CHAPTER

18

Design for Torsion

Introduction

In structural design, occasionally, torsional moment may be significant and hence
it may be necessary to check for torsional stresses. Frequently, torsion may be
secondary and its effect must be considered in combination with the action of
other forces, such as axial compression and bending. The shapes that are very
good for columns and beams, i.e., those which have their material distributed as
far from their centroid as practicable, are not equally efficient in resisting torsion.
Thin walled circular and square or rectangular hollow sections are torsionally
stronger than sections with the same area but having cross sections such as channel,
angle, I-, T- or Z-shapes. The code (IS 800 : 2007) does not have any provisions
for design of members subjected to torsion. Hence, in this chapter, the behaviour
of members subjected to torsion is described. The difference between uniform and
non-uniform torsion is explained and some approximate design methods, to take
into account the torsional stresses, are also suggested.

18.1 Torsional Loading in Practice

In actual practice, there are only a few occasions where torsional loading will
result in significant twisting. Mostly these arise during the construction stage, when
the members are not braced. During the functional stage, the members will be
laterally restrained along their length and hence will not be allowed to twist freely.
Therefore, the rotation due to torsional loading will be (at the maximum) limited
to the end slope of the transversely attached members.

The effect of torsion may be classified based on whether it is due to the transfer
of load (primary torsion) or due to some secondary action. Secondary torsion may
arise as a result of differential twist rotations compatible with the joint rotations of
the primary frames (see Fig. 18.1). The magnitude of the secondary torsion can be
predicted by a three-dimensional analysis program. Secondary torques are usually
small, when there are alternative load paths of high stiffness, and are often ignored
in the design (Trahair et al. 2001).
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Fig. 18.1 Secondary torsion in an industrial building

Primary torsion is classified as free (uniform), restrained (warping or non-
uniform), and destabilizing. (see Fig. 18.2). As shown in Fig. 18.2, when the member
ABC is rigidly connected to the member DCE, it is not only applying torsion on
member DCE, but also applying a restraining action called the restraining torsion.
In this case, the compatibility between the members must be satisfied in the analysis.
When the member ABC is connected to the member DCE with simple connections
[as in Fig. 18.2(c)], ABC will not restrain the twisting of the member DCE and
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Fig. 18.2 Classification of primary torsion (Trahair et al. 2001)
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hence there is free torsion. However, member ABC will prevent the lateral deflection.
When the member ABC acts as a cantilever as shown in Fig. 18.2(d), destabilizing
torsion occurs. Now, member the ABC restrains neither the twisting nor the lateral
deflection of the member DCE.

Torsion exists on spandrel beams, where the loading may be uniformly
distributed, unlike the cases discussed in Fig. 18.2, where a beam frames into a
girder on one side only. On many occasions, torsion occurs in combination with
bending actions. Any situation where the loading or reaction acts eccentrically to
the shear centre gives rise to torsion. Channel purlins should be placed in correct
orientation on the rafters. Among the two cases shown in Fig. 18.3, torsion is
likely to occur in case (b), since the load application point and the shear centre of
the purlin are too far apart. To avoid this situation, the purlins may be arranged in
alternate orientations. An interacting case study on the failure of purlins due to
torsion is presented by Subramanian (1999). The design of crane runway girders
involves the combination of biaxial bending and torsion. For the details of
determining torsional moment in a framing system, the reader may refer to Chen
and Joleissaint (1983).

Shear centre

Shear centre

Fig. 18.3 Torsion induced in purlins

18.2 Behaviour of Members Due to Torsion

The resistance of a structural member due to torsional loading may be considered
to be the sum of two components: (1) uniform torsion, i.e., when the rate of change
ofthe angle of twist rotation is constant along the member. The longitudinal warping
deflections are also constant along the member in this case and (2) non-uniform
torsion, i.e., when the rate of change of the angle of twist varies along the member.
In this case, the warping deflections vary along the member. Both these types of
torsions are discussed in this section.

18.2.1 Saint Venant’s (uniform) Torsion

When a simple circular tube is twisted, shearing stress will result as shown in
Fig. 18.4. The cross section, initially planar remains a plane and rotates only about
the axis of the member. This kind of ‘pure’ torsion is usually called St Venant
torsion, after St Venant who was the first to develop the theory for the general
case. The variation in stress is linear, if the proportional limit of the material is not
exceeded. The angle of twist ¢ per unit length is

6=TIG 1) (18.1)
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(b) (c)
Fig. 18.4 Shear stresses due to St Venant's torsion

where 7'is the applied torsional moment, G is the shearing modulus of elasticity =
E/[2(1 + w)], and 1, is the polar moment of inertia.

