [¢,|> = 1, and by definition, ¢; =
(f; $). We thus have
If = ful2= 1S12 = 23 ae; + 2 6" (3.18)
i=1 i=1

Adding and subtracting > ¢;? gives
i=1
If= £l =111%—2 Zlaici + Zlciz +2a — Z= ¢’

i=1 =1

(3.19)
= "f“2 + Zl(ci i az’)2 —i§16i2

We see that in order to attain minimum integral squared error, we mlfst
set a; = ¢,. The coefficients ¢,, defined in Eq. 3.16, are called the Fourier
coefficients of f() with respect to the orthonormal set {0}

Parseval’s equality
Consider f,(¢) given in Eq. 3.14. We see that

Te ki
f [ (OF di = 3¢
T1 =1

since ¢; are orthonormal functions. This result is known as Pars.eval’s
equality, and is important in determining the energy of a periodic signal.

(3.20)

—

3.4 FOURIER SERIES

Let us return to the Fourier series as defined earlier in this chapter,

s(t) = % + i(aﬂ cos nwt + b, sin nwt) (3.21)
n=1

From our discussion of approximation by orthonormal functions, we can
see that the periodic function s(¢) with period T can be approximated by a
Fourier series s,(f) such that s,(f) converges in the mean to s(¢), that is,

at

lim T[s(t) — s,(OfF dt —0

n—>ooJva

(3.22)

where o is any real number. We know, moreover, that if » is finite, the
mean squared error ||s(f) — s,(¢)||? is minimized when the constants a;, b,
are the Fourier coefficients of s(¢) with respect to the orthonormal set

sin kwt
(T12)*

{cos kwt
(T/2)%°

“mq\blblio!ha‘,d
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When Eq. 3.13 is satisfied, we say that {f,(1)} converges in the mean to

S@®.
To examine the concept of convergence in the mean more closely, we
must first consider the following definitions:

Definition 3.1  Given a function f(¢) and constant p > 0 for which

T2
f [f(OI7dt < o,
T

we say that f(z) is integrable L® in [Ty, T,], and we write f(®eL? in
[TD T2]'

Def.inition 32 Iff(t) e L?in [T}, Tp], and {f, ()} is a sequence of func-
tions integrable L? in [T}, T;), we say that if

T2
i [ 170 — 01 de = 0
then {,()} converges in the mean of order p to f(2). Specifically, when
p = 2 we say that {f,()} converges in the mean to f(7).

The principle of least squares
Now let us consider the case when f,(f) consists of a linear combination
of orthonormal functions ¢;, ¢,, . . ., .

nm=ém¢m (3.14)

Our problem is to determine the constants @, such that the integral
squared error

2 T2
1f = fal =le [f(8) — £.(OT at (3.15)

s a _minimum. The principle of least squares states that in order to attain
minimum squared error, the constants a; must have the values

T2
=] 40 (3.16)

Proof. We shall show that in order for [ f = f.lI? to be minimum, we
must set a; = ¢, forevery i = 1,2,..., n.

n n 3-
=1/ =23 a(r gy + Sanppr O

The frequency domain: Fourier analysis 51
s(t)

=3r =2r -7 0 ™ 27 3 t
FIG. 3.1. Rectified sine wave.

In explicit form the Fourier coefficients, according to the definition given
earlier, are obtained from the equations

T 2 at+T
ay = T fa s(t) dt (3.23)

2 a+T
a, = }f s(?) cos kwt dt (3.24)

2 at+T" .

by = ;f s() sin kwt dt (3.25)
We should note that because the Fourier series s,(¢) only converges to
5(t) in the mean; when s(t) contains a jump discontinuity, for example,

at 1,
5,(ty) = s(to+) ‘;‘ s(to—)
At any point ¢ that s(r) is differentiable (thus naturally continuous)
s,(t,) converges to s(t,).2

A's an example, let us determine the Fourier coefficients of the fully
. rectified sine wave in Fig. 3.1. As we observe, the period is 7' = = so
~ that the fundamental frequency is @ = 2. The signal is given as

s(t) = A [sin | (3.27)

- Let us take « = 0 and evaluate between 0 and . Using the formula just
. derived, we have

