
Chapter 3

3-1

Two New Approaches to Multi-
Codepage Capability

Unicode
Unicode is a white-character codepage originally designed by members of the
Xerox PARC. It is now integrated into the ISO standards (ISO-DIS 10646) by
the recently founded Unicode, Inc. In their canonical form, characters
consume four bytes. This form is called UCS-4 (Universal Coded Character
Set-4). However, the most commonly used portion of the set is expected to be
the Basic Multilingual Plane (BMP) and in it character entities take up the
lower two bytes each. This form is called UCS-2. The initial version (2 bytes)
of Unicode (ISO-DIS 10646) contains approximately 40.000 characters
covering European, Asian ideographs, Middle Eastern, Indian, and other
languages. For the definition of characters of the Arabic or Thai language
where base letters can have a huge variety of diacriticals or other marks, the
technique of combining characters is used. In this technique a code value for
a character can have up to 8 bytes.

The Unicode codepage defines codes for all European and some Asian lan-
guages and for many ideograms (symbols for terms) of the Chinese, Japanese
and Korean languages (collectively: CJK ideograms). Also, special alphabets
(e.g. OCR, math. + tech. symbols, ...) are contained.5 If Unicode were used as
the R/3 solution, then the R/3 system could remain a single-codepage sys-
tem since all languages would be specified in one codepage.

Although Unicode seems to solve most problems on the first view, a closer
look shows that an implementation with Unicode cannot be realized for sev-
eral reasons. Some problems even cannot be solved with Unicode. This is a
list of current arguments against Unicode:

� None of the today’s databases supports Unicode. They support either
single-byte or double-byte character sets.

� At the moment, no frontend software and no UNIX operating system
support Unicode directly. Windows NT does support Unicode (it works
internally with Unicode), but the adaptation of an application would
require considerable effort.

� Currently, no printer supports Unicode.

5 A Unicode overview can be found in the article ”Welt der Zeichen”; c’t 9/92, page 241 ff.

Double-Byte Codepage

Coded Languages

Solution with Unicode?

3 Two New Approaches to Multi-Codepage Capability

3-2

� The implementation of Unicode in R/3 would require significant effort
and cannot be realized with the 3.0 release.

� Conversion of all texts and other data that are codepage-dependent
would considerably raise the costs for:6

� Storage (doubled size in database, every character needs two bytes),

� Backup (doubled time and twice as much backup media),

� Data transfer (doubled time),

� Database reorganization (doubled time).

� Sorting with Unicode cannot be accomplished using the binary repre-
sentation of the symbols, since the codes are not assigned according to a
lexicographic sequence. Unicode therefore does not solve the problem
of sorting key fields.

� There are discussions in progress on adding 30,000 ideograms to the
Japanese alphabet. Therefore, the two bytes of Unicode may not be
enough in the long term to represent all symbols.

6 This argument generally holds for any double-byte storage mechanism for texts.

Two New Approaches to Multi-Codepage Capability 3

3-3

R/3 System with Multi-Codepage Capability
This section proposes a solution for an R/3 system with multi-codepage capa-
bility.7 The solution requires changes in the current R/3 implementation as
well as guidelines and conventions for the installation of such an R/3 sys-
tem. Those guidelines must be followed by enterprises that want to install an
R/3 system that has multi-codepage capability.

In the solution for distributed systems in chapter 2, it was mentioned that
global data uses a common character set. This prerequisite also has to be
fulfilled by an R/3 system that has multi-codepage capability. The special
replication mechanisms for multiple-system data transfer are not needed,
however. Data fields that are used globally (i.e. that are represented every-
where) may only contain symbols which are mapped to the same value in all
codepages (i.e. same position in codepage table). This common character set
comprises in most cases the character set of the English alphabet (this corre-
sponds to 7-bit US-ASCII).

Data fields containing symbols of a local codepage can only be changed on
an appropriate application server. In this context, ”appropriate” means an
application server that uses the same local codepage or a codepage that is
compatible to the local codepage. Here, ”compatible” means that there is a
meaningful conversion from the one character set to the other. This is the
case if most symbols from the first codepage can be translated to symbols in
the second.8 For example, EUC and S-JIS can be mapped into one another. It
is possible to group codepages so that all members of one group can be con-
verted from one to another. For every codepage employed in an R/3 system,
an application server that uses this codepage must be installed.