This equation is valid for a solid circular cross section also. In this case, the
shear stress due to torsion varies linearly from zero, at the centroid, to a maximum
value, at the extreme fibre, and is given by

Jou= T, (18.2)
where f, is the shear stress due to torsion and r is the distance from centroid of the
section.

For the specific case of a circular section of diameter d, no warping of the cross
section occurs and [, = zd 4/32. Hence, the maximum shear stress at 7 = d/2 equals

Max. £, = 16T/(zd") (18.3)
for the hollow section, with outer radius R, and inner radius R;, I, = (R} — RM)/2
Max. f,=2TR,/[z(RS - R')] (18.4)

The French engineer, Adhemar Jean Barre de St Venant, in 1853 showed that
when torsion is applied to other solid or hollow sections, including the rectangular
hollow sections of constant wall thickness, the assumption that plane sections remain
plane after deformation (twisting) is not valid. The original cross section plane
surface becomes a warped surface. That is, when the bar twists, each section rotates
about its torsional centre and the radial lines through the torsional centre do not
remain straight. The distribution of shear stress on the section is not linear and the
direction of shear stress is not normal to a radius, though essentially the angle of
twist is unaffected.
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When a torque is applied to a non-circular cross section (e.g., a rectangular
cross section), the transverse sections which are plane prior to twisting, warp in
the axial direction, as described previously, so that a plane cross section no longer
remains plane after twisting. However, as long as warping is allowed to take place
freely, the applied load is still resisted by shearing stresses similar to those in the
circular bar. St Venant’s torsional stress (f;,) can be computed by an equation similar
to Eqn (18.1) but by replacing 7, with /,, the torsional constant.

Thus, the angle of twist per unit length of a non-circular cross section, solid or
tubular section is given by the equation

¢=TI(GI) (18.5)
where I, is the St Venant’s torsional constant (in mm®*). Note that in literature 7, is
often referred to as J.

The St Venant’s torsional shear stress of thin walled box sections, in which the
thickness ¢; is small compared to the transverse dimension is given approximately
by (Bredt’s formula)

Ju=T/(241) (18.6a)
where A is the area contained in the mean line of the wall.

The St Venant’s torsional shear stress of thin walled open section is given by

Ju=Tt/1, (18.6b)

The St Venant’s torsional constant of the split tube shown in Fig. 18.4(b) is given
by

I=b/3 (18.7)
where b is equal to the circumference and ¢ is the thickness of the tube. Thus,
I,= zDt3/3

If we compare the polar moment of inertia of the circular tube with the torsional
constant of the split tube with = (R,— R;))and D =R, + R;

(I,/1) = [zD{ R + R)*/2)/[zDt*/3]
= (3/2)(R? + R)*/
Thus, a 250-mm NB tube with 25-mm wall thickness is 75 times as stiff as a
split tube with the same dimensions.
The shearing stress result, when a solid rectangular section is twisted, is shown
in Fig. 18.4(c). The value of torsional constant in this case is given by
I,=[bt*/3] (1 — 0.630¢/b) for b >t
where b and ¢ are the dimensions shown in the figure. If b/7 is large (greater than
10), this equation may be written as
I=bt’/3 (18.8)
The torsional constant of any shape, composed of rectangular and/or curved
elements for which b/t is sufficiently large, can be determined by adding the
quantities b¢°/3 for all the elements, provided no part of the cross section is closed.
Such a section is called an open section (e.g., angles, channels, I-sections,

T-sections). RHS, SHS, tubes, box sections, etc. are called closed sections.
Compound sections may be considered as closed, if the open sides are adequately



18.6 Design of Steel Structures

laced [see Figs 9.24(i)-(m) and 9.24(p)]. The torsion constant of a single cell closed
section is given by

1,= (44%)/([ dslt) (18.9)
where A is the area enclosed by the midline of wall, ds is the element of the
circumference of the wall, and ¢ is the thickness of the wall.