(3.26)

b, =2 f s(t) sin 2nt dt = 0 (3.28)
wJo
ag = Z—Af sin ¢ dt = 4 (3.29)
m JO ko3
2 T
a, == f s(t) cos 2nt dt
maTJ0
1 44
C1l—4nt (3:30

—_—
*For a proof see H. F. Davis Fourier Series and Orthogonal Functions, Allyn and
Bacon, Boston, 1963, pp- 92-95.
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Thus the Fourier series of the rectified sine wave 18

44(, % _ 2 cos'znz) (3.31)
s(t)—zﬂ(l +,§11—4n2

3.5 EVALUATION OF FOURIER COEFFICIENTS

In this section we will consider two other useful fo'rms _Of Fourxerlsertl_es.
In addition, we will discuss a number of methqu to simplify the evalua xox}
of Fourier coefficients. First, let us examin® how the evah;a;;)r; ;)5
coefficients is simplified by symmetry considerations. Fro.m Eqsl. t. ’ ta:ke
which give the general formulas for the Fourter coefficients, le t: ak
« = —T/2 and represent the integrals as the sum of two separa parts,

that is,
o[ [T 0 L di
a, = —[f s(t) cos nwt dt + s(t) cos nw
" Tl -T2

2 " i ° i tdt
b, = —[J s(t) sin nwt dt + s(t) sin nw
*oTLe —T/2

Since the variable (¢) in the above integrals is a dummy variable, .letﬂl]l:
substitute = # in the integrals with limits (0; 7/2), and letx = —tin ©
integrals with limits (—77/2; 0). Then we have

(3.32)

_2 o — os nwz dx
0y =2 [t + s oos .

b, = 2 lez[s(x) — s(—%)] sin nwz dx
T Jo

Suppose now the function is odd, that is, s(z) = —s(—2), then we see that
a, = 0 for all n, and
T/
b, = 4 f s(z) sin nwx dx (3.34)
T Je
This implies that, if a function is odd, its Fourier se{ies \Yill contain on.ly
sine terms. On the other hand, suppose the function is even, thatis,
s(x) = s(—=), then b, = 0 and

T/2 _
a, = 4 f s(x) cos nwx dz (3.35)
T

Consequently, the Fourier series of an even function will contain only

cosine terms.

54 Network analysis and synthesis

s(t)

—_T \\\ 0 el ¢
\\—A
(b
s(t)
A
\\LL Y 7
_7r —~~ 0o T P
L’/// L//
—-A
(c)

FIG. 3.4. (a) Even function cosine terms only. () Odd function sine terms only. (c)
Odd harmonics only with both sine and cosine terms.

We can derive the form of the Fourier cosine series by setting

a, = C,cos b, (3.39)
and b,=—C,sinb, (3.40)
We then obtain C, and 0, in terms of @, and b,, as

C= (a0 + b)*

Co =

0,= tan”‘(— ﬁ)
a

n

SRES

(3.41)

If we combine the cosine and sine terms of each harmonic in. the or'iginal
series, we readily obtain from Eqs. 3.38-3.41 the Fourier cosine series

f(@t) = Co + Cycos (wt + 6;) + Cpcos Qwt + 0,)
+ Cycos Bwt + 0y) + -+ + + C, cos (nwt + 6,)+ - (342
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\

1
N
1
(NI
z

<
BN

FIG. 3.2

Suppose next, the function s(f) obeys the condition

s(t + g) — —s(t) (3.36)

as given by the example in Fig. 3.2. Then we can show that s(f) contains
only odd harmonic terms, that is,

a,=b,=0; n even

T/2
and a, = —f s(t) cos nwt dt
° (3.37)

4 [T/
b,=— f s(?) sin nwt dt, n odd
T Jo

With this knowledge of symmetry conditions, let us examine how we
can approximate‘an arbitrary time function s(t) by a Fourier series within
an interval [0, 7]. Outside this interval, the Fourier series s,(f) is not
required to fit s(¢). Consider the signal s(¢) in Fig. 3.3. We can approxi-
- mate 5(t) by any of the periodic functions shown in Fig. 3.4. Observe

- that each periodic waveform exhibits some sort of symmetry.

