APPENDIX D

Program in MATLAB for Flexibility and Stiffness Methods
This appendix explains the power of MATLAB in solving structural analysis problems by semi-automatic flexibility and stiffness methods. One example for each method is given and the M files for them are also given for easy reference.
Introduction

Computers are indispensable for creative work in science and engineering; academic institutions are increasingly becoming aware of the importance of computer use and are promoting software literacy. However, the high cost of commercial quality software and the challenge of integrating it into the curriculum have made it difficult to turn that awareness into positive results. Students, however, need to be introduced to this powerful tool early in their academic careers. They can use MATLAB, not only to get the answers, but also to understand how to get answers. The MATLAB is an interactive system and programming language for general scientific and technical computation. It allows solutions of many numeric problems in a fraction of time it would take to write a program in a language such as FORTRAN, BASIC or C. Its basic data elements are a matrix that does not require dimensioning. The MATLAB can be easily used for obtaining solutions to structural analysis problems. The basic concepts of semi-automatic flexibility and stiffness methods are explained in Chapters 8 and 9, respectively.

About MATLAB

The first version of MATLAB was written at the University of New Mexico and Stanford University in the late 1970s. It was intended for use in courses in matrix theory, linear algebra and numerical analysis. The packages LINPACK and EISPACK were used for matrix manipulation. Now the MATLAB’s capabilities extend far beyond the original “Matrix Laboratory”. The MATLAB is an interactive system and programming language for general scientific and technical computation. It encapsulates algorithmic mathematics in a form that can be easily applied to a wide range of disciplines in courses such as digital signal processing, control theory, linear algebra, signals and systems, numerical methods, applied mathematics, matrix methods of structural analysis and advanced engineering mathematics. The MATLAB can be effectively incorporated into curriculum to enhance the understanding of both fundamental and advanced topics, enabling the student to actively put theory into practice.

Use of Matlab for Structural Analysis 

The matrix methods of structural analysis involve a lot of matrix manipulation, for which the MATLAB can be easily applied to get the solution quickly, without much difficulty. The matrix manipulations used are: matrix multiplication, matrix addition, matrix transpose, matrix subtraction, and matrix inversion. For example, consider


[image: image7.wmf]

This matrix [A] can be input in MATLAB as

A = [1,2,3; 4,5,6; 7,8,9]

B = [2,4; 5,6; 9,10] represents a matrix of size 3 ( 2 


[image: image3.wmf]24

[B]56

910

éù

êú

=

êú

êú

ëû


The transpose of matrix [B] can be obtained in MATLAB by simply typing B( in MATLAB prompt.

B(
 ans =

              2  5  9

              4 6 10

In MATLAB, B(  ( A represents the transpose of matrix B multiplied by the matrix A, i.e. B( ( A  means  BTA.

B( ( A

ans =

           85  101  117

           98  118  138

Similarly, C = B( ( A ( B represents the multiplication of A by B and this result 
premultiplied by transpose B is stored in variable C.

C = B( ( A ( B

C =

       1728   2116

       2028   2480

If  [C] {X} = {D} (where DT = < 5672  6536 >), then the solution to this equation can be obtained in MATLAB as

X = inv(C) ( D and the answer is given as

X =

       2.000

       1.000

or  in MATLAB, X is also given by  X = C \ D and the MATLAB gives the same answer as above.

If two matrices E and F, E = [1,2; 3,4] and F = [5,6; 7,8], are to be added and the result is 
to be stored in variable G, then in MATLAB it is represented by G = E + F and the result 
is 

G = 

       6     8 

       7   12 

If  H=F(E, then

H =

       4    4

       4    4 
In the semi-automatic flexibility method, the element equilibrium is given by 
[image: image1.wmf]123