The integration is around the entire periphery. Hence, for a square box section
with 100 mm X 100 mm outside dimension and 12-mm thick wall,

I, = [4(88 x 88)%/(4 x 88/12) = 8,177,664 mm*

Values of /, for multi-cell cross sections can be determined by the methods
given in McGuire (1968). More accurate expressions for various structural shapes
have been developed by EI Darwish and Johnston (1965). The tabulated values for
St Venant torsional constant have been provided by Young and Budynas (2001).
Some of these values for the most often used sections is given in Table 18.1.

Table 18.1 Properties of sections
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It is to be noted that the stress distribution as shown in Figs 18.4(b) and (c) will
be uniform throughout the length of a bar, if warping is not restrained and is uniform
throughout its length. Torsion with uniform warping is usually called St Venant’s

torsion.

18.2.2 Non-uniform Warping Torsion

Uniform warping of an I-section [see Fig. 18.5(a)] is shown in Fig. 18.5(b). However,
most of the structural members will be supported in such a way as to prevent
uniform warping. Figure 18.5(c) shows the non-uniform warping of a cantilevered
I-section, where the warping is prevented at its left end. Such non-uniform warping
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(b)

5

(d)

Fig. 18.5 Warping of I-sections

results in additional shear stresses and an increase in the torsional stiffness. In this
case, the oppositely directed bending of the flanges of the I-sections produces
shears (V) as shown in Fig. 18.5(d), which constitutes a couple opposing the applied
torque 7 as shown in Fig. 18.5(d). In addition, there are bending stresses. Figure
18.6 gives an outline of all these stresses produced by warping torsion in
I-sections and channels. Warping deflections due to the displacement of the flanges
vary along the length of the member. The torsional and warping deformations of
I- and box-sections are shown in Fig. 18.7.

Available literature on the elastic analysis of [-beams subject to torsion is based
on fairly complex analytical techniques. They consider the total torsional moment
on I- or channel sections as composed of the sum of the St Venant’s torsion and
warping torsion as

r=T,+T, (18.10)

The solution of the torsion problem may be obtained by solving the differential

equation

T= G, (d¢ldx) — EI (d° p/dx®) (18.11)
where ¢ is the angle of twist, /, is the torsional constant of the cross section, /,, is
the warping constant of the cross section, and £ and G are the elastic and shear
modulus of rigidity.

The torsional moment 7" depends on the loading and in usual situations will be
a polynomial in x. For I-sections torsionally simply supported at ends and with a
concentrated torsional moment applied at mid span, the solution to the differential
equation may be obtained as (Nethercot et al. 1989; Salmon & Johnson 1996)

¢=[T/(2GI,2)] [Ax — (sinh(Ax)/cosh(AL/2))] (18.12a)
and  dgldx = ¢ = [T/(2GI)] [1 - (cosh(Ax)/cosh(1L/2))] (18.12b)
d?¢ldx* = ¢ = [TA/(2GI)] [-sinh(Ax)/cosh(AL/2)] (18.12¢)
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Fig. 18.6 Stresses in I-section and channels due to warping torsion (Ballio &

Mazzolani 1983)

d’gldx® = ¢ = [TA/(2GI,)] [-cosh(Ax)/cosh(AL/2)] (18.12d)
where A? = (GI/EL,) (18.12¢)
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Fig. 18.7 Deformation of cross sections due to torsion and warping

From these equations, the shear stress f;, due to St Venant’s torsion may be
computed as
Jfu= Gtg’ (18.13)
where ¢ is the thickness of the element under consideration. Though this stress is
shown as uniform across the flange of an I-section in Fig. 18.6, the stress drops
sharply to zero at the flange tips (Salmon & Johnson 1996). Similarly, the warping
shear stressf,,, which varies parabolically across the width of the rectangular flange
{see Fig. 18.6(c)} is given by

Jow =—(ER2t) O™ (18.14a)

where Q,is the statical moment of the area about the y-axis.
For maximum shear stress, which actually acts at the face of the web but may be
approximated as acting at the mid width of the flange, O, may be taken as
0= AZ = (bt,/12)(b/4) = bzzf/S (18.14b)
Substituting O,in Eqn (18.14a), we get the maximum absolute value of warping
stress, which is
fo= (ED*h/16) ¢ (18.14c)
where b is the breadth of the beam and / is the distance between the flange centroids.
The tension or compressive stress due to the lateral bending of flanges caused
because of warping, which varies linearly across the flange width {see Fig. 18.6(d)}
is given by
Jow = (ELJWZI(I¢") (18.15a)
where /;is the moment of inertia for one flange about the y-axis of the beam. The
maximum stress occurs at Z = b/2. Noting that /,, = I_fh2/2 and using Eqn (18.15a),
we get the maximum value for bending stress due to warping as

