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PREFACE

This book embodies the principles and objectives of Elements of Power System
Analysis, the long-standing McGraw-Hill textbook by Professor William D.
Stevenson, Jr., who was for many years my friend and colleague emeritus at
North Carolina State University. Sadly, Professor Stevenson passed away on
May 1, 1988, shortly after planning this joint venture. In my writing I have made
great efforts to continuc the student -oriented style and format of his own famous
textbook that has guided the education of numerous power system engineering
students for a considerable number of years.

The aim here is to instill confidence and understanding of those concepts
of power system analysis that are likely to to be encountered in the study and
practice of electric power engineering. The presentation is tutorial with empha-
sis on a thorough understanding of fundamentals and underlying principles. The
approach and level of treatment are directed toward the senior undergraduate
and first-year graduatc student of clectrical enginecring at technical colleges
and universities. The coverage, however, i1s quite comprehensive and spans a
wide range of topics commonly encountered in electric power system engineer-
ing practice. In this regard, electric utility and other industry-based engineers
will find this textbook of much benefit in their cveryday work.

Modern power systems have grown larger and more geographically expan-
sive with many interconnections between neighboring systems. Proper planning,
operation, and control of such large-scale systems require advanced computer-
based techniques, many of which are explained in a tutorial manner by means of
numerical examples throughout this book. The senior undergraduate engineer-
ing student about to embark on a career in the electric power industry will most
certainly benefit from the exposure to these techniques, which are presented
here in the detail appropriate to an introductory level. Likewise, electric utility
engineers, even those with a previous course in power system analysis, may find
that the explanations of these commonly used analytic techniques more ade-
quately prepare them to move beyond routine work.

Power System Analysis can serve as a basis for two semesters of undergrad-
uate study or for first-semester graduate study. The wide range of topics
facilitates versatile selection of chapters and sections for completion in the
semester or quarter time trame. Familiarity with the basic principles of clectric

Xvii
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Xviil PREFACE

circuits, phasor algebra, and the rudiments of differential equations is assumed.
The reader should also have some understanding of matrix operations and
notatlon as they are used throughout the text. The coverage includes newer
toplcs such as state estimation and unit commitment, as well as more detailed
presentations and newer approaches to traditional subjects such as transform-
ers, synchronous machines, and network faults. Where appropriate, summary
tables allow quick reference of important ideas. Basic concepts of computer-
based algorithms are presented so that students can implement their own
computer programs.

Chapters 2 and 3 are decvoted to the transformer and svnchronous ma-
chine, respectively, and should complement material covered in other electric
circuits and machines courses. Transmission-line parameters and calculations
are studicd in Chapters 4 through 6. Nctwork modecls based on the admittance
and impedance representations are developed in Chapters 7 and 8, which also
introduce gaussian elimination, Kron reduction, triangular factorization, and the
Z,, . building algorithm. The power-flow problem, symmetrical components, and
_unsymmetrical faults are presented in Chapters 9 through 12: wherecas Chapter
13 provides a self-contained development of economic dispatch and the basics
of unit commitment. Contingency analysis and external equivalents are the
subjects of Chapter 14. Power system state estimation is covered in Chapter 15,
while power system stability is introduced in Chapter 16. Homework problems
and exercises are provided at the end of each chapter.

I am most pleased to acknowledge the assistance given to me by a number
of people with whom I have been associated within the Department of Electri-
cal and Computer Engineering at North Carolina State University. Dr. Stan
S. H. Lee, my colleague and friend for many years, has always willingly given his
time and effort when 1 needed help, advice, or suggestions at the various stages
of development of this textbook. A number of the homework problems and
solutions were contributed by him and by Dr. Gamini Wickramasekara, one of
my former graduate students at North Carolina State University. Dr. Michael J.
Gorman, another of my rceent graduate students, gave unstintingly ol himself in
developing the computer-based figures and solutions for many of the numerical
examples throughout the various chapters of the text. Mr. W. Adrian Buie, a
recent graduate of the Department of Electrical and Computer Engineering,
undertook the challenge of committing the entire textbook to the computer and
produced a truly professional manuscript; in this regard, Mr. Barry W. Tyndall
was also most helpful in the early stages of the writing. My loyal secretary, Mrs.
Paulette Cannady-Kea, has always enthusiastically assisted in the overall pro-
ject. I am greatly indebted and extremely grateful to each and all of these
individuals for their generous efforts.

Also within the Department of Electrical and Computer Engineering at
North Carolina State University, the successive leadership of Dr. Larry K.
Monteith (now Chancellor of the University), Dr. Nino A. Masnari (now
Director of the Engineering Research Center for Advanced Electronic Materi-
als Processing), and Dr. Ralph K. Cavin 111 (presently Head of the Department),
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along with my faculty colleagues, particularly Dr. Alfred J. Goetze, provided an
environment of support that I am very pleased to record.

The members of my family, especially my wife, Barbara, have been a great
source of patient understanding and encouragement during the preparation of
this book. 1 ask each of them, and my friend Anne Stevenson, to accept my
sincere thanks.

McGraw-Hill and I would like to thank the following reviewers for their
many helpful comments and suggestions: Vernon D. Albertson, University of
Minnesota; David R. Brown, University of Texas at Austin; Mechdi
Etezadi-Amoli, University of Nevada. Reno; W. Mack Grady, University of
Texas at Austin; Clifford Grigg, Rese-Hulman Institute of Technology; William
H. Kersting, New Mexico State University; Kenneth Kruempel, Iowa State
University; Mangalore A. Pai, Universin of Illinois. Urbana-Champaign; Arun
G. Phadke, Virginia Polytechnic Institute and State University; B. Don Russell,
Texas A & M University; Peter W. Sauer, Unwersity of Illinois, Urbana-
Champaign: and Ernie L. Stagliano. Ir.. Drexel University.

John J. Grainger
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CHAPTER

BASIC
CONCEPTS

Normal and abnormal conditions of operation of the system are the concern of
the power system engineer who must be very familiar with steady-state ac
circuits, particularly three-phase circuits. The purpose of this chapter is to
review a few of the fundamental ideas of such circuits; to establish the notation
used throughout the book; and to introduce the expression of values of voltage,
current, impedance, and power 1n per unit. Modern power svstem analysis relies
almost exclusively on nodal network representation which is introduced in the
form of the bus admittance and the bus impedance matrices.

1.1 INTRODUCTION

The waveform of voltage at the buses of a power system can be assumed to be
purely sinusoidal and of constant frequency. In developing most of the theory in
this book, we are concerned with the phasor representations of sinusoidal
voltages and currents and use the capital letters ' and / to indicate these
phasors (with appropriate subscripts where necessary). Vertical bars enclosing V'
and I, thatis, |V| and |I', designate the magnitudes of the phasors. Magnitudes
of complex numbers such as impedance Z and admittance Y are also indicated
by vertical bars. Lowercase letters generally indicate instantaneous values.
Where a generated voltage [electromotive force (emf)] is specified, the letter E
rather than V' is often used for voltage to emphasize the fact that an emf rather
than a general potential difference betweenr two points is being considered.
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2 CHAPTER 1 BASIC CONCEPTS

If a voltage and a current are expressed as functions of time, such as
v = 141.4cos(wt + 30°)

and { =7.07cos wt

their maximum values are obviously V, .. = 141.4 V and /_,, = 7.07 A, respec-
tively. Vertical bars are not needed when the subscript max with I and [ is used
to indicate maximum value. The term ragnitude refers to root-mean-square (or

rms) values, which equal thc maximum values divided by V2 . Thus, for the
above expressions for v and

V| = 100 V and Il =5 A

These are the values read by the ordinary types of voltmeters and ammeters.
Another name for the rms value is the effective value. The average power
expended in a resistor by a current of magnitude |/ is |/I’R.

To express these quantities as phasors, we employ Euler’s identity ¢’? =
cos 6 + Jsin 6, which gives

cos 8 = Re{e’?} = Re{cos 6 + j sin 6) (1.1)

where Re means the real part of. We now write

v = Re{y2 100739 = Re{1006% 2 ¢/

| = Re{y2 567 0} = Re{56/" V2 e/}
If the current is the reference phasor, we have

[=5"=5/0° =5+ j0A
and the voltage which leads the reference phasor by 30° 1s
V = 100¢* = 100/ 30° = 86.6 + jS0V

Of course, we might not choose as the reference phasor either the voltage
or the current whose instantaneous expressions are v and {, respectively, in
which case their phasor expressions would involve other angles.

In circuit diagrams it is often most convenient to use polarity marks in the
form of plus and minus signs to indicate the terminal assumed positive when
specifying voltage. An arrow on the diagram specifies the direction assumed
positive for the flow of current. In the single-phase equivalent of a three-phase
circuit single-subscript notation is usually sufficient, but double-subscript nota-
tion is usually simpler when dealing with all three phases.
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1.2 SINGLE-SUBSCRIPT NOTATION 3

1.2 SINGLE-SUBSCRIPT NOTATION

Figure 1.1 shows an ac circuit with an emf represented by a circle. The emf is
E,, and the voltage between nodes a and o is identified as V,. The current in
the circuit is J, and the voltage across Z; is V;. To specify these voltages as
phasors, however, the + and — markings, called polarity marks, on the diagram
and an arrow for current direction are necessary.

In an ac circuit the terminal marked + is positive with respect to the
terminal marked — for half a cycle of voltage and is negative with respect to the
other terminal during the next half cycle. We mark the terminals to enable us to
say that the voltage between the terminals is positive at any instant when the
terminal marked plus‘is actually at a higher potential than the terminal marked
minus. For instance, in Fig. 1.1 the instantaneous voltage v, is positive when the
terminal marked plus is actually at a higher potential than the terminal marked
with a negative sign. During the next half cvcle the positively marked terminal is
actually negative, and v, is negative. Some authors use an arrow but must
specify whether the arrow pointis toward the terminal which would be labeled
plus or toward the terminal which would be labeled minus .n the convention
described above.

The current arrow pcrforms a similar function. The subscript, in this case
L, is not necessary unless other currents are oresent. Obviously, the actual
direction of currcnt flow in an ac circuit reverses each haif cycle. The arrow
points in the direction which is to be called positive for current. When the
current is actually flowing in the direciion opposite to that of the arrow, the
current is ncgativc. The phasor currcent is

V- ¥, .
1;':—2 - (1.2)
A

and V=L, -1,2Z, (1.3)

Since certain nodes in the circuit have been assigned letters, the voltages
may be designated by the single-letter subscripts identifying the node whose
voltages are expressed with respect to a reference node. In Fig. 1.1 the
instantaneous voltage v, and the phasor voltage V, express the voltage of node
a with respect to the reference node o, and v, is positive when a is at a higher

b
Zy
FIGURE 1.1 s
n An ac circuit with emf E_ and load impedance Z; .
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potential than o. Thus,

1.3 DOUBLE-SUBSCRIPT NOTATION

The use of polarity marks for voltages and direction arrows for currcnts can be
avoided by double-subscript notation. The understanding of three-phase circuits
is considerably clarified by adopting a systcm of double subscripts. The conven-
tion to be followed is quite simple.

In denoting a current the order of the subscripts assigned to the symbol
for current defines the direction of the flow of current when the current is
considered to be positive. In Fig. 1.1 the arrow pointing from a to b defines the
positive direction for the current f, associated with the arrow. The instanta-
neous current i, 1s positive when the current is actually in the direction from a
to b, and in double-subscript notation this current is i,,. The current i,, is
equal to —i,,.

In double-subscript notation the letter subscripts on a voltage indicate the
nodes of the circuit between which the voltage exists. We shall follow the
convention which says that the first subscript denotes the voltage of that node
with respect to the node identified by the second subscript. This means that the
instantaneous voltage v,, across Z , of the circuit of Fig. 1.1 is the voltage of
node a with respect to node b and that v,, is positive during that half cycle
when a is at a higher potential than 6. The corresponding phasor voltage is V,,,,
which is related to the current 7, flowing from node a to node b by

V:b =/

0 Z/I and ]ab = Y/!"/nb (14)

ol

where Z, is the complex impedance (also called Z,,) and Y, = 1/Z, is the
complex admittance (also called Y, ).

Reversing the order of the subscripts of either a current or a voltage gives
a current or a voltage 180° out of phase with the original; that is,

Vea = Vabsjl80° = Vo /180" = =V,

a

The relation of single- and double-subscript notation for the circuit of Fig.
1.1 is summarized as follows:

V:=Va=V VL:Vb:;Vbo IL:Iab

ag
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In writing Kirchhoff’s voltage law, the order of the subscripts is the order
of tracing a closed path around the circuit. For Fig. 1.1

Voa+V:ﬂb+Vbn=0 (15)

Nodes n and o are the same in this circuit, and n has been introduced to
identify the path more precisely. Replacing V,, by -1}, —and noting that
V., = 1,2, vield

'—Vao + IabZA T Vn‘m =0 (16)
Vﬂ'() - Vbn
and so I, = — " (V,, = VY, (1.7)
A

1.4 POWER IN SINGLE-PHASE AC CIRCUITS

Although the fundamcntal theory ol the transmission of encrgy desciibes the
travel of energy in terms of the interacuon of clectric and magnetic ficlds. the
power system engineer is usually more concerncd with describing the rate ol
change of energy with respect to time (which is the definition of power ) in (erms
of voltage and current. The unit ot power 15 a ware, The power in watls being
absorbed by a load at any mstant is the product of the instantancous voltage
drop across the load m volts and the instantancous current into the load n
amperces. [f the terminals of the load are designated « and n, and 1 the voltage
and current are expressed by
U, = V. €OS wf and by =1, ccos(wt = )

I (LI RN et [SANAYN

the instantaneous power 1s
P o= U(mfun i Vma\ /Il!.]\ cos wf COS( wi — ()) ( }8)

The angle 6 1 these equations is positive for current lagging the voltage and
negative for feading current. A positive valuc of p expresses the rate at which
encrgy s being absorbed by the part of the system between the points a and #.
The instantaneous power is obviously positive when both wv,, and ¢, arc
positive and becomes negative when v,, and ¢, are opposite in sign. Figurc 1.2
illustrates this point. Positive power calculated as v, ,, results when current is
flowing in the direction of a voltage drop and is the rate of transfer of energy to
the load. Conversely, negative power calculated as v, ,¢,, results when current is
flowing in the direction of a voltage rise and means energy is being transferred
from the load into the system to which the load is connected. If v,, and ¢, are
in phase, as they are in a purely resistive load, the instantaneous power will
never become negative. If the current and voltage are out of phase by 90°, as in
a purely inductive or purely capacitive ideal circuit element, the irstantaneous

an
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FIGURE 1.2
Current, voltage, and power plotted versus time.,

power will have equal positive and negative half cycles and its average value will
always be zero.

By using trigonometric identities the expression of Eq. (1.8) is reduced to

max © max

p=—7Fcos 8(1 + cos2wt) +

Vmax ]max

sin @ sin2wt (1.9)

where V. [.../2 may be replaced by the product of the rms voltage and
current, thatis, by |V, | |1, | or [V |I].

Another way of looking at the expression for instantaneous power IS to
consider the component of the current in phase with v,, and the component
90° out of phase with v,,. Figure 1.3(a) shows a parallel circuit for which Fig.
1.3(b) is the phasor diagram. The component of i, in phase with v,, is ig, and
from Fig. 1.3(b), li4l = |1, |cos 6. If the maximum value of i,, is [, the

maximum value of i is [, cos 6. The instantaneous current i, must be in
phase with v,,. For v,, =V, ., cos wt

g = I,y cOS 0 COs w! (1.10)

—————

max ip

Similarly, the component of i,, lagging v,, by 90° is i, with maximum value

<

T3

FIGURE 1.3
Parallel RL circuit and the corre-
sponding phasor diagram.

(a)
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FIGURE 1.4
Voltage, current in phase with the voltage, and the resulting power plotted versus time.

/.. sin 6. Since i, must lag v,, by 90°,
fy = 1 . $n#sinwl (1.11)
——— e —
max 7

Then,

v ig =V 1. cos8cos’wt

max = max

VoI

Aldx 7 Hax

;:—Tc059(1+cos2wl) (1.12)

which 15 the instantancous power in the resistance and the first term it Eq.
(1.9). Figure 1.4 shows v,,i plotted versus 1.
Simularly,

v, iy =V SInfsinwt cos w!

max * mias

max ‘]max

= U sin 6 sin 201 (1.13)

which 1s the instantaneous power in the inductance and the second term in
Eq. (1.9). Figure 1.5 shows v,,, i, and their product plotted versus .
Examination of Eq. (1.9) shows that the term containing cos 6 is always
positive and has an average value of
|

P=&2m30058 (1.14)

or when rms values of voltage and current are substituted,

P = [V{|Ilcos 6 " (1.15)
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FIGURE 1.5
Voltage, current lagging the voltage by 90°, and the resulting power plotted versus time.

P 1s the quantity to which the word power refers when not modified by an
adjective identifying it otherwise. P, the average power, is also called the real or
active power. The fundamental unit for both instantaneous and average power
Is the watt, but a watt is such a small unit in relation to power system quantities
that P is usually measured in kilowatts or megawatts.

The cosine of the phase angle 6 between the voltage and the current is
called the power factor. An inductive circuit is said to have a lagging power
factor,.and a capacitive circuit is said to have a leading power factor. In other
words, the terms lagging power factor and leading power factor indicate,
respectively, whether the current is lagging or leading the applied voltage.

The second term of Eq. (1.9), the term containing sin 8, is alternately
positive and negative and has an average value of zero. This component of the
instantaneous power p is called the instantaneous reactive power and expresses
the flow of energy alternately toward the load and away from the load. The
maximum value of this pulsating power, designated Q, is called reactive power
or reactive voltamperes and is very uscful in describing the opcration of a power
system, as bceccomes ncrcasingly cvident in further discussion. The rcactive
power i$

I/l'l\kl)( II“;IX .
Q= Tsm@ (1.16)

or Q = |V] Ulsin 6 (1.17)

The square root of the sum of the squares of P and Q is equal to the
product of |V| and |/], for

VPT+ 0% = Y (IVI llicos 8)° + (V1 1lsin )’ = Vi1l (1.18)

Of course, P and (O have the same dimensional units, but it is usual to
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1.4 POWER IN SINGLE-PHASE AC CIRCUITS 9

designate the units for Q as vars (for voltamperes reactive). The more practical
units for Q are kilovars or megavars.

In a simpic series circuit where Z is equal to R + jX we can substitute
|7] 'Z for |V]| in Egs. (1.15) and (1.17) to obtain

P =11*1Z|cos 6 (1.19)

and O = /1’1Z]sin 6 (1.20)
Recognizing that R = |Z|cos @ and X = |Z|sin 6, we then find
P=1’R and Q= |II'X (1.21)

Equations (1.15) and (1.17) provide anothcr mcthod of computing the
powcer [actor since we sce that @/ = tan 0. The power lactor s therefore

)
cos 0 - cosftan™! (1]
or from Egs. (1.15) and (1.18)
P
Cos = ——-
VP2 +

If the instantaneous power expressed by Ea. (1.9) is the power in a
predominantly capacitive circuit with the sarme impressed voltage, 6 becomes
negative, making sin 8 and Q negative. If capacitive and inductive circuits are in
paraliel, the mstantaneous rcactive power for the RL circuit 1s 180° out of
phase with the instantaneous reactive power of the RC circuit. The net reactive
power jis the difference between O for the RL circuit and Q for the RC circuit.
A positive vaiue is assigned 1o Q drawn by an inductive load and a ncgative sign
to (J drawn by a capacitive load.

Power system engincers usually think of a capacitor as a generator of
positive reactive power rathcer than a load rcquiring negative rcactive power.
This concept s very logical, for a capacitor drawing negative (O in parallel with
an inductive load reduces the Q which would otherwisc have to be supplied by
the system to the inductive load. In othcr words, the capacitor supplies the QO
required by the inductive load. This 1s the same as considering a capacitor as a
device that delivers a lagging current rather than as a device which draws a
leading current. as shown in Fig. 1.6. An adjustable capacitor in parallel with an
inductive load, for instance, can be adjusted so that the leading current to the
capacitor is cxactly equal i magnitude to the componcent of current in the
inductive foad which is lagging the voltage by 90°. Thus, the resultant current is
in phase with the voltage. The inductive circuit still requires positive reactive
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| C % - C
I | _‘ FIGURE 1.6

. . Capacitor considered as: (a) a passive circuit element
I leads V by 90 I'lags V by 90 drawing leading current; (b) a generator supplying lag-
(@) () ging current.

power, but the net reactive power is zcro. It is for this reason that the power
system enginccer finds it convenient to consider the capacitor to be supplying
reactive power to the inductive load. When the words positive and negative are
not used, positivc reactive power is assumcd.

1.5 COMPLEX POWER

If the phasor expressions for voltage and current are known, the calculation of
real and reactive power is accomplished conveniently in complex form. If the
voltage across and the current into a certain load or part of a circuit are
expressed by V = IVI& and [ = II‘ﬁ, respectively, the product of voltage
times the conjugate of current in polar form is

VI* = [VIg’* x [[le™# = V] |[le’“ P = [VI|I|/a - B  (1.22)

This quantity, called the complex power, is usually designated by S. In rectangu-
lar form

S = VI* = V| lIlcos(a = B) + jIVI ]sin(a — B) (123)

Since a — B, the phase angle betwecn voltage and current, is 6 in the previous
equations,

S=P4j0 (1.24)

Reactive power O will be positive when the phase angle @ — 8 between voltage
and current is positive, that is, when a« > 3, which mcans that currcnt is lagging
the voltage. Conversely, Q will be negative for 8 > «, which indicates that
current is leading the voltage. This agrees with the selection of a positive sign
for the reactive power of an inductive circuit and a negative sign for the reactive
power of a capacitive circuit. To obtain the proper sign for Q, it is necessary to
calculate S as VI* rather than V*I, which would reverse the signfor Q.

1.6 THE POWER TRIANGLE

Equation (1.24) suggests a graphical method of obtaining the overall P, Q, and
phase angle for several loads in parallel since cos 8 is P/ |S|. A power triangle
.can be drawn for an inductive load, as shown in Fig. 1.7. For several loads in
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S
Q
a
FIGURE 1.7
P Power triangle for an inductive load.
W \\\\\92 ,
‘ // \ @
=l 4 z.///
L eiay ,/
2 //
¢ Sr
'/:_Ug Ql + Q? = QR
5 FIGURE 1.8
S - - / Power (riangle for combined
Py Py o= B loads. Note that Q5 is negative.

parallel the tatal P will be the sum of the average powers of the individual
loads. which should be plotted along the horizontal axis for a graphical analysis.
For an nductive load O will be drawn vertically upward since it 1s positive. A
capacitive load will have ncgative reactive pewer, and O will be vertically
downward. Figure 1.8 illustrates the power triangle composed of Py, O, and S,
for a lagging power-factor load having a phase angle 6, combined with the
power triangle composed of P,, 0,, and S,, which is for a capacitive load with a
;mve 6,. These two loads in parallel result m the triangle having sides
P, O, + ()5, and hypotenuse S,. In gencral, [S,| s not cqual to |5, +
!53%, Thie phase angle between voltage and current supplhed to the combined
loads is 0.

1.7 DIRECTION OF POWER FLOW

The relation among £, @, and bus voltage V, or gencrated voltage £, with
respect 1o the signsof 72 and QO s important when the [low of power in a system
15 considered. The question mvolves the dircction of flow of power, that is,
whether power s being generated or absorbed when a voltage and a current are
specified.

The question of delivering power to a circuit or absorbing power from a
circult is rather obvious for a dc system. Consider the current and voltage of
Fig. 1.9(a) where dc current [ is flowing through a battery. If the voltmeter V,,
and the ammeter A, both rcad upscale to show L = 100 V and I = 10 A, the
battery is being charged (absorbing energy) at the rate given by the product
£l = 1000 W. On the other hand, if the ammeter connections have to be
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S N S —— — !
N _ Current © —~
+ + coil + &
S Voltage E
— E

@D 1 Wattmeter coil —
= o L g |

(a) (b)
FIGURE 1.9

Connections of: (@) ammeter and voltmeter to measure dc current I and voltage £ of a battery;
(b) wattmeter to measure real power absorbed by ideal ac voltage source E.

reversed in order that it reads upscale with the current arrow still in the
direction shown, then / = —10 A and the product £/ = —1000 W; that is, the
battery is discharging (delivering energy). The same considerations apply to
the ac circuit relationships.

For an ac system Fig. 1.9(b) shows within the box an ideal voltage source
E (constant magnitude, constant frequency, zero impedance) with polarity
marks to indicate, as usual, the terminal which is positive during the half cycle
of positive instantaneous voltage. Similarly, the arrow indicates the direction of
current / into the box during the positive half cycle of current. The wattmeter
of Fig. 1.9(b) has a current coil and a voltage coil corresponding, respectively, to
the ammeter A and the voltmeter V, of Fig. 1.9(a). To measure active power
the coils must be correctly connected so as to obtain an upscale reading. By
definition we know that the power absorbed inside the box is

S=VI*=P +jQ = |VIlllcos 8 + jIVII|Ilsin6 (1.25)

where 6 is the phase angle by which / lags V. Hence, if the wattmeter reads
upscale for the connections shown in Fig. 1.9(b), P = VI [Ilcos 6 is positive
and real power is being absorbed by E. If the wattmeter tries to deflect
downscale, then P = |V| |I|cos 6 is negative and reversing the connections of
the current coil or the voltage coil, but not both, causes the meter to read
upscale, indicating that positive power is being supplied by E inside the box.
This is equivalent to saying that negative power is being absorbed by E. If the
wattmeter is replaced by a varmeter, similar considerations apply to the sign of
the reactive power Q absorbed or supplied by E. In general, we can determine
the P and Q absorbed or supplied by any ac circuit simply by regarding the -
circuit as enclosed in a box with entering current / and voltage IV having the
polarity shown in Table 1.1. Then, the numerical values of the real and
imaginary parts of the product § = VI* determine the P and Q absorbed or
supplied by the enclosed circuit or network. When current / lags voltage ' by
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TABLE 1.1
Direction of P and @ flow where § = VI* = P +jQ
1 ac
o .
* equivalent If P > 0, circuit absorbs real power
circuit
N v If P < 0, circuit supplies real power
ar
If @ > 0, circuit absorbs relative power (I lags V')
o Circuit
element If @ < 0, circuit supplies reactive power (I leads V)
S P+ @
an angle 0 between 0% and 90°, we find that P = [V| llcos® and Q =

VI flsin 0 are both positive, indicating watts and vars arc being absorbed by
the inductive circutt inside the box. When [ lcads V' wy an angle between 0°
and 90°, P is stll positive but 6 and Q = |V |/|sin 6 are both negative,
indicating that negative vars are being absorbed or positive vars are being
supplied by the capacitive circuit inside the box.

