
Extending Applications for New Interface Technologies:

An SAP R/3 Case Study

Michael Good, Robert Wenig, and Thuan-Tit Ewe

SAP America, Inc.
950 Tower Lane, 12th Floor
Foster City, CA 94404 USA

Tel: +1-415-287-3226
E-mail: michael.good@sap-ag.de

ABSTRACT
SAP has seen increasing demand for its R/3 system to
have a more extensible user interface. We describe an
intelligent terminal interface that extends R/3’s
capabilities to telephone, multimedia kiosk, World Wide
Web, and enhanced graphical interfaces. Incremental
changes to the existing presentation server add large
amounts of user interface capability. Choosing an
appropriate programming interface maximizes
compatibility with existing software and minimizes
learning time for application developers.

Keywords
Extensibility, business software, reengineering, OLE.

INTRODUCTION
SAP is the industry leader in standard enterprise
application software [3]. SAP’s R/3 product supports
reengineering projects in areas such as financial
accounting, sales and distribution, material and plant
management, and human resources (HR). The R/3 system
has a three-tier client-server architecture with presentation,
application, and database servers. The SAPGUI graphical
user interface runs on all major desktop platforms. R/3
application products, totaling many million lines of code,
are developed using SAP’s ABAP/4 Development
Workbench.

SAP was facing several business problems regarding the
presentation-level software. There was no provision for
user interfaces other than standard desktop GUIs. The
company thus was losing business to competitors who

could provide interactive voice response (IVR) telephone
interfaces for their products. Similarly, opportunities were
being lost for providing other new interfaces such as
multimedia kiosks and World Wide Web pages. ABAP/4
programmers find most of their time is spent struggling to
make a decent interface, as GUI design support in the
workbench has lagged the best PC-based tools. The
details change, but similar problems recur for application
vendors as user interface technology evolves and improves
[4].

More fundamentally, the user interface for many
applications was developed for trained specialists. Many
reengineering projects restructure work to emphasize both
less specialized tasks and greater self-service from
customers and vendors [2]. R/3’s interfaces could be
redesigned to better support non-specialist users, both for
desktop and alternative interface technologies.

R/3 already provides several application programming
interfaces (APIs) to support application extensibility. For
example, a remote function call interface provides similar
capabilities to many remote procedure call systems, and is
accessible on PCs via OLE Automation [1]. However, the
existing interfaces have two principal problems:

1. The business rules in the application software are only
fully accessible via direct interaction with the
SAPGUI, not through the existing programming
interfaces.

2. Thus, programmers usually need to learn ABAP/4 as
well, requiring long learning times to become familiar
with the R/3 system and development environment.

THE INTELLIGENT TERMINAL
We have developed a new integration technology for the
R/3 system by programming directly to the SAPGUI
through an „intelligent terminal“ interface. The current
SAPGUI communicates with the application server
through a terminal-like protocol, evolved from the

To be submitted to the ACM’s
CHI ’96 Conference on Human
Factors in Computing Systems

April 14-18, 1996
Vancouver, BC, Canada

mainframe heritage of the predecessor R/2 product. On
Windows systems, the SAPGUI interface currently
consists of two executable files. We have converted one of
those executables into a 32-bit dynamic link library (DLL)
with three entry points. We then developed a C-language
API on top of this DLL. The API is similar to other
„screen-scraping“ programs that take the contents of the
screen and make them accessible through standard data
structures and function calls.

We then built two higher-level interfaces on top of this
API. The OLE Automation server is used by Windows
clients such as multimedia kiosk programs developed
using Visual Basic. The serial-line server is used by
clients running on other operating systems, such as IVR
clients on OS/2.

By programming the SAPGUI directly, we circumvent
both the learning curve and business rule problems. To
build a new interface to an existing application, one just
needs to learn how the application is performed with the
existing interface. Instead of learning an entirely new
programming environment, one only learns how to use a
new API within the existing programming environment.
The SAP-specific knowledge required for developing a
new interface can thus primarily reside with the users of
the system, rather than with the programmers of the new
interface.