Matrix[A]456

789

éù

êú

=

êú

êú

ëû

{p} = [b0]{F0} + [b(]{F(}. The other data required are initial stress {p0}, the initial strain {(0}, the forces at coordinates {F0}, the settlement corresponding to redundant forces {u(} and the spring flexibility matrix corresponding to redundant forces ((s). In order to solve the problem, the matrices [(], [b0],{F0}, [b(], {p0},{u(},{(0}and ((s) are to be input. The sub-matrices [a00], [a01], [a10] and [a11] are obtained in MATLAB by using notations
al, b0, f0, b1, p0, u1, d0 and (s as input quantities.
Hence the four matrices are obtained as follows:

Basic Principle
MATLAB Command


[a00] = [b0]T[(][b0]
aoo = (bo( ( a1 ( bo)


[a01] = [b(]T[(][b(]
ao1 = (bo( ( a1 ( b1)


[a10] = [b(]T[(][
b0] = [a01]T
a1o = ao1(

[a1w] = [b(]T[(][b(]
a1w = (b1( ( a1 ( b1)


[a11] = [a1w] + [(s]
a11 = a1w + as
where [a11w] is the flexibility matrix corresponding to redundant forces without  considering the spring at redundant forces. The flexibility matrix including the spring effect [a11] is given by a11 = a11w + (s  and the redundant forces are given by 
{F(} = [a11](1[{u(} ( [a10] {F0} ( [b(]T {(0}] 
and this is obtained in MATLAB as 

 f1 = inv[a11] ( [ u1 ( a1o ( fo ( b1( ( do ]  
The final element forces are given by 
{p} = [b0]{F0} + [b(]{F(} + {p0} 
and in the MATLAB they are given by

p = bo ( fo + b1 ( f1 + po
The deformations at applied forces are given by in MATLAB as
uo = aoo ( fo + ao1 ( f1 + bo( ( do
In order to analyze the multiple loading case, the values of p0, F0, (0 need to be given as matrices instead of column vectors. The results are also matrices instead of vectors in which each column represents the corresponding results for each loading case.
     In a similar manner the problem is also solved by the stiffness method in which the compatibility between the element and system is given by  

{(} = [(] {u}

In the structure there may be initial strain [(0], initial stress [p0] and spring at generalized  coordinates [ks]. 
     The element forces are given by

{p} = [k] {(} where [k] is the element stiffness matrix.

     The system stiffness matrix without considering springs at the generalized coordinates is given by [K] = [(]T[k][(] which in MATLAB is given by  K = (( ( k ( (.
   The system stiffness matrix after considering springs at the generalized coordinates is  given  by [K] = [K] + [ks]  and in MATLAB it is represented by K = K + ks. 

     If the final forces at the generalized coordinates are {F}, then the displacements at the generalized coordinates are given by 
u = inv(K) ( F

The final element force p is given by

p = k ( ( ( u -- k ( do  + po
Multiple loading can be also analyzed using the same program, for which F, (0  and  p0
need to be given as matrices instead of vectors.

Matlab M Files

The MATLAB answers whatever the user asks. For simple problems, entering the request at MATLAB prompt is fast and efficient. However as the number of commands increases or the user wishes to change the value of one or more variables and re-evaluate a number of commands, typing at MATLAB prompt becomes tedious. The MATLAB allows us to place the MATLAB commands in a simple text file and then make MATLAB to open the file and evaluate the commands exactly as if the user had typed them at MATLAB prompt.  These files are called script files or M files. The term M files recognizes the fact that script files names must end with the extension ‘m’. For example, flex.m or stif.m, etc. The M files written for flexibility and stiffness methods are given below and the input data files for the problems shown in Fig. D1 and Fig. D2 are given in the flex.dat and stif.dat, respectively. The problems are solved by assuming the elements as simply supported.
[image: image4.wmf]
In M files, the input data can be given in a separate file or in the script file itself or interactively. In the M file written for flexibility and stiffness, option is given to the user who can select the mode of giving data in any of the three forms. Similarly, the output can also be stored in a file.
 The use of MATLAB to solve the structural analysis problems by the semi-automatic flexibility and stiffness methods is explained here. The use of M files, the modes of giving input and the M files created for flexibility and stiffness methods are also presented.