Example 1.1. Two idecal voltage sources designated as machines 1 and 2 are
connected, as shown in Fig. 1.10. If £, = 100/0° Vv, E, =100/30° V, and
Z =0+ j3 ), determine (a) whether cach machine is generating or consuming
real power and the amount, (b) whether cach machine is receiving or supplying
rcactive power and the amount, and (¢) the P and Q absorbed by the impedance.

Solution
; E, - K, 100 + ;@ — (86.6 + j30)
= > - . 5
13.4 — j50
= = - [0~ ;268=1035/ 195 A
J5
I
I B
4 Z +
Fl / =t — l—)— El
#1 ‘ #2
| | FIGURE 1.10
- ldeal voltage sources conerected through
S, =P +jQ, S;=P,+jQ, impedance Z. ‘
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The current entering box 1 is —/1 and that cntering box 2 is / so that
S, =E,(—1)" =P, +j0Q, =100(10 + j2.68)* = 1000 — j268 VA
S, =E, I* =P, +,0, = (86.6 +j5S0)(—10 +,j2.68) = —1000 — j268 VA
The rcactive power absorbed in the scries impedance is

Vi°X = 10,352 % 5 = S36var

Machine 1 may be cexpected to be a gencrator because of the current
dircction and polarity markings. However, since P, is positive and ) 1s negative,
the machine consumes encrgy al the rate ol 1000 W and supplics reactive power ol

208 var. The machine 1s actually o motor.

Machinc 2, cxpected to be a motor, has ncgative £, and ncgative Q5.
Therefore, this machine generates energy at the rate of 1000 W and supplies
rcactive powcer of 268 var. The machinc is actually a generator.

Note that the supplicd rcactive power of 268 + 268 is ecqual to 536 var,
which is required by the inductive reactance of 5 Q. Since the impedance is purely
reactive, no P is consumcd by thc impcdance, and all the watts generated by
machine 2 are transferred to machinc 1.

1.8 VOLTAGE AND CURRENT IN BALANCED
THREE-PHASE CIRCUITS

Electric power systems are supplied by three-phase generators. Ideally, the
generators are supplying balanced three-phase loads, which means loads with
identical impedances in all three phases. Lighting loads and small motors are, of
course, single-phase, but distribution systems are designed so that overall the
phases are essentially balanced. Figure 1.11 shows a Y-connected generator
with neutral marked o supplying a balanced-Y load with neutral marked n. In
discussing this circuit, we assume that thc impedances of thc connections
between the terminals of the gencrator and the load, as well as the impedance
of the direct connection between o and n, are negligible.

The equivalent circuit of the thrce-phase generator consists of an emf in
each of the three phases, as indicated by circles on the diagram. Each emf is in
series with a resistance and inductive reactance composing the impedance Z,.
Points a’, b’, and ¢’ are fictitious since the generated emf cannot be separated
from the impedance of each phase. The terminals of the machine are the points
a,b, and c¢. Some attention is given to this equivalent circuit in Chap. 3. In the
generator the emfs E . , L,.,, and E_., are equal in magnitude and displaced
from each other 120° in phase. If the magnitude of each is 100 V with E,  as
reference,

Eyo=100/0°V  E,,=100/240°V  E., =100/120° V"

Lo
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I

—————

[ Yol

I cu

FIGURE 1.1]
Crreurt diagram of a Y-connected gencrator connected 1o a balanced-Y load.

provided the phase sequence is abc, which means that £, leads E,,, by 120°
ana £, in turn leads £, by 120°. The circuit diagram gives no indication of
phase sequence, but Fig. 1.12 shows these emfs with phase sequence abc.

At the generator terminals (and at the load in this case) the terminal

voltages to neutral are

l/”(, T Eu’u T lancu
Vba = Eb'a [!mzd (126)
I/r'() - 1::(/1) - I( HZ(/

Sincc 0 and n are at the same potential, V

a2

V,,.and V., arc equal to V,,, V,,.,

an?

and V_ | respectivety, and the linc currents (which are also the phase currents

cn?

FIGURE 1.12
£,, Phasor diagram of the emfs of the circuit shewn in Fig. 1.11.
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I, I
FIGURE 1.13
I Phasor diagram of currents in a balanced three-phase load:
8 (a) phasors drawn from a common point; (b) addition of the
(a) (b phasors forming a closed triangle.

for a Y conncction) are

£

a'v an
!

ar
Zyt Zy Zye

Eh’o Vbn

I, = - 127
’ Z,+Zy, Zy ( )

Ji Ec’o cn
T ZSES7 . &

Since E,, E,,, and E_, are equal in magnitude and 120° apart in phase,
and since the impedances seen by these emfs are identical, the currents will also
be equal in magnitude and displaced 120° from each other in phase. The same
must also be true of V,,,V, ., and V,,. In this case we describe the voltages and
currents as balanced. Figure 1.13(a) shows three line currents of a balanced
system. In Fig. 1.13(b) these currents form a closed triangle and it is obvious
that their sum is zero. Therefore, I, must be zero in the connection shown in
Fig. 1.11 between the neutrals of the generator and load. Then, the connection
between n and o may have any impcdance, or even be open, and n and o will
remain at thc samc potential. 1 the load is not balanced, the sum ol the
currents will not be zero and a current will flow between o and n. For the
unbalanced condition o and n will not be at the same potential unless they are
connected by zero impedance.

Because of the phase displacement of the voltages and currents in a
balanced three-phase system, it is convenient to have a shorthand method of
indicating the rotation of a phasor through 120°. The result of the multiplica-
tion of two complex numbers is the product of their magnitudes and the sum of
their angles. If the complex number expressing a phasor is multiplied by a
complex number of unit magnitude and angle 6, the resulting complex number
represents a phasor equal to the original phasor displaced by the angle 6. The
complex number of unit magnitude and associated angle 6 is an operator that
rotates the phasor on which it operates through the angle 6. We are already
familiar with the operator j, which causes rotation through 90°, and the
operator — 1, which causes rotation through 180°. Two successive applications
of the operator j cause rotation through 90° + 90°, which Ilcads us to the

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

1.8 VOLTAGE AND CURRENT IN BALANCED THREE-PHASE CIRCUITS 17

conclusion that j X j causes rotation through 180°, and thus we recognize that
j? is equal to — 1. Other powers of the operator j are found by similar analysis.

The letter a is commonly used to designate the operator that causes a
rotation of 120° in the counterclockwise direction. Such an operator is a

complex number of unit magnitude with an angle of 120° and is defined by
a=1/120° =177/ = ~0.5 + j0.866

If the operator a is applied to a phasor twice in succession, the phasor is rotated
through 240°. Three successtve applications of a rotate the phasor through
360°. Thus,

a? = 1{240" = 147/ == —~ 05 — j0.866

@ =1/360° = 1627 = 1/0° =1

It is evident that | +a + a® = 0. Figure 1.14 shows phasors representing
various powers and functions of «.

(1“(12

V3 {900

= FNC
V3 /150° .
N

1 -4

5 /a0

/

//
r
|
\

1, -«

1 ~-a

V3 /- 30°

2

ar —4a
\,fr?j §~90°

FIGURE 1.14 '
Phoasor dingram of varions powers and functions ol the operatlor a.
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V3 v, /30°

FIGURE 1.15

Phasor diagram of line-to-line voltages in relation to line-to-ncutral voltages in a balanced three-
phase circuit.

The line-to-line voltages in the circuit of Fig. 1.11 are V,,, V,_, and V_,.
Tracing a path from a to b through n yields

V=V, +V,=V, -V (1.28)

‘ wh nh o fin

Although £, and V,, of Fig. 1.11 are not in phase, we could decide to use V,

an

rather than E,, as reference in defining the voltages. Then, Fig. 1.15 shows the
phasor diagram of voltages to neutral and how V,, is found. In terms of
operator a we see that V,, = a*V, , and so we have

Vip = Vow — @*V,, = V(1 = a%) (1.29)
Figure 1.14 shows that 1 — q? = ﬁ@, which means that

Vo, = V3V, =3V, /30° (1.30)
So, as a phasor, V,, leads V/,, by 30° and is V3 times larger in magnitude. The

other line-to-line voltages are found in a similar manner. Figure 1.15 shows all
the line-to-line voltages in relation to the line-to-neutral voltages. The fact that
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FIGURE 1.16
Alternative method of drawing the phasors of Fig. 1.15.

the magnitude of balanced line-to-line voltages of a three-phase circuit is always
equal to V3 times the magnitude of the line-to-neutral voltages is very impor-
tant.

Figure 1.16 shows another way of displaying the line-to-line and line-to-
neutral voltages. The line-to-line voltage phasors are drawn to form a closed
triangle oriented to agree with the chosen reference. in this case V,,,. The
vertices of the triangle arc labeled so that cach phasor begins and ends at the
vertices corresponding to the order of the subscripts of that phasor voltage.
Line-to-neutral voltage phasors are drawn to the center of the triangle. Once
this phaser diagram is understood, it will be found to be the simplest way to
determine the various voltages.

The order in which the vertices a, b, and ¢ of the triangle follow each
other when the triangle is rotated counterclockwise about n indicates the phase
sequance. The importance of phase sequence becomes clear when we discuss
transtormers and when symirnetrical components are used to analyze unbalanced
faults on power systems.

A separate current diagram can be drawn to relate each current properly
with respect to its phase voltage.

Example 1.2. In a balanced three-phase circuit the voltage V,, is 173.2/0° V.
Determine all the voltages and the currents in a Y-connected load having Z, =

Solution. With I, as reference, the phasor diagram of voltages is drawn as shown
i Fig. 117, from which it 1s determined that

v, = 1722/ 0° v Vo= 100/ -30° V
V, = 1732/ 240" vV, =100/ 210° V

cn

Vo, =1732/1200 V V., =100/90° V

Each current lags the voltage across its load impedance by 20° and each current
magnitude 1s 10 A. Figurc 1.18 is the phasor diagram of the currents

Ly =10/ =500 A 1, =10/190° A 1, =10/70° A
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Vau vbn

FIGURE 1.17
c Phasor diagram of voltages for Example 1.2.

FIGURE 1.18
Phasor diagram of currents for Example 1.2.

Balanced loads are often connected in A, as shown in Fig. 1.19. Here it is
left to the reader using the propertics of the operator a to show that the
magnitude of a line current such as /, is equal to V3 times the magnitude of
a-phase current [/, and that /, lags /,, by 30° when the phase sequence is
abc. Figure 1.20 shows the current relationships when 7, is chosen as refer-
ence.

When solving balanced three-phase circuits, it is not necessary to work
with the entire three-phase circuit diagram of Fig. 1.11. To solve the circuit a
neutral connection of zero impedance is assumed to be present and to carry the
sum of the three phase currents, which is zero for balanced conditions. The
circuit is solved by applying Kirchhoff’s voltage law around a closed path which
includes one phase and neutral. Such a closed path is shown in Fig. 1.21. This

I
be -
. B —
Ibc ‘
e FIGURE 1.19 ‘
T, Circuit diagram of A connccted thrce-phase load.
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Ir = ﬁl{aghsoo I

J :
] 8
.

I.f -3 pe /N b a’l __H"—_"'/ fu o ‘/g’{ﬂh L3_OJ

»

FIGURE 1.20
Phasar diagram of the line currents in relation to the phase currents in a balanced A-connected
three-phase load.

circuit i1s the single-phase or per-phase equivalent of the circuit of Fig. 1.11.
Calculations made for this path are extended to the whole three-phase circuit by
recalling that the currents in the other two phascs are equal in magnitude to the
current of the phase calculated and are displaced 120° and 240° in phase. It is
immaterial whether the balanced load (specified by its line-to-line voltage, total
powcer, and power factor) 15 A- or Y-connccted since the A can always be
replaced for purposes of calculation by its equivalent Y, as shown in Table 1.2.
It is apparent from the table that the general expression for @ wye impedance

ZR

FIGURE 1.21
n One phase of the circuit of Fig. 1.11, ‘
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TABLE 1.2
Y-A and AY transformations’
A Y YA |
ZigZca Z,Zg + 252 + 202y
ZA = ZAB = Z
Zog+Zpc+ Zca ¢
ZgcZasp Z,2p + 2Zp2c *+ 2024
ZB ] ZBC = Z
ZAB + ZBC + ZCA A
ZcaZpe Z,Zg+ ZpZe + ZpZy
Zc = ZC:‘\ = 7
Zyg+ Zgc + Zca “B
A-Y YA
Yas¥ou + Yee¥as + You¥se iy _ YaYs
Y, = Yoo BT Y Y+ Y,
YigYea + YocYau + YoaYse Von = _Y___BYC
Yy = Yo, BCT Y, + Vg + Y
YapYea + YpeYan + Yoa¥Vac v, — ___Y_CX_A___
YC = YAB CA YA + YB + YC

t Admittances and impedances with the same subscripts are reciprocals of one another.

Zy in terms of the delta impedances Z,’s is

product of adjacent Z,’s

Z, = (1.31)

sum of Z,’s

So, when all the impedances in the A are equal (that is, balanged Z,’s), the
impedance Z of each phase of the equivalent Y is one-third the impedance of
each phase of the A which it replaces. Likewise, in transforming from Zﬂ s to
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Z,’s, Table 1.2 shows that

7 sum of pairwise products of Z’s
= : 1.32
a the opposite Zy ( )

Similar statements apply to the admittance transformations.

Example 1.3. The terminal voltage of a Y-connected load consisting of three equal
impedances of 20@() 1s$ 4.4 kV linc to line. The impcdance of each of the three
lines connccting the load to a bus at a substation is Z, = 1.4 /75°Q. Find the
linc-to-linc voltage at thc substation bus.

Solution. The magnitude of thc voltage to ncutral at the load is 4400/\5=
2540 V. If V. the voltage across the load, is chosen as refcrence,

an?

2540 / 0°
v, =250/ 05V ane 1, = —E=— =1270/-30° A
i 20/ 30 -

The line-to-ncutral voltage at the substation is

Vo w02, = 2540/ 00 1121/ =30° x 14/ 75°

R 0° + 1778/ 45°

= 2666 + j125.7 = 2670/ 2.70° V

and thc magnitude of the voltage at the substation bus is
V3 X 2.67 = 1.62kV

Figure 1.22 shows the per-phase cquivale nt circont and quantitics mvolved.

14°75° @

2540{0°V
l

l FIGURE 1.22

|
1
2670/2.7° v 20/30°
|
¥ Per-phase equivalent circuit for Example 1.3.

F
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1.9 POWER IN BALANCED THREE-PHASE
CIRCUITS

The total power delivered by a three-phase generator or absorbed by a three-
phase load is found simply by adding the power in each of the three phases. In a
balanced circuit this is the same as multiplying the power in any one phase by 3
since the power is the same in all phases.

If the magnitude of the voltages to neutral V, for a Y-connected load is

27 EAd o

Wi= V.l = 1V, =1V (1.33)
and if the magnitudc of the phasc current /, for a Y-connccted load is
il =1, =14, =11, (1.34)
the total three-phase power is
P =31Vl 1,cos 8, (1.35)

where 6, is the angle by which phase current I, lags the phase voltage V), that
is, the angle of the impedance in each phase. If [V,| and [/, | are the
magnitudes of line-to-line voltage 1, and line current /,, respectively,

V] .
|Vp| = —ﬁ_ and ]Ipl = |]L| [ (136)

and substituting in Eq. (1.35) yields

P =3V lcos8, (1.37)
The total vars are

Q =3[V, ,lsin6, (1.38)

Q = Y31V, I I lsing, (1.39)

and the voltamperes of the load are

S| = VP2 + Q% = V3V, I I, (1.40)

Equations (1.37), (1.39), and (1.40) are used for calculating P, Q, and |S|
in balanced three-phase networks since the quantities usually known are line-
to-line voltage, line current, and the power factor, cos 6,. When we speak of a
three-phase system, balanced conditions are assumed unless described other-
wise; and the terms voltage, current, and power, unless identified otherwisé, are

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

1.10 PER-UNIT QUANTITIES 25

understood to mean [fine-to-line voltage, line current, and total three-phase
power, respectively.

If the load is connected A, the voltage across each impedance is the
line-to-line voltage and the magnitude of the current through each impedance is
the magnitude of the line current divided by /3, or

1,
Vol = Vil and gl = (1.41)
The total three-phase power is
P =31V, ,1lcos0, (1.42)

and substituting in this cquation the values of [V | and 1/ | {rom Eaq. (1.41) gives
P =331V, lcos 6, (1.43)

which is identical to Eq. (1.37). It follows that Egs. (1.39) and (1.40) arc also
valid regardless of whether a particular load 1s connected A or Y.

1.10  PER-UNIT QUANTITIES

Power transmission lines are operated at voltage levels where the kilovolt (kV)
is the most convenient unit to express voltage. Because of the large amount of
power transmitted, kilowatts or megawatts and kilovoltamperes or megavoltam-
peres are the common terms. However, these quantities as well as amperes and
ohms are often expressed as a percent or per unit of a base or reference value
specified for cach. For instance, if a base voltage of 120 kV is chosen, voltages
of 108, 120, and 126 kV become 0.90, 1.00, and 1.05 per unit, or 90, 100, and
105%, respectively. The per-unit calue of any quantity is defined as the ratio of
the quantity (o 1ts base expressed as a decimal. The ratio in percent is 100 times
the value m per unit. Both the percent and per-unit methods of calculation are
simpler and often more mformative than the use of actual ampcres, ohms, and
volts. The per-unit method has an advantage over the percent method because
the product of two quantitics expressed Inoper unit 15 expressed in per unit
itsell, but the product ol two quantitics expressed i pereent must be divided by
100 o obtain the result in pereent.

Voltage. current, Kilovoltamperes, and impedance are so rclated that
selection of base values for any two of them determines the base values ol the
remaining twe. 1 we specify the base values of current and voltage, base
impedance and base kilovoltampercs can be determined. The base impedance is
that impedance which will have a voltage drop across it equal to the base
voltage when the current flowing in the impcdance is equal to the base value of
the current. The base kilovoltamperes in single-phasc systems is the product of
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base voltage in kilovolts and base current in amperes. Usually, base mega-
voltamperes and base voltage in kilovolts are the quantities selected to specify
the base. For single-phase systems, or three-phase systems where the term
current refers to line current, where the term voltage refers to voltage to neutral
and where the term kilovoltamperes refers to kilovoltamperes per phase, the
following formulas relate thc various quantitics:

base kVA,,

base voltage, kV,

Base current, A = (1.44)

. base voltage, V, 5
Base impedance, () = (1.45)
base current, A

(base voltage, kV, ,,)° x 1000

Base impedance, {) = 1.46
P base kVA |, ( )
base voltage, kV 2
Base impedance, () = ( er) (1.47)
MVA,,
Base power, kW, = base kVA | (1.48)
Base power, MW, = base MVA | (1.49)

o actual impedance, §)
Per-unit impedance of an element = : (1.50)
base impedance, ()

In these equations the subscripts |, and , 5 denote “per phase” and “line to
neutral,” respectively, where the cquations apply to three-phase circuits. If the
equations are used for a single-phase circuit, kV, ,, means thc voltage across the
single-phase line, or line-to-ground voltage if-one side is grounded.

Since balanced thrcc-phasc circuits are solved as a single line with a
neutral return, thc bascs for quantitics in the impcdance diagram are kilo-
voltamperes per phase and kilovolts from line to neutral. Data are usually given
as total three-phase kilovoltamperes or megavoltamperes and line-to-line kilo-
volts. Because of this custom of specifying line-to-line voltage and total kilo-
voltamperes or megavoltamperes, confusion may arise regarding the relation
between the per-unit value of line voltage and the per-unit value of phase
voltage. Although a line voltage may be specified as base, the voltage in the
single-phase circuit required for the solution is still the voltage to neutral. The
base voltage to neutral is the base voltage from line to line divided by V3 . Since
this is also the ratio between line-to-line and line-to-neutral voltages of a
balanced three-phase system, the per-unit value of a line-to-neutral voltage on the
line-to-neutral voltage base is equal to the per-unit value of the line-to-line voltage
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at the same point on the line-to-line voltage base if the system is balanced.
Similarly, the three-phase kilovoltamperes is three times the kilovoltamperes
per phase, and the three-phase kilovoltamperes base is three times the base
kilovoltamperes per phase. Therefore, the per-unit value of the three-phase
kilovoltamperes on the three-phase kilovoltampere base is identical to the per-unit
value of the kilovoltamperes per phase on the kilovoltampere-per-phase base.

A numerical example clarifics the relationships. For instance, if

Base kVA;, = 30,000 kVA
and Base kV,, = 120 kV

where subscripts 5, and ,, mecan “thrce-phase™ and “linc to line,” respectively,

30,000

D
b}

Basc kVA |, = = 10,000 kVA

120
and Base kV, , = — = 69.2 kV

V3

For an actual line-to-linc voltage of 108 kV in a balanced three-phase set the
line-to-neutral voltage is 1(]8/\/3 = 02.3 kV, and

y ~ 108 (2.3 A\
-1 t { === = 2
er-unit voltage 120 502

IFor total three-phase power of 18,000 kW the power per phase is 6000 kW, and

18,000 6,000
Per-unit power = = = 0.6
30,000 10,000

Of course, megawatt and megavoltampere values may be substituted Tor kilo-
wati and kilovoltampere valucs throughout the above discussion. Unless other-
wise specified, a given valuc of base voltage in a three-phase system is a
lne-to-line valtage, and a given value of basc kilovoltampceres or basec mega-
voltamperes is the total three-phase basce.

Base impedance and base current can be computed directly from three-
phase values of base kilovolts and basc kilovoltamperes. If we interpret base
kilovoltamperes and base voliage in kilocolts to mean base kilovoltamperes for the
total of the three phases and base voltage from line to line, we find

base kVA
/3 x base voltage, kV, ,

Base current, A (1.51)
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and from Eq. (1.46)

2
base voltage, kV V3)" % 1000
Base impedance = ( ° L/ V3) (1.52)

base kVA /3

. (base voltage, kV, ; )* X 1000
Base impedance = ' (1.53)
base kVA,,

(basc voltage, kV, )2
Basc impedance = — (1.54)
basc MVA,,

Except for the subscripts, Eqgs. (1.46) and (1.47) are identical to Eqs. (1.53) and
(1.54), respectively. Subscripts have been used in expressing these relations in
order to emphasize the distinction between working with three-phase quantities
and quantities per phase. We use these equations without the subscripts, but we
must

» Use line-to-line kilovolts with three-phase kilovoltamperes or megavoltam-
peres, and

» Use line-to-neutral kilovolts with kilovoltamperes or megavoltamperes per
phase.

Equation (1.44) determines the base current for single-phase systems or for
three-phase systems where the bases are specified in total kilovoltamperes per
phase and kilvolts to neutral. Equation (1.51) determines the base current for
three-phase systems where the bases are specified in total kilovoltamperes for
the three phases and in kilovolts from line to line.

Example 1.4. Find the solution of Example 1.3 by working in per unit on a base of
4.4 kV, 127 A so that both voltage and current magnitudes will be 1.0 per unit.

Current rather than kilovoltamperes is specified here since the latter quantity does
not enter the problem.

Solution. Base impedance is

4400 /3
127

200 Q

and therefore the magnitude of thc load impedance is also 1.0 per unit. The line
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impedance 1s

1.4/ 75° /e '
Z = --—2—0—=0.07: 75% per unit

Vop =10/0° + 1.0/ -30° x 007/ 75°
=1.0/0° + 0.07/ 45°

= 1.0495 + j0.0495 = 1.051 / 2.70° per unit

4400
v,y = 1.051 x vyl 2670 V, or 2.67 kV
Al
V,, = 1.051 X 4.4 = 4.62kV

When the problems to be solved are more complex, and particularly when
transformers are involved, the advantages of calculations in per unit are more
apparcent. Impedance values and other paramecters of a component, when given
in per unit without specified bases, are generally understood to be based on the
megavoltampere and kilovolt ratings of the component.

1.11 CHANGING THE BASE OF PER-UNIT
QUANTITIES

Sometimes the per-unit impedance of a component of a system is expressed on
a base other than the one selected as base for the part of the system in which
the component is located. Since all impedances in any one part of a system must
be cxpressed on the same impedance base when making computations, it is
necessary to have a means of converting per-unit impedances from one base to
another. Substituting the expression for base impedance given by Eq. (1.46) or
(1.53) for basc impedance in Eq. (1.50) gives for any circuit element

. o g (actual impedance, ) X (base kVA) 1.59)
er-unit impedance = 5 :
(base voltage, kV)™ x 1000 (

which shows that per-unit impedance is dircctly proportional to base kilovoltam-
peres and inversely proportional to the squarc of the base voltage. Therefore, to
change from per-unit impedance on a given base to per-unit impedance on a
new base, the following equation applies:

base kV e, ?( base kVA new
base kV base kVA given

new
'

) (1.56)

Per-unit 7 _, = per-unit Zgi\,m(
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The reader should note that this equation has nothing to do with transferring
the ohmic value of impedance from one side of a transformer to another. The
application of the equation is in changing the value of the per-unit impedance
of any component given on a particular base to a new base.

Rather than using Eq. (1.56) directly, the change in base may also be
accomplished by first converting the per-unit value on the given base to ohms
and then dividing by the new base impcdance.

Example 1.5. The rcactance of a gencerator designated X7 is given as 0.25 per unit
bascd on thc gencrator’s nameplate rating of 18 kV, 500 MVA. The basc for
calculations is 20 kV, 100 MV A. Find X” on thc ncw basc.