Jow = (Ebh/4)¢” (18.15b)
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Note that the solutions for ¢ given in Eqn (18.12), is applicable only for the case
of torque applied at the middle of the beam and for simply supported end conditions.
The methods of evaluating ¢, ¢, ¢, and ¢ for the various conditions of loading
and boundary conditions are given by Nethercot et al. (1989) and AISC (1983).
Some approximate solutions for both elastic and plastic collapse of beams subjected
to torsion for various loading and boundary conditions are given by Trahair et al.
(2001). The values of torsional constant /, and warping constant /,, are given in
Table 18.1 for various sections.

Note that the torsional behaviour of hollow and open sections are substantially
different. The value of the coefficientk, = L./[GI,/(EI, )] may be used to indicate
whether pure torsion or warping effects are predominant. An approximate classifica-
tion of the torsional behaviour of various types of thin walled sections, in terms of
the coefficient &, has been provided by Ballio and Mazzolani (1983) as follows
(see Fig. 18.8):

e Torsion due to warping only (0 < k, < 0.5) Thin walled cold formed sections
and open section bridge girders made of orthotropic plates
Warping prevalent (0.5 < k, < 2) Cylindrical thin shells and composite steel/
concrete bridges having an open section
Warping and uniform torsion (2 < k, < 5) Hot rolled sections (I- and channel
sections)
Uniform torsion prevalent (5 < k, < 20) Stocky sections (profiles for rails and
jumbo shapes) and hollow sections (tubes and box sections)
Uniform torsion of St Venant type only (20 < k, < o) Solid compact sections

Warping Warping Uniform torsion| Uniform torsion
only prevalent prevalent only
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Fig. 18.8 Approximate classification of sections (Ballio & Mazzolani 1983)
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18.3 Shear Centre

The shear centre is defined as a point in the cross section through which the lateral
(or transverse) loads must pass in order to produce bending without twisting. The
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bending stresses are given by f, = M.y/I, and the shear stresses f, =V, 4 VI (see
Chapter 10). In other words, forces acting through the shear centre will not cause
any torsional stresses to develop. For loads not applied through the shear centre,
there will be additional stresses due to twisting because of torsional moments.
These torsional moments are shown in Fig. 18.9. Since the shear centre (also called
the centre of rotation) does not necessarily coincide with the centroid of the section,
the location of the shear centre must be determined in order to evaluate the torsional
stresses. For I- and Z-sections, the centroid and shear centre coincide but for the
other sections such as channels and angles, they do not coincide (see Fig. 18.10).
The location of shear centre is dependent only on the cross-sectional configuration
of a member.

P
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/’\ .
<> |<i,|
T= Pe T= Pe T=Pe T=Pe
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IIIIIIIIIIII7§I;7_ I

T=we

Fig. 18.9 Torsional moments due to load not acting through shear centre

The computation of the position of the shear centre is complicated for all but
the simplest shapes and readers can refer to Salmon and Johnson (1996) and Trahair
etal. (2001) for the calculation procedures. However, the following may be observed
(see Fig. 18.10).

e For sections having an axis of symmetry, the shear centre and centroid lie on
this axis.

e For sections having symmetry about both the axes, the shear centre is on the
intersection of the two axes, i.e., shear centre and centroid coincide (for I- and
Z-sections)

e For all sections consisting of two intersecting plate elements (angles, Ts, and
cruciforms), the shear centre is at the plate intersection point.

e For channel sections, the shear centre lies outside the web and the centroid
inside it.