Now let us consider two other useful forms of Fourier series. The first

is the Fourier cosine series, which is based upon the trigonometric identity,

C, cos (nwt + 6,) = C, cosnwtcos 0, — C, sinnwtsin 8, (3.38)

s(t)

A

0| T ¢t

FIG. 3.3. Signal to be approximated.
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It should be noted that the coefficients C, are usually taken to be positive.
If however, a term such as —3 cos 2wt carries a negative sign, then we can
use the equivalent form

—3cos 2wt = 3 cos Qwt + m) (3.43)

For example, the Fourier series of the fully rectified sine wave in Fig. 3.1
was shown to be

4A( < /2 )
s(t) = —\1+ > ———cos2nt 3.44
® 29 nza:l 1 —4n? (3.49)
Expressed as a Fourier cosine series, s(?) is
4A|: S 2
s()=—|1+
© 2 ngl 4n® — 1

Next we consider the complex form of a Fourier series. If we express
cos nwt and sin nwt in terms of complex exponentials, then the Fourier
series can be written as

cos (2nt + w):i (3.45)

© inwt —Jinwt inwt __ —inot
s(t)=9‘9+2(ane + e +bne .e )
2 n=1 2 2] (3-46)
lao & ap, — an inot ay + ]bn —inwt)
= — e el 4
2 +n§1( 2 + 2
If we define
ap, — jbn

a, + jb a,
- —n = # 5 = - 3.47
. =2l g=% (4D

then the complex form of the Fourier series is

() = Bo + 3B, + e

- (3.48)
— z ‘Bﬂeinwt
We can readily express the coefficient £, as a function of s(¢), since
. a, — .’bn
fo=—"7"7
1 T
= P f s(t)(cos nwt — j sin not) dt (3.49)
0

=1 f “se et ay
T Jo

Equation 3.49 is sometimes called the discrete Fourier transform of s(t)
and Eq. 3.48 is the inverse transform of 8,(nw) = B,,.
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Co

C1 C1

Ca Cy

Cs Cs Cy

—4w —3w —2w - 0 w 20 3w 4w

FIG. 3.5. Amplitude spectrum.
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FIG. 3.6, Square wave.
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Amplitude
LA B
- -3 ~1 1 3 5 w
(a)
Phase
kol
T
0 1 3 5
-5 -3 -1 | w
-
2
)

FIG. 3.7. Discrete spectra of square wave. (@) Amplitude. (b) Phase.

Simplifying f, on€’step further, we obtain

24
— —— n Odd
b= m (3.57)
=0 n even

The amplitude and phase spectra of the square wave are given in Fig. 3.7.

3.6 EVALUATION OF FOURIER COEFFICIENTS USING
UNIT IMPULSES

In this section we make use of a basic property of impulse functions to
simplify the calculation of complex Fourier coefficients. This method is
restricted to functions which are made up of straight-line components only.
Thus the method applies for the square wave in Fig. 3.6. The method is

based on the relation
[ s - myar=scmy (3.58)

Let us use this equation to evaluate the complex Fourier coleﬁitcients for
the impulse train in Fig. 3.8. Using Eq. 3.58 with f(£) = ™', we have

PR f z 6(, _ _T_)e_;nm gt = A tmerim (3.59)
" T 2 T
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Observe that 8, is usually complex and can be represented as
f.=Ref,+jImp, (3.50)
The real part of 8,, Re §,, is obtained from Eq. 3.49 as

7
Ref, = L f s(t) cos noot dt (3.51)
T Jo
and the imaginary part of §, is
—jifT
jImp, = FJ s(t) sin not dt (3.52)
0

It is clear that Re f, is an even function in n, whereas Im f,, is an odd
function in n. The amplitude spectrum of the Fourier series is defined as

|B.l = (Re* §,, + Im?* §,)* (3.53)

and the phase spectrum is defined as

¢, = arctan ;m b (3.54)

e

It is easily seen that the amplitude spectrum is an even function and the
phase spectrum is an odd function in ». The amplitude spectrum provides
us with valuable insight as to where to fruncate the infinite series and still
maintain a good approximation to the original waveform. From a plot of
the amplitude spectrum, we can almost pick out by inspection the non-
trivial terms in the series. For the amplitude spectrum in Fig. 3.5, we see
that a good approximation can be obtained if we disregard any harmonic
above the third.