Solution. By Eq. (1.56)

v — 095 18 \* 100) . _
= 0. (20) (3% = 0.0405 per unit

or by converting the given value to ohms and dividing by the new base impedance,

0.25(182/500)
202,100

n

= 0.0405 per unit

Resistance and reactance of a device In percent or per unit are usually
available from the manufacturcr. The impedance base is understood to be
derived from the rated kilovoltamperes and kilovolts of the device. Tables A.1l
and A.2 in the Appendix list some representative values of reactance for

transformers and generators. Per-unit quantities are further discussed in Chap.
2 assoclated with the study of transformers.

1.12  NODE EQUATIONS

The junctions formed when two or more circuit elements (R, L., or C, or an
ideal source of voltage or current) are connected to each other at their
terminals are called nodes. Systematic formulation of equations determined at
nodes of a circuit by applying Kirchhoff’s current law is the basis of some
excellent computer solutions of power system problems.

In order to examine some features of node equations, we begin with the
simple circuit diagram of Fig. 1.23, which shows node numbers within circles.
Current sources are connected at nodes @ and @ and all other elements are
represented as admittances. Single-subscript notation is used to designate the
voltage of each node with respect to the reference node (0). Applying Kirch-
hoff’s current law at node @ with current away from the node equated to
current into the node from the source gives

(Vl_Vz)Yc+(V1 - V:!)Yd"'(yl - V4)V,r=0 (1-57)
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@
® N
Lo B g o

| ©
|
Reference

FIGURE 1.23
A circuit diagram showing current sources at nodes fD and @; all other elements are admittances.

and for node @
VY, = (V= V)Y, + (M, = V)Y, = Iy (1.58)

Rearranging these eguations yields

<

Atnode D: V(Y. + Y+ Y,) = VY, = VY, = 1Y, = 0 (1.59)
At node (3): VY = VLY, (Y, + Y, + V) = (1.60)

Simiar equations can be formed for nodes @ and @ and the four equations
can be solved simultancously for the voltages Vo, V5, V5, and V,. All branch
currents can be found when these voltages are known, and a node equation
formed for the reference node would yield no further information. Hence, the
requircd number of indepencent node cquations is one less than the number of
"nodcs.

We have not written the equations for nodes @ and @ because we can
alreadv see how to formulate node equations in standard notation. In both Egs.
(1.59) and (1.60) 1t is apparent that the current flowing into the network from
current sources connected to a node 1s equated to the sum of several products.
At any node one -product is the voltage of that node times the sum of all the
admittances which terminate on the node. This product accounts for the current
that flows away from the node if the voitage is zero at each other node. Each of
the other products equals the negative of the voltage at another node times the
admittance connccted directly between that node and the node at which the
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equation is formulated. For instance, in Eq. (1.60) for node @ a product is
—V,Y,, which accounts for the current flow away from node ) when voltages

are zero at all nodes except node .
The usual matrix format of the four-independent equations for Fig. 1.23 is

02 060

DY, Y, Ya Y, | —[/1' -1]_
@Y Y Yn YullV, | h

@ Y3l Y}z sz_‘; Y34 [/3 - [3 (]6])
@ i Yo Yo Yao Y 1L Vi | ] I, i

The symmetry of the cquations in this form makes them casy to remember, and
their cxtension to any number of nodes is apparcnt. The order of the Y
subscripts is effect-cause; that is, the first subscript is that of the node at which
the current 1s being expressed, and the second subscript is the same as that of
the voltage causing this component of current. The Y matrix is designated Y,
and called the bus admittance matrix. The usual rules when forming the typical
elements of Y, are:

« The diagonal element Y; equals the sum of the admittances directly con-
nccted to node

» The off-diagonal element Y;; equals the negative of the net admittance
connected between nodes () and @.

The diagonal admittances are called the self-admittances at the nodes, and
the off-diagonal admittances are the rmuwutual admittances of the nodes. Some
authors call the self- and mutual admittances of the nodes the driving-point and
transfer admittances of the nodes. From the above rules Y, for the circuit of
Fig. 1.23 becomes

Yous =
® @ ©) @
D[+ v+ 7)) -, -, -
@ - Y (Y, + Ya+ Yo) =Y e
® - Y, —¥% (Yo + Yy +Y) 0
@ -Y; ~Y, 0 (Y, + Y+ Yg)_

(1.62)

where the encircled numbers are node numbers which almost always correspond
to the subscripts of the elements Y, of Y. Separating out the entries for any
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one of the admittances, say, Y., we obtain

@© @ ® @ )
D (v, +Y,) -Y, 0 -Y;
Y, = @ -v, (Y, + Yy + Vo) -Y, -7,
© 0 -Y, (Y, +Y) 0

@ -y —Y, 0 Yo+ Y +v,)

®© © O ®
0

O v -y, 0

L @ 0 0 0 0 (1.63)
Q| -V 0 Y, 0
@ 0 0 0 0

The matrix for Y, can be written as shown in Eq. (1.63) or more compactly as
follows:

O &SSO

Yy, - =Y

C

~S

©
©

N
9

OO
|
—_
|
—
><
o
o)
S~
N

-y ) Y . @

C C

®E

While the left-hand side shows the actual matrix contributed by Y, to Y, we
can interpret the smaller matrix on the right as a compact storage matrix for the
same contribution. The encircled numbers @ and @ point to the rows and
columns of Y\, to which the entries Y, and -} belong. The 2 X 2 matrix
multiplying Y. 1s an important budlding block in forming Y, . for more general
nctworks, which we consider in Chap. 7.

Inverting Y, yiclds an impoertant matrix called the bus impedance matrix

2, - which has the standard form

© © ©o ©
@ (Zn ZAPRERAY 214 |
@20 Zn Zn Za (1.65)

Cous = Yous = Q| 2y, Zy, Ly Za
@) LZa Za Ziy  Laa

The construction and properties of Z,, . are considered in Chap. 8.
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1.13 THE SINGLE-LINE OR ONE-LINE
DIAGRAM

In Chaps. 2 through 6 we develop the circuit models for transformers, syn-
chronous machines, and transmission lines. Our present interest is in how to
portray the assemblage of these components to model a complete system. Since
a balanced three-phase system is always solved as a singie-phase or per-phase
equivalent circuit composed of one of the three lines and a neutral return, it is
seldom necessary to show more than one phase and the neutral return when
drawing a diagram of the circuit. Often the diagram is simplificd further by
omitting the completed circuit through thce ncutral and by indicating the
component parts by standard symbols rather than by their cquivalent circuits.
Circuit parameters are not shown, and a transmission linc is reprcscnted by a
single line between its two ends. Such a simplified diagram of an electric system
is called a single-line or one-line diagram. It indicates by a single line and
standard symbols how the transmission lines and associated apparatus of an
electric system are connected together.

The purpose of the one-line diagram is to supply in concise form the
significant information about the system. The importance of different features
of a system varies with the problem under consideration, and the amount of
information included on the diagram depends on the purpose for which the
diagram is intended. For instance, the location of circuit breakers and relays is
unimportant in making a load study. Breakers and relays are not shown if the
primary function of the diagram is to provide information for such a study. On
the other hand, determination of the stability of a system under transient
conditions resulting from a fault depends on the speed with which relays and
circuit breakers operate to isolate the faulted part of the system. Therefore,
information about the circuit breakers may be of extreme importance. Some-
times one-line diagrams include information about the current and potential
transformers which connccl the relays (o the system or which arc installed for
metering. The information found on a one-line diagram must be expected to
vary according to the problem at hand and according to the practice of the
particular company preparing the diagram.

The American National Standards Institute (ANSI) and the Institute of
Electrical and Electronics Engineers (IEEE) have published a set of standard
symbols for electrical diagrams.! Not all authors follow these symbols consis-
tently, especially in indicating transformers. Figure 1.24 shows a few symbols
which are commonly used. The basic symbol for a machine or rotating armature
is a circle, but so many adaptations of the basic symbol are listed that every
piece of rotating electric machinery in common use can be indicated. For
anyone who is not working constantly with one-line diagrams, it is clearer to

See Graphic Symbols for Electrical and Electronics Diagrams, IEEE Std 315-1975.
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Machine or rotating O Power circuit breaker 0
armature (basic) oil or other liquid

Two-winding power g Atr circuit breaker

transformer i

Three-phase, three-wire

—/\_
Three-winding power % g E delta connection
transformer Three-phase wye, \(
Fuse D neutral ungrounded

Current transformer — Three-phase wye,
neutral grounded

Potential transformer —3 o Y
Ammeter and veltmeter —(— ()

FIGURE 1.24
Appardatus symbols

indicate a particular machine by the basic symbol followed by information on its
type and rating.

It is important to know the location of points where a systemi is connected
to eround In order to calculate the amount of current flowing when an
unsymmetirical fault involving ground occurs. The standard symbol to designate
a three-phase Y with the neutral solidly grounded is shown in Fig. 1.24. If a
resistor or reactor is inserted between the neutral of the Y and ground to limit
the flow of current to ground during a fault, the appropriate symbol for
resistance or inductance may be added to the standard symbo! for the grounded
Y. Most transformer neutrals in transnussion systems are solidly grounded.
Generator neutrals are usually grounded through fairly high resistances and
sometimes through inductance cotls.

Figure 1.25 1s the single-line diagram ol a simple power system. Two
generators, one grounded through a reactor and once through a resistor, are

Foe

(2

___E\'\/ > Load B

oo — s
o

Load A<—1{ )

FIGURE 1.25
Single-line diagram of an electrical power system. :
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connected to a bus and through a step-up transformer to a transmission line.
Another generator, grounded through a reactor, is connected to a bus and
through a transformer to the opposite end of the transmission line. A load is
connected to each bus. On the diagram information about the loads, ratings of

the generators and transformers, and reactances of the different components of
the circuit is often given.

1.14 IMPEDANCE AND REACTANCE
DIAGRAMS

In order to calculate the perlormance of a system under load conditions or upon
thc occurrence ol a fault, the onc-line diagram is uscd to draw the single-phasc
or per-phase equivalent circuit of thc system. Figure 1.26 combines the equiva-
lent circuits (yet to be developed) for the various components shown in Fig. 1.25
to form the per-phase impedance diagram of the system. If a load study is to
be made, the lagging loads A and B are represented by resistance and induc-
tive reactance in series. The impedance diagram does not include the current-
limiting impedances shown in the one-line diagram between the neutrals of the
generators and ground because no current flows in the ground under balanced
conditions and the neutrals of the generators are at the potential of the neutral
of the system. Since the shunt current of a transformer is usually insignificant
compared with the full-load current, the shunt admittance is usually omitted in
the equivalent circuit of the transformer.

Resistance is often omitted when making fault calculations, even in
computer programs. Of course, omission of resistance introduces some error,
but the results may be satisfactory since the inductive reactance of a system is
much larger than its resistance. Resistance and inductive reactance do not add
directly, and impedance is not far different from the inductive reactance if the
resistance is small. Loads which do not involve rotating machinery have little
effect on the total line current during a fault and are usually omitted. Syn-
chronous motor loads, however, are always included in making fault calculations

+
- —— ~ 4 T——EE— . — ——
Generators  Load Transformer T, Transmission line Transformer T, Load Gen. 3
land2 A B
FIGURE 1.26

The per-phase impedance diagram corresponding to the single-line diagram of Fig. 1.25.
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OO ————— 00— 50T

Neutral bus

FIGURE 1.27
Per-phase reactance diagram adapted from Fig. 1.26 by omitting all loads, resistances, and shunt
admittances.

since their generated emfs contribute to the short-circuit current. The diagram
should take induction motors into account by a generated emf in series with an
inductive reactance if the diagram is to be used to determine thc current
immediately after the occurrence of a fault. Induction motors are ignored in
computing the current a few cycles after the fault occurs because the current
contributcd by an induction motor dics out very quickly atter the induction
motor 1s short-circuited.

It we decide to simplify our calculation of fault current by omitting all
static loads, all resistances, the shunt admittance of each transformer, and the
capacitance of the transmission Jine, the impedance diagram reduces to the
per-phase reactance diagram of Fig. 1.27. These simplifications apply to fault
calculations only as discussed in Chap. 10 and not to power-flow studies, which
are the subject of Chap. 9. If a computer is available, such simplification is not
necessary.

The per-phase impedance and rcactance diagrams discussed herc are
somctimes called the per-phase positive-sequence diagrams since they show
impedances to balanced currents in one phase of a symmetrical three-phase
system. The significance of this designation is apparent in Chap. 11.

i.18 SUMMARY

This chapter reviews fundamentals of single-phasc and balanced threc-phase
circuits and explains some of thce notation to be uscd throughout the text.
Per-unit calculations arc introeduced and the single-line diagram, along with its
associated impedance diagram, 1s desceribed. Formulation ol node equations for
circuits without mutual coupling is also demonstrated.

PROBLEMS

1.1. If ¢ = 141.dsin(wr + 30°) V and i = 11.31 cos(ws — 30°) A, find for cach (a) the
maximum value, (b) the rms value, and (¢) the phasor cxpression in polar and
rectangular form if voltage i1s the reference. Is the circuit inductive or capacitive?

1.2. If the circuit of Prob. 1.1 consists of a purely rcsistive and a purely reactive
clement, find R and X (a) if the clements are in scrics and (h) if the clements are
in parallel.

r
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1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.
1.10.

1.11.

1.12.

1.13.

1.14.

1.15.
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In a single-phase circuit V, = 120{ 45° V and V, = 100/~15° V with respect to a
reference node o. Find V,, in polar form.

A single-phase ac voltage of 240 V is applied to a series circuit whose impedance is
10/60° Q. Find R, X, P, Q, and the power factor of the circuit.

If a capacitor is connected in parallel with the circuit of Prob. 1.4, and if this

capacitor supplies 1250 var, find the P and O supplied by the 240-V source, and
find the resultant power factor.

A single-phase inductive load draws 10 MW at 0.6 power-factor lagging. Draw the
power triangle and determine the reactive power of a capacitor to bc connected in
parallcl with the load to raisc the power factor to 0.85.

A single-phasc induction motor is opcerating at a very light load during a large part
of every day and draws 10 A from the supply. A device is proposcd to “incrcase the
efficicncy” of the motor. During a demonstration the device 1s placed in parallel
with the unloaded motor and the current drawn {rom the supply drops to 8 A.
When two of the devices are placed in parallel, the current drops to 6 A. What
simple device will cause this drop in current? Discuss the advantages of the device.
Is the efficiency of the motor incrcascd by the device? (Recall that an induction
motor draws lagging current.)

If the impedance between machincs 1 and 2 of Example 1.1 is Z =0 -5 Q,
determinc (a) whether each machine is generating or consuming power, (b)
whether cach machinc is receiving or supplying positive rcactor powcr and thc
amount, and (c) the value of P and Q absorbed by thc impedancec.

Repeat Problem 1.8 if Z =35 + jO0 Q.

A voltage source E,, = —120/210° V and thc current through the source is given

by 1,,, = 10 /60° A. Find the values of /> and Q and statc whether the source is
delivering or receiving each.

Solve Example 1.1 if E, = 100{0° Voand £, = 120/ 30° V. Comparc the results
with Example 1.1 and form somc conclusions about the cffect of variation of the
magnitude of E, in this circuit.

Evaluate the following expressions in polar form:
(@) a -1

(b) 1 —a* +a

(c)a’+a+

(d) ja + a®

Three identical impedances of 10/ - 15° Q are Y-connccted to balanced three-
phase line voltages of 208 V. Specify all the line and phasc voltages and the

currents as phasors in polar form with 1/, as reference for a phase sequence of
abc.

In a balanced three-phase system thc Y-connected impedances are 10 30? Q. If
Ve = 416/90° V, specify /, in polar form.

The terminals of a three-phase supply are labeled a, b, and c. Between any pair a
voltmeter measures 115 V. A resistor of 100 2 and a capacitor of 100 2 at the
frequency of the supply are connected in serics from a to b with the rcsistor
connected to a. The point of connection of the elements to each other is labeled n.
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Determine graphically the voltmeter reading between ¢ and n if phase sequence is
abc and if phase sequence is ach.

Determine the current drawn from a three-phase 440-V line by a three-phase
15-hp motor operating at full load, 90% efficiency, and 80% power-factor lagging.
Find the values of P and Q drawn from the line.

If the impedance of cach of the thrce lines connecting the motor of Prob. 1.16 to a
bus is 0.3 + ;1.0 , find the line-to-line voltage at the bus which supplies 440 V at
the motor.

A balanced-A load consisting of purc resistances of 15 ) per phasc is in parallel
with a balanced-Y load having phase impedances of 8 + j6 §). Identical impcdances
of 2+ 5 O are in each of the threc lines connecting the combined loads to a
110-V three-phase supply. Find the current drawn {rom the supply and line voltage
al the combined loads.

. A threc-phasc load draws 250 kW at a power factor of 0.707 lagging from a 440-V

line. In parallel with this load is a threc-phase capacitor bank which draws 60 kVA.
Find the total current and resultant power lactor.

. A thrce-phase motor draws 20 kVA at 0.707 power-factor lagging from a 220-V

source. Determine the Kilovoltamipere rating of capacitors to make the combined
power factor 0.90 lageing, and determine the line current beforc and after the
capacitors are added.

A coal mining “drag-lin¢”” machinc in an open-pit mine consumes 0.92 MV A at 0.8
power-factor lagging when it digs coal, and it ecncrates (delivers to the eclectric
svstem) 0.10 MVA at 8.3 power-factor leading when the loaded shovel swings away
f[rom the pit wall. At the end of the “dig” period the change in supply current
magnitude can cause (ripping of a protcctive relay, which is constructed of
solid-statc circuntry. Therefore, it is desired to minimize the change in current
magnitude. Consider the placement of capacitors at the machine terminals and find
the amount of capacitive correction (in kvar) to eliminate the change in steady-state
current magnitude. The machine is energized from a 36.5 kV, three-phase supply.
Start the solution by letting Q be the total three-phasc megavars of the capacitors
connected across the machine terminals, and write an cxpression for the magnitude
of the line current drawn by the machine in terms of Q for both the digging and
vcncrating operations

A eencrator (which may be represented by an emf in serics with an inductive
rcactance) is rated 500 MV A, 22 kV. Its Y-connected windings have a rcactance of
1.1 per unit. Find the ohmic valuc of the rcactance of the windings.

The gencrator of Prob. 1.22 is in a circuit for which the bascs arc specified as 100
MVA, 20 kV. Starting with the per-unit value given in Prab. 1.22, find the per-unit
value of rcactance of the generator windings on the specified basc.

Draw the single-phase cquivalent circuit for the motor (an cmf in scrics with
inductive rcactance labeled Z,,) and its connection to the voltage supply described
in Probs. .16 and 1.17. Show on thc diagram thc pcr-unit values of the line
impedance and the voltage at the motor tcrminals on a base of 20 kVA, 440 V.
Then using per-unit values, find the supply voltage in per unit and convert the

per-unit value of the supply voltage to volts
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1.25. Write the two nodal admittance equations, similar to Eqgs. (1.57) and (1.58), for the

voltages at nodes @ and @ of the circuit of Fig. 1.23. Then, arrange the nodal
admittance equations for all four independent nodes of Fig. 1.23 into the Y, form
of Eq. (1.61).

1.26. The values for the parameters of Fig. 1.23 are given in per unit as follows:

Y, = —j0.8 Y,= —j40 Y. = —j4.0 Y,= —j8.0 Y.= ~j5.0

1.0/ -90° [, =068/ —135°

Substituting these valucs in thc cquations determined in Prob. 1.25, computc the
voltages at the nodces of Fig. 1.23. Numcrically determine the corresponding Z,
matrix.
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CHAPTER

TRANSFORMERS

Transformers are the link between the generators of the power system and the
rransmission lines, and between lines of different voltage levels. Transmission
lines apcrate at nominal voltages up to 765 kV line to line. Generators are
usually built in the range of 18-24 kV with some at slightly higher rated
voltages. Transformers also lower the voltages to distribution levels and finally
fcr residential use at 2407120 V. They are highly (nearly 100%) efficient and
very reliable.

In this chapter we discuss the modeling of transformers and see the great
advantages of per-unit calculations. We also consider transformers that regulate
voltage magnitude and phuase shifting, and in this and a later chapter we shaill
sce how these regulating transformers arc used to control the low of rcal and
reactive power.

IFigure 2.1 15 the phatograph of a three-phase transformer which raiscs the
voltage of a generator to the transmission-line voltage. The transformer is rated
750 MVA, 525/22.8 kV.

2.1 THE IDEAL TRANSFORMER

Transformers consist of two or more coils placed so that they are linked by the
same magnetic flux. In a power transformer the coils are placed on an iron core

41
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FIGURE 2.1

Photograph of a three-phase transformer rated 750 MVA, 525/22.8 kV. (Courtesy Duke Power
Company.)

in order to confine the flux so that almost all of the flux linking any one coil
links all the others. Several coils may be connected in serics or parallel to form
one winding, the coils of which may be stacked on the core alternately with
those of the other winding or windings.

Figure 2.2 shows how two windings may be placed on an iron core to form
a single-phase transformer of the so-called shell type. The number of turns in a
winding may range from several hundreds up to several thousands.

We begin our analysis by assuming that the flux varies sinusoidally in the
core and that the transformer is ideal, which means that (1) the permeability u
of the core is infinite, (2) all of the flux is confined to the core and therefore
links all of the turns of both windings, and (3) core losses and winding
resistances are zero. Thus, the voltages e, and e, induced by the changing flux
must equal the terminal voltages v, and v,, respectively.

We can see from the relationship of the windings shown in Fig. 2.2 that
instantaneous voltages e, and e, induced by the changing flux are in phase
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FIGURE 2.2
Two-winding transformer.

when defined by the + and — polarity marks indicated. Then, by Faraday’s law

de
v, =€, = N]gt— (21)
d
and U, = €y = Nz—d;ﬁ (2.2)

where ¢ is the instantaneous value of the flux and N, and N, are the number
of turns on windings 1 and 2. as shown in Fig. 2.2. The flux ¢ is taken in the
positive direction of coil 1 according to the right-hand rule, which states that if a
coil is grasped 1n the right hand with fingers curled in the direction of current
flow, the thumb extends in the direction of the flux. Since we have assumed
sinusoidal variation of the flux, we can convert the voltages to phasor form after
dividing Eq. (2.1) by Eq. (2.2) to yield

oo (2.3)

Usually, we do not know the direction in which the coils of a transformer
are wound. One device to provide winding information is to place a dot at the
end of each winding such that all dotted ends of windings are positive at the
same time; that is, voltage drops from dotted to unmarked terminals of all
windings are in phase. Dots are shown on the two-winding transformer in Fig. 2.2

F
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T 18T T
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FIGURE 2.3
Schematic representation of a two-winding transformer.

according to this convention. We also note that the same result is achieved by
placing the dots so that current flowing from the dotted terminal to the
unmarked terminal of each winding produces a magnetomotive force acting in
the same direction in the magnetic circuit. Figure 2.3 is a schematic representa-
tion of a transformer and provides the same information about the transformer
as that in Fig. 2.2.

' To find the relation between the currents i, and i, in the windings, we
apply Ampere’s law, which states that the magnetomotive force (mmf) around a
closed path is given by the line integral

bH - ds=i (2.4)

where [ = net current that passes through the area bounded by the closed path

H = magnetic field intensity

H - ds = product of the tangential component of / and the incrcmental

distance ds along the path

In applying the law around each of the closed paths of flux shown by dotted
linesin Fig. 2.2, i, is enclosed N, times and the current 7, is enclosed N, times.
However, N,i, and N,i, produce mmfs in opposite directions, and so

gSH-ds = Nyiy — Noi, (2.5)

The minus sign would change to plus if we had chosen the opposite direction for
the current 7,. The integral of the field intensity H around the closed path is
zero when permeability is infinite. If this were not true, flux density (being equal
to wH) would be infinite. Flux density must have a finite value so that a finite ¢
is inducec in each winding by the varying flux. So, upon converting the currents
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to phasor form, we have

_ NI, = Nyl = 0 (2.6)
I, N
Z = }-VT (2.7)

and [, and /, are therefore in phase. Note then that [, and I, are in phase if we
choose the current to be positive when entering the dotted terminal of one winding
and leaving the dotted terminal of the other. 1f the direction chosen for either
current is reversed, they are 180° out of phase.

From Eq. (2.7)

I =

N2/ 2.8
N (2.8)

and in the 1deal transformer /| must be zero if /, is zero.

The winding across which an impedance or other load may be connected is
called the secendary winding, and any circuit elements connected to this
winding are said to be on the secondary side of the transformer. Similarly, the
winding which is toward the source of energy is called the primary winding on
the primary side. In the power system energy often will flow in either direction
through a transformer and the designation of primarv and secondary loses its
meaning. These terms are in general use, however. and we shall use them
wherever they do not cause confusion.

If an impedance Z, is connected across winding 2 of Figs. 2.2 or 2.3,

zZ, = = (2.9)

and substituting for V, and 7, the values found from Egs. (2.3) and (2.7) gives

N,/ NHW
2, - NN, 20)
(N/N2)
The impedance as measured across the primary winding is then
Z! Vl N] 2Z (2 11)

Thus, the impedance connected to the secondary side is referred to the primary
side by multiplying the impedance on the secondary side of the transformer by
the square of the ratio of primary to secondary voltage.

‘
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We should note also that VI and V, I} are equal, as shown by the
following equation, which again makes use of Egs. (2.3) and (2.7):

* N N * *
VI = FZVz X Elz =V, (2.12)
So, S =35, (2.13)

which means that the complex power input to the primary winding equals the

complex power output from the sccondary winding since we are considcring an
ideal transformer.

Example 2.1. I[ N, = 2000 and N, = 500 in the circuit of Fig. 23, and if

V,=1200 /0° V and /;, =5/-30° A with an impcdance Z, connccled across
winding 2, lind V,, I,, Z,, and the impcdance Z3, which is delined as the valuc of
Z, referred to the primary side of the transformer.

Solution

N 500
Vo Vjvl - m(1200&) ~300/¢° v

N, 2000

I, = sz, = 366"(51*300):20 ~30° A

Z,= == =15/30° Q

Altcrnatively,

2.2 MAGNETICALLY COUPLED COILS

The ideal transformer is a first step in studying a practical transformer, where
(1) permeability is not infinite and inductances are therefore finite, (2) not all
the flux linking any one of the windings links the other windings, (3) winding
resistance is present, and (4) losses occur in the iron core due to the cyclic
changing of direction of the flux. As a second step, let us consider the two coils
of Fig. 2.4 which represent the windings of a transformer of the core type of
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Figure 2.4

Mutually coupled coils with: (a) mutual flux due to currents i, and iy; (b) leakage flux ¢,, and mutual flux ¢,, due to i, alone;
(c) leakage flux ¢,, and mutual flux ¢,;, due to i, alone.
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construction. For the moment we continue to neglect losses in the iron core, but
the other three physical characteristics of the practical transformer are now
considered.