Reference: 
1. Anonymous, User’s Guide to “ the Student Edition of MATLAB, the Ultimate Computing Environment for Technical Education’’, Prentice-Hall, Englewood Cliffs, NJ, 1995.

M File for the Flexibility Method

clear all;

d='ENTER "0" FOR I/P from file,"1" for i/p from terminal, "2" for interactive';

disp(d);

ff1=fopen('flout.dat','w');

r=input('  ');

if r<1

ff=fopen('flexp.dat','r');

x1=fscanf(ff,'%s',1);

disp(x1);

rbo=fscanf(ff,'%f',1);

rco=fscanf(ff,'%f',1);

for i=1:rbo

for j=1:rco

c1=fscanf(ff,'%f',1);

bo(i,j)=c1;

end

end

disp(bo);

x2=fscanf(ff,'%s',1);

disp(x2);

rb1=fscanf(ff,'%f',1);

rc1=fscanf(ff,'%f',1);

for i=1:rb1

for j=1:rc1

c2=fscanf(ff,'%f',1);

b1(i,j)=c2;

end

end

disp(b1);

x3=fscanf(ff,'%s',1);

disp(x3);

ral=fscanf(ff,'%f',1);

cal=fscanf(ff,'%f',1);

for i=1:ral

for j=1:cal

c3=fscanf(ff,'%f',1);

al(i,j)=c3;

end

end

disp(al);

x4=fscanf(ff,'%s',1);

disp(x4);

rfo=fscanf(ff,'%f',1);

cfo=fscanf(ff,'%f',1);

for i=1:rfo

for j=1:cfo

c4=fscanf(ff,'%f',1);

fo(i,j)=c4;

end

end

disp(fo);

x5=fscanf(ff,'%s',1);

disp(x5);

rdo=fscanf(ff,'%f',1);

cdo=fscanf(ff,'%f',1);

for i=1:rdo

for j=1:cdo

c5=fscanf(ff,'%f',1);

do(i,j)=c5;

end

end

disp(do);

x6=fscanf(ff,'%s',1);

disp(x6);

rpo=fscanf(ff,'%f',1);

cpo=fscanf(ff,'%f',1);

for i=1:rpo

for j=1:cpo

c6=fscanf(ff,'%f',1);

po(i,j)=c6;

end

end

disp(po);

x7=fscanf(ff,'%s',1);

disp(x7);

ru1=fscanf(ff,'%f',1);

cu1=fscanf(ff,'%f',1);

for i=1:ru1

for j=1:cu1

c7=fscanf(ff,'%f',1);

u1(i,j)=c7;

end

end

disp(u1);

x8=fscanf(ff,'%s',1);

disp(x8);

rs=fscanf(ff,'%f',1);

cs=fscanf(ff,'%f',1);

for i=1:rs

for j=1:cs

c8=fscanf(ff,'%f',1);

as(i,j)=c8;

end

end

'SPRING FLEXIBILITY';

disp(as);

else

if r<2

%INPUT FOR BO  MATRIX  

bo=[-5,-1,-1;0,1,1;0,0,-1;0,0,1;0,0,0;0,0,0;];

disp(bo);

%INPUT FOR B1 MATRIX

b1=[2,4,-1;-7,-4,1;7,4,-1;-7,0,1;7,0,-1;0,0,1];

disp(b1);

%INPUT FOR ALPHA MATRIX

al=[.333,-.1667,0,0,0,0;-.167,.333,0,0,0,0;...

0,0,.333,-.167,0,0;0,0,-.167,.333,0,0;0,0,0,...