As an example, let us obtain the complex Fourier coefficients for the
square wave in Fig. 3.6. Let us also find the amplitude and phase spectra
of the square wave. From Fig. 3.6, we note that s(¢) is an odd function.
Moreover, since s(t — T/2) = —s(t), the series has only odd harmonics.
From Eq. 3.49 we obtain the coefficients of the complex Fourier series as

1 [7r ; 1 (7T
B,== f Ae7metdr — = f Ae™ "9t dt
0 T

T T/2
4 (3.55)
= jan (1 _ 26—(:‘an/2) + e—a‘muT)
Since nwT = n2m, B, can be simplified to
4 —inmw —32
B = (1 — 277" 4 ¢7777) (3.56)

j2nm
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FIG. 3.8. Impulse train.

We see that the complex Fourier coefficients for impulse functions are
obtained by simply substituting the time at which the impulses occur into
the expression, e~7"“%,

In the evaluation of Fourier coefficients, we must remember that the
limits for the B, integral are taken over one period only, i.e., we consider
only a single period of the signal in the analysis. Consider, as an example,
the square wave in Fig. 3.6. To evaluate f,, we consider only a single
period of the square wave, say, from ¢ = 0 to
t = T, as shown in Fig. 3.94. Since the square s(t)
wave is not made up of impulses, let us A
differentiate the single period of the square
wave to give s'(f), as shown in Fig. 3.95. We
can now evaluate the complex Fourier coeffi-
cients for the derivative s'(¢), which clearly is
made up of impulses alone. Analytically, if — =Ar—
s(t)is givenas (a)

s(t) = i’: Bae™ (3.60)

N=—0a0

then the derivative of s(t) is

[=)
N3
=

s'(t)

=3 jnopemt (3.61)

n=—0o 0

NPy
N

Here, we define a new complex coefficient

ya = Jno B, (3.62)

E or B, =1L~ (3.63)

=24
If the derivative s'(¢) is a function which (b)

consists of impulse components alone, then

we simply evaluate first and then obtain FIG. 3.9. (a) Square wave
Py Vn Lo over period [0, T]. (b) Deriv-

B, from Eq. 3.63. For example, the derivative agve of square wave over

of the square wave yields the impulse train period [0, T]-
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in Fig. 3.95. In the interval [0, 77, the signal s'(¢) is given as
s'(f) = A (1) — 24 6(t — %) + A6t —T) (3.64)
Then the complex coefficients are

1 fTs’(t)e"”“‘" dt
Yn Tt

(3.65)

— ‘11 (1 . ze-—(ian/z) + e-a‘an)

The Fourier coefficients of the square wave are
=
P = jnw

(3.66)

_ A (1— 2g—timaT/2) 4 gmineT)

jnoT

which checks with the solution obtained in the standard way in Eq. 3.55.
If the first derivative, s'(f), does not contain impulses, then we must

differentiate again to yield :
s"(8) =D, Ae’™ (3.67)

where A, = jnwy, = (jnw)* B, (3.68)

For the triangular pulse in Fig. 3.10, the second derivative over the
period [0, 7] is

§(t) = %[a(t) — 25(: — Z) +8(t — T)] (3.69)
T 2
The coefficients 4, are now obtained as

). — _1. J\Ts//(t)e—inwt dt
" TJo

(3.70)
Z % (1 Al 2e——(ian/2) + e——;’na)T)
which simplifies to give
84
=— d
An T n od 371

= neven
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We can therefore tolerate doublets or even higher .derivatives of igpul§es
in the analysis. Consider the signal s(¢) given in Fig. 3.11a. Its derivative
s'(f), shown in Fig. 3.11b, can be expressed as

S(f) = %[u(l) 19 u(t — %)] + 8() — 25(: A %) (3.75)

The second derivative s"(z) consists of a pair of impulses and a pair of
doublets as given by

(1) = %[a(o - 5(: — %)] + ) — 26’(1 —g) (3.76)

as shown in Fig. 3.11c. We therefore evaluate 4, as

1 (T ;
A” — _f Sn(t)e—;mut dt
TJo (3.77)

— __% (1 _ e—(;‘an/z)) + J_wFrl (1 _ 2e-—(inﬂ)T/2))

T2
s(t) s'(t)
2+ 8(t)
//
1 ( ) F
0 % T ¢ 0 %—' ¢
(@) w Y-2(-%)
o pm2(7)
s"(t) )
-Té(t)
T
z
0 t
#4(t- )
(c)
FIG. 3.11
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FIG. 3.10. The triangular wave and its derivatives.