In Fig. 2.4 the direction of current i, is chosen to produce flux (according
to the right-hand rule) in the same sense as i; when both currents are either
positive or negative. This choice gives positive coefficients in the equations
which follow. Later we return to the direction chosen for i, in Fig. 2.2. The
current ¢, acting alone produces flux ¢,,, which has a mutual component ¢,
linking both coils and a small leakage component ¢,, linking only coil 1, as
shown in Fig. 2.4(b). The flux linkages of coil 1 due to current i, acting alone
are given by

Ay =N1‘f)u = Ly (2-14)

where N, is the number of turns and L, is the self-inductance of coil 1. Under
the same condition of i, acting alone the flux linkages of coil 2 are given by

Ay = de)m = L21'£l (2-15)

where N, is the number of turns of coil 2 and L,, is the mutual inductance

between the coils. “
Similar definitions apply when i, acts alone. It produces flux ¢,,, which

also has two components—leakage flux ¢,, linking only coil 2 and mutual flux

¢,, linking both coils, as shown in Fig. 2.4(c¢). The flux linkages of coil 2 due to
i, acting alone are

Ay = Nydyy = Lty (2-16)

where L,, is the self-inductance of coil 2, and the flux linkages of coil 1 due to
i, alone are

Ay =Ny, = Ly, (2-17)
-When both currents act together, the flux linkages add to give

Ap=Ay T A, =L + leiz

(2.18)
Ay =4y + A, = LZlil + Lzzfz

The order of the subscripts of L,, and L,, is not important since mutual
inductance is a single reciprocal property of the coils, and so L,, = L,,. The
direction of the currents and the orientation of the coils determine the sign of
mutual inductance, which is positive in Fig. 2.4 because i, and i, are taken to
magnetize in the same sense.
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When the flux linkages change with time, the voltage drops across the coils
in the direction of their circulating currents are

dX ' di di,

Uy =ry; + ? =ry+ L“EI‘_ + LIZE_ (219)
_ dAi, _ di, di,

vy = 1yl + T b + Lzl?}f + Lzz_dT (2.20)

The positive signs of Eqs. (2.19) and (2.20) are usually associated with a coil that
is absorbing power from a source as if the coil were a /oad. For instance, in Fig.
2.4 if both v, and 7, have positive values simultaneously, then instantaneous
power is being absorbed by coil 2. If the voltage drop across coil 2 is now
reversed so that v, = —wv,, we have

_ dA, _ dr, diy
Uy = U= T — .df = Tl ﬁL’ZI-Er_ - Lzzz

(2.21)

For positive instantaneous values of v, and i/, power is being supplied by coil 2.
Thus, the negative signs of Eq. (2.21) are characteristic of a coil acting as a
generator delivering power (and energy over time) to an external load.

In the steady state, with ac voltages and currents in the coils, Eqgs. (2.19)
and (2.20) assume the phasor form

Vi=(r +jwlL )1 + (ijlz)]z (2.22)
Z1 12
V= (Jwly) ] + (ry +jolyp) (2.23)

731 2322

Here we use lowercase z;; to distinguish the coil impedances from node
impedances Z, . Inovector-matrix form Fgs. (2.22) and (2.23) become

z z {

_ 1 12 1 (2.24)
Zn In|lh

We should also note that the V’s are the voltage drops across the terminals of

the coils and the /’s are the circulating currents in the coils. The inverse of the
coefhicient matrix is the matrix of admittances denoted by

Vi
Vs

-1
Y le}:{zn 212} _ L { 2 —212} (2.25)

= 1 _
Yar Y2 Z. %2 (2,124, "'212) 221 “n
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Multiplying Eq. (2.24) by the admittance matrix gives

I _ Yn Yn
I Yor Y2

Of course, the y and z paramecters with the same subscripts are not simple
reciprocals of each other. If the terminals of coil 2 are open, then setting /, = 0
in Eq. (2.24) shows that the open-circuit input impedance to coil 1 is

i

v, (2.26)

Vi

7 =2z (2.27)

112;0

If the terminals of coil 2 are closed, then V, = 0 and Eq. (2.26) shows that the
short-circuit input impedance to coil 1 is

:}’1_112211_ - (2.28)

By substituting the expressions defining the z;; from Egs. (2.22) and (2.23) into
Eq. (2.28), the reader can show that the apparent reactance of coil 1 is reduced
by the presence of closed coil 2. In Chap. 3 a similar result is found for the
synchronous machine under short-circuit conditions.
An important equivalent circuit for the mutually coupled coils is shown in

Fig. 2.5. The current on the coil 2 side appears as /,/a and the terminal voltage
as al/,, where a is a positive constant. On the coil 1 side V, and /; arc the same
as before. By writing Kirchhoff’s voltage equation around the path of each of
the currents /, and /,/a in Fig. 2.5, thc rcader should find that Ees. (2.22) and
(2.23) are satisfied exactly. The inductances in brackets in Fig. 2.5 are the
leakage inductances L,, and L,, of the coils if we let @« = N,/N,. This is shown

—— VW -
I Iy
V1 aw["?l ; GV2
FIGURE 2.5

An ac equivalent circuit for Fig. 2.4 with secondary current and voltage redefined and a = N, /N,.
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ry %, a’zx, alr,
; A —
—_—
I
Vl aVZ
FIGURE 2.6

The equivalent circuit of Fig. 2.5 with inductance parameters renamed.

from Egs. (2.14) through (2.17) as follows:

Ly&8 Ly, —al, =——— ————=— (¢, —dn) (2.29)
Ly N, i, by
‘H’
a N;¢ o, N, N, Ny
1_/2( = LZZ S le/(’l b , - 7\/_ . 2 = (szz - ¢12) (230)
I5 | i g = = 77
by

where ¢, and ¢,, are the leakage fluxes of the coils. Likewise, with a = N, /N,,
the shunt inductance al,, is a magnetizing inductance associated with the
mutual flux ¢,, linking the coils due to i, since

N, Ny N,
2 h d

Defining the series leakage reactances x, = wlL,, and x, = wL,,, and the shunt
magnetizing susceptance I3, = (wal.,,) ', leads to the equivalent circuit of

Fig. 2.6, which is the basis of the cquivalent circuit of the practical transformer
in Scc. 2.3

2.3 THE EQUIVALENT CIRCUIT
OF A SINGLE-PHASE TRANSFORMER

The equivalent circuit of Fig. 2.6 comes close to matching the physical charac-
teristics of the practical transformer. However, it has three deficiencies: (1) It
does not reflect any current or voltage transformation, (2) it does not provide

for electrical isolation of the primary from the secondary, and (3) it does not
account for the core losses.
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When a sinusoidal voltage is applied to the primary winding of a practical
transformer on an iron core with the secondary winding open, a small current
I called the exciting current flows. The major component of this current is
called the magnetizing current, which corresponds to the current through the
magnetizing susceptance B,, of Fig. 2.6. The magnetizing current produces the
flux in the core. The much smaller component of /., which accounts for losses
in the iron core, leads the magnctizing current by 90° and is not represented in
Fig. 2.6. The corc losscs occur duc, first, to the fact that the cyclic changes of
the direction of the flux in the iron requirc energy which is dissipated as heat
and is called hysteresis loss. The second loss i1s due to the fact that circulating
currents are induced in the iron due to the changing flux, and these currents
produce an |I|2R loss in thc iron called eddy-current loss. Hysteresis loss is
reduced by the use of certain high grades of alloy steel for the core. Eddy-cur-
rent loss is reduced by building up the corc with laminated sheets of stcel. With
the secondary open, the transformer primary circuit is simply onc of very high
inductance due to the iron core. In the equivalent circuit /. is taken fully into
account by a conductance G, in parallcl with the magnetizing susceptance B
as shown in Fig. 2.7.

In a well-designed transformer the maximum flux density in the core
occurs at the knee of the B-H or saturation curve of the transformer. So, flux
density is not linear with respect to field intensity. The magnetizing current
cannot be sinusoidal if it is to produce sinusoidally varying flux required for
inducing sinusoidal voltages e, and e, when the applied voltage is sinusoidal.
The exciting current /. will have a third harmonic content as high as 40% and
lesser amounts of higher harmonics. Since [ is small compared to rated
current, it is treated as sinusoidal for convenience, and so use of G, and B,, is
acceptable in the equivalent circuit.

Voltage and current transformation and electrical isolation of the primary
from the secondary can be obtained by adding to Fig. 2.6 an ideal transformer

"0

r x, a’x, atr, 1,
a:'l ——
ANN— T ———T00 AN
+ —_— —~— + +
Il 12 [ ) L]
a

Vi G, B, aV, % % V,

N, N, l
FIGURE 2.7

Equivalent circuit for a single-phase transformer with an ideal transformer of turns ratio a = N, /N,.

ldeal
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R, X
—T W
] I
V) aV¥; FIGURE 2.8
l Transformer equivalent circuit with magnetizing current ne-
- - glected.

with turns ratio a = N,/N,, as shown in Fig. 2.7. The location of the ideal
transformer is not fixed. For instance, it may be moved to the left past the series
elements @%r, and a’x,, which then become the winding resistance r, and the
leakage reactance x, of the secondary winding. This is in keeping with the rule
established for thc ideal transformer in Sec. 2.1 that whenever a branch
impcdance is referred from a given side to the opposite side of an ideal
transformer, its impedance value is multiplicd by the square of the ratio of the
turns on the opposite side 1o the turns on the given side.

The ideal transformer may be omitted in the cquivalent circuit if we refer
all quantities to cither the high- or the low-voltage side of the transformer. For
insiance, in Fig. 26 we say that ali voltages, currents, and impedances are
referred to the primary circuit of the transformer. Without the ideal trans-
former, we have to be careful not to create unnecessary short circuits when
developing equivalents for multiwinding transformers.

Often we neglect exciting current because it is so small compared to the
usual load currents and to simplify the circuit further, we let

R, =r, +a’r, X, =x, + a’x, (2.32)

to obtain the equivalent circuit of Fig. 2.8. All impedances and voltages in the
part of the circuit connected to the secondary terminals must now be referred to
the primary side.

Voltage regulation is defined as the difference between the voltage magni-
tudce at the load terminals of the transformer at full load and at no load in
pereent-of full-load voltage with imput voltage held constant. In the form of an
cauation

. “/2.N|_I B |V2,FLi
Percent rcgulation — T X 100 (2.33)
2. FL

where |V, | is the magnitude of load voltage 1/, at no load and |V, ¢ | is the
magnitude of V, at full load with [V, | constant.

Example 2.2. A single-phase transformer has 2000 turns on the primary winding
and 500 turns on the sccondary. Winding resistances are r, = 2.0 Q and r, =
0.125 Q. Leakage reactances are x, = 8.0 Q and x, = 0.50 Q. The resistance load

4
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4Q jl6 Q
1200V 192 anvz

FIGURE 2.9
- —  Circuit for Example 2.2.

Z, is 12 Q. If applied voltage at the terminals of the primary winding is 1200 V,
find V, and the voltage regulation. Neglect magnetizing current.

Solution

R, =2+ 0.125(4)° = 4.0 Q
X, =8+0.5(4)" =16 O
Zy=12x (4)* =192 Q
The equivalent circuit is shown in Fig. 2.9, and we can calculate

1200/ 0°

I, = =6.10/-4.67° A
' 192 + 4 416 Z—

al, =610/ —4.67° X 192 = 1171.6/ —4.67° V

1171.6/ —4.67°
V, = é———- =2929/ —4.67° V

Since V, . = V\/a,

1200/4 — 292.9

Voltage regulation = = 0.0242 or 2.42%
292.9

The parameters R and X of the two-winding transformer are determined
by the short-circuit test, where impedance is measured across the terminals of
one winding when the other winding is short-circuited. Usually, the low-voltage
side is short-circuited and just enough voltage is applied to the high-voltage
terminals to circulate rated current. This is because the current rating of the
source supplying the high-voltage side can be smaller. Voltage, current,; and
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23 THE EQUIVALENT CIRCUIT OF A SINGLE-PHASE TRANSFORMER 95§

power input are determined. Since only a small voltage is required, the exciting

current is insignificant, and the calculated impedance is essentially equal to
R + jX.

Example 2.3. A single-phase transformer is rated 15 MVA, 11.5/69 kV. If the 11.5
kV winding (designated winding 2) is short-circuited, the rated current flows when
the voltage applied to winding 1 is 5.50 kV. The power input is 105.8 kW. Find R,
and X, in ohms rcferred to the high-voltage winding.

Solution. Rated current for the 69-kV winding has the magnitude

N " 15,000 .
—— = = —— =2174A
A4 ! 69
Then,
17,1°R, = (217.4)° R, = 105,800
R, =2240Q
1Z, > 25.30 0)
< B o

X, = 12,17 = R? = /(25.30)% — (2.24)7 = 25.20 ©

The example illustraies the fact that the winding resistance may often be

omitted in the transformer equivalent circuit. Typically, R is less than 1%.
AJthough exciting current may be neglected (as in Example 2.2) for most power
system calculations, G, — jB,, can be calculated for the equivalent circuit by an
open-circuit test. Rated voltage is applied to the low-voltage terminals, and the
power input and currents are measured. This is because the voltage rating of
the source supplying the low-voltage side can be smaller. The measured
impcdance includes the resistance and leakage rcactance of the winding, but
these values are insignificant when compared to 1/(G, — jB,,).
Example 2.4. For the transformer of Example 2.3 the open-circuit test with 11.5
kV applied results in a power input of 66.7 kW and a currcnt of 30.4 A. Find the
valucs of G, and B, referred to the high-voltage winding 1. What is the efficiency
of the transformer for a load of 12 MW at 0.8 power-factor lagging at rated
voltage?

Solution. The turns ratio is a = N;/N, = 6. Measurements are made on the
low-voltage side. To transfer shunt admittance ¥ = ;. — jB,, from high-voltage
side 1 to low-voltage side 2, multiply by a? since we would divide by a? to transfer

¥
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impedance from side 1 to side 2. Under open-circuit test conditions

1V,1%a%G, = (11.5 X 103)" X 36 X G, = 66.7 X 103 W

G,=140%x107%S
v 1151 1 30.4 1 24 % 106
= X —==-——=X —=734x10"
v,l ~ a* 11,500 = 36
B, =V I¥YI?= G2 =10"6V734> — 14.0% = 72.05 x 10" © S

Undecr rated conditions the total loss is approximately the sum of short-circuit and
opcn-circuit test losses, and since ctliciency is the ratio of the output to the input
kilowatts, we have

12,000 :
Efficiency = — X 100 = 98.6%
12,000 + (105.8 + 66.7)

This example illustrates the fact that G, is so much smaller than B, that it may be
omitted. B,, is also very small so that /. is often neglected entirely.

2.4 PER-UNIT IMPEDANCES
IN SINGLE-PHASE
TRANSFORMER CIRCUITS

The ohmic values of resistance and leakage reactance of a transformer depend
on whether they are measured on the high- or low-voltage side of the trans-
former. If they are expressed in per unit, the base kilovoltamperes is understood
to be the kilovoltampere rating of the transformer. The base voltage is under-
stood to be the voltage rating of the low-voltage winding if the ohmic values of
resistance and leakage reactance are referred to the low-voltage side of the
transformer. Likewise, the basc voltage is taken to be the voltage rating of the
high-voltage winding if thc ohmic values are referred to the high-voltage side of
the transformer. The per-unit impedance of a transformer is the same regard-
less of whether it is determined from ohmic values referred to the high-voltage
or low-voltage sides of the transformers, as shown by the following example.

Example 2.5. A single-phase transformer is rated 110/440 V, 2.5 kVA. Leakage
reactance measured from the low-voltage side is 0.06 ). Determine leakage
reactance in per unit.

Solution. From Eq. (1.46) we have

0.110% x 1000
Low-voltage base impedance = X =484 Q :
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In per unit
0.06
= —— = 0.0124 per unit
4.84

If leakagc reactance had been measured on the high-voltage side, the value

would be
440 \*
X = 0.06(—) =0.96
110
_ _ 0.440% x 1000
High-voltage base impedance = B =775
In pcr unit
0.96
X = —— = 0.0124 pcr unit
77.5

A great advantage in making per-unit computations is realized by the
proper selection of different bases for circuits connected to each other through
a transformer. To achievc the advantage in a single-phase system, the voltage
bases for the circuits connected through the transformer must have the same ratio
as the twms ratio of the transformer windings. With such a selection of voltage
bases and the same kilovoltampere base, the per-unit value of an impedance
will be the same when it is expressed on the base selected for its own side of the
transformer as when it is referred to the other side of the transformer and
expressed on the base of that side.

So, the transformer is represented completely by its impedance (R + jX)
in per unit when magnetizing current is neglected. No per-unit voltage transfor-
mation occurs when this system is uscd, and the current will also have the same

per-unit value on both sides of the transtormer if magnetizing current is
neglected.

Example 2.6. Thrce parts of a single-phasc clectric system arc designated A, B,
and C and are connccted to cach other through transformers, as shown in Fig.
2.10. The transformers are rated as [ollows:

A 10,000 kV A, 13.8/138 kV, leakage rcactance 10%
B-

B
C 10,000 kVA, 138 /69 kV, Icakage reactance 8%

If the base in circuit B is chosen as 10,000 kVA, 138 kV, find the per-unit
impcdance of the 300-Q) resistive load in circuit C referred to circuits C, B, and
A. Draw the impedance diagram neglecting magnetizing current, transformer
resistances, and line impedances.
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1-10 2-1
A m B %U C 3000
A-B B-C
FIGURE 2.10
Circuit for Example 2.6.
Solution
Basc voltage for circuit 4: 0.1 x 138 = 13.8 kV
Base voltage for circuit C: 0.5 X 138 = 69 kV
. _ 692 x 1000
Base impedance of circuit C: ——— =476 Q)
10,000
300
Per-unit impedance of load in circuit C: 76 = (.63 per unit

Because the selection of base in various parts of the system is determined by
the turns ratio of the transformers, and because the base kilovoltamperes is the
same in all parts of thc systcm, the per-unit impedance of the load rcferred to any
part of the system will be the same. This is verified as follows:

Basc impcdance of circuit B:

Impedance of load rcferred to circuit B:

Per-unit impedance of load referred to B:

Base impedance of circuit A:

Impedance of load referred to circuit A:

Per-unit impedance of load referred to A:

1382 x 1000

= 1900
10,000

300 X 22 = 1200 O

1200 _

—— = 0.63 per unit

1900

13.82 x 1000

— — =190
10,000

300 x 22 x0.12=12Q

12

5 0.63 per unit ‘
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Jj0.1 ;0.08
S A S e e
FIGURE 2.11
Impedance diagram for Example 2.6. Impedances are
marked in per unit.

0.63+,0

Since the chosen bases for kilovolts and kilovoltamperes agree with the transformer
ratings, the transformer reactances in per unit are 0.08 and 0.1, respectively.
Figure 2.11 is the required impedance diagram with impedances marked in per
unit.

Because of the advantage previously pointed out, the principle demon-
strated in the preceding example for selecting bases in various parts of the
single-phase system is always followed in making computations in per unit. That
is, the kilovoltumpere base should be the same in all parts of the system, and the
selection of the base kilovolts in one part of the system determines the base
kilovolts to be assigned, according to the turns ratios of the transformers, to the
othier parts of the systern. This principle allows us to combine on one impedance
diagram the per-unit impedances of the entire system.

2.5 THREE-PHASE TRANSFORMERS

Three 1dentical single-phase transformers may be connected so that the three
windings of one voltage rating are A-connected and the three windings of the
other voltage rating arc Y-connccted to form a threc-phase transformer. Such a
transformer is said io be connected Y-A or A-Y. The other possible connections
are Y-Y and A-A. If each of the three single-phase transformers has three
windings (a primary, secondary, and tertiary), two sets might be connected in Y
and onc in A, or two could be A-connected with one Y-connected. Instead of
using three identical singie-phase transformers, a more usual unit i1s a three-
phasc transformer where all three phases are on the same iron structure. The
theory is the same for a three-phase transformer as for a three-phase bank of
singie-pnase transtooriers. The three-phase unit has the advantage of requiring
less 1ron to form the core, and s therefore more economical than three
single-phasc units and occupies less space. Three single-phase units have the
advantage of replacement of only one unit of the three-phase bank in case of a
failure rather than losing the whole three-phase bank. If a failure occurs in a
A-A bank composcd of three separate units, one of the single-phase transforms-
ers can be removed and the remaining two will still operate as a three-phase
transformer at a reduced kilovoltampere. Such an operation is called open delta.

For a single-phasc transformer we can continue to place a dot on one end
of cach winding, or alternatively, the dotted ends may be marked #, for the
high-voltage winding and X, for the low-voltage winding. The opposite ends are
then labeled /7, and X,, rcspectively.

Figure 2.12 shows how three single-phase transformers are connected to
form a Y-Y three-phasc transformer bank. In this text we shall use capital
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A B (&
? H,  H, ¢ H,
N
T \R00 —0Q0 —— — \QQQ;—]
[ ] [ ) [ )
n
v X, X, ¢ X,
a b c

(@) Y-Y connection diagram

- %

o—¢
(b) Alternate form of connection diagram

FIGURE 2.12
Wiring diagrams for Y-Y transformer.

letters A, B, and C to identify the phases of the high-voltage windings and
lowercase letters a, b, and ¢ for the low-voltage windings. The high-voltage
terminals of three-phase transformers are marked H,, H,, and H,, and the
low-voltage terminals are marked X, X,, and X;. In Y-Y or A-A transformers
the markings are such that voltages to neutral from terminals H,, H,, and H;
are in phase with the voltages to neutral from terminals X,, X,, and Xj,
respectively. Of course, the A windings have no neutral, but the part of the
system to which the A winding is connected will have a connection to ground.
Thus, the ground can serve as the effective neutral under balanced conditions
and voltages to neutral from the terminals of the A do exist.

To conform with the American standard, the terminals of Y-A and A-Y
transformers are labeled so that the voltages from H,, H,, and H; to neutral
lead the voltages to neutral from X,, X,, and X,, respectively, by 30°. We
consider this phase shift more fully in the next section. ‘
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66 kV T

FIGURE 2.13
Y-Y transformer rated 66/6.6 kV.

Figure 2.12(5) provides the same information as FFig. 2.12(a). Windings of
the primary and secondarv, which arc drawn in parallel dircctions in Fig.
2.12(b), are for the same single-phase transtormer or on the same leg of a
three-phase transformer. For instance, the winding from 4 to N is linked by
the same flux as the winding from « to n, and 17,5 is in phase with I/, . The
diagrams of Fig. 2.12(b) are wiring diagrams only. Thev are not phasor dia-
grams.

Figure 2.13 15 a schematic method of indicating winding connections of a
three-phase transformer. Voltages are shown for 4 66,/6.6-kV, Y-Y transformer
supplying 0.6-Q resistors or impedances. Figure 2.13 shows a balanced system in
which each phase can be treated separately, whether or not the neutral points
are connected. Then, impedances would transfer from the low-voltage to the
high-voltage side by the square of the ratio of line-to-neutral voltages, which is

the same as the squarc of the ratio of line-to-line voliages; that is,

0.6 = 60 ()

' 38.1 )2

. 3.81

\

66 \?
o)

=0.6(

If we had used o Y-A transformer (o obtiin 6.6 kV across the resistors
with the same 66-kV primary, the A windings would be rated 6.6 kV rather than
3.81 kV. So far as the voltage magnitude at the low-voltage terminals is
concerned, thc Y-A transformer could then be replaced by a Y-Y trans-
former bank having an eflective phase-to-neutral turns ratio of 38.1: 6.6/\/?7, or
N, Nz/\/—?;, as shown in Table 2.1, so that thc same 60-{) resistance per phase
would be seen by the primary. So, we sce that the criterion for the selection of
base voltage involves the square of the ratio of I'ne-to-line voltages and not the
square of the turns ratio of the individual windings of the Y-A transformer.

This discussion leads to the conclusion that to transfer the ohmic value of
impedance from the voltage level on one side of a three-phase transformer to
the voltage level on the other, the multiplying factor is the square of the ratio of
line-to-line voltages regardless of whether the transformer con nectiqn i1s Y-Y or
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TABLE 2.1

Transferring ohmic values of per-phase impedances
from one side of a three-phase transformer to another’

Y-Y

-

v,

-

Vinl

Vil

T

Vi wl

l

Z

al

IV,

Vil

N,

VL N
VI ]

M (Ve
Nﬁl VH

(27,

Z

Y-A

VLL

B Nl
Vi

VLL
VH

A-Y

Vil

IVl

A-A

T T

Vil Vil

4 4

N1/\/§3Nz/‘v/?T

T 1

Ve wl Vial
_ N /Y3 Vi
Ng/\/g ] Vi
N /Y3 QZ | Vex
N3 )"

Z

VL N
V!n

2

?Secondaw load consists of balanced Y-connected impedances Z, .

£
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25 THREE-PHASE TRANSFORMERS 63

Y-A. This is shown in Table 2.1, which summarizes the relations for the effective
turns ratio of the different types of transformer connections. Therefore, in
per-unit calculations involving transformers in three-phase circuits we require
the base voltages on the two sides of the transformer to have the same ratio as the
rated line-to-line voltages on the two sides of the transformer. The kilovoltampere
base is the same on each side.

Example 2.7. Three transformers, each rated 25 MVA, 38.1/3.81 kV, are
connected Y-A with a balanced load of three 0.6-{), Y-connected resistors. Choose
a base of 75 MVA, 66 kV for the high-voltage side of the transformer and specify
the base for the low-voltage side. Detcrmine the per-unit resistance of the load on
the base for the low-voltage side. Then, determine the load resistance R, in ohms
referred to the high-voltage side and the per-unit value of this resistance on the
chosen base.

