title ullrem - unsigned long remainder routine ;*** ;ullrem.asm - unsigned long remainder routine ; ; Copyright (c) 1985-1997, Microsoft Corporation. All rights reserved. ; ;Purpose: ; defines the unsigned long remainder routine ; __aullrem ; ;******************************************************************************* .xlist include cruntime.inc include mm.inc .list ;*** ;ullrem - unsigned long remainder ; ;Purpose: ; Does a unsigned long remainder of the arguments. Arguments are ; not changed. ; ;Entry: ; Arguments are passed on the stack: ; 1st pushed: divisor (QWORD) ; 2nd pushed: dividend (QWORD) ; ;Exit: ; EDX:EAX contains the remainder (dividend%divisor) ; NOTE: this routine removes the parameters from the stack. ; ;Uses: ; ECX ; ;Exceptions: ; ;******************************************************************************* CODESEG _aullrem PROC NEAR push ebx ; Set up the local stack and save the index registers. When this is done ; the stack frame will look as follows (assuming that the expression a%b will ; generate a call to ullrem(a, b)): ; ; ----------------- ; | | ; |---------------| ; | | ; |--divisor (b)--| ; | | ; |---------------| ; | | ; |--dividend (a)-| ; | | ; |---------------| ; | return addr** | ; |---------------| ; ESP---->| EBX | ; ----------------- ; DVND equ [esp + 8] ; stack address of dividend (a) DVSR equ [esp + 16] ; stack address of divisor (b) ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K or eax,eax jnz short L1 ; nope, gotta do this the hard way mov ecx,LOWORD(DVSR) ; load divisor mov eax,HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; edx <- remainder, eax <- quotient mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; edx <- final remainder mov eax,edx ; edx:eax <- remainder xor edx,edx jmp short L2 ; restore stack and return ; ; Here we do it the hard way. Remember, eax contains DVSRHI ; L1: mov ecx,eax ; ecx:ebx <- divisor mov ebx,LOWORD(DVSR) mov edx,HIWORD(DVND) ; edx:eax <- dividend mov eax,LOWORD(DVND) L3: shr ecx,1 ; shift divisor right one bit; hi bit <- 0 rcr ebx,1 shr edx,1 ; shift dividend right one bit; hi bit <- 0 rcr eax,1 or ecx,ecx jnz short L3 ; loop until divisor < 4194304K div ebx ; now divide, ignore remainder ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mov ecx,eax ; save a copy of quotient in ECX mul dword ptr HIWORD(DVSR) xchg ecx,eax ; put partial product in ECX, get quotient in EAX mul dword ptr LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L4 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we're ok, otherwise ; subtract the original divisor from the result. ; cmp edx,HIWORD(DVND) ; compare hi words of result and original ja short L4 ; if result > original, do subtract jb short L5 ; if result < original, we're ok cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words jbe short L5 ; if less or equal we're ok, else subtract L4: sub eax,LOWORD(DVSR) ; subtract divisor from result sbb edx,HIWORD(DVSR) L5: ; ; Calculate remainder by subtracting the result from the original dividend. ; Since the result is already in a register, we will perform the subtract in ; the opposite direction and negate the result to make it positive. ; sub eax,LOWORD(DVND) ; subtract original dividend from result sbb edx,HIWORD(DVND) neg edx ; and negate it neg eax sbb edx,0 ; ; Just the cleanup left to do. dx:ax contains the remainder. ; Restore the saved registers and return. ; L2: pop ebx ret 16 _aullrem ENDP end