An R/3 user’s frontend server determines the codepage that is assigned to
her or his R/3 frontend process (SAPGUI).9 During logon, SAPGUI estab-
lishes a connection to an R/3 application server. The codepage conversion
described above may be required for data transfer between these two com-
ponents. No symbols may be misrepresented during this conversion and a
unique 1-to-1 translation must be made.

Symbols that cannot be represented by SAPGUI will be shown as special
symbols (bars ❚, suns ✲, ...) by the windows system or are not shown at all.
This is not critical, since no end user can expect to view all special symbols or
symbols of a double-byte codepage everywhere Fig. 3-1, Fig. 3-2 and Fig. 3-3

7 Multi-language system based on more than one codepage.

8 Symbols that cannot be mapped are uniquely converted to unused positions in the target
 codepage.

9 On a PC, there is only one codepage for the complete machine; on a workstation (with UNIX
 operation system), different processes can be assigned different codepages.

Common Character Set

Local Codepage

Assignment to a Frontend

Representation of Data

3 Two New Approaches to Multi-Codepage Capability

3-4

show an example of an R/3 screen displayed with different frontends. The
screen of Fig. 3-1 is displayed by a German frontend, and German Umlauts
are represented correctly but Japanese characters are not. Fig. 3-2 gives the
corresponding representation of a Japanese frontend and Fig. 3-3 shows the
screen on an English frontend. It is important that no symbols are destroyed,
i.e. symbols that cannot be represented reasonably must be returned to the
application server without changes (if they are not changed by the user
deliberately). Other output devices (printer, file, ...) do not require a conver-
sion of the local data.

Fig. 3-1: Text Created with Several Codepages Displayed on a German Frontend

Two New Approaches to Multi-Codepage Capability 3

3-5

Fig. 3-2: Text Created with Several Codepages Displayed on a Japanese Frontend

Fig. 3-3: Text Created with Several Codepages Displayed on an English Frontend

3 Two New Approaches to Multi-Codepage Capability

3-6

In printing, destruction of data cannot occur, since only output (i.e. read-only
access) is done. There are printers that are capable of a dynamic codepage
change. This functionality is assumed for printing from an R/3 system with
multi-codepage capability. To be able to print texts containing symbols from
several codepages, there will be a feature that allows the dynamic change of
a codepage from an application program while printing (SAPscript com-
mand). In general, there is a considerable degree of organizational separation
in print documents. Therefore, a mixing of codepages will rarely be neces-
sary. During printing of ABAP lists in a spool work process, no information
about the structure and codepage of the list is available. The codepage of the
entire ABAP list is determined by the ABAP list processor in the dialog work
process on the basis of the codepage of the application server.

For the update task service (independent process in the application server),
there must be an update task server (i.e. an application server with update
task service) active in the R/3 system for each codepage used. The dialog
work processes of an application server will be assigned dynamically
(starting with release 3.0) to the appropriate update task server. (In release
2.2x, the update task server will be determined at startup of the application
server.)

The update concept cannot be reused for background processing. That is,
there cannot be a fixed relation between a background job and an application
server with background work processes. Background jobs may include sev-
eral single steps where each step can have its own country key. The
codepage of the background process is changed dynamically if necessary for
a step, and the background job can be processed in the correct codepage. A
prerequisite for this procedure is the availability of all necessary codepages
on an application server.

Data transfer between systems is accomplished with communication mecha-
nisms such as batch input, RFC or CPI-C. Data that must be imported from
an external system usually contains only characters from the common char-
acter set. Because of this restriction, there cannot be a misinterpretation of
data due to codepage mismatch. This guarantees an error-free communica-
tion between the systems. If the data contains national characters organiza-
tional measures must ensure that the data is imported into an application
server that uses the appropriate codepage. These measures also apply to the
export of data.

Printing

Update Requests

Background Jobs

Communication with
External Applications