Solution. Since V3 X 38.1 kV cquals 66 kV, thc rating of the transformer as a
three-phase bank is 75 MV A, 66Y /3.81A kV. So, base for the low-voltage side is
75 MV A, 3.81 kV.

By Eq. (1.54) basec impedance on the low-voltage side is

(base kV, )" (3.81)°

= 0.1935 Q
base MVA 3, 75
and on the Jow-voltage side
R, = ——— = 3.10 per unit

0.1935

Base impedance on the high-voltage side is

66)°
(—75)— = 5810

The resistance referred to the high-voltage side is

0.6 %\’ 180 Q
'(3.81) B

180
L 58

= 3.10 per unit

The resistance R and leakage reactance X of a three-phase transformer
are measured by the short-circuit test as discussed for single-phase transform-
ers. In a three-phase equivalent circuit R and X are connected in each line to
an 1deal three-phase transformer. Since R and X will have the same per-unit
value whether on the low-voltage or the high-voltage side of the transformer,
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the per-phase equivalent circuit will account for the transformer by the per-unit
impedance R + jX without the ideal transformer, if phase-shift is not important
in the calculations and all quantities in the circuit are in per unit with the
proper selection of base.

Table A.1 in the Appendix lists typical values of transformer impedances,
which are essentially equal to the leakage reactance since the resistance is
usually less than 0.01 per unit.

Example 2.8. A three-phase transformer is rated 400 MVA, 220 Y /22A kV. The
Y-cquivalent short-circuit impedance mcasurcd on the low-valtage side of the
transformer is 0.121 £, and because of the low resistance, this valuce may be
considcred cqual o the lecakage rcactance. Determine the per-unit rcactance of
the transformer and the valuc to be usced to represent this transformer in a system
whosc base on the high-voltage side of the transformer is 100 MV A, 230 kV,

Solution. On its own base the transformer reactance is

0.121

————— = 0.10 per unit
(22)° 7400

On the choscn base the reactance beccomes

55| 700 = (0.0228 per unit

22012100
55) &

2.6 THREE-PHASE TRANSFORMERS: PHASE
SHIFT AND EQUIVALENT CIRCUITS

As mentioncd in Sce. 2.5, a phasc shilt occurs in Y-A transformers. We now
examinc phase shift in morc dctail, and thc importance of phasc scquence
becomes apparent. Later in studying faults we have to dcal with both positive-
or ABC-sequence quantities and negative- or ACB-scqucnce quantities. So, we
need to examinc phase shift for both positive and ncgative scquences. Positive-
sequence voltages and currents are identified by the superscript 1 and negative-
sequence voltages and currents by the superscript 2. To avoid too many
subscripts, we sometimes write V(" instead of V() for the voltage drop from
terminal A to N and similarly identity other voltages and cuirents to neutral. In
a positive-sequence set of line-to-neutral voltages /3" lags V(Y by 120°,
whereas V£V lags V(Y by 240°; in a negative-sequence set of line-to-neutral
voltages V§? leads V{® by 120°, whereas V{? leads V® by 240°. Later on
when we discuss unbalanced currents and voltages (in Chaps. 11 and 12), we
must be careful to distinguish between voltages to neutral and voltages to
ground since they can differ under unbalanced conditions.

Figure 2.14(a) is the schematic wiring diagram of a Y-A transformer,
where the Y side is the high-voltage side. We recall that capital letters apply to
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H,
A O
_—
H, o
B o— N
IB
H, °
C <
Ic

(a) Wiring diagram

B(l)

ath

c o

(b) Positive sequence components

(¥4 (2)
A Vit

B a® v pl
(¢) Negative sequence components

FIGURE 2.14
Wiring diagram and voltage phasors for a three-phase transformer connected Y-A where the Y side

is the high-voltage side.

i
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66 CHAPTER 2 TRANSFORMERS

the high-voltage side and that windings drawn in parallel are linked by the same
flux. In Fig. 2.14(a) winding AN is the phase on the Y-connected side, which is
linked magnetically with the phase winding ab on the A-connected side. The
location of dots on the windings shows that V, is always in phase with V
regardless of phase sequence. If H, is the terminal to which line A 1s
connected, it is customary to connect phases B and C to terminals /, and H;,
respectivcly.

The American standard for designating terminals f, and X, on Y-A
transformers requires that the positive-sequence voltage drop from H, to
neutral lead the positive-sequence voltage drop from X, to neutral by 30°
regardless of whether the Y or the A winding is on the high-voltage side.
Similarly, the voltage from H, to ncutral lcads the voltage from X, to neutral
by 30°, and the voltage from £/ to ncutral lcads the voltage from X5 to ncutral
by 30°. The phasor diagrams for thc positive- and ncgative-scquence compo-
nents of voltage are shown in Figs. 2.14(b) and 2.14(c¢), respectively.

Figure 2.14(b) shows the relation of the voltage phasors when positive-
sequence voltages are applied to terminals A, B, and C. The voltages VA“) (that
is, V{N) and V¢ are in phase because of the dots, and as soon .as we have
drawn V(" in phase with V), the other voltages for the phasor diagrams can be
determined. For instance, on the high-voltage side V5" lags V" by 120°. These
two voltages and VC‘” meet at the tips of their arrows. Line-to-line voltages can
then be drawn. For the low-voltage diagram V) and V! can be drawn in
phase with ViV and V", respectively, and then the line-to-neutral voltages
follow. We see that V(" leads V" by 30° and terminal a must be marked .Y,
to satisfy the American standard. Terminals b and ¢ are marked X, and Xj,
respectively.

Figure 2.14(c) shows the relation of the voltage phasors when negative-
sequence voltages are applied to terminals A4, 5, and C. We note from the dots
on the wiring diagram that V{® (not necessarily in phase with V{) is in phase
with V2. After drawing V{? in phasc with I/ we complete the diagrams
similarly to the positive-sequence diagrams but kecping in mind that V,{® leads
V{® by 120°. The completed diagrams of Fig. 2.14(¢c) show that V{2 lags 1/,®
by 30°.

If N, and N, represent the number of turns in the high-voltage and
low-voltage windings, respectively, of any phase, then Fig. 2.14(a) shows that
VD = (N /NJVSD and V{2 = (N,/N,)V 2 by transformer action. It then
follows from the geometry of Figs. 2.14(6) and 2.14(c) that

N N,
pay = L apom i300 VO = — 3D /)30 2.34
A /\/2 \F a A N2 L ( )

Likewise, currents in the Y-A transformer are displaced by 30° in the direction
of the voltages since the phase angles of the currents with respect to their
associated voltages are determined by the load impedance. The ratio of the
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rated line-to-line voltage of the Y winding to the rated line-to-line voltage of the
A winding equals 1/§N1/N2, so that in choosing the line-to-line voltage bases on
the two sides of the transformer in the same ratio, we obtain in per unit

VA“} — Va{l) X 1/ 30° 1/&1) = Iél) % 1 5300

(2.35)
Ve =v®x1/-300 IP=1Dx1/-30°

Transformer impedance and magnetizing currents are handled separately from
the phase shift, which can be represented by an deal transformer. This explains
why, according to Eq. (2.35), the per-unit- magnitudes of voltage and current are
exactly the same on both sides of the transformer (for instance, |V = [VD]).

Usually, the high-voltage winding in a Y-A transformer is Y-connected.
Insulation costs for a given step up in voltage arc thereby reduced since this
conncction takes advantage of the fact that the voltage transformation from the
low-voltage side to the high-voltage side of the transformer is then \/?(N,/Nz),
where N, and N, arc the same as in Eq. (2.34).

If the high-voltage windings arc A-connected, the transformation ratio of
line voltages is reduced rather than increased. Figure 2.15 is the schematic
diagram for thc A-Y transformer where the A side is the high-voltage side. The
reader should verify that thc voltage phasors are exactly the same as in Figs.
2.14(p) and 2.14(c), and Eqs. (2.34) and (2.35) are therefore still valid. These
equations still hold if we reverse the directions of all currents on the wiring
diagram.

Under normal operating conditions only positive-sequence quantities are
invoived and then the general rule for any Y-A or A-Y transformer is that
voltage is advanced 30° when it is stepped up. As already discussed, we can
indicate this phase shift in voltage by an idcal transformer of complex turns
ratio 1:e/7/% Since VUi = V1D in Eq. (2.35), per-unit impedance

A
I(‘t ]O
L.
B e
Ib’
C -
Io I
FIGURE 2.15

Wiring diagram for a three-phase transformer connected A-Y where the A side is the high-voltage
side.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

68 CHAPTER 2 TRANSFORMERS

values are the same when moved from one side of the ideal transformer to the
other. Real and reactive power flow is also not affected by the phase shift
because the current phase shift compensates exactly for the voltage phase shift
as far as power values are concerned. This is easily seen by writing the per-unit

complex power for each side of the Y-A (or A-Y) transformer from Eqgs. (2.35)
as follows:

VALY = ViR /300 x 10" /=300 = v (2.36)

Hence, if only P and Q quantities are required, it is not necessary to include
ideal transformcrs for thc phase shift ol Y-A and A-Y transformers in the
impedance diagram. The only case in which the idcal transformer cannot be
ignored is in any closed-loop portion of a system in which the product of all the
actual transformer voltage ratios is not unity around the loop. We encounter
one such case in Sec. 2.9 when parallel connections of regulating transformers
are considered. In most other situations we can eliminate the ideal transformers
from the per-unit impedance diagram, and then the calculated currents and
voltages are proportional to the actual currents and voltages. Phase angles of
the actual currents and voltages can be found if needed by noting from the
one-line diagram the positions of the Y-A and A-Y transformers and by
applying the rules of Eq. (2.35); namely,

When stepping up from the low-voltage to the high-voltage side of a A-Y
or Y-A transformer, advance positive-sequence voltages and currents by
30° and retard negative-sequence voltages and currents by 30°.

It is important to note from Eq. (2.36) that

I§o -

1
I

25

(h*
v,

(2.37)

which shows that the current ratio of any transformer with phase shift is the
reciprocal of the complex conjugate of the voltage ratio. Generally, only voltage
ratios are shown in circuit diagrams, but it is always understood that the current
ratio is the reciprocal of the complex conjugate of the voltage ratio.

In Fig. 2.16(a) the single-line diagram indicates Y-A transformers to step
up voltage from a generator to a high-voltage transmission line and to step
down the voltage to a lower level for distribution. In the equivalent circuit of
Fig. 2.16(b) transformer resistance and leakage reactance are in per unit and
exciting current is neglected. Blocks with ideal transformers indicating phase
shift are shown along with the equivalent circuit for the transmission line, which
is developed in Chap. 6. Figure 2.16(c) is a further simplification where the
resistances, shunt capacitors, and ideal transformers are neglected. Here we rely
upon the single-line diagram to remind us to account for phase shift due to the
Y-A transformers. We must remember that positive-sequence voltages and
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Tﬂ Tb

F Transmission line
— —

|
- Y Y- A
(a)

Ry Xy X

b Ry
% e ¢

1/g/7/6 T8
()

to load

X, X, X,
H@W—w—m\_ﬁ

(c)

FIGURE 2.16

(a) Single-line diagram; () per-phase equivalent circuits with paramszters in per unit; (¢) per-phase
equivalent circuit with resistance, capacitance, and ideal transformers neglected. The per-phase
equivalent circuit for the transmission line is developed in Chap. 6.

currents in the higher-voltage transmission line lead the corresponding quanti-
tics in the lower-voltage generator and distribution circuits by 30°.

Example 2.9. Figurc 2.17 shows a three-phase generator rated 300 MVA, 23 kV
supplying a system load of 240 MVA, 0.9 powcr-lactor lagging at 230 kV through
a 330-MVA 23A/230Y-kV step-up transformer of lcakage rcactance 11%.
Neglecting magncetizing current and choosing basc values at the load of 100 MVA
and 230 kV, find /,, [,, and [, supplicd to thc load in pcr unit with V, as
rcference. Spccifying the proper basc for the gencrator circuit, determine £, 1,
and /. from the generator and its terminal voltage.

Solution. The currcent supplied to thc load is

240,000

— = 60245 A
V3 X 230
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a

O+

Load

(a)

A

FIGURE 2.17
(a) Single-line diagram; (b) per-phase equivalent circuit for Example 2.9, all parameters in per unit.

The base current at the load is

100,000

T 25102 A
V3 % 230

The power-factor anglec of the load current is
9 =cos ' 0.9 =25.84° lag

Hence, with ¥, = 1.0/0° as reference in Fig. 2.17(b), the line currents into the

load are

. 602.45
I, = —25.84° = 2.40/ —25.84° per unit
A 251.02L— /=258% p
I = 2.40/ —25.84° — 120° = 2.40/ —145.84° per unit
Io =2.40/ -25.84° +120° = 2.40/ 94.16° per unit

Low-voltage side currents further lag by 30°, and so in per unit

I, =240/ —55.84° I, =2.40/ 175.84° I, =240/ 64.16° °
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The transformer reactance modified for the chosen base is

100 1

0.11 X — = — per unit
330 30

and so from Fig. 2.17(b) the terminal voltage of the generator is

= Ve 300 + X1,
j
1.0/ =30° + == x 2.40/ = 55.84°
0 30 ?OX24O 55.8

=~
I

0.9322 ~ j0.4551 = 1.0374/ —26.02° per unit

The base generator voltage is 23 kV, which means that the terminal voltage of the
generator is 23 X 1.0374 = 23.86 kV. The rcal power supplicd by the gencrator is

Re{i/,15} = 1.0374 x 2.4 cos( —26.02° + 55.84°) = 2.160 per unit

which corresponds to 216 MW absorbed by the load since therc are no /2R losses.
The interested reader will find the same value for |V, by omitting the phase shift
of the transformer altogether or by recalculating V, with the reactance j/30 per
unit on the high-voitage side of Fig. 2.17(b).

2.7 THE AUTOTRANSFORMER

An autotransformer differs from the ordinary transformer in that the windings
of the autotransformer are electrically connected as well as coupled by a mutual
flux. We examine the autotransformer by electrically connecting the windings of
an ideal transformer. Figure 2.18(a) is a schematic diagram of an ideal trans-
former, and Fig. 2.18(b) shows how the windings are connected electrically to
form an autotransformer. Here the windings are shown so that their voltages
arc additive aithough they could have been connected to oppose each other.
The great disadvantage of the autotransformer is that electrical isolation is lost,
but the following cxample demonstrates the incrcase in power rating obtained.

A9

] .
v, ’1J N, FIGURE 2.18

] Schematic diagram of an ideal trans-
- I . - former connected: (@) in the usual
(a) s manner; (b) as an autptransformer.
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Example 2.10. A 90-MVA single-phase transformer rated 80/120 kV is connected
as an autotransformer, as shown in Fig. 2.18(b). Rated voltage |V,| = 80 kV is
applied to the low-voltage winding of the transformer. Consider the transformer to
be ideal and the load to be such that currents of rated magnitudes |/,| and [/,|
flow in the windings. Determine |V,| and the kilovoltampere rating of the
autotransformer.

Solution

90,000

l1,] = = 1125 A
! 80
o 90,000
= = 750 /
5 =0 50 A
[V,] =80 + 120 = 200 kV

The directions chosen for /, and /, in relation to the dotted tcrminals show that
these currents are in phase. So, the input current is

I7;,| = 1125 + 750 = 1875 A

Input kilovoltampercs are

\;,| X [V,| = 1875 x 80 = 150,000 kVA
Output kilovoltamperes are

|11 X |V, = 750 % 200 = 150,000 kVA

The increase in the kilovoltampere rating from 90,000.to 150,000 kVA and in the
output voltage from 120 to 200 kV demonstratcs thc advantage of the
autotransformer. The autotransformer provides a higher rating for the samc cost,
and s efficicney is greata since the fosses arc the same as in the ordinary
conncction of the same transformer.

Singlc-phase autotransformers can bce connccted for Y-Y three-phase
operation or a three-phase unit can be built. Three-phase autotransformers are
often used to connect two transmission lines operating at different voltage
levels. If the transformer of Example 2.10 were connected as one phase of a
three-phase Y-Y autotransformer, the rating of the three-phase unit would be
450 MVA, 138/345 kV (or more exactly 138.56/34641 kV).

2.8 PER-UNIT IMPEDANCES
OF THREE-WINDING TRANSFORMERS

Both the primary and the secondary windings of a two-winding transformer have
the same kilovoltampere rating, but all three windings of a three-winding
transformer may have different kilovoltampere ratings. The impedance of each
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T . ¢
Q’ED
9 s
{ &
(a) (b)
FIGURE 2.19

The (a) schematic diagram and (b) equivalent circuit of a three-winding transformer. Points p, s,
and ¢ link the circuit of the transformer to the appropriate equivalent circuits representing parts of
the systcm connected to the primary, secondary, and tertiary windings.

winding of a three-winding transformer may be given in percent or per unit
bascd on the rating of its own winding, or tests may be made to determine the
impedances. In any case, all the per-unit impedances must be expressed on the
samc kilovoltampere base.

A single-phase three-winding transformer is shown schematically in Fig.
2.19(a), where we designate the three windings as primary, secondary, and
tertiary. Three impedances may be measured by the standard short-circuit test,
as follows:

Z,.~ leakage impedance measured in primary with secondary short-circuited
and tertiary open

leakage impedance measured in primary with tertiary short-circuited

and secondary open

Z leakage impedance measured in secondary with tertiary short-circuited
and primary open

VA

ni

[f the three impedances measured in ohms are rderred to the voltage of onc of
the windings, the impedances of cach sceparate winding referred to that same
winding are related to the measured impcdances so referred as follows:

ZI}S = Z;’} + 'Z\
Z, =2, + 2, . (2.38)
Z, =2, +Z,

Here Z,, Z,, and Z, are the impedances of the primary, secondary, and tertiary
windings, respectively, referred to the primary circuit if Z,;, Z,,, and Z, are
the measured impedances referred to the primary circuit. Solving Eqgs. (2.38)
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simultaneously yields

Z,=3(Z,,+2, ~Z,)

Z,=4(Z2,,+Z,,— Z,)) (2.39)
Z, = %(ZPf +Z,.—Z,,)

The impedances of the three windings are connected to represent the
equivalent circuit of the single-phasc thrce-winding transformer with magnetiz-
ing currcent ncglected, as shown in Fig. 2.19(5). The common point is fictitious
and unrclated to the ncutral of the systent. The poimnts p, s, and ¢ arc connected
to the parts of the impedance diagrams representing the parts of the system
connected to the primary, secondary, and tertiary windings, respectively, of the
transformer. As in two-winding transformers, conversion to per-unit impedance
requires the same kilovoltampecre basc for all three circuits and rcquires voltage
bases in the three circuits that are in the same ratio as the rated line-to-line
voltages of the three circuits of the transformer.

When three such transformers are connected for three-phase operation,
the primary and secondary windings are usually Y-connected and the tertiary

windings are connected in A to provide a path for the third harmonic of the
exciting current.

Example 2.11. The threc-phase ratings of a three-winding transformer are:
Primary Y-connected, 66 kV, 1S MVA
Secondary Y-connected, 13.2 kV, 10 MVA
Tertiary A-connected, 2.3 kV, S MVA
Neglecting resistance, the leakage impedances are
Z,, = 7% on 15 MVA, 66 kV base

Z

pt

9% on 15 MVA, 66 kV base

Z

. = 8% on 10 MVA, 13.2 kV base

Find the per-unit impedances of the per-phase equivalent circuit for a base of 15
MVA, 66 kV in the primary circuit.

Solution. With a base of 15 MVA, 66 kV in the primary circuit, the proper bases
for the per-unit impedances of the equivalent circuit are 1S MVA, 66 kV for
primary-circuit quantities, 15 MVA, 13.2 kV for secondary-circuit quantities, and
15 MVA, 2.3 kV for tertiary-circuit quantitics.
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Since Z,; and Z,, are measured in the primary circuit, they are already
expressed on the proper base for the equivalent circuit. No change of voltage base
is required for Z,,. The required change in base megavoltamperes for Z,, is made

as follows:

15
Z,=8%x 5 = 12%

In per unit on the specified base
Z, = 3(j0.07 +j0.09 — j0.12) = j0.02 per unit
Z, = 5(j0.07 +,0.12 - j0.09) = j0.05 per unit

Z,=%(j0.09 + j0.12 — j0.07) =j0.07 per unit

Example 2.12. A constant-voltage source (infinite bus) supplies a purely resistive S
MW, 2.3 kV threce-phase load and a 7.5 MV A, 13.2 kV synchronous motor having
a subtransicnt rcactance of X = 20%. The source is connected to the primary of
the three-winding transformer described in Example 2.11. The motor and rcsistive
load arc connccted to the secondary and tcrtiary of the transformer. Draw the
impcdance diagram of the systcm and mark the per-unit impedances for a base of
66 kV, 15 MVA in the primary. Neglect exciting current and all resistance except
that of the resistive Joad.

Solution. The constant-voltage source can be represented by a generator having no
internal impedance.

The resistance of the load is 1.0 per unit on a base of S MVA, 2.3 kV in the
tertiary. Expressed on a 15 MVA | 2.3 kV base, the load resistance is

15
R =1.0X i 3.0 per unit

The reactance of the motor on a base of 15 MVA, 13.2 kV is

15
X" = 0.20=— = 0.40 per unit
7.5

Figure 2.20 is thc rcquirecd diagram. We must remember, however, the phase shift
which occurs between the Y-connccted primary and the A-connected tertiary.

J0.05

FIGURE 2.20
Impedance diagram for Example 2.11. ,
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2.9 TAP-CHANGING AND REGULATING
TRANSFORMERS

Transformers which provide a small adjustment of voltage magnitude, usually in
the range of +10%, and others which shift the phase angle of the line voltages
are important components of a power system. Some transformers regulate both
the magnitude and phase angle.

Almost all transformers provide taps on windings to adjust the ratio of
transformation by changing taps when the transformer is deenergized. A change
in tap can be made while the transformer is energized, and such transformers
are called load-tap-changing (LTC) transformers or tap-changing-under-load
(TCUL) transformers. The tap changing is automatic and operated by motors
which respond to rclays sct to hold the voltage at the prescribed level. Special
circuits allow the change to be made without interrupting the current.

A type of transformer designed for small adjustments of voltage rather
than large changes in voltage levels is called a regulating transformer. Figure
2.21 shows a regulating transformer for control of voltage magnitude, and
Fig. 2.22 shows a regulating transformer for phase-angle control. The phasor
diagram of Fig. 2.23 helps to explain the shift in phase angle. Each of the three
windings to which taps are made is on the same magnetic core as the phase
winding whose voltage is 90° out of phase with the voltage from neutral to the
point connected to the center of the tapped winding. For instance, the voltage
to neutral V,, is increased by a component AV, which is in phase or 180° out
of phase with V.. Figure 2.23 shows how the three line voltages are shifted in
phase angle with very little change in magnitude.

2 v e,

be - - > S22 .

¥ N
I

Series
transformers

FIGURE 2.21
Regulating transformer for control of voltage magnitude.
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Vﬂr. +

Avnn v:m * a":m

T -

Vi Vo + 4V,

aVin FIGURE 2.22
" R V., + AV, Regulating transformer for control
. . {- = of phase angle. Windings drawn
f —-IAVU,|-+ parallel to each other are on the
same iron core.

The procedure to detcrmine the bus admittance matrix Y, in per unit for
a network containing a regulating transformer is the same as the procedure to
account for anv transformer whose turns ratio is other than the ratio used to
select the ratio of base voltages on the two sides of the transformer. We defer
consideration of the procedure until Chap. 9. We can, however, investigate the
usefulness of tap-changing and regulating transformers by a simple example.

If we have two buses connected by a transformer. and if the ratio of the
line-to-line voltages of the transformer is the same as the ratio of the base
voltages of the two buses, the per-phase equivalent circuit (with the magnetizing
current neglected) is simply the transformer impedance in per unit on the
chosen base connected between the buses. Figure 2.24(a) is a one-line diagram
of two transformers in parallel. Let us assume that one of them has the voltage
ratio 1/n, which is also the ratio of base voltages on the two sides of the
transformer, and that thc voltage ratio of the other is 1/n’. The equivalent
circuit is then that of Fip. 2.24(b). We nced the ideal (no impedance) trans-
former with the ratio 1 /¢ in the per-unit reactance diagram to take care of the
ofl-nominal turns ratio of the sccond translormer because basc voltages arc

Shittedd Ve - -Orignal Vv,

V4. FIGURE 2.23
Phasor diagram for the regulating transformer shown in
Fig. 2.22. .

o

AV

[]]
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1/n

bie
SC

1/n'

Bis
SC

(a)

v, FIGURE 2.24
# \ Transformers with differing
turns ratio connected in paral-
|deal lel: (a) the single-line diagram;
Lt-r-a_n's_fgri‘n_er_l — <7 (b) the per-phase reactance di-
agram in per unit. The turns
(b) ratio 1/¢ is equal to n/n’.

1
1
I
1
}
1
1
3
I
1
1

?
1

determined by the turns ratio of the first transformer. Figure 2.24(4) may be
interpreted as two transmission lines in parallel with a regulating transformer in
one line.

Example 2.13. Two transformers arc connccted in parallel to supply an impedance
to ncutral per phase of 0.8 + 0.6 pcr unit -at a voltage of V, = 1.0 /0° per unit.
Transformer T, has a voltage ratio cqual to the ratio of the basc voltages on the
two sides of the transformer. This transformer has an impcdance of jO.1 per unit
on the appropriatc basc. The second transformer 7, also hasan impedance of ;0.1
per unit on thc same base but has a step-up toward the load of 1.05 times that of
7, (sccondary windings on 1.05 tap).

Figurc 2.25 shows the cquivalent circuit with transformer 7, rcpresented by
its impedancc and the insertion of a voltage AV. Find the complex power
transmitted to the load through each transformer.

Solution. Load current is

1.0

—__ —0.8— 0.6 per unit ,
0.8 +,06 /5P pE AN
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T jo.1
— 00
Icirc
S
T, N | e
+ - 0.1 J + |
AV =0.05/0° 7 0.8
vV, V, =1.0/0°
l ‘ j0.6
FIGURE 2.25

An equivalent circuit for Example 2.13.