0,.333,-.167;0,0,0,0,-.167,.333];

disp(al);

%INPUT FOR APPLIED FORCE

fo=[0;2.67;-2.67];

disp(fo);

%INPUT FOR INITIAL STRAIN DO

do=[0;0;0;0;0;0];

disp(do);

%INPUT FOR INITIAL STRESS pO

po=[0;0;-2.67;2.67;0;0];

disp(po);

%INPUT FOR SETTLEMENT AT REDUNDANT

u1=[0;0;0]

disp(u1);

%INPUT FOR SPRING STIFFNESS

as=[1,0,0;0,0,0;0,0,.5];

disp(as);

else

rbo=input('NUMBER OF ROWS IN BO MATRIX');

cbo=input('NUMBER OF COLUMNS IN BO MATRIX');

for i = 1:rbo

for j = 1:cbo

bom = input(' ');

bo(i,j)=bom;

end

end

disp(bo);

rb1=input('NUMBER OF ROWS IN B1 MATRIX');

cb1=input('NUMBER OF COLUMNS IN B1 MATRIX');

for i = 1:rb1

for j = 1:cb1

b1m = input(' ');

b1(i,j)=b1m;

end

end

disp(b1);

ral=input('NUMBER OF ROWS IN ALPHA MATRIX');

cal=input('NUMBER OF COLUMNS IN ALPHA MATRIX');

for i = 1:ral

for j = 1:cal

alm = input(' ');

al(i,j)=alm;

end

end

disp(al);

rfo=input('NUMBER OF ROWS IN APPLIED FORCE FO MATRIX');

cfo=input('NUMBER OF COLUMNS IN APPLIED FORCE FO MATRIX');

for i = 1:rfo

for j = 1:cfo

fom = input(' ');

fo(i,j)=fom;

end

end

disp(fo);

rdo=input('NUMBER OF ROWS IN INITIAL STRAIN MATRIX do');

cdo=input('NUMBER OF COLUMNS IN INITIAL STRAIN MATRIX do');

for i = 1:rdo

for j = 1:cdo

dom = input(' ');

do(i,j)=dom;

end

end

disp(do);

rpo=input('NUMBER OF ROWS IN INITIAL STRESS MATRIX po');

cpo=input('NUMBER OF COLUMNS IN INITIAL STRESS MATRIX po');

for i = 1:rpo

for j = 1:cpo

pom = input(' ');

po(i,j)=pom;

end

end

disp(po);

ru1=input('NUMBER OF ROWS IN SETTLEMENT AT RED MATRIX u1');

cu1=input('NUMBER OF COLUMNS IN SETTLEMENT IN RED MATRIX u1');

for i = 1:ru1

for j = 1:cu1

u1m = input(' ');

u1(i,j)=u1m;

end

end

disp(u1);

end

end

aoo=(bo'*al*bo),

ao1=(bo'*al*b1),

a1o=ao1',

a1w=(b1'*al*b1),

a11=(a1w+as),

uf=u1-b1'*do-a1o*fo;

a1=inv(a11);

f1=a1*uf;

p=(bo*fo)+(b1*f1)+po;

q=input('ENTER "0" FOR O/P IN FILE,"1" for O/P IN TERMINAL') ;

if q>0

'REDUNDANT FORCES ARE'

disp(f1);

'FINAL ELEMENT FORCES'

disp(p);

u=(aoo*fo)+(ao1*f1)+(bo'*do);

'FINAL DISPLACEMENTS AT APPLIED FORCES'

disp(u);

else

fprintf(ff1,'\r\nREDUNDANT FORCES ARE');

fprintf(ff1,'\r\n%10.4f ', f1);

fprintf(ff1,'\r\nFINAL ELEMENT FORCES');

fprintf(ff1,'\r\n%10.4f', p);

fprintf(ff1,'\r\nDISPLACEMENTS AT APPLIED FORCES ARE');

fprintf(ff1,'\r\n%10.4f',u1);