From A, we obtain

Ay
B =75
(joon)
I VR 67
n
=0 n even

A slight difficulty arises if the expression for s'(f) contains an impulse
in addition to other straight-line terms. Because of these straight-line
terms we must differentiate once more. However, from this additional
differentiation, we obtain the derivative of the impulse as well. This
presents no difficulty, however, because we know that

fws(t) 5t — T) = —s/(T) (3.73)

s0 that f O(t — T)e ™ dt = jnwe T (3.74)
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The complex coefficients 8, are now obtained as

Ay
L (oon)” 3.78
2 —(inwT/2) 1 —(inwT/2) ( - )
= (1—e Y+ —— (1 — 27V )
(jonT)? jonT
Simplifying, we have
.Bn = 01 2 + —i n odd
nm®  j2an
. (3.79)
= — T n even
Jj2mn

In conclusion, it must be pointed out that the method of using impulses
to evaluate Fourier coefficients does not give the d-c coefficient, a,/2 or §,.
We obtain this coefficient through standard methods as given by Eq. 3.23.

3.7 THE FOURIER INTEGRAL

In this section we extend our analysis of signals to the aperiodic case.
We show through a plausibility argument that generally, aperiodic signals
have continuous amplitude and phase spectra. In our discussion of Fourier
series, the complex coefficient 8, for periodic signals was also called the
discrete Fourier transform

ﬂ(nf) _ —1— J‘T/2s(t)e_jn2.7/‘ot dt (3 80)
YO r /2 )

and the inverse (discrete) transform was

«
s() = 3 Bnfo)e™* " (3.81)
n=—aw
From the discrete Fourier transform we obtain amplitude and phase
spectra which consist of discrete lines. The spacing between adjacent lines
in the spectrum is

Af = (n + 1)fy — nfy = ; (3.82)

As the period T becomes larger, the spacing between the harmonic lines in
the spectrum becomes smaller. For aperiodic signals, we let 7" approach
-infinity so that, in the limit, the discrete spectrum becomes continuous.
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We now define the Fourier integral or transform as

o “ —i2w 3.83
s(f) = Jim ﬁ(fr:,f) = st .
Af—0

The inverse transform is )
s(t) =j S(f)e"z”" af

metimes called the Fourier transform pair.
Fourier transformation and F—1denote

(3.84)

Equations 3.83 and 3.84 are so
If we let F denote the operation of
inverse transformation, then
S(fy =" -s(t) | (385
s(t) = F7-S()

1, the Fourier transform S(f) is complex and can be denoted as

In genera
S(f) = Re () + jIm S (3.86)
The real part of S(f) is obtained through the formula
= 3S(f) + S(—=N]
Re S(f) ZEO (f) o)
=J s(t) cos 2mft dt
and the imaginary part through
1
Im S(f) = = [S() = S(=N]
e o (3.88)
= —fw s(f) sin 2mft dt
The amplitude spectrum of S(f) is defined as
A(f) = [Re S(f)* + Im S(f)?% (3.89)
d the phase spectrum is
R Im S(/) (3.90)

$(f) =.arctan Re SU)
Using the amplitude and phase definition of the Fourier transform, the
inverse transform can be expressed as

s = [t cos Lt = SN (3.9

Let us examine some examples.
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FIG. 3.13. Plot of rect function.
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FIG. 3.12. Amplitude and phase spectrum of A 6(2 — t,).

Example 3.2.%
sty = A6t — t)

S(f) = f A St — to)e—?m7t dt

= Ae—i% 1t (3.92)
Its amplitude spectrum is
‘ A(f) =4 (3.93)
while its phase spectrum is
#(f) = —2nft, (3.94)

as shown in Fig. 3.12.

Example 3.3. Next consider the rectangular function plotted in Fig. 3.13.
Formally, we define the function as the rect function.