The distance of shear centre for various sections along with the values of 7, and /,,
are given in Table 18.1.
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Fig. 18.10 Centroids and shear centres of various cross sections

18.4 Approximate Design Procedure for Torsion

In most practical design situations, when it is desirable to include the effect of
torsion, the compressive stress due to the warping component is the quantity of
most importance. The shear stress contributions are normally not significant (Salmon
& Johnson 1996). Since the design for torsion as discussed in the previous sections
is complicated, an approximate method was suggested by Galambos et al. (1996)
and Salmon and Johnson (1996), which considers only the compressive stress due
to torsion. This method may be used for the preliminary design of sections. It is
limited to sections capable of developing plastic hinges and is based on the analogy
between torsion and ordinary bending. This method is best demonstrated by
considering a cantilever beam shown in Fig. 18.11, which is subjected to a transverse
load P acting at an eccentricity e from the centroid. In this case, the applied moment
on the cantilever M_= PL and torsional moment 7= Pe. Assuming that the individual
flanges will resist the torsional moment, the corresponding applied bending moment
of the flanges M, is given by (Galambos et al. 1996)

M, = PeL/h (18.16)
P Yhe|P
) |“’!|
| B
_Z___;___E
i
11—
|
< [- >

Fig. 18.11 Cantilever beam subjected to eccentric point load at free end

Hence, the required plastic section modulus Z, , to resist the major axis bending,
can be calculated from

M.1Z, )+ (2MJZ, ) <1,/ % (18.17)
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From the above,
2 (M, +2C, M)/ £,/ %,) (18.18a)
where C,=(Z,./Z, ). (18.18b)

Similarly, for applied loads producing bending about the weak axis, the required

plastic section modulus Z, , about y-axis may be obtained from
Z,,2M, +2Mf)/(f/;/m) (18.19)

Galambos et al. (1996) also provide simple approximate formulae for calculating
the maximum flange moment/,and maximum angle of twist ¢. The main advantage
of these formulae is that they do not involve the evaluation of hyperbolic or
exponential functions. Since the method is based on plastic analysis, the rotations
calculated based on the method may be large in some cases.

Methods for the design of I-beams subjected to bending and torsion are provided
by Johnston (1982) and Nethercot et al. (1989). Simplified torsion design of compact
I-beam is provided by Pi and Trahair (1996) and inelastic torsion and bending by
Pi and Trahair (1994) and Pi and Trahair (1995). Plastic collapse analysis and
design of warping torsion and non-uniform torsion (sections in which both uniform
and warping torsion are prevalent), including interaction of local buckling and
torsion and serviceability design are discussed by Trahair et al. (2001).

18.4.1 Buckling Check

Whenever lateral torsional buckling governs the design (i.e., when fj, is less than
/) the values off,, and f,,, will be amplified. Nethercot et al. (1989) have suggested
a simple ‘buckling check’ along lines similar to the British code BS 5950, Part 1

M Vot Sl g sMe | (18.20)
Mb (fy /7m ) b
f,,= warping normal stress
Jop= My/Z,
M. = ¢M,
where equivalent uniform moment M.= =m, M,
and
. . MgM,
the buckling resistance moment M, = > 7 (18.20a)
¢+ (95 —MpMp)
In Eqn (18.20a),
M, + + DM,
d5= —2 (anT M (18.20b)
the plastic moment capacity Mp =f, - Z /7,
= the plastic section modulus
-~ M, 7°E
the elastic critical moment My = - (18.20c¢)
//LLT (fy /7m)

where A; 1 is the equivalent slenderness.
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In Eqn (18.20), the second term allows for the amplification of the stresses due to
warping and minor axis bending caused by twisting due to lateral torsional buckling.

18.4.2 Applied Loading Having Both Major Axis and Minor Axis Moments

When the applied loading produces both major axis and minor axis moments, the
‘capacity checks’ and the ‘buckling checks’ are modified as follows:
Capacity check

fi)z +fi)yt +fw +fi)y Sf)‘z/ym (1821)

This equation is a straightforward capacity check involving the summation of

stresses due to major and minor axis bending and warping, these stresses being

coincident values. It is likely to be conservative due to the use of the material yield

stress as the limit, i.e., it does not even allow for the development of limited plasticity
within the cross section.

Buckling check
M. M, (foyt + /) M.
+ 1+0.5 <1 18.22
Mb fyZy/}/m (fy/}/m) Mb ( )

where M, = m, M, and f, . = M/ Z,.

18.4.3 Torsional Shear Stress

Torsional shear stresses and warping shear stresses should also be amplified in a
similar manner

Jo= (T fw) [l +0.5 %—J (18.23)

This shear stress should be added to the shear stresses due to bending while
checking the adequacy of the section.