end
Input for the Flexibility Method

DATA_FOR_BO_MATRIX

6

3

-5 -1 -1

0 1 1

0 0 -1

0 0 1

0 0 0

0 0 0

DATA_FOR_B1_MATRIX

6

3

2 4 -1

-7 -4 1

7 4 -1

-7 0 1

7 0 -1

0 0 1

DATA_FOR_ALPHA_MATRIX

6

6

.333 -.167 0 0 0 0

-.167 .333 0 0 0 0

0 0 .333 -.167  0 0 

0 0 -.167 .333 0 0

0 0 0 0 .333 -.167

0 0 0 0 -.167 .333

DATA_FOR_FO_MATRIX

3

1

0 

2.67

-2.67

DATA_FOR_INITIAL_STRAIN_DO_MATRIX

6

1

0

0

0

0

0

0 

DATA_FOR_INITIAL_STRESS_PO_MATRIX

6

1

0

0

-2.67

2.67

0

0

DATA_FOR_SETTLEMENT_AT_REDUNDANTS

3

1 

0

0

0

DATA FOR SPRING FLEXIBILITY AT REDUNDANTS



3

3
1 0 0

0 0 0 

0 0 .5

Output  for the Flexibility Method
Redundant Forces Are

    -0.3279 

     0.1176 

   -0.4408 

Final Element forces
     0.2553

    1.3841

   -1.3841

    1.8544

   -1.8544

   -0.4408

 DISPLACEMENTS AT APPLIED FORCES ARE
      0.7307

      0.5644

     -0.4863

M File for the Stiffness Method
clear all;

r=input('ENTER "0" FOR DATA FROM FILE,"1" FOR DATA FROM TERMINAL,"2" FOR INTERACTIVE'); 

ff1=fopen('stout.dat','w');

if r<1

ff=fopen('st.dat','r');

x1=fscanf(ff,'%s',1);

disp(x1);

rb=fscanf(ff,'%f',1);

cb=fscanf(ff,'%f',1);

for i=1:rb

for j=1:cb

c1=fscanf(ff,'%f',1);

b(i,j)=c1;

end

end

disp(b);

x2=fscanf(ff,'%s',1);

disp(x2);

rk=fscanf(ff,'%f',1);

ck=fscanf(ff,'%f',1);

for i=1:rk

for j=1:ck

c2=fscanf(ff,'%f',1);

k(i,j)=c2;

end

end

disp(k);

x3=fscanf(ff,'%s',1);

disp(x3);

rdo=fscanf(ff,'%f',1);

cdo=fscanf(ff,'%f',1);

for i=1:rdo

for j=1:cdo

c3=fscanf(ff,'%f',1);

do(i,j)=c3;

end

end

disp(do);

x4=fscanf(ff,'%s',1);

disp(x4);

rfo=fscanf(ff,'%f',1);

cfo=fscanf(ff,'%f',1);

for i=1:rfo

for j=1:cfo

c4=fscanf(ff,'%f',1);

fo(i,j)=c4;

end

end

disp(fo);

x5=fscanf(ff,'%s',1);

disp(x5);

rpo=fscanf(ff,'%f',1);

cpo=fscanf(ff,'%f',1);

for i=1:rpo

for j=1:cpo

c5=fscanf(ff,'%f',1);

po(i,j)=c5;

end

end

disp(po);

x6=fscanf(ff,'%s',1);

disp(x6);

rsk=fscanf(ff,'%f',1);

csk=fscanf(ff,'%f',1);

for i=1:rsk

for j=1:csk

c5=fscanf(ff,'%f',1);

ks(i,j)=c5;

end

end

disp(ks);

else

if r<2

%INPUT FOR Beta  MATRIX  

b=[-.25,0,0;-.25,1,0;0,1,0;0,0,1;-.25,0,1;-.25,0,0]

%disp(b);

%INPUT FOR ELEMENT STIFFNESS MATRIX k

k=[4,2,0,0,0,0;2,4,0,0,0,0;0,0,4,2,0,0;0,0,2,4,0,0;0,0,0,0,4,2;0,0,0,0,2,4];

disp(k);

%INPUT FOR INTIAL STRAIN DO

do=[0;0;0;0;0;0];

disp(do);

%INPUT FOR APPLIED FORCE

fo=[0;0;0];

disp(fo);

%INPUT FOR INITIAL STRESS pO

po=[0;0;-12;12;0;0];

disp(po);