W
=1 Rl<
rect s . (.99
=0 x| > >
The inverse transform of rect f'is defined as sinc ¢ (pronounced sink),
F[rect f] = sinc ¢
w2
= f eIt df (3.96)
—W/2
sin 7t
- it

3 It should be noted here that the Fourier transform of a generalized function is also
a generalized function. Inother words, if ¢ € C, (F - ¢) € C. For example, 5 - o) =
1, where 1 is described by a generalized function 1,(f). We will not go into the formal

. details of Fourier transforms of generalized functions here. For an excellent treatment

of the subject see M. J. Lighthill, Fourier Analysis and Generalized Functions, England,
Cambridge University Press, 1955.
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From the plot of sinc ¢ in Fig. 3.14 we see that sinc ¢ falls as does |¢[72,
with zeros at t =n/W, n=1,2,3,... We also note that most of the
energy of the signal is concentrated between the points —1/W < ¢t < 1/W.
Let us define the time duration of a signal as that point, ¢y, beyond which
the amplitude is never greater than a specified value, for example, ¢;,, We
can effectively regard the time duration of the sinc function as ¢, = & 1/W.
The value W, as we see from Fig. 3.13, is the spectral bandwidth of the
rect function. We see that if W increases, f, decreases. The preceding
example illustrates the reciprocal relationship between the time duration
of a signal and the spectral bandwidth of its Fourier transform. This
concept is quite fundamental. It illustrates why in pulse transmission,
narrow pulses, i.e., those with small time durations, can only be trans-
mitted through filters with large bandwidths; whereas pulses with longer
time durations do not require such wide bandwidths, as illustrated in
Fig. 3.15.

3.8 PROPERTIES OF FOURIER TRANSFORMS

In this section we consider some important properties of Fourier
transforms.

Linearity
The linearity property of Fourier transforms states that the Fourier

transform of a sum of two signals is the sum of their individual Fourier
transforms, that is,

Fleisi(@) + ¢ s3(0] = ¢ Si(f) + 2 Su(f) (3.97)

Differentiation
This property states that the Fourier transform of the derivative of a
signal is j27f times the Fourier transform of the signal itself:

F - 5'(f) = j2uf S(f) (3.98)

F - s(E) = (j2mf)" S(f) (3.99)

The proof is obtained by taking the derivative of both sides of the inverse
transform definition,

or more generally,

s =2 [ sterr g
3} (3.100)
=[" s ar

D ———
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Similarly, it is easily shown that the transform of the integral of s(t) is

t
F U s(7) dT] =L s - (3.101)
—w j2nf
Consider the following example
s(t) = et u(t) (3.102)
Its Fourier transform is
S(f) =J e—atu(t)e—jzﬂt dt
- (3.103)
0 a4+ j2nf
The derivative of s(¢) is
s'(1) = 6(t) — ae~* u(t) (3.104)

Its Fourier transform is

j2
FO) =1 - — =
a+j2nf a+j2nf (3.105)
= j2nf S(f)
Symmetry

The symmetry property of Fourier transforms states that if
F - a(t) = X(f) (3.106)
then F - X(@t) = x(—=f) (3.107)

This property follows directly from the symmetrical nature of the Fourier

transform pair in Egs. 3.83 and 3.84.
Example 3.4. From the preceding section, we know that
¥ -sinc ¢ = rect f (3.108)
It is then simple to show that
5 -rect t =sinc(—f) = sinc f (3.109)
which conforms to the statement of the symmetry property. Consider next

the Fourier transform of the unit impulse, F - 8(f) = 1. From the symmetry

property we can show that
F-1=46f) (3.110)

as shown in Fig. 3.16.

while zero bandwidth, 6(f) corresponds to infinite time du;ation.

70 Network analysis and synthesis
The proof follows directly from the definition of the Fourier transform.

An example is

Flet u(—1)] = 1——/1]27f (3.117)

Delay
If a signal is delayed by an amount 7, in the time domain, the corre-

sponding effect in the frequency domain is to multiply the transform of the
undelayed signal by e~/ fo, that is,
FIs(t — to)] = ¢ S(f) (3.118)

_ For example,
—j2rfto

a + j2nf

(3.119)

\(F[e——a(t—to)u(t | B to)] -

Modulation

The modulation ot frequency shift property of Fourier transforms
states that if a Fourier transform is shifted in frequency by an amount for
the corresponding effect in time is described by multiplying the original
signal by e’2™/¢¢, that is,

FS(S — fo)] = &' s(0)