An approximate solutiaon to this problem is found by recognizing that Fig. 2.25 with
switch § closed is an cquivalent circuit for the problem if the voltage AV, which is
in the branch of the circuit equivalent to transformer 7,, is equal to ¢t — 1 in per
unit. In other words, if T, is providing a voltage ratio 5% higher than 7T,, ¢ equals
1.05 and AV equals 0.05 per unit. If we consider that the current set up by AV
circulates around the loop indicated by [ . with switch § open, and that with §
closed only a very small fraction of that current goes through the load impedance
(because it is much larger than the transformer impedance), then we can apply the
superposition principle to AV and the source voltage. From A} alone we obtain

0.05
I = }6_2 = —j0.25 per unit

and with AV short-circuited, the current in each path is half the load current, or
0.4 — j0.3. Then, superimposing the circulating current gives

I7. =04 =03 - (—-0.25) = 0.4 —0.05 per unit
Iy, =04 -,03 + (-j0.25) = 0.4 — j0.55 per unit

so that S, = 0.40 + jO.05 per unit

.

S, =0.40 + jO.55 per unit

A

This example shows that the transformer with the higher tap setting is

supplying most of the reactive power to the load. The real power is dividing
equally between the transformers. Since both transformers have the same
impedance, they would share both the real and reactive power equally if they
had the same turns ratio. In that case each would be represented by the same
per-unit reactance of j0.1 between the two buses and would carry equal current.
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80 CHAPTER?2 TRANSFORMERS

When two transformers are in parallel, we can vary the distribution of reactive
power between the transformers by adjusting the voltage-magnitude ratios.
When two paralleled transformers of equal kilovoltamperes do not share the
kilovoltamperes equally because their impedances differ, the kilovoltamperes
may be more nearly equalized by adjustment of the voltage-magnitude ratios
through tap changing.

Example 2.14. Repcat Examplc 2.13 cxcept that 7, includes both a transformer
having the same turns ratio as T, and a regulating transformer with a phase shift
of 3° (¢ = ¢/m/% = 1.0/3°). The impcdance of the two components of T, is ;0.1
pcr unit on the basc of T,.

Solution. As in Examplc 2.13, wec can obtain an approximatc solution of thc
problem by inscrting a voltage sourcec AV in scrics with the impedance of
transformer T,. The proper per-unit voltage is

10/3 ~10/0° = (2sin1.5°) /915 =0.0524/91.5°

0.0524 / 91.5°
circ = = 0.262 + 100069 per unit
0.2/ 90°

i
I

Ir =04 —70.3 - (0.262 +j0.007) = 0.138 — j0.307 per unit
Iy, =04 —-,03 + (0.262 +0.007) = 0.662 — j0.293 per unit
So, Sy = 0.138 + j0.307 per unit

Sy, = 0.662 + j0.293 per unit

The example shows that the phase-shifting transformer is useful to control
the amount of real power flow but has less effect on the flow of reactive power.
Both Examples 2.13 and 2.14 are illustrative of two transmission lines in parallel
with a regulating transformer in one of the lines.

2.10 THE ADVANTAGES OF PER-UNIT
COMPUTATIONS

When bases are specified properly for the various parts of a circuit connected by
a transformer, the per-unit values of impedances determined in their own part
of the system are the same when viewed from another part. Therefore, it is
necessary only to compute each impedance on the base of its own part of the
circuit. The great advantage of using per-unit values is that no computations are
required to refer an impedance from one side of a transformer to the other.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

2.10 THE ADVANTAGES OF PER-UNIT COMPUTATIONS 81
The following points should be kept in mind:

1. A base kilovolts and base kilovoltamperes is selected in one part of the
system. The base values for a three-phase system are understood to be
line-to-line kilovolts and three-phase kilovoltamperes or megavoltamperes.

2. For other parts of the system, that is, on other sides of transformers, the base
kilovolts for each part is determined according to the line-to-line voltage
ratios of the transformers. The base kilovoltamperes will be the same in all
parts of the system. It will be helpful to mark the base kilovolts of each part
of the system on the one-line diagram.

3. Impedance information available for three-phase transformers will usually be
in per unit or percent on the base determined by their own ratings.

4. For three single-phase transformers connected as a three-phase unit the
three-phase ratings are determined from the single-phase rating of each
individual transformer. Impedance in percent for the three-phase unit is the
same as that for each individual transformer.

5. Per-unit impedance given on a base other than that determined for the part
of the system in which the element is located must be changed to the proper
base by Eq. (1.56).

Making computations for electric systems in terms of per-unit values simplifies
the work greatly. A real appreciation of the value of the per-unit method comes
through experience. Some of the advantages of the method are summarized
briefly below: '

1. Manufacturers usuallv specify the impedance of a piece of apparatus in
percent or per unit on the base of the nameplate rating.

2. The per-unit impedances of machincs of the same typc and widely different
rating usually lie within a narrow range although the ohmic values differ
materially for machines of different ratings. For this reason when the
impedance 1s not known definitely, it 1s gencrally possible to select from
tabulated average values a per-unit impcdance which will be rcasonably
correct. Experience in working with per-unit valucs brings familiarity with the
proper values of per-unit impedance for different types of apparatus.

3. When impedance in ohms is specificd in an equivalent circuit, each impedance
must be referred to the same circuit by multiplying it by the square of the
ratio of the rated voltages of the two sides of the transformer connecting the
refcrence circuit and the circuit containing the impedance. The per-unit
impedance, once expressed on the proper base, is the same referred to either
side of any transformer.

4. The way in which transformers are connected in three-phase circuits does
not affect the per-unit impedances of the equivalent circuit although the
transformer connection does determine the relation between the voltage
bases on the two sides of the transformer. '

L
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82 CHAPTER 2 TRANSFORMERS

2.11 SUMMARY

The introduction in this chapter of the simplified equivalent circuit for the
transformer is of great importance. Per-unit calculations are used almost
continuously throughout the chapters to follow. We have seen how the trans-
former is eliminated in the equivalent circuit by the use of per-unit calculations.
It is important to remember that V3 does not enter the detailed per-unit
computations because of the specification of a base line-to-line voltage and base
line-to-ncutral voltage related by V3 .

The concept of proper sclection of base in the various parts of a circuit
linked by transformers and the calculation of parameters in per unit on the base
specified for the part of the circuit in which the paramecters cxist i1s fundamental
in building an equivalent circuit from a single-line diagram.

PROBLEMS

2.1. A single-phase transformer rated 7.2 kVA, 1.2 kV /120 V has a primary winding of
800 turns. Determine (a) the turns ratio and the number of turns in the secondary
winding and (b) the currents carried by the two windings when the transformer
delivers its rated kV A at rated voltages. Hence, verify Eq. (2.7).

2.2. The transformer of Prob. 2.1 is delivering 6 kVA at its rated voltages and 0.8
power-factor lagging. (a) Determine the impedance Z, connected across its sec-
ondary terminals. () What is thc value of this impedance referred to the primary
side (i.e. Z5)? (¢) Using the valuc of Z, obtained in part (b), determine the
magnitude of the primary current and the kVA supplied by the source.

2.3. With reference to Fig 2.2, consider that the flux density inside the center-leg of the
transformer core, as a function of time ¢, is B(¢) = B,, sin(27 ft), where B,, is the
peak value of the sinusoidal flux density and f is the operating frequency in Hz. If
the flux density is uniformly distributed over the cross-sectional arca A4 m? of the
center-leg, determine
(a) The instantancous flux ¢(¢) in terms of B,,, f, A, and (.

(b) The instantancous induced-voltage ¢,(¢), according to Eq. (2.1).

(¢) Hence, show that the rms magnitudce of the induced voltage of the primary is
given by |E,| = V27 fN,B,, A.

(d) If A =100cm?, f=60 Hz, B,, = 1.5 T, and N, = 1000 turns, compute |E,|.

2.4. For the pair of mutually coupled coils shown in Fig. 2.4, consider that L,; = 1.9 H,

L,=L, =09H, L,,=05H, and r, =r, =0 Q. The systcm is operated at 60
Hz.

(a) Write the impedance form [Eq. (2.24)] of the system equations.

(b) Write the admittance form [Eq. (2.26)] of the system equations.

(¢) Determine the primary voltage 1/, and the primary current /, when the
secondary is '
(i) open-circuited and has the induced voltage V, = 100/0° V.
(it) short-circuited and carries the current 7, =2 /90° A.

2.5. For the pair of mutually coupled coils shown in Fig. 2.4, develop an equivalent-T
network in the form of Fig. 2.5. Use the parameter values given in Prob. 2.4 and
assume that the turns ratio a equals 2. What are the values of the leakage
reactances of the windings and the magnetizing susceptance of the coupled coils?
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A single-phase transformer rated 1.2 kV /120 V, 7.2 kVA has the following winding

parameters: r, = 0.8 Q, x, = 1.2 , r, = 0.01 £, and x, = 0.01 . Determine

(a) The combincd winding resistance and leakage reactance referred to the
primary side, as shown in Fig. 2.8.

(b) The values of the combined parameters referred to the secondary side.

(¢) The voltage regulation of the transformer when it is delivering 7.5 kVA to a
load at 120 V and 0.8 power-factor lagging.

A single-phase transformer is rated 440,220 V, 5.0 kVA. When the low-voltage
side is short-circuited and 35 V is applied to the high-voltage side, rated current
flows in the windings and the power input is 100 W. Find the resistance and
reactance of the high- and low-voltage windings if the power loss and ratio of
reactance to resistance is the same in both windings.

A single-phase transformer rated 1.2 kV /120 V, 7.2 kVA yields the following test
results:
Open-circuit test (primary-open)

Voltage V-, = 120 V; current />, = 1.2 A; power W, = 40 W

Short-circuit test (secondary-shorted)
Voltage V/, = 20 V; current /, = 6.0 A; power W, = 36 W

Determine

(a) The parameters R, = r, + a’r,, X, = x, + a’x,, G, and B,, referred to the
primary side, Fig. 2.7.

(b) The values of the above paramcters referred to the secondary side.

(c) The efficiency of the transformer when it delivers 6 kVA at 120 V and 0.9
power factor.

A single-phase transformer rated 1.2 kV /120 V, 7.2 kVA has primary-referred

parameters R, = r, + a?r, = 1.0 Q0 and X, = x, + a’x, = 4.0 . At rated volt-

age its core loss may be assumed to be 40 W for all values of the load current.

(a) Determinc the efliciency and rcguiation of the transformer when it delivers 7.2
kVA at 1, == 120 V and power factor of (/) 0.8 lagging and (i7) 0.8 leading.

(b) For a given load voltage and power factor it can be shown that the efficiency of
a transformer altains its maximum value at the kVA load level which makes
the 7°R winding losses cqual to the core loss. Using this result, determine the
maximum cfhicicncy of the above transformer at rated voltage and 0.8 power
factor, and the kVA load level at which it occurs.

A singlc-phase system similar to that shown in Fig. 2.10 has two transformers A-B
and B-C connccted by a linc B feeding a load at the receiving end C. The ratings
and paramcter valucs of the componcnts are:

5%
Transformer B-C: 1.2 kV /120 V, 7.2 kVA, leakage reactance = 4%

Transformer 4-B: 500 V/1.5kV, 9.6 kVA, leakage reactance

Linc B: series impcdance = (0.5 + j3.0) )
Load C: 120 V, 6 kVA at 0.8 powcr-factor lagging’
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2.11.

2.12.
2.13.

2.14.

2.15.

2.16.

(a) Determine the valuc of the load impedance in ohms and the actual ohmic
impedances of the two transformers referrcd to both their primary and
secondary sides.

(b) Choosing 1.2 kV as the wvoltage base for circuit B and 10 kVA as the
systemwide k VA base, express all system impedances in per unit.

(¢) What value of sending-end voltage corresponds to the given loading condi-
tions?

A balanced A-connected resistive load of 8000 kW is connected to the low-voltage,

A-connccted side of a Y-A transformer rated 10,000 kVA, 138 /13.8 kV. Find the

load resistance in ohms in each phase as measured from line to neutral on the

high-voltage side of thc transformesr. Neglect transformer impedance and assume
ratcd voltage is applicd to the transformer primary.

Solve Prob. 2.11 if the same resistances arc reconnected in Y.

Three transformers, cach rated 5 kVA, 220 V on the sccondary side, cwre conneceted
A-A and have been supplying a balanced 15-kKW purely resistive load at 220 V. A
changc is madc which reduces the load w0 10 kW, still purcly resistive and
balanccd. Someone suggests that with two-thirds of the load, one transformer can
be removed and the system can be opcrated open A. Balanced three-phase
voltages will still be supplied to the load since two of the line voltages (and thus
also the third) will be unchanged.
To investigate the suggestion further,

(a) Find each of the line currents (magnitude and angle) with the 10-kW load and
the transformer between a and ¢ removed. (Assume V, = 220@ V, se-
quence abc.)

(b) Find the kilovoltamperes supplied by each of the remaining transformers.

(c) What restriction must be placed on the load for open-A operation with these
transformers?

(d) Think about why the individual transformer kilovoltampere valucs include a Q
component when the load is purely resistive.

A transformer rated 200 MVA, 345Y /20.5A kV connects a balanced load rated

180 MVA, 22.5 kV, 0.8 power-luctor lag to a transmission linc. Dctermine

(a) The rating of each of thrce single-phasc transformers which when properly
connected will be cauivalcent to the above thrce-phasc transformer.

(b) The complex impedance of the load in-per unit in the impedance diagram if
the base in the transmission linc is 100 MVA, 345 kV.

A three-phase transformer rated 5 MVA, 115/13.2 kV has per-phase series

impedance of (0.007 4+ j0.075) per unit. The transformer is connected to a short

distribution line which can be represented by a series impedance per phase of

(0.02 + ;0.10) per unit on a base of 10 MVA, 13.2 kV. The line supplies a balanced

three-phase load rated 4 MVA, 13.2 kV, with lagging power factor 0.85.

(a) Draw an equivalent circuit of the system indicating all impedances in per unit.
Choose 10 MVA, 13.2 kVA as the base at the load.

(b) With the voltage at the primary side of the transformer held constant at 115
kV, the load at the receiving end of the line is disconnected. Find the voltage
regulation at the load.

Threc identical single-phase transformers, each rated 1.2 kV /120 V, 7.2 kVA and
having a leakage reactance of 0.05 per unit, are connected together to form a
thrce-phase bank. A balanced Y-connected load of 5 ) per phasce is connected
across the secondary of the bank. Dctermine the Y-equivalent per-phase impedance
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(in ohms and in per unit) seen from the primary side when the transformer bank is
connected (a) Y-Y, (b) Y-A, (¢) A-Y, and (d) A-A. Use Table 2.1.

2.17. Figure 2.17(a) shows a three-phase generator supplying a load through a three-
phasc transformer rated 12 kVA/600 V 'Y, 600 kVA. The transformer has
per-phase leakage reactance of 10%. The line-to-line voltage and the line current
at the generator terminals are 11.9 kV and 20 A, respectively. The power factor
seen by the generator is 0.8 Jagging and the phase sequence of supply is ABC.
(a) Determine the line current and the line-to-line voltage at the load, and the

per-phase (cquivalent-Y) impcdance of the load.

(b) Using the line-to-ncutral voltage V, at the transformer primary as rcference,
draw complcte per-phasce phasor diagrams of all voltages and currents. Show
the correct phase relations between primary and sccondary quantitics.

(c) Compute the real and reactive power supplicd by the gencrator and consumed
by the load.

2.18. Solve Prob. 2.17 with phasc sequcnce ACBD.

2.19. A single-phase transformer rated 30 kVA, 1200/120 V is connccted as an auto-
transformer to supply 1320 V from a 1200 V bus.

(a) Draw a diagram of the translormer connections showing the polarity marks on
the windings and directions chosen as positive for current in each winding so
that the currents will be in phase.

(0) Mark on the diagram the values of rated current in the windings and at the
input and output.

{c) Determine the rated kilovoltamperes of the unit as an autotransformer.

(d) If the efficiency of the transformer connected for 1200/120 V operation at
rated load unity power factor is 97%, determine its efficiency as an autotrans-
former with rated currcnt in the windings and operating at rated voltage to
supply 4 load at unity power factor.

2.20. Solve Prob. 2.19 if the transformer is to supply 1080 V from a 1200 V bus.

2.21. Two buses @ and b are connected to each other through impedances X, = 0.1 and
X, = 0.2 pcrunit in paraliel. Bus b is a load bus supplying a current / = 1.0/ — 30°
pcr unit. The per-unit bus voltage Vy is 1.0 & Find P and Q into bus b through
cach of the parallel branches (@) in the circuit described, (b) if a regulating
transformer is connected at bus b m the line of higher reactance to give a boost of
3% in voltage magnituce toward the load (a = 1.03), and (¢) if the rcgulating
transformer advances the phase 2° (a == +77/7?M, Use the circulatling-current method
for parts (h) and (¢), and assume that ¥, is adjusted (or cach part of the problem
so that V, remains constant. Figure 2.26 is the single-line diagram showing buscs a
and b of the system with the regulating transformer in place. Neglect the impedance
of the transformer.

© ®

X ==50.1

I

— Va [—

__—3%7 FIGURE 2.26 .

X =)02 3 Circuit for Prob. 2.21.
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2.22,

2.23.

Two reactances X, = 0.08 and X, = 0.12 per upit are in parallel between two
buses a and b in a power system. If V, = 1.05/10° and V, = 1.0@ per unit,
what should be the turns ratio of the regulating transformer to be inserted in series
with X, at bus b so that no vars flow into bus b from the branch whose reactance
Is X,;? Use the circulating-current method, and neglect the reactance of the
regulating transformer. P and Q of the load and V, remain constant.

Two transformers, cach rated 115Y /13.2A kV, opcratce in parallel to supply a load
of 35 MVA, 13.2 kV at 0.8 power-factor lagging. Translformer 1 is rated 20 MVA
with X = 0.09 pcr unit, and transformer 2 is rated 15 MVA with X = 0.07 pcr
unit. Find the magnitude of the current in per unit through cach transformer, the
megavoltampere output of each transformer, and the megavoltamperes to which
the total load must be limited so that neither transformer is overloaded. If the taps
on transformer 1 arc sct at 111 kV to give a 3.6% boost in voltage toward the
low-voltage side of that transformer comparced to transformer 2, which remains on
the 115-kV tap, find the megavoltampere output of each transformer for the
original 35-MVA total load and the maximum megavoltamperes of the total load
which will not overload the transformers. Use a base of 35 MVA, 13.2 kV on the
low-voltage side. The circulating-current method is satisfactory for this problem.
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CHAPTER

THE

SYNCHRONOUS
MACHINE

The synchronous machine as an ac generator, driven by a turbine to convert
mechanical energy into electrical energy, is the major electric power generating
source throughout the world. As a motor the machine converts electrical energy
to mechanical energy. We are chiefly concerned with the synchronous genera-
tor. but we shall give some consideration to the synchronous motor. We cannot
treat the synchronous machine fully, but there are many books on the subject of
ac machinery which provide quite adequate analysis of generators and motors.’
Ciur interest is in the application and operation of the synchronous machine
within a large interconnected power system. Emphasis 1s on principles and
external behavior under both steady-statc and transient conditions.

The windings of the polyphase synchronous machine constitute a group of
inductively coupled electric circuits, some of which rotate relative to others so
that mutual inductances are variable. The general equations developed for the
Aux lIinkages of the various windings are applicable to both steady-state and
transient analysis. Only linear magnetic circuits are considered, with saturation
neglected. This allows us, whenever convenient, to refer separately to the flux

"For 2 much more detailed discussion of synchronous machines, consult any of the texts on electric
machinery such as A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, 4th ed.,
McGraw-Hill, Inc, New York, 1983.
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and flux linkages produced by a component magnetomotive force (mmf)—even
though in any electric machine there exists only net physical flux due to the
resultant mmf of all the magnetizing sources. Simplified equivalent circuits are
developed through which important physical relationships within the machine
can be visualized. Therefore, our treatment of the synchronous machine should
provide confidence in the equivalent circuits sufficient for understanding the
role of the generator in our further studies of power system analysis.

3.1 DESCRIPTION OF THE SYNCHRONOUS
MACHINE

The two principal parts of a synchronous machince arc {crromagnctic structurcs.
The stationary part which is essentially a hollow cylinder, called the stator or
armature, has longitudinal slots in which there arc coils .of thc armaturc
windings. These windings carry the current supplied to an electrical load by a
generator or the current received from an ac supply by a motor. The rotor is the
part of the machine which is mounted on the shaft and rotates inside the hollow
stator. The winding on the rotor, called the field winding, is supplied with dc
current. The very high mmf produced by this current in the field winding
combines with the mmf produced by currents in the armature windings. The
resultant flux across the air gap between the stator and rotor generates voltages
in the coils of the armature windings and provides the electromagnetic torque
between the stator and rotor. Figure 3.1 shows the threading of a four-pole
cylindrical rotor into the stator of a 1525-MVA generator.

The dc current is supplied to the field winding by an exciter, which may be
a generator mounted on the same shaft or a separate dc source connected to
the field winding through brushes bearing on slip rings. Large ac generators
usually have exciters consisting of an ac source with solid-state rectifiers.

If the machine is a generator, the shaft is driven by a prime mover, which
is usually a steam or hydraulic turbine. The electromagnetic torque developed
in the generator when it delivers power opposes the torque of the prime mover.
The difference between these two torques is due to losses in the iron core and
friction. In a motor the electromagnetic torque developed in the machine
(except for core and friction losses) is converted to the shaft torque which drives
the mechanical load.

Figure 3.2 shows a very elementary three-phase generator. The field
winding, indicated by the f-coil, gives rise to two poles N and S as marked. The
axis of the field poles is called the direct axis or simply the d-axis, while the
centerline of the interpolar space is called the guadrature axis or simply the
g-axis. The positive direction along the d-axis leads the positive direction alang
the g-axis by 90° as shown. The generator in Fig. 3.2 is called a nonsalient or
round-rotor machine because it has a cylindrical rotor like that of Fig. 3.1. In the
actual machine the winding has a large number of turns distributed in slots
around the circumference of the rotor. The strong magnetic field produced links
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[

FIGURE 3.1

Photograch showing the threading of a four-pole cylindrical rotor into the stator of a 1525-MVA
generator. (Courtesy Utility Power Corporation, Wisconsin.)

the stator coils to induce voltage in the armature windings as the shaft is turned
by the prunc mover.

The stator 1s shown in cross scction in Fig, 3.2. Opposite sides of a coil,
which is almost rectangular, arc in slots a and ¢’ 180° apart. Similar coils are in
slots & and b and slots ¢ and ¢, Coil sides in slots «, b, and ¢ are 120° apart.
The conductors shown in the slots indicate a coil of only onc turn, but such a
coll may have many turns and is usually in scries with identical coils in adjacent
slots to form a winding having ends designated a and a’. Windings with ends
designated b — b" and ¢ — ¢’ are thc same as the @ — « winding except for
their symmetrical location at angles of 120° and 240°, respectively, around the
darmature.

Figure 3.3 shows a salient-pole machine which has four poles. Opposite
sides of an armature coll are 90° apart. So, there are two coils for each phase.
Coil sides a, b, and ¢ of adjacent coils are 60° apart. The two coils of each
phase may be connected in series or in parallel.
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FIGURE 3.2

Elementary three-phase ac genera-
tor showing end view of the two-pole
cylindrical rotor and cross section of

Rotor mmf of dc winding the stator.
dc field
~winding coils
g-axis
FIGURE 3.3

Cross section of an elementary
stator and salient-pole rotor.

Although not shown in Fig. 3.3, salient-pole machines usually have damper
windings, which consist of short-circuited copper bars through the pole face
similar to part of a “squirrel cage’ winding of an induction motor. The purpose
of the damper winding is to reduce the mechanical oscillations of the rotor
about synchronous speed, which is determined by the number of poles of the
machine and the frequency of the system to which the machine is connected.
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In the two-pole machine one cycle of voltage is generated for each
revolution of the two-pole rotor. In the four-pole machine two cycles are
generated in each coil per revolution. Since the number of cycles per revolution
equals the number of pairs of poles, the frequency of the generated voltage is

— = —f Hz (3.1)

where f = electrical frequency in Hz
P = number of poles
N = rotor speed in revolutions per minute (rpm)
f,.. = N/60, the mechanical [requency in revolutions per second (rps).

Equation (3.1) tells us that a two-pole, 60-Flz machine operates at 3600 rpm,
wlhercas a four-pole machine operates at 1800 rpm. Usually, fossil-fired steam
turbogenerators are two-pole machines, whercas hydrogencrating units are
slower machines with many pole pairs.

Since one cycle of voltage (360° of the voltage wave) is generated every
time 2 pair of poles passes a coil, we must distinguish between electrical degrees
used to express voltage and current and rmechanical degrees used to express the
position of the rotor. In a two-pole machine electrical and mechanical degrees
are equal. In any other machine the number of electrical degrees or radians
equals P/2 times the number of mechanical degrees or radians, as can be seen
from Eq. (3.1) by multiplying both sides by 2. In a four-pole machine,
therefore, two cycles or 720 electrical degrees are produced per revolution of
360 mechanical degrees.

In this chapter all angular measurements are expressed in electrical
degrees unless otherwise stated, and the direct axis always leads the quadrature
axis oy 90 clectrical degrees in the cownterclockwise direction of rotation
regardiess of the number of poles or the type of rotor construction.

3.2 THREE-PHASE GENERATION

The field and armature windings of the synchronous machine described in Sec.
3.1 are distributed in slots around the periphery of the air gap. Section A.1 of
tlic Appendix shows that these distributed windings can be replaced along their
axes by concentrated coils with appro priate self- and mutual inductances. Figure
3.4 shows three such coils—a, b, and c—whick represent the three armature
windings on the stator of the round-rotor machine, and a concentrated coil f,
which represents the distributed field winding on the rotor. The three stationary
armature coils are identical in every respect and each has one of its two
tecrmminals connected to a common point o. The other three te‘rminals are
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6d=0

Direct axis 6, I i Quadrature axis

Rotation

FIGURE 3.4

Idealized three-phase generator showing identical armature coils a, b, and ¢. and field coil f. Direct
axis leads quadrature axis by 90° in the anticlockwise direction of rotation.

marked a, b, and c. The axis of coil a is chosen at 6, = 0°, and counterclock-
wise around the air gap are the axes of the b-coil at 6, = 120° and of the c-colil

at 6, = 240°. For the round-rotor machine it is shown in Sec. A.l of the
Appendix that: -

» Each of the concentrated coils a, b, and ¢ has self-inductance L, which is
equal to the self-inductances L,,, L,,, and L_. of the distributed armature
windings which the coils represent so that

Ls = L{Iﬂ' = Lbb = Lcc (32)

» The mutual inductances L,,, L,., and L_, between each adjacent pair of
concentrated coils are negative constants denoted by —M_ so that

th = Lab = Lbc - Lca (33)

» The mutual inductance between the field coil f and each of the stator coils
varies with the rotor position 6, as a cosinusoidal function with maximum
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value M so that
L,y=M;cos b,
Ly = M, cos(6, — 120°) (3.4)
L.p=M;,cos(8, - 240°)
The field coil has a constant self-inductance L . This is because in the
round-rotor machine (and, indeed, in the salient-pole machine also), the field

winding on the d-axis produces flux through a similar magnetic path in the

stator for all positions of the rotor (neglecting the small effect of armature
slots).

