Properties of Soils

This appendix presents some information and tables containing properties of soils which will be of interest to the structural designer.

C.1 Soil Tests

For low-rise buildings, depth of borings may be specified to be about 6 m below the anticipated foundation level, with at least one boring continuing deeper, to a lesser of 30 m, the least building dimension, or refusal. At least one soil boring should be specified for every 230 square metres of the building area for buildings over 12 m height, or having more than three storeys. For large buildings founded on poor soils, borings should be spaced at less than 15 m intervals. A minimum of five borings, one at the centre and the rest at the corners of the building, is recommended.

C.2 Order of Soil Suitability for Foundation Support

Best : Bed rock

Very good : Sand and gravel

Good : Medium to hard clay (that is kept dry)

Poor : Silts and soft clay

Undesirable : Organic silts and organic clay

Unsuitable : Peat

C.3 The Plasticity Index (PI)

The plasticity index (PI) of the soil provides an indication of how much clay will shrink or swell. The higher the PI, the greater is the shrink-swell potential.

PI of 0–15% : Low expansion potential
PI of 15–25% : Medium expansion potential
PI of 25% and above : High expansion potential

Table C.1 Typical mass densities of basic soil types

Type of Soil	Mass density ρ (Mg/m³)*				
	Poorly graded soil		Well-graded soil		
	Range	Typical value	Range	Typical value	
Loose sand	1.70-1.90	1.75	1.75-2.00	1.85	
Dense sand	1.90-2.10	2.07	2.00-2.20	2.10	
Soft clay	1.60-1.90	1.75	1.60-1.90	1.75	
Stiff clay	1.90-2.25	2.00	1.90-2.25	2.07	
Silty soils	1.60-2.00	1.75	1.60-2.00	1.75	
Gravelly soils	1.90-2.25	2.07	2.00-2.30	2.15	

^{*}Values are representative of moist sand, gravel, saturated silt, and clay.

Table C.2 Typical values of modulus of elasticity (E_S) for different types of soils

Type of Soil	E_s (N/mm ²)
Clay	
Very soft	2–15
Soft	5–25
Medium	15-50
Hard	50-100
Sandy	25–250
Glacial till	
Loose	10–153
Dense	144–720
Very dense	478–1,440
Loess	14–57
Sand	
Silty	7–21
Loose	10–24
Dense	48-81
Sand and gravel	
Loose	48–148
Dense	96–192
Shale	144–14,400
Silt	2–20

Table C.3 Typical values of modulus of subgrade reaction $(k_{\rm s})$ for different types of soils

Type of Soil	$k_s (kN/m^3)$
Loose sand	4,800–16,000
Medium dense sand	9,600-80,000
Dense sand	64,000-1,28,000
Clayey medium dense sand	32,000-80,000
Silty medium dense sand	24,000–48,000

(contd)

(contd)

(conta)	
Clayey soil:	
$q_u \le 200 \text{ N/mm}^2$	12,000-24,000
$200 < q_u \le 400 \text{ N/mm}^2$	24,000-48,000
$q_u > 800 \text{ N/mm}^2$	> 48,000
q_u – Safe bearing capacity	

Table C.4 Typical values of Poisson's ratio (μ) for soils

Type of soil	μ
Clay (saturated)	0.4 - 0.5
Clay (unsaturated)	0.1 - 0.3
Sandy clay	0.2 - 0.3
Silt	0.3 - 0.35
Sand (dense)	0.2 - 0.4
Course (void ratio = $0.4 - 0.7$)	0.15
Fine grained (void ratio = $0.4 - 0.7$)	0.25
Rock	0.1–0.4 (depends on type of rock)
Loess	0.1 - 0.3
Ice	0.36
Concrete	0.15

Table C.5 Allowable bearing pressures on soils (for preliminary design)

Type of roc	k/soil	Allowable bearing pressure (kN/m²)	Standard penetration blow count (N)	Apparent cohesion c_u (kPa)
and defects and diorite)			>30	_
	rocks (e.g., sand- me-stone in sound	d 1,600	>30	_
Soft or brok	ken rock, hard sha naterial	900 450	30	_
Gravel	Dense Medium	450 450 96–285 Compact and dry	>30 >30 Loose and dry	
Sand*	Coarse Medium Fine or silt	450 250 150	250 48–120 100	30–50 15–30 <15
Clay ⁺	Very stiff Medium stiff Soft	190–450 200–250 50–100	15–30 4–15 0–4	100–200 25–100 0–25
Peat, silts, made-up ground	To be determine	ed after investigation		

Notes: * Reduce bearing pressures by half below the water table.