Example 3.5. Given S(f) in Fig. 3.17a, let us find the inverse transform’of
S)(f) in Fig. 3.17b in terms of s(t) = FLS(f). We know that

S:(f) = S(f = fo) + S(f + fo) C@3a2

S(f)
A

(3.120)

(a)
S1(f)

()

FIG. 3.17. Demonstration of amplitude modulation.
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The foregoing example is also an extreme illustration

of the time-duration and bandwidth reciprocity relationship. It says that zero
time duration, &(¢), gives rise to infinite bandwidth in the frequency domain;
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4o 8(f)
10

F

z

—t ¢ ~f 0 f

FIG. 3.16. Fourier transform of f(¢) = 1.0.

Scale change :
Th.e sca}e-change property describes the time-duration and bandwidth
reciprocity relationship. It states that

F [s(é)} = |a| S(af) (3.111)

. Proof. We prove this property most easily through the inverse trans-
orm

Flal S(ap) = lal | Staper df (3.112)
Let /' = af; then )
FHlal S = lal f s(ryerree 4
— a
t (3.113)
=5(2)
a
As an example, consider
Fle®u(®)] = 2—l———- (3.114)
then jaf
Fletu()] = _lal__
j2maf + a
(3.115)
_
i2
ifa>0. e
Folding
The folding property states that
Fls(—1)] = S(—f) (3.116)
The frequency domain: Fourier analysis 71
Then FA8,(f) = ef2hot 5(2) + e~ #277ot 5(1) = 2s(t) cos 2mfyt (3.122)

T N\, ] q
. hus we see that n‘lu.ltlpl'ymg a signal by a cosine or sine wave in the time domain
orresponds to shifting its spectrum by an amount +f;. In transmission termi

nology f, is the carrier frequency, and the pro k.
is called amplitude modu 1ation,y process of multiplying s(#) by cos 2xfyt

Parseval’s theorem

An important theorem which i
img relates energy in the time and fre
domains is Parseval’s theorem, which states that neney

[Tsoswa=["snsena ey

The proof is obtained very simply as follows:
[T swswa=[" soa]” smera

=L° S\(f) dff:o s(De di (3.124)

=7 8. Su(~p) af

—o0

In particular, when s,(t) = ‘
s 1(1) = s5,(2), we have a corollary of Parseval’
known as Plancheral’s theorem. / val's theorem

f_ Sy di= f: IS df (3.125)

If s(¢) is equal to the current through
: , or the volt -
resistor, the total energy is ¢ eltage soross & L-ohm
@
f s’(t) dt

—

We see from Eq. 3.125 that the total energy is also equal to the area under

the curve of [S(f)|2. Thus |S(f)|? is someti
: t .
or energy spectrum. v ctimes called an energy density

Problems
3.1 Show that the set {1, sin nnt/7,cos n=t|T},n =1,2,3,..., forms an

orthogonal set over an interval [«, « i
,« + 2T], where « is any real n i
the norms for the members of the set and normalize the se);. umber. Find
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3.9 Prove that (a) if f(¢) is even, its Fourier transform F(jw) is a{so an even
function; (b) if f(¢) is odd, its Fourier transform is odd and pure imaginary.

F(jw)

>
>

—-Wo ! +wo w

PROB. 3.10

3.10 Find the inverse transform of ,
F(jw) = B 8(w — wg) + B 8w + @)
as shown in the figure. What can you say about line spectra in the frequency
domain?
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chapter 4
Differential equations

4.1 INTRODUCTION

This chapter is devoted to a-brief study of ordinary linear differential
equations. We will concentrate on the mathematical aspects of differential
equations and leave the physical applications for Chapter 5. The differen-
tial equations considered herein have the general form

Fla(), (1), ..., 2™(1), ] =0 4.1)

where ¢ is the independent variable and z(¢) is a function dependent upon
1. The superscripted terms 2')(¢) indicate the ith derivative of 2(t) with
respect to £, namely,
(@)
() d* (1)

() = —= .
® o 4.2)
Tl'le. solutiqn of F=0 in Eq. 4.1 is #(¢) and must be obtained as an
explicit function of . When we substitute the explicit solution #(¢) into F,
the.equation must equal zero. If Fin Eq. 4.1 is an ordinary linear differ-

ential equation, it is ‘given by the general equation :

4, 200 + @@ () + -+ @ () + @) =f(1)  (4.3)
The order of the equation is n, the order of the highest derivative term.