Flux linkages with each of the coils a, b, ¢, and f are due to its own
current and the currents in the three other coils. Flux-linkage equations are
thercfore written for all four coils as follows:

Armature:

Ao =Loiot Lopiy v Lo, + Loip=Li, —M(i, +i )+ L,
Ap =Ly ¥ Lyyiy v Lydo + Lyplp =Ly = MU(i, +i.) + Lyip (3.5)
Ae=Legly + Lepiy + Lo = Leyip=1Lgi, — M(i, +i,) + L.,
Field:
Ap=Lopi,+ Lypiy+ Lo+ L, (3.6)
If /,, i,,and i arc a balanced three-phase set of currents, then
i, +i,+i. =70 (3.7)
Setting i, = -G, + i), i, = —(i, +i),and i = =, +i,)in Eqgs. (3.5) gives
Ao=(L,+Myi, + L, i,
Ap = (L, +MYi,+ Ly, (3.8)

A= (L + Myi + Ly

For now we are interested in steady-state conditions. We assume, there-
fore, that current [ is dc with a constant value II and that the field rotates at

i
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constant angular velocity w so that for the two-pole machine

— =w and 6, = wt + G, (3.9)

The initial position of the field winding is given by the angle 8,, which can be
arbitrarily chosen at ¢+ = 0. Equations (3.4) give the expressions for L, Ly,
and L., in terms of 6,. Substituting (w! + 6,,) for 6, and using the results
along with i, = [, in Egs. (3.8), we obtain

A, = (L, + M,)i, + M I, cos(wt + 840)
Ay = (L, + M), + M1 cos(wt 4 0, — 120°) (3.10)
Ao = (Lo + M)+ Ml cos(wt + 8,y — 240°)

The first of these equations shows that A has two flux-linkage components—one
due to the field current /, and the other due to the armature current i,, which
1s flowing out of the machine for generator action. If coil a has resistance R,

then the voltage drop v, across the coil from terminal a to terminal o in Fig.
3.4 is given by

dA

4 . dlﬂ -
v,= —Ri, - 7 X —Ri, - (L, + Ms)?ﬁ— + wM I sin(wt + 04) (3.11)

The negative signs apply, as discussed in Sec. 2.2, because the machine is being
treated as a generator. The last term of Eq. (3.11) represents an internal emf,
which we now call e,.. This emf can be written

€y = ﬁll:}lsin(mr + 0,4) (3.12)
where the rms magnitude |E,|, proportional to the field current, is defined by

V2

The action of the field current causes e, to appear across the terminals of the
a-phase when i, is zero, and so 1t is called by various names such as the no-load
voltage, the open-circuit voltage, the synchronous internal voltage, or generated
emf of phase a. The angle 6,, indicates the position of the field winding (and
the d-axis) relative to the a-phase at ¢ = 0. Hence, 8§ £ 6,, — 90° indicates the
position of the g-axis, which is 90° behind the d-axis in Fig. 3.4. For later
convenience we now set 6, = 6 + 90°, and then we have

\E,| =

(3.13)

601 = ((()f + 8{10) = (OJf + &6 + 900) (‘314)

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

32 THREE-PHASE GENERATION 95
where 6,, w, and 6 have consistent units of angular measurement. Substituting

from Eq. (3.14) into Eq. (3.12) and noting that sin(a + 90°) = cos «, we obtain
for the open-circuit voltage of phase a

e, = V2 E|cos(wt + 8) (3.15)
The terminal voltage v, of Eq. (3.11) is then given by
di

v, = —Ri, — (L, + Ms)-df + V2 |E fcos(wt + &) (3.16)

[4

a

This equation corresponds to the a-phase circuit of Fig. 3.5 in which the no-load
voltage ¢, is the sourcc and the external load is balanced across all three
phases.

The flux linkages A, and A_ given by Eq. (3.10) can be treated in the same
way as A,. Since the armature windings are identical, results similar to Egs.
(3.15) and (3.16) can be found for the no-load voltages e, and e_ which lag e,
by 120° and 240°, respectively, in Fig. 3.5. Hence, e, e, and e. constitute a
balanced three-phase set of emfs which give rise to balanced three-phase line

A —

FIGURE 3.5
Armature equivalent circuit of the idealized three-phase generator showing balanced no-load

voltages e, ¢,,, and e_ in the steady state. ]
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currents, say,
i, = V21l lcos(wt + & — 6,)
i, = V2 |Ilcos(wt + & — 6, — 120°) (3.17)
ie = V2 I,lcos(wt + 8 — 6, — 240°)

where |/,] is the rms value and 0, is the phasc angle of leg of the current i,
with respect to e,. When the cmfs and the currents are expressed as phasors,
Fig. 3.5 bccomes very much like the cquivalent circuit introduced in Fig. 1.11.
Beforc cmploying the cquivalent circuit, let us consider the Nlux linkages A, of
the field winding. '
The expressions for L, Ly, and 1 in Egs. (3.4) can be substituted into

Eq. (3.6) to yield
Ap= Lol + M[i,cos8, +i,cos(8, — 120°) + i cos(8, = 240" )] (3.18)

The first term within the brackets can be expanded according to Eqgs. (3.14) and
(3.17) as follows:

i,cos 8, = V2|1 lcos(wt + & — 8,)cos(wt + & + 90°) (3.19)

The trigonometric identity 2 cos a cos 8 = cos(a — B) + cos(a + B) applied to
Eq. (3.19) yields

17,]

i cosf, = V—z_{—sin 6, — sin(2(wt + &) — 6,)} (3.20)

The i, and i, terms in Eq. (3.18) lead to similar results, and we have

i,cos{(6, — 120°) = 7%—{—sin 8, — sin(2(wt + 8) — 6, — 120°)} (3.21)

|7}
i cos(6,; —240°) = ﬁ{—sm 8, — sin(2(wt + 8) ~ 8, — 240°)} (3.22)

" The terms involving 2wt in Egs. (3.20) through (3.22) are balanced second-
harmonic sinusoidal quantities which sum to zero at each point in time. Hence,
adding the bracketed terms of Eq. (3.18) together, we obtain

31,1
[i, cos 8, + i, cos(8, — 120°) + i, cos(f, — 240°)| = — sin 8, (3.23)

. V2
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and the expression for A, takes on the simpler form

ML 7

where dc current i, = \/?[ cos 0, + i, cos(, — 120°) + i (cos 6, — 240°)] o
by Eq. (3.23)

. i, = —V31Isin8, (3.25)
which is uscful later in this chapter. For now let us observe from Eq. (3.24) that
the flux linkages with the ficld winding due to the combination of i,, i,, and i,
do not vary with time. We can, therefore, regard those flux linkages as coming
from the steady dc current ¢, in a fictitious dc circuit coincident with the d-axis
and thus stationary with respect to the ficld circuit. The two circuits rotate
together in synchronism and have a mutual inductance (\/372-) M, between
them, as shown in Fig. 3.6. In gencral, the field winding with resistance R[ and
entering current (; has terminal voltage vy given by

_ dA ;
a-axis
—
Direct axis 0, [ Quadrature axis
£ | 7
AN / ! ’
\\ I /,;
~ | ,
AN | s
~ 4 /
1
|
|

iy «
Armature equivalent &) \/ M, Mutual in'duc(ance
7/

winding rotating with roy . ; 7
~ 1 s
4
4

Field winding retaling with rotor

N
T b el
/// \\_ “‘-\\-.\
//, fl \‘\\\
// “-.\
" RN .
b-axis c-axis
FIGURE 3.6

Representing the armature of the synchronous machine by a direct-axis winding of mutual
inductance /3/2 M[ with the field winding. Both windings rotate together in synchror}xsm.
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Because Ay is not varying with time in the steady state, the field voltage
becomes vy = R I, and i, = [, can be supplied by a dc source.

Equation (3.25) shows that the numerical value of i, depends on the
magnitude of the armature current |/, | and its phase angle of lag 6, relative to
the internal voltage e .. For lagging power factors 6, is positive and so i, Is
negative, which means that the combined effect of the armature currents i, i,,
and i_ is demagnetizing; that is, i, opposes the magnetizing influence of the
field current I;. To overcome this demagnetizing influence, /, has to be
increased by the excitation system of the generator. At leading power factors 6,
takes on smaller values, which means that the demagnetizing influence of the
armature currents (represented by i, = — V3 |I,[sin 6,) is reduced and I, can
then be lowered by the excitation system. In an actual machine the effect of the
currents ¢, i,, and /_ is called armature reaction and the control of the field
current is called excitation system control, which is discussed in Sec. 3.4.

Example 3.1. A 60-Hz three-phase synchronous gengrator with negligible armature
resistance has the following inductance parameters:

Lyg=L,=27656mH M= 316950 mH
Loy =M, =13828mH L, =433.6569 mH

The machine is rated at 635 MVA, 0.90 power-factor lagging, 3600 rpm, 24 kV.
When operating under rated load conditions, the line-to-neutral terminal voltage
and line current of phase @ may be written

v, = 19596 cos wt V i, = 21603 cos(wt — 25.8419°) A

Dctermine the magnitude of the synchronous internal voltage, the ficld current I,
and the flux linkages with the ficld winding. Calculate the valucs of these quantitics
when a load ol 635 MVA is served at rated voltage and unity power factor. What is
the ficld current for rated armaturc vollage on an open circuit?

Solution. The given maximum valuc of v, is V2(24,000/ //3) = 19596 V, the
maximum value of i, is V2 (635,000/ V3 x 24) = 21603 A, and the power-factor
angle @ = cos™ ! 0.9 = 25.8419° lagging.

With R =0, in Eq. (3.16) the synchronous internal voltage can be written
e, = V2 |E|cos(wi + &)

a

v, + (Ls + Ms)

ia
dt

di,

v, + (2.7656 + 1.3828)1073 y
t

Fl

19596 cos wt — (4.1484)1073 X @ X 21603 sin(w! — 25.8419°)
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Setting w = 1207, we obtain
€y = /2—|E,|cos(wl + 8) = 19596 cos wt — 33785 sin(wt — 25.8419°) V

and expanding the second term according to sin(a — B) = sin & cos B — cos ¢ sin 3
gives

e, =V2IE,/cos(wt + &) = 34323 cos wt — 30407 sin w!

= 45855 cos(w! + 41.5384°) V

[Tence, the synchronous internal voltage has magnitude ﬁlE,l = 45855 V and
angle § = 41.5384°. From Eq. (3.13) we (ind

VR 45855
I = = = AW A
wa; 1207 x 31.695 X 10 -

The flux linkages with the field windings arc given by Eq. (3.24),
3!1!;’ _
)\[ = L;f}f y _?: IJ"JS]H 8”

where 6, i1s the angle of lag of i, mcasured with rcspect to e,. Since i, lags
25.8419° behind v,, which lags 41.5384° behind e, it follows that

a>

6, = 25.8419° + 41.5384° = 67.3803°

21603

|/,lsin6, = sin 67.3803° = 14100.6 A

and substituting in the above expression for A, yiclds

3% 31.695 x 10 *?
(433.0569 x IO"3)3838 - - x 14100.6

V2

= 1664.38 — 948.06 = 716.32 Wb-turns

As

Repceating the above sequence of calculations at unity power factor, we obtain

e, =2 |E,|cos(wt + &) = 19596 cos wt — 33785 sin w!

39057 cos(wt -+ 59.8854°)

I
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Because |E;| is directly proportional to I;, we have from previous calculations

1 39057
/™ 45855

X 3838 = 3269 A

Current i, is in phasc with v, and lags ¢, by 59.8854°. Thercfore,

|1,1sin 6, = 15276sin 59.8854° = 13214 A

3 % 31.695 x 1073
V2

A, = (433.6569 x 10 3269 —

X 13214

1417.62 — 888.43 = 529.19 WD-lurns

Thus, when the power factor of the load goes from 0.9 lagging to 1.0 under rated
megavoltamperes loading and voltage conditions, the field current is reduced from
3838 to 3269 A. Also, the net air-gap flux linking the field winding of the generator
is reduced along with the demagnctizing influence of armature reaction.

The field current required to maintain rated terminal voltage in the machine
under open-circuit conditions is found from Eq. (3.13), and Eq. (3.16) with i, = 0,

V2IE|l 19596 x 10°
I = = = 1640 A
wM; 1207 x 31.695

3.3 SYNCHRONOUS REACTANCE
AND EQUIVALENT CIRCUITS

The coupled-circuit model in Fig. 3.4 represents the idealized Y-connected
round-rotor synchronous machine. Let us assume that the machine is rotating at
synchronous speed w and that the field current 1"[ 1s steady dc. Under these
conditions the balanced three-phase circuit of Fig. 3.5 gives the steady-state
operation of the machine. The no-load voltages are the emfs e,, ¢,, and e_.
Choosing a-phase as the reference phase for the machine, we obtain the
per-phase equivalent circuit of Fig. 3.7(a) with steady-state sinusoidal currents
and voltages which lead the corresponding currents and voltages of phases b
and ¢ by 120° and 240°, respectively.

We recall that the phase angle of the current i, in Eq. (3.17) is chosen
with respect to the no-load voltage e,. of the a-phase. In practice, e, cannot be
measured under load, and so it is preferable to choose the terminal voltage v,
as reference and to measure the phase angle of the current i, with respect to
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i, = V211 )cos (wt — 6)

—_—

R +

L+ M,

ey = \E|E,-'COS(¢0£ + 8) y, = \/QTIVa!cos wt

O
(a)
— Ay = ”a-lg -6
) +
+ K J(U(LS + Ms)
= |E V. =iV | /0"
Ei=IEi/s ¢ /0 FIGURE 3.7
- Equivalent circuit for refcrence
l_ phase a of the synchronous ma-
* . chine showing voltages and cur-
0 rents as (a) cosinusoidal and (b)
(b) phasor quantities.

v,. Therefore, we define

v, = V2 |V,lcos wt; e, = V2 IEJcos(wt + 8); i, =2 I,lcos(wt — 6)

(3.27)

Note that e, corresponds to Eq. (3.15) and that /, differs from Eq. (3.17) only
in the respect that the phase angle 6 = 6, — 6 is now the angle of lag of ¢,
measurcd with respect to terminal voltage v,. The phasor equivalents of Eqs.
(3.27) arc

v, =W/ E,=1El/85 L =11/-9 (3.28)

and these arc marked on the equivalent circuit of Fig. 3.7(b) for which the
phasor-voltage cquation is

;o ' B _ . B .
vV, = £ R, jwlL,l, joM,], (3.29)
— ~———
Generated Duc 10 armature Due to armature Due to armature
at no load resistance self-reactance mutual reactance

When the current [, leads J/,, the angle 6 is numerically negative; and when /,

F
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lags V,, the angle 0 is numerically positive. Since symmetrical conditions apply,
phasor equations corresponding to Eq. (3.29) can be written for b-phase and
c-phase. The combined quantity w(L, + M) of Eq. (3.29) has the dimensions of
reactance and is customarily called the synchronous reactance X ; of the ma-
chine. The synchronous impedance Z, of the machine is defined by

Z;,=R+jX,=R+jo(L,+ M) (3.30)
and Eq. (3.29) then can be written in the more compact form
Vo=E —-LZ,=E ~[[R—-jl. X, (3.31)

from which follows the generator equivalent circuit of Fig. 3.8(a). The equiva-
lent circuit for the synchronous motor is identical to that of the genecrator,
except that the direction of I, is reversed, as shown in Fig. 3.8(b), which has the
equation

V.=E, +127,=E,+ LR +jIX, (3.32)
Zy
- 2 N I,
—
0‘60 %
JXq
Va
' .
(a)
Zd
Il - ) 1,
—
j_j ( +
JX4
VG
FIGURE 3.8 .
_ Equivalent circuits for (a) the synchronous
- generator and (&) the synchronous motor with
constant synchronous impedance Z,‘= R +
(b) JX -
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E;

Ei'=va+IaR+-jInXd Va=Ei+IaR+-j}OXﬂ'

(a) (6)

FIGURE 3.9
Phasor diagrams of: («) overexcited generator delivering lagging current /; (b) underexcited motor
drawing lagging current /,.

Phasor diagrams for Eqs. (3.31) and (3.32) are shown in Fig. 3.9 for the case of
lagging power-factor angle 6 measured with respect to the terminal voltage. In
Fig. 3.9(a) for the generator note that E, always leads V,, and in Fig. 3.9(b) for
the motor E, always lags V,.

Except for the case of an isolated generator supplying its own load, most
synchronous machines are connected to large interconnected power systems
such that the terminal voltage V, (soon to be called V, for emphasis) is not
altercd by machine loading. In that case the point of connection is called an
infinice bus, which means that its voltage remains constant and no frequency
change occurs regardless of changes made in operating the synchronous ma-
chinc.

Synchronous machine parameters and operating quantities such as voltage
and current are narmally represented in per unit or normalized values using
bases corresponding to the nameplate data ol the machine. Such parameters are
provided by the manufacturer. Machines of similar design have normalized
parameters which fall in a very narrow range regardless of size, and this is very
useful when data for a particular machine are not available (see Table A.2 in
thec Appendix). In the armature ol the three-phase machine usually the kilo-
voltampcre base corresponds to the threc-phase rating of the machine and base
voltage in kilovolts corresponds to the rated line-to-line voltage in kilovolts.
Accordingly, the per-phase equivalent circuit of Fig. 3.8 has a kVA base equal
to the kilovoltampere rating of one phase and a voltage base equal to the rated
line-to-neutral voltage of thc machine. Base armature impedance is therefore
calculated from Eq. (1.54) in the usual way.

F
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Although the generated voltage E; is controlled by the field current,
nonetheless, it i1s a per-phase armature voltage which can be normalized on the
armature base. Equations (3.31) and (3.32) are thus directly applicable in per
unit on the armature base.

Example 3.2. The 60-Hz synchronous generator described in Example 3.1 is
serving its rated load undcr stcady-statc operating conditions. Choosing the
armaturc basc equal to thc rating of thec machine, determine thc value of thc
synchronous rcactance and the phasar expressions [or the stator quantities V,, [,
and E; in per unit. If the base ficld current cquals that value of I, which produces
rated terminal voltage under open-circuit conditions, determine the valuc of /;
undcr the specified opcraling conditions.

Solution. From Exampic 3.1 wc lind for the armaturc that
Base kVA = 635,000 kVA
Base kl/ , = 24 KV

635,000

Base current = ————— = 15275.726 A
V3 x 24
242
Base impedance = —— = 0.9071 Q)
635

Using the values given for the inductance parameters L, and M, of the armature,
we compute

Xy =w(L, + M) = 1207(2.7656 + 1.3828)10% = 1.5639 O

which in per unit is

The load is to be served at rated voltage cqual to the specificd base, and so if we
use the terminal voltage V/, as the reference phasor, we obtain

V.=1.0/0% per unit

The load current has the rms magnitude |/,| = 635,000/(\5 x 24) A, which is
also the base armature current. Hence, [/,| = 1.0 per unit, and since the power-

factor angle of the load is 8 = cos™' 0.9 = 25.8419° lagging, the phasor form of
the lagging current [, is

1, =111 /-6 =1.0/-258419 per unit '
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Synchronous internal voltage £; can be calculated from Eq. (3.31) with R = 0,

E =V, +jX,1,

1.0/ 0° +/1.7241 % 1.0{ ~25.8419°
= 1.7515 +j1.5517 = 2340{ 41.5384° per unit

In Example 3.1 the basc field current (which is required to produce 1.0 per-unit
opcn-circuit armaturc voltage) is 1640 A. Thercfore, since |E;| is directly
proportional to /, we have an cxcitation current of 2.34 X 1640 = 3838 A under
the specified operating conditions.

The intercsted reader may wish to draw a phasor diagram for the results
of this example and comparc the phasor method of solution with the time-
domain approach of Example 3.1.

3.4 REAL AND REACTIVE POWER CONTROL

When the synchronous machine is connccted to an infinite bus, its speed and
terminal voltage are fixed and unalterable. Two controllable variables, however,
are the field current and the mechanical torque on the shaft. The variation of
the field current I;, referred to as excitation system control, is applied to either
a generator or a motor to supply or absorb a variable amount of reactive power.
Because the synchronous machine runs at constant speed, the only means of
varying the real power is through control of the torque imposed on the shaft by
either the prime mover in the case of a generator or the mechanical load in the
case of a motor.

It is convenient to neglect resistance 4s we consider rcactive power control
of the round-rotor generator. Assume that the generator is delivering power so
that a certain angle 6 exists between the tcrminal voltage IV, and the generated
voltage E, of the machine [sec Fig. 3.10(@)]. The complex power dclivered to
the system by thc gencrator is given in per unit by

S=P+jO =V I*=1[V]IlI|(cosb + jsinB) (3.33)

[l

Equating real and imaginary quantitics in this equation, we obtain
P= 1V, |I])cos 6 Q= IVII,1Isin® (3.34)

We note that QO is positive for lagging power factors since the angle 6 1is
numerically positive. If we decide to maintain a certain power delivery P from
the generator to the constant voltage system, it is clear from Eq. (3.34) that
|7,!cos 6 must remain constant. As we vary the dc field current /, under these
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Constant power

n
)
|
I
[
1,1 X, cos 6

|
] X
Jlad | (a)
|

111X, sin 0

(b)

FIGURE 3.10

Phasor diagrams showing constant-powcr loci of an («) overexcited gencrator delivering reactive
powcer to the system; (h) undercxcited generator receiving reactive power from the system. The
power delivered by the generator is the same in both cases.

conditions, the generated voltage E, varies proportionally but always so as to

keep |{,lcos 6 constant, as shown by the loci of Fig. 3.10(a). Normal excitation
1s defined as the condition when

E;lcos & = (V] (3.35)

and the machine is said to be either overexcited or underexcited according to
whether |E;[cos 8 > |V,| or |E;|cos & < |V,|. For the condition of Fig. 3.10(a)
the generator is overexcited and supplies reactive power Q to the system. Thus,
from the system viewpoint the machine is acting like a capacitor. Figure 3.10(b)
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J'Ia Xd

(a) (b)

FIGURE 3.11

Phasor diagrams of an (a) overexcited and (b) underexcited synchronous motor drawing current /,
and constant power at constant ternunal voltage.

is for an undercxcited gencrator supplying the same amount of real power and a
leading current to the system, or it may be considered to be drawing lagging
current from the system. The underexcited generator draws reactive power from
the system and in this respect acts like an inductor. The reader is encouraged to
explain this action in terms of the armature reaction discussed in connection
with Eqs. (3.24) and (3.25).

Figure 3.11 shows overexcited and underexcited synchronous motors draw-
ing the same real power at the same terminal voltage. The overexcited motor
draws leading current and acts like a capacitive circuit when viewed from the
network to which it supplics reactive power. The underexcited motor draws
lagging current, absorbs reactive power, and is acting like an inductive circuit
when viewed from the network. Briefly then, Figs. 3.10 and 3.11 show that
overexcited generators and motors supply reactive power to the system and
underexcited generators and motors absorb reactive power from the system.

Now we turn our attcntion to rcal power P, which is controlled by opening
or closing the valves through which steam (or water) enters a turbine. If the
power input to the generator is incrcased, the rotor speed will start to increase,
and if the field current /, and hence |E,| arc held constant, the angle §
between E, and V, will increase. Increasing & results in a larger |/, |cos 0, as
may be seen by rotating the phasor £, counterclockwise in Figs. 3.10(a) and
3.10(b). The generator with a larger &, therefore, delivers more power to the
network; exerts a higher countertorque on the prime mover; and hence, the
input from the prime mover is reestablished at the speed corresponding to
the frequency of the infinite bus. Similar reasoning applies also to a motor.

The dependence of P on the power angle 6 is also shown as follows. If

V= IvI/e  and E=IEI/S
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‘where V, and E; are expressed in volts to neutral or in per unit, then

_IEl/8 — W N A
J .o —JX

' an
Xd

a

(3.36)

Thercfore, the complex power delivered to the system at the terminals of the
generator is given by

= j = ' {; = ——

_de
WV I1ENcos & — jsin§) — [V,i? ;
- » 3.37
K (3.37)
The real and imaginary parts of Eq. (3.37) are
IVIIE 12 .
= sin o Q = —)'{—( EHCOSS - |V:..) (338)

d o

When volts rather than per-unit values are substituted for }J, and £; in
Eqs. (3.38), we must be careful to note that V, and E, are line-to-neutral
voltages and P and O will be per-phase quantities. However, line-to-line
voltage values substituted for V, and £, will yield total three-phase values for P
and Q. The per-unit P and Q of Egs. (3.38) are multiplied by base three-phase
megavoltamperes or base megavoltamperes per phase depending on whether
total three-phase power or power pcr phase is wanted.

Equation (3.38) shows very clcarly the dependence of P on the power
angle & if |E,| and |V,| are constant. However, if P and V, are constant, Eq.
(3.38) shows that 6§ must decreasc if |E,| is increased by boosting the dc field
excitation. With P constant in Eq. (3.38), both an increase in |E;| and a
decrease in 6 mean that O will increasc if it is already positive, or it will
decrease in magnitude and perhaps become positive if Q is already negative
before the field excitation is boosted. These operating characteristics of the
generator are made graphically evident in Sec. 3.5.