Intelligent terminal programs work primarily with
transaction codes, function keys, and the labels of the
controls that appear on the screen. The following Visual
Basic program retrieves a telephone number for a specific
personnel code. This code fragment assumes we have
already created the OLE Automation object called „Sap“
and logged onto an R/3 system. The program goes to the
„pa30“ transaction for maintaining HR master data and
inputs the personnel code into the text field to the right of
its label. In an IVR application, this number could be
keyed in over the phone. The program then selects the
„Addresses“ radio button to the left of its label, and inputs
the „Change“ function key so that the data may later be
changed by the user. The telephone number is placed into
a variable, which could then be read back to the user over
the phone.

Dim Ctrl As Integer
Dim MyID, Telephone As String
MyID = "1502" ' Would come from user
Sap.Transaction "pa30"
Ctrl = Sap.FindControlRight("Personnel")
Sap.Controls.Item(Ctrl).Value = MyID
Ctrl = Sap.FindControlLeft("Addresses")
Sap.Controls.Item(Ctrl).Selected = True
Sap.SendKey("Change")
Ctrl = Sap.FindControlRight("Telephone")
Telephone =

Sap.Controls.Item(Ctrl).Value

CURRENT USAGE
Partner companies have developed several new application
interfaces with the intelligent terminal. These interfaces
were developed in a few days. Prior attempts with
existing interfaces to R/3 had failed after several months
of work.

We demonstrated kiosk and telephone interfaces for self-
service human resources transactions such as address
changes at the 1995 Sapphire user conference. A
proactive interface for service monitoring is part of
Andersen Consulting’s DAVINCI demonstration. The
software monitors the plant management system and can
call or fax the responsible party when it sees that
equipment is failing too frequently. A kiosk application
for self-service entry, update, and review of personnel
qualifications is currently under development.

Within SAP, we have demonstrated telephone and Web
interfaces for monitoring the status of problem reports that
one has entered into a vendor’s problem-tracking system.
We have implemented a Visual Basic program that can
save any R/3 screen as a Visual Basic form, providing a
starting point for GUI redesign. The OLE Automation
server opens access to R/3 to many Windows applications.
As an example, we can now save and replay R/3
interactions to and from an Excel spreadsheet. This was
written to prototype an easier way for SAP to maintain the
sample company database provided with R/3’s training
materials.

FUTURE WORK
We see the intelligent terminal as a first enabling step to
move R/3 interface development to the presentation
server, leaving the business logic at the ABAP/4
application level. We are working on providing
programmers access to the table and field names in the
repository, rather than having to rely on surface features of
screen appearance. We also plan to add support for
heterogeneous network interfaces.

CONCLUSION
The SAP R/3 intelligent terminal is a case study of
extending an existing large-scale application to work with
new human-computer interaction technologies.
Incremental changes to a small part of the current software
product allow us to easily add a diversity of interface
styles that were not supported in the original product
design. Choosing the right level of programmability is
also important. It is not sufficient to have „open“
interfaces. They must be open at the level that allows
developers to solve real-life business problems quickly
and effectively.

ACKNOWLEDGMENTS
We thank our partners at Edify, Co-Development, and
Talx for driving the development of the intelligent
terminal.

REFERENCES
1. Brockschmidt, K. Inside OLE. 2nd Ed. Microsoft Press,

Redmond, WA, 1995.

2. Hammer, M. and Champy, J. Reengineering the
Corporation. HarperBusiness, New York, 1993.

3. Lieber, R. B. Here comes SAP. Fortune, Oct. 2,
1995.

4. Telles, M. Updating an older interface. In Proc. CHI
’90 Human Factors in Computing Systems (Seattle,
April 1-5, 1990), ACM Press, pp. 243-247.