%input spring stiffness

ks=[0,0,0;0,0,0;0,0,0];

disp(ks);

else

rb=input('NUMBER OF ROWS IN B MATRIX');

cb=input('NUMBER OF COLUMNS IN B MATRIX');

for i = 1:rb

for j = 1:cb

bm = input(' ');

b(i,j)=bm;

end

end

disp(b);

rk=input('NUMBER OF ROWS IN ELEMENT STIFFNESS MATRIX');

ck=input('NUMBER OF COLUMNS IN ELEMENT STIFFNESS MATRIX');

for i=1:rk

for j=1:ck

c2=input('');

k(i,j)=c2;

end

end

disp(k);

rdo=input('NUMBER OF ROWS IN INITIAL STRAIN MATRIX');

cdo=input('NUMBER OF COLUMNS IN INITIAL STRAIN MATRIX');

for i=1:rdo

for j=1:cdo

c3=input('');

do(i,j)=c3;

end

end

disp(do);

rfo=input('NUMBER OF ROWS IN APPLIED FORCES');

cfo=input('NUMBER OF COLUMNS IN APPLIED FORCES');   

for i=1:rfo

for j=1:cfo

c4=input('');

fo(i,j)=c4;

end

end

disp(fo);

rpo=input('NUMBER OF ROWS IN INITIAL STRESS MATRIX');

cpo=input('NUMBER OF COLUMNS IN INITIAL STRESS MATRIX');

for i=1:rpo

for j=1:cpo

c5=input('');

po(i,j)=c5;

end

end

disp(po);

end

end

K1=(b'*k*b);

K=K1+ks;

ffi=fo-(b'*po)+(b'*k*do);

u=inv(K)*ffi;

p=(k*b*u);

pf=po+p-(k*do);

q=input('ENTER "0" FOR O/P IN FILE,"1" for O/P IN TERMINAL') ;

if q>0

'DISPLACEMENTS AT GENERALIZED COORDINATES'

disp(u);

'ELEMENT FORCES DUE TO APPLIED FORCES'

disp(p);

'FINAL ELEMENT FORCES'

disp(pf);

else
fprintf(ff1,'\r\nDISPLACEMENTS AT GENERALIZED COORDINATES');

fprintf(ff1,'\r\n%10.4f ', u);

fprintf(ff1,'\r\nELEMENT FORCES DUE TO APPLIED FORCES');

fprintf(ff1,'\r\n%10.4f', p);

fprintf(ff1,'\r\nFINAL ELEMENT FORCES');

fprintf(ff1,'\r\n%10.4f',pf);

end

Input  for the Stiffness  Method
Data_for_Beta_Matrix
6

3

-.25 0 0

-.25 1 0

0 1 0

0 0 1

-.25 0 1

-.25 0 0

Data_for_Element_Stiffness_Matrix

6

6

4 2 0 0 0 0 

2 4 0 0 0 0

0 0 4 2 0 0

0 0 2 4 0 0

0 0 0 0 4 2

0 0 0 0 2 4

Data_for_Initial_Strain_Do_Matrix
6

1

0 

0

0

0

0

0

Data_for_Fo_Matrix

3

1

0

0

0

Data_for_Initial_Stress_Po_Matrix

6

1

0

0

-12

12

0

0

Data_Spring_Stiffness_at_Generalized_Coordinates

3 

3

0 0 0 

0 0 0 

0 0 0

Output for the Stiffness Method

DISPLACEMENTS AT GENERALIZED COORDINATES'


  0.0000 

  2.0000 

 -2.0000 

 ELEMENT FORCES DUE TO APPLIED FORCES

    4.0000

    8.0000

    4.0000

   -4.0000

   -8.0000

   -4.0000

 FINAL ELEMENT FORCES

    4.0000

    8.0000

   -8.0000

    8.0000

   -8.0000

   -4.0000









� EMBED Equation.3  ���















































� EMBED CDraw5  ���









1
17

[image: image5.wmf][image: image6.wmf]_1048411675.unknown

_1049199430.unknown

_1052986840.unknown

_1048410118.unknown

_960377708.unknown