- The term f(¢) on the right-hand side of the equation is the forcing function

or drz:ver, .and is independent of (r). When f(¢) is identically zero, the
equation 1s said to be homogeneous; otherwise, the equation is non-
homogeneous.

In this chapter we will restrict our study to ordinary, linear differential
equations with constant coefficients. Let us now examine the meanings of
these terms.

75
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quation is one in which there is only

1 . An ordinary differential e
o ) 7). As a result there is no need for

one independent variable (in our case,

partial derivatives. '
Constant coefficients. The coefficients a,, @y, - -

stant, independent of the variable 7. o .
Lir;ear. A differential equation is linear if it contains only terms of the

first degree in 2(¢) and all its higher derivatives, as given by Eq. 4.3. For
example, the equation )

., @y, Gy, 4y are con-

32'(¢) + 2x(t) = sin ¢t

is a linear differential equation. On the other hand,
3[2/(D)] + 22(2) 2'(1) + 4a(t) = St 4.5)

is nonlinear, because the terms [#'(1)]? and z(t) 2(¢) are nonlinear by the

definition just given.

An important implication of the linearity property is the superposition

property. According to the superposition property, if ?:l(t) and x,(t) are
solutions of a given differential equation for forcing fl{nctlons fl(t? anq [0,
respectively, then, if the forcing function were any linear combination of

d fu(t) such
f1(t) and fy(t) such as 7(6) = afi() + b0

the solution would be
() =ax,(t) + b 25(8) 4.7)

(4.6)

where g and b are arbitrary constants. It should be emphasized that the

superposition property is extremely important a.md should be kept in
mind in any discussion of linear differential equations.

42 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

h some methods for the solution of homogeneous,

i ion deals wit
This secton oot First, let us find

linear differential equations with constant coefficients.

the solution to the equation .
() — 22() =0 (4.8)

f the form
4.9)

Now, with a little prestidigitation, we assume the solution to be o
z(t) = Ce

Let us check to see whether 2(f) = Ce?*

where C is any arbitrary constant. er
' he assumed solution in Eq. 4.8,

is truly a solution of Eq. 4.8. Substitutingt

we obtain 2Cet — 2Cet = 0 (4.10)
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It can be shown, in general, that the solutions of homogeneous, linear
differential equations consist of exponential terms of the form C,e?. To
obtain the solution of any differential equation, we substitute Ce?* for x(t)
in the equation and determine those values of p for which the equation is
zero. In other words, given the general equation

a, ™M)+ -+ a () + a,x(t) =0 (4.11)

we let x() = Ce™, so that Eq. 4.11 becomes
CePa,p® + ap_p" 4+ -+ ap+a)=0 4.12)
Since e?’ cannot be zero except at p = — oo, the only nontrivial solutions

for Eq. 4.12 occur when the polynomial

H(P) = anpn + a’n—lpﬂ_1 + -+ ap + ay = 0 (413)

Equation 4.13 is often referred to as the characteristic equation, and is
denoted symbolically in this discussion as H(p). The characteristic equation
is zero only at its roots. Therefore, let us factor H(p) to give

H(p) = an(p —PO)(P _Pl) T (P _Pn-l) (414)

From Eq. 4.14, we note that Coe™t, Cie™t, . ., C,_,e¥n1* are all solutions
of Eq. 4.11. By the superposition principle, the total solution is a linear
combination of all the individual solutions. Therefore, the total solution
of the differential equation is

z(t) = Coe™ + Cie?rt + - -+ + C,_jePr1t (4.15)

where Cy, Cy, ..., C,_; are generally complex. The solution 2(?) in Eq.
4.15 is not unique unless the constants C,, C, ..., C,_, are uniquely
specified. In order to determine the constants C;, we need » additional
pieces of information about the equation. These pieces of information are
usually specified in terms of values of z(¢) and its derivatives at ¢ = 04,
and are therefore referred to as initial conditions. To obtain n coefficients,
we must be given the values (0+), 2’(0+), . . ., 2" 1(0+). In a number
of special cases, the values at ¢ = 0— are nof equal to the values at

= 04. If the initial specifications are given in terms of x(0—),
z'