 $^{^+}$ Alternatively, allow 1.2 times c_u for round and square footings, and 1.0 times c_u for length/width ratios of more than 4.0. Interpolate for intermediate values.

Table C.6 Typical interface friction angles (NAVFAC 1982)

	Interface materials	Interface friction angle δ
Mass concrete against	Clean sound rock	25
	Clean gravel, gravel-sand mixtures, coarse sand	29 – 31
	Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel	24 – 29
	Clean fine sand, silty or clayey fine to medium sand	19 – 24
	Fine sandy silt, nonplastic silt	17 - 19
	Medium-stiff, stiff and silty clay	17 - 19
Formed concrete against	Clean gravel, gravel-sand mixture, well-graded rock fill with spalls	22 - 26
	Clean gravel, silty sand-gravel mixture, single-size hard rock fill	17 – 22
	Silty sand, gravel, or sand mixed with silt, or clay	17
	Fine sandy silt, non-plastic silt	14
Steel sheet piles against	Clean gravel, gravel-sand mixture, well-graded rock fill with spalls	22
	Clean sand, silty sand-gravel mixture, single-size hard rock fill	17
	Silty sand, gravel, or sand mixed with silt or clay	14
	Fine sandy silt, nonplastic silt	11

Table C.7 Typical values of fundamental period for soil deposits (for rock motions with $a_{\rm max}=0.4{\rm g}$) (SEAOC 1980)

Soil depth (m)	Dense sand (s)	5 m of fill over normally consolidated clay* (s)
10	0.3-0.5	0.5–1.0
30	0.6-1.2	1.5–2.3
60	1.0-1.8	1.8–2.8
90	1.5-2.3	2.0-3.0
150	2.0-3.5	_

^{*}Representative of San Francisco bay area.

Table C.8 Mean shear wave velocities (m/s) for the top 30 m of ground (Borcherdt 1994)

General description	Mean shear-wave velocity		
	Minimum	Average	Maximum
Firm and hard rocks			
Hard rocks			
(e.g., metamorphic rocks with very widely spaced fractures)	1400	1620	_

(contd)

Firm to hard rocks				
(e.g., granites, igneous rocks, conglomerates, sandstones, and shales with close to widely spaced fractures)	700	1050	1400	
Gravelly soils and soft to firm rocks (e.g., soft igneous sedimentary rocks, sandstones, shales, gravels, and soils with > 20% gravel)	375	540	700	
Stiff clays and sandy soils (e.g., loose to very dense sands, silt loams, sandy clays, and medium stiff to	200	290	375	

Soft soils

(e.g., loose submerged fills and very soft 100 150 200 (N < 5 blows/300 mm) clays and silty clays < 37 m thick)

Very soft soils

(e.g., loose saturated sand, marshland, 50? 75? 100

Note: The fundamental time period T of soil layer of thickness H, having average shear wave velocity V_s is approximately

$$T = 4H/V_s$$

recent reclamation)

hard clays and silty clays (N > 5 blows/

(contd)

300mm)

If we assume the weighted average shear wave velocity for 30-50 m soil layer as 290 m/s, then the fundamental period of soil layer will range from 0.41 to 0.69 second. The fundamental time period of 4-6 storey buildings, including the soil-structure interaction, should fall in the above range of time period of soil layers, i.e., 0.41-0.69 sec. That is, the seismic waves in this range of time period will be allowed only to pass and filter-out the other frequencies. Therefore, there will be quasi resonance of building and the soil layer. At this point the damaging energy from the seismic waves get into the buildings having similar time period of vibration as the soil layer. If the seismic damaging energy getting into the building is more than the capacity of the structure, then the building will show distress and may collapse.

Similarly, if we assume that the weighted average shear wave velocity for 150 - 300 m soil layer is around 500 m/s, then the fundamental time period will range from 1.2 - 2.4 s. The fundamental time period of 10 - 15 storey building, including soil structure interaction, will fall in the above range of time period of vibrations. Therefore, there will be quasi resonance of the buildings and the soil layer and the seismic waves will affect this group of buildings which will result in damage/collapse of buildings. Hence, it is important to know the depth of soil layers above the bedrock and its properties such as the shear wave velocities, which are related in the microzonation of a region.