Example 3.3. The generator of Example 3.1 has synchronous reactance X, =
1.7241 per unit and is connected to a very large system. The terminal voltage is
1.0/0° per unit and the generator is supplying to the system a current of 0.8 per
unit at 0.9 power-factor lagging. All per-unit values are on the machine base.
Neglecting resistance, find the magnitude and angle of the synchronous internal
voltage £;, and P and Q delivered to the infinite bus. If the real power output of
the generator remains constant but the excitation of the generator is (a) increased
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by 20% and (h) decrcased by 20%, find the angle 8 between L, and the terminal
bus voltage, and Q delivered to the bus by the generator.

Solution. The power-factor angle is 8 = cos™! 0.9 = 25.8419° lagging, and so the
synchronous internal voltage given by Eq. (3.31) is

E,=1El/8 =V +jX,],

10/ 0° +/1.7241 x 0.8{ —25.8419°
1.6012 + j1.2414 = 2.0261{ 37.7862° per unit

Equations (3.38) give thc P and Q output of the generator,

WIE) 1.0 x 2.0261
P = sin = ———— - 5in37.7862° =0.7200 per unit
X, 1.7241
W'l(usr 5~ V1) 0 (1.601 ) =0348
= — = — . - ], = U. 4 7 .t.
Q X, 1€OS f {724l 1.6012 0 per uni

(a) Increasing excitation by 20% with P and V, constant gives
{

VIE. 1.0 X 1.2 X 2.0261
= sin§ = sind = 0.72
X, 1.7241
| 0.72 x 1.7241 e,
5 =sin” ——— = 701 o
S ( 120 % 2.0261)

and the new valuc of @ supplied by the gencrator is

1.0

0= 7’2ﬂ[1 20 % 2.0261 cos(30.7016°) — 1.0] = 0.6325 per unit

(b) With cxcitation deercased 20%, we obtain

WIE] 1.0 x 0.80 x 2.0261
-5 0
X, 1.7241

sino = 0.72

. | _1(0.72 X 1.7241
=50 0380 x 2.0261

) = 49.9827°
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and the value of Q now supplied by the generator is

0 :
Q= T 7741 [0.80 x 2.0261 cos(49.9827°) — 1.0] = 0.0245 per unit

Thus, we see how excitation controls the reactive power output of the gcnerator.

3.5 LOADING CAPABILITY DIAGRAM

All the normal opcrating conditions ol the round-rotor generator connected to
an infinitc bus can be shown on a single diagram, usually called the loading
capability diagram or operation chart ol thc machine. The chart is important to
the power-plant opcrators who are responsible for proper loading and operation
of the gencrator.

The chart is constructed on the assumption that the generator has fixed
terminal voltage V, and negligible armature resistance. Construction begins with
the phasor diagram of the machine having V, as the reference phasor, as shown
in Fig. 3.10(a). The mirror image of Fig. 3.10(a) can be rotated to give the
phasor diagram of Fig. 3.12, which shows five loci passing through the operating
point m. These loci correspond to five possible operating modes, in each of
which one parameter of the generating unit is kept constant.

CONSTANT EXCITATION. The constant excitation circle has point n as center
and a radius of length n-m equal to the internal voltage magnitude |E |, which

can be maintained constant by holding the dc current /, in the field winding
constant according to Eq. (3.13).

CONSTANT |/,|. The circle for constant armature current has point o as center
and a radius of length o-m proportional to a fixed value of |/,|. Because [V,] is
fixed, the operating points on this locus correspond to constant megavoltampere
output (|V,| [1,|) from the generator.

CONSTANT POWER. Active power output of the machine is given by P =
|V,] 11,1cos 6 in per unit. Since |V;| is constant, vertical line m-p at the fixed
distance X, |/, |cos @ from the vertical axis n-o represents a locus of operating
points for constant £. The megawatt output of the generator is always positive
regardless of the power factor of the output.

CONSTANT REACTIVE POWER. The reactive power output of the machine is
given by Q = |V,| |I,|sin 6 in per unit when the angle 6 is defined positive for

lagging power factors. When |V,| is constant, horizontal line g-m at the fixed
“distance X,|/,| |sin @] from the horizontal axis represents a locus of operating

points for constant Q. For unity power-factor operation the Q output of the

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

111

Downloaded From : www.EasyEngineering.net

T B R s ~ (a) Constant P (e) Constant power factor angle
.‘A"‘\\ S '
Q \\\ \\ {/ ///
| \\\ \‘\ //
e P
~ N -
N N 7
e — I, X4 co8 0] ——=—=~~ N> -7 (6) Constant @

~
W

N //, /
_____ .‘7 ——_——— & _
N

|1, X, sin 6! NV
1 j]a Xd \\
] \ )
\
: i (&) Constant '/,|
: ‘l/ T
| !
+_ o \ 9 lL ______ L f% g_in_g_p_owiar fiactor
RS Leading power factor
P LS |

FIGURE 3.12

Phasor diagram obtained from mirror image of Fig. 3.10(a) showing five loci through point m
corresponding to: (a) constant power P; (b) constant reactive power Q; (c) constant internal voltage
|E;|; (d) constant armature current |/, |; (e) constant power-factor angle 6.
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Phasor diagram obtained by multiplying (rescaling) all distances in Fig. 3.12 by |V,/X,I.
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LOADING CAPABILITY CURVE
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FIGURE 3.14
Loading capability curve for o cylindrical-rotor turbogeneralor, 635 MVA, 24 kV, 0.9 power factor,
Xy = 172.4% with maximum turbine output = 635 MW. Paint & relates to Example 3.4.
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generator is zero corresponding to an operating point on the horizontal axis o-p.
For lagging (leading) power factors the Q output is positive (negative) and the
operating point is in the half-plane above (below) the line o-p.

CONSTANT POWER-FACTOR. The radial line o-m corresponds to a fixed
power-factor angle § between the armature current /, and terminal voltage V.
In Fig. 3.12 the angle 6 is for a lagging power-factor load. When 0 = 0°, the
power factor is unity and thec opcrating point is actually on the horizontal axis
o-p. The half plane below the horizontal axis applics to leading powcer factors.

Figure 3.12 is most useful when the axes are scaled to indicate the P and
O loading of the generator. Accordingly, we rearrange Eqgs. (3.38) to read

1E] 1V

145
P =

g, 1

sin & (Q + cos & (3.39)

o o o

Since sin? & + cos? & = 1, squaring each side of Eq. (3.39) and adding give

o2 o WY (1B
( ) Q Xu’ y Xd

z

(3.40)

which has the form of (x —a)?>+ (y — b)?> =2 for a circle of center
(x =a, y =b) and radius r. The locus of P and Q is therefore a circle of
radius |E,| |Vl /X, and center (0, — |V,|°/X,). This circle can be obtained by
multiplying the length of each phasor in Fig. 3.12 by |V,| /X, or, equivalently, by
rescaling the diagram to conform to Fig. 3.13, which has axes labeled P
- horizontally and Q vertically from the origin at point o. On the vertical axis of
Fig. 3.13 the length o-n equals \V,Iz/Xd of reactive power, where 1, is the
terminal voltage. Usually, the loading diagram is constructed for [V,| = 1.0 per
unit, in which case length o-n represents reactive power equal to 1 /X, per unit.
So, length o-n is the key to setting the scale for the real and reactive power on
the P and Q axes.

The loading chart of the synchronous generator can be made more
practical by taking account of the maximum permissible heating (/2R losses) in
the armature and the field windings, as well as the power limits of the prime
mover and heating in the armature core. Using the example of a cylindrical-
rotor turbogenerating unit rated 635 MVA, 24 kV, 0.9 power factor, X, =
172.41%, let us demonstrate the procedure for constructing the loading capabil-
ity diagram of Fig. 3.14 as follows:

e Take |V,| = 1.0 per unit on the rated-voltage base of the machine.

_» Using a convenient voltampere scale, mark the point n on the vertical axis so
that length o-n equals 1/X, in per unit on the rated base of the machine. In
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our example X, = 1.7241 per unit, and so the length o-n in Fig. 3.14
corresponds to 1/X, = 0.58 per unit on the vertical Q-axis. The same scale
obviously applies to active power P in per unit on the horizontal axis.

« Along the P-axis, mark the distance corresponding to the maximum power
output of the prime mover. For present purposes the megawatt limit of the
turbine is assumed in Fig. 3.14 to be 1.00 per unit on the rated megavoltam-
pere base of the machine. Draw the vertical line for P = 1.00 per unit.

- Mark the length o-m = 1.0 per unit on the radial line from the origin at the
rated power-factor angle 6, which in this case equals cos™! 0.90. With o as
center and length o-m as radius, draw the per-unit megavoltampere circular
arc corresponding to the armature-current limit.

» Construct the arc m-r of maximum permissible excitation using n as center
and distance n-m as radius. This circular arc corresponds to the maximum
ficld-current limit. The constant cxcitation circle with radius of length o-n
usually delines 100% or 1.0 per-unit cxcitation, and so Fig. 3.14 shows the
ficld-current limit occurring at 2.340 per-unit cxcitation, that is, (length
r-n) /(length o-n) on the (-axis.

« An undcrexcitation limit also applics at low levels of excitation when vars are
being imported from the system to the machine. It is determined by the
manufacturer’s design as discussed below.

In Fig. 3.14 point m corresponds to the megavoltampere rating of the
generator at rated power-factor lagging. The machine designer has to arrange
sufficient field current to support overexcited operation of the generator at rated
point m. The level of the field current is limited to this maximum value along
the circular arc m-r, and the capability of the generator to deliver Q to the
system is thereby reduced. In actuality, machine saturation decreases the value
of the synchronous reactance X,, and for this reason most manufacturers’
curves depart from the theoretical field-heating limits described here.

The mirror image of m is the operating point m’ in the underexcited
region. Power-plant operators try to avoid operating conditions in the underex-
cited region of the capability curve for two different reasons. The first relates to
steady-state stability of the systern and the sccond relates to overheating of the
machine itself.

Theorctically, the so-called steady-state stability limit occurs when the
angle & between £, and V, in Figs. 3.12 and 3.13 reaches 90°. In practice,
however, system dynamics enter into the picture to complicate the determina-
tion of the actual stability limit. For this reason power-plant operators prefer to
avold underexcited machinc operation whenever possible.

As the machine enters into the underexcited region of operation eddy
currents induced by the system in iron parts of the armature begin to increase.
The accompanying [ *R heating also increases in the end region of the arma-
ture. To limit such heating, the machine manufacturers prepare capability

4
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curves specific to their own designs and recommend limits within which to
operate. In Fig. 3.14 the line m'-n is therefore drawn for illustrative purposes
only.

To obtain megawatt and megavar values for any operating point in Fig.
3.14, the per unit values of P and Q as read from the chart are multiplied by
the megavoltampere rating of the machine, which in this case is 635 MVA. Also,
distance n-m of Fig. 3.14 is thc per-unit mega voltampere value of the quantity
|E;V,| /X, at operating point m, as shown in Fig. 3.13. Therefore, we can
calculate the value of |E;| in per unit on the rated voltage base (24 kV in this
case) by multiplying length n-m (expressed in per-unit voltamperes) by the
per-unit ratio X,/ |V,|, or simply by X, since |V,| = 1.0 per unit in Fig. 3.14.
Conversion to kilovolts then requires multiplication by the voltage rating of the
machine in kilovolts.

If the actual terminal voltage |V,] is not 1.0 per unit, then the per-unit
value 1/X, assigned to distance o-n of Fig. 3.14 has to be changed to IV,IZ/X(,
in per unit, as shown in Fig. 3.13. This change alters the scale of Fig. 3.14 by
|V,|2, and so the per-unit P and  readings from the chart must be first
multiplied by IV,I2 in per unit and then by the megavoltampere base (635 MVA
in this case) in order to give correct megawatt and megavar values for the actual
operating conditions. For instance, if the actual terminal voltage is 1.05 per unit,
then the point n on the Q-axis of Fig. 3.14 corresponds to the actual value
0.58 x (1.05)? = 0.63945 per unit or 406 Mvar, and the point shown as 0.9 per
unit on the P-axis has an actual value of 0.9 x (1.05)* = 0.99225 per unit or 630
MW.

To calculate the correct excitation voltage £, corresponding to an operat-
ing point m when the terminal voltage is not exactly equal to its rated voltage,
we could first multiply length n-m obtained directly from Fig. 3.14 by II/,!2 in
per unit to correct the scale and then by the ratio X,/ |V, in per unit to
convert to |£,], as already discusscd. The nct result is that length n-m obtained
directly from Fig. 3.14 when multiplicd by the actual per-unit value of the
product X, X |V,| yields the correct per-unit valuc of |£,|. Then, if physical
units of kilovolts are desired, multiplication by the rated kilovolt base of the
machine follows. It is important to note that the power-factor angle 6 and
internal angle 6 are the same before and after the rescaling since the geometry
of Figs. 3.12 and 3.13 1s preserved. The reader should note, however, that the
operating constraints forming the boundary of the operating region of the chart
are physical limits. So, the boundary of the operating region may be affected
once the scale is altered.

. The following example illustrates the procedures.

Example 3.4. A 60-Hz three-phase generator rated at 635 MVA, 090 power
factor, 24 kV, 3600 rpm has the operating chart shown in Fig. 3.14. The generator
is delivering 458.47 MW and 114.62 Mvar at 22.8 kV to an infinite bus. Calculate
the excitation voltage E; using (a) the equivalent circuit of Fig. 3.8(a) and (&) the

¢
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loading diagram of Fig. 3.14. The synchronous reactance is X, = 1.7241 per unit
on the machine base and resistance is negligible.

Solution. In the calculations which follow all per-unit values are based on the
megavoltampere and kilovolt ratings of the mackine.
(a) Choosing the terminal voltage as the reference phasor, we have

22.8
v, = 240 0° =095/ 0° per unit

458.47 + j114.62

P+jO= 03 = 0.722 + j0.1805 per unit
0.722 — j0.1805
[, = = 0.76 — j0.19 per unit
0.95/ 0°

E =V +jX,,=095/0° +j1.7241(0.76 — j0.19)

= 1.2776 + j1.3103 = 1.830/_’ 45.7239° per unit
43.920;_’ 45.7239° kV

(b) The point & corresponding to the actual operating conditions can be located
on the chart of Fig. 3.14 as follows:

I

P+jO  0.722 + j0.1805
0952 0.952

P, +jO, = = 0.8 +,0.2 per unit

The distance n-k cquals V0.82 + 0.782 = 1.1173 per unit when calculated or
measured on the scale of the chart of Fig. 3.14. The actual value of |£,| is then
computed as

1.7241
0.95

|£:] = (1.1173 X 0.95%) = 1.830 per unit

which is the samc as obtained above. The anglec 8 = 45° can be easily measured.

3.6 THE TWO-AXIS MACHINE MODEL

The round-rotor theory already developed in this chapter gives good results for
the steady-state performance of the synchronous machine. However, for tran-
sient analysis we need to consider a two-axis model. In this section we introduce
the two-axis model by means of the equations of the salient-pole machine in
which the air gap is much narrower along the direct axis than along the

4
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118 CHAPTER 3 THE SYNCHRONOUS MACHINE

quadrature axis between poles. The largest generating units are steam-turbine-
driven alternators of round-rotor construction; fossil-fired units have two poles
and nuclear units have four poles for reasons of economical design and
operational efficiency. Hydroelectric generators usually have more pole-pairs
and are of salient-pole construction. These units run at lower speeds so as to
avoid mechanical damage due to ccntrifugal forces.

The three-phase salient-pole machine, like its round-rotor counterpart,
has three symmetrically distributed armature windings a, b, and ¢, and a field
winding f on the rotor which produces a sinusoidal flux distribution around the
air gap.? In both typcs of machines the field sces, so to speak, the same air gap
and magnetizing paths in the stator regardless of the rotor position. Conse-
quently, the ficld winding has constant sclf-inductance L. Moreover, both
machinc typcs have the same cosinusoidal mutual inductances ., /., and
ch with the armaturc phases as given by Eqgs. (3.4). Additionally, throughout
each revolution of the rotor the self-inductances L, L,,, and L.. of the stator
windings, and the mutual inductances L ,, L, and L_, between them, are not
constant in the salient-pole machine but also vary as a function of the rotor
angular displacement 6,. The flux linkages of phases a, b, and ¢ are related to
the currents by the inductances so that

Mo = Loaiy + Lopiy + Locip + Losi;

)\b - Lbaia + Lbblb + LbCiC + Lbflf (341)

Ao = Logig + Logiy + Logi + Lojig

cala

These equations look similar to Egs. (3.5) for the round-rotor machine but all
the coefficients are variable, as summarized in Table 3.1." As a result, the
equations for the flux linkages A,, A,, and A, of the salient-pole machine are
more difficult to use than their round-rotor counterparts. Fortunately, the
equations of the salient-pole machine can be expressed in a simple form by
transforming the a, b, and ¢ variables of the stator into corresponding sets of
new variables, called the direct-axis, quadrature-axis, and zero-sequence quanti-
ties which are distinguished by the subscripts d, ¢, and 0, respectively. For
example, the three stator currents i, i,, and i, can be transformed into three
equivalent currents, called the direct-axis current i ;, the quadrature-axis current
i, and the zero-sequence current iy. The transformation is made by the matrix P,

2For further discussion on the salient-pole machine, see P. M. Anderson and A. A. Fouad, Power
Systern Control and Stability, Chap. 4, The lowa State University Press, Ames, lowa, 1977.

>The D- and (-damper windings referred to in Table 3.1 are discussed in Sec. 3.8.
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TABLE 3.1

Expressions for the inductances of three-phase salient-pole synchronous
generator with field. D-damper and Q-damper windings on the rotor.

Lcm = L, + Lm cos 29d
Lyy=L;+ L, cos2(6,; ~ 27/3)
Le=L,+ L, cos2(8;+ 2m/3)

Self-inductances
(L,>L,>0)

Stator

Loyp=Lys=—-M,— L, cos2(8;+ w/6)
Lye=L.=-M,— L, cos2(0; — 7/2)
Lt't:=1‘ac = _Mx - Lm Cos 2(64 + 517/6)

Mutual-inductances
(M;>L,,>0)

Field winding: L/,

Sell-inductances ( D-damper winding: L.,

Q-damper winding: L,

Rotor

Field/D-winding: M,
Ficld /Q-winding: 0
D-winding /Q-winding: 0

|
|
|
|
|

Mutual-inductances

Armature /field { Lpy=Lgy=My cos(8, — 27/3)

L=L,=M,cos(8,— 4=/3)

Stator-rotor
mutual
inductances

LaD=LDﬂ=MD COS 9d
LbD=LDb=MD COS(ﬂd S, 211'/3)'
IACD =LDC =MD COS(ed - 41’]’/3)

Armature /D-winding

LHQ = LQu =MQ cos 0(!
Armature /Q-winding{ Lag =L gy =My cos(8, — 2m/3)

]‘CQ = LQ( =MQ COS(Bd - 41?/3)

called Park’s transformation, where

@
®

©

P=

@

cos 6,

sin 6,
1

V2

e

®

cos (6, — 120°)

sin (8, — 120°)
1

vz

©

cos (6, — 240°) |

sin (6, — 240°)
1

V2

|

(3.42)

which was introduced by R. H. Park in slightly different form from that shown
here. The matrix P has the convenient property (called orthogonality) that its
inverse P ! equals its transpose P7, which is found simply by interchanging rows
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and columns in Eq. (3.42). This property is most important as it ensures that
power in the a, b, and ¢ variables is not altered by P, as discussed in Sec. 8.9.
The currents, voltages, and flux linkages of phases a, b, and ¢ are transformed
by P to d, g, and 0 variables as follows:

Lyg L, Y, U, ’\a’ /\a
iy | =Pl v, | = P| v, A, | =PlA, (3.43)
iO ic Vg U, 0 c

The P-transformation defines a set of currents, voltages, and flux linkages for
three fictitious coils, onc of which 1s the stationary 0-coil. The other two coils
are the d-coil and thc ¢-coil, which rotate in synchronism with the rotor. The
d- and g-coils have constant flux linkages with the ficld and any other windings
which may exist on the rotor. Section A.2 of the Appendix illustrates the
detailed manipulations which transform the currents, voltages, and flux linkages
of phases a, b, and ¢ into d-g-0 quantities according to Eqgs. (3.43). The
resulting d, g, and 0 flux-linkage equations are

. [3
3.44
Ay = Lgi, ( )
Ao = Lgig

in which i 1s the actual field current, and the inductances are defined by

3 3
Ly=L,+M + =L Ly=L,+M,~ 5L

mo Ln = L.s - 2M
2

i ¥

(3.45)

Parameters L, and M, have the same meanings as before and L, is a positive
number. The inductance L, is called the direct-axis inductance, L, is called the
quadrature-axis inductance, and L, is known as the zero-sequence inductance.
The flux linkages of the field are still given by Eq. (3.24), which is repeated here

in the form
= P+ 7 | 346

Equations (3.44) and (3.46) have constant inductance coeflicients, and thus are
quite simple to use. Physically interpreted, these simpler flux-linkage equations
show that Ld is the self-inductance of an equivalent d-axis armature winding

IR | P e Al i A e tlaa £ Al A A Llial mereioc Atireant f tn
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Quadrature axis

All coils rotate together

Rotation f
Ry Ly

b-axis c-axis

FIGURE 3.15
Representation of the salient-pole synchronous generator by armature-equivalent direct-axis and
quadrature-axis coils rotating in synchronism with the field winding on the rotor.

produce the same mmf on the d-axis as do the actual stator currents i, i,, and
i.. Similarly, L, and i, apply to the g-axis. Accordingly, i, and i, give rise to
mmifs which are stationary with respect to the rotor. The fictitious d-axis
winding and the f winding representing the physical field can be considered to
act like two coupled coils which are stationary with respect to each other as they
rotate together sharing the mutual inductance AM, (k = \ﬁ/2 ) between them,
as shown by Eqgs. (3.44) and (3.46). Furthermore, the ficld and the d-axis coil do
not couple magnetically with the fictitious g winding on the g-axis, which lags
the d-axis in space by 90°. The zero-sequence inductance L is associated with
a stationary fictitious armature coil with no coupling to any other coils. Under
balanced conditions this coil carries no current, and therefore we omit it from
further discussion.

The d-axis and g-axis coils representing the stator windings are shown in
Fig. 3.15, which should be compared with the single-axis diagram for the
round-rotor machinc in Fig. 3.6.

Example 3.5. Under steady-state operating conditions the armature of the salient-
pole synchronous generator carries symmetrical sinusoidal three-phase currents

i, =2 I,lsin(8, — 6,)
i, = V2 i1 lsin(8, — 120° — 8,)
i =2 I,Isin(8, ~ 240° -- 8,) :
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where 6, = wt + 6 + 90°, as shown in Eq. (3.14). Using the P-transformation
matrix, find expressions for the corresponding d-g-0 currents of the armature.

Solution. From Eqgs. (3.42) and (3.43) we have

iy cos 6, cos(6, —120°) cos(6, — 240°) [ i,
iy | _ /2 |sin6, sin(6,—-120°) sin(6, — 240°) || i,
3
_ 1 1 1 _
lo — — — lc
] | V2 V2 V2

and row-by-column multiplication thcn gives

2
iq =\ 3 [0 008 0, + i, cos(8, = 120°) + i, cos(8, — 240°)]

2
iy = Y 5 Liasin 0, + iy sin(0, — 120°) + i, sin(8 — 240°)}

2 IS
if): \/;’i‘/_i_(h} + Iy +"c):|

Under balanced conditions i, + i, + i, = 0, and so i, = 0. By means of the
trigonometric identity 2 sin a cos 8 = sin(a + B8) + sin(a — B), we obtain

V2 |1 |sin(8, — 6,)cos 8,

If

i, cos 8,

[sin(28, — 8,) ~ sin§,]

11,1
V2
Likcwisc, we have

i, cos(0, — 120°) = V2 | Isin(0, — 120° — 0,)cos(0, ~ 120°)

A
= —[sin(26, — 240° — 8,) — sin 6, ]

V2

i, cos(8, — 240°) = V2 {I,lsin(8, — 240° — 6,)cos(8, — 240°)

! [si (29 480° — 6,) ~ sin 4, ]
—— ln —_— — —
fz o a | a

In the three preceding trigonometric expansions the first terms inside the brackets
are second harmonic sinusoidal quantities which sum to zero at every instant of
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time as in Sec. 3.2, and so we obtain

iy = ‘/_[ 3sin6,] = ~3 |L,]sin g,

We recall from Sec. 3.3 that 6, = 6 + &, where 6 is the phase angle of lag of i,
measured with respect to the termmal voltage and 6, is the phase angle of lag of i,
with respect to the internal voltage of the machine.

Accordingly,

= —V3ILlsin8, = — V3|1, lsin(6 + )

We can show in a similar manner that the quadrature-axis current

= V3 11,lcos 0, = V3|, |cos(0 + 5)

Thus, the expression for i, is exactly the same for the salient-pole and the
round-rotor machines. The flux linkages in the field winding are given by Eq.
(3.46), which shows that the direct-axis current i, is directly opposing the
magnetizing influence of the field when 6, = w/2, and the quadrature-axis

current z'q 1s then zero.

3.7 VOLTAGE EQUATIONS: SALIENT-POLE
MACHINE

In Sec. 3.6 the flux-linkage equations for the salient-pole machine are remark-
ably simple when expressed in terms of the d, g, and 0 variables. We now
consider other important simplifications which occur when the P-transformation
1s also applied to the voltage equations of the armature.

Using the voltage polarities and current directions of Fig. 3.4, let us write
the terminal-voltage equations for the armature windings of the salient-pole
machine in the form

dA dA, dA,
v = —Ri — — v, = —Ri, — —; v.= —Ri, —

a a dr’

(3.47)

In these cquations the voltages v,, v,, and v, are the line-to-ncutral terminal
voltages for the armature phases; the negative signs of the coefficients arise
because currents i,, i,, and i, are directed out of the generator. While simple
in format, Egs. (3.47) are in fact very difficult to handle if left in terms of A, A,

and A_. Again, a much simpler set of equations for the voltages v, v,, and vq is
found by employing the P-transformation. The calculations leading‘to the new
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voltage equations are straightforward but tedious, as shown in Sec. A.2 of the
Appendix, which yields

. d/\d
Ud= _Rld — 7 _(U/\q
dA, ]
v