18.5 Distortion of Thin Walled Members

Twisting and distortion of flexural members, as shown in Fig. 18.7, may be caused
by the local distribution of the forces. If the member responds significantly to
these actions, then the bending stress distribution may be much different from
those calculated in the usual way, due to the additional distortional stresses induced
by out-of-plane bending as shown in Fig. 18.7. To avoid possible failure, the designer
may have to increase the strength of the member or limit both twisting and distortion.
The resistance to distortion of thin walled members depends on the type of cross
section. While open cross sections are more flexible, members having rectangular
and trapezoidal cells offer little resistance and members with closed triangular
cells have high resistance to distortion. Methods to account for distortion effects
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Fig. 18.12 Stiffening systems to reduce torsional effects in beams and columns
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Fig. 18.13 End conditions (Narayanan et al. 2003)

have been discussed by Vacharajittiphan and Trahair (1974), Bradford (1992), and
Subramanian (1982 and 1995).

18.6 Torsional Stiffening and End Restraints

As seen in the previous sections, the design for torsion is complex, especially
when warping is involved. Careful detailing and selection of sections will result in
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minimizing or even eliminating the design complexities associated with torsion.
Let us discuss some of these methods in this section.

When torsion is unavoidable, the designer should consider using box sections,
since they are more effective in resisting torsion. When local concentration of
torque is introduced, triangular closed box sections may be used to prevent local
distortion of the cross section. Alternatively, external bracings can be used (see
Section 10.4.3.2). If external bracings are not feasible, then internal stiffening can
be used to reduce stresses and displacements. Commonly used internal stiffening
systems are as follows.

e Longitudinal plates may be welded at the ends of the I-section beam to prevent
warping at the ends. The stiffening plates are to be placed parallel to the web
and attached to the flange tips by welding as shown in Fig. 18.12(a). This will
result in ¢= 0 and ¢ = 0 as per Hotchkiss (1966). The length of the ‘boxing’
plate should be equal to the depth of the beam.

e Welding a length of channel, angle, or bent plate between the flanges as shown
in Figs18.13(a) and 18.12(b) to form a stiff box section will be more efficient
than the parallel plates shown in Fig. 18.12(a) to obtain ¢ =0 and ¢ = 0 at the
ends.

e Diagonal plates, consisting of two plates perpendicular to the beam web; one
oriented at 45° to the longitudinal axis and the other perpendicular to the
longitudinal axis as shown in Fig. 18.12(c) have also been suggested (Narayanan
et al. 2003).

The designer should remember that if no torsional stiffening is done at the ends,
the available torsional restraint is neither simple (¢” = 0) nor fixed (¢ = 0) but such
that the end twist is nearly zero (¢ = 0) (Salmon & Johnson 1996; Szewczak et al.
1983). The designer should also ensure the following.

e Beams subjected to torsion should have sufficient stiffness (in the minor axis)
and strength to resist the torsional moments in addition to other moments and
forces. Note that wide flange beams resist torsion better than ISMB beams.

e The connections and bracings of such members should be idealized properly
in the analysis and carefully designed to ensure that the reactions are transferred
to the supports (see Fig. 18.13).

e Stresses and deflections due to combined effects should be within the specified
limits.

e Whenever lateral torsional buckling governs the design, a simple buckling
check must be performed (Narayanan et al. 2003).

18.7 Torsional Buckling

Some thin walled sections such as angles, Ts, Zs, cruciform sections and channels
having relatively low torsional stiffness may, under axial compression, buckle
torsionally while the longitudinal axis remains straight (Timoshenko & Gere 1961;
Bleich 1952). Consider the buckling of a doubly symmetrical cruciform section
(whose shear centre and centroid coincide) as shown in Fig. 18.14. Cruciform
sections (made of four angles) are often used in tower legs. When a compressive
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o7\ = Centroid
‘1| and shear
centre

-

-« x—>1g

(b)
Fig. 18.14 Torsional buckling of a cruciform strut

load acts on this strut, a form of buckling occurs in which the axis remains straight
but sections of the member rotate (i.e., the member twists). This kind of buckling
is termed as torsional buckling. The analysis of torsional buckling is quite complex.
The mode of buckling clearly depends on the restraints provided at the ends. The
critical stress depends on the torsional stiffness of the member as well as on the
resistance to warping deformations provided by the member and by the restraints
at the ends.

The differential equation for equilibrium for the section shown in Fig. 18.14 is
given by (Timoshenko & Gere 1961)

d*eldx’ + p’d>gldx® = 0 (18.24a)
in which
p*=(f1,- GL)IEL,) (18.24b)

where f, is the axial stress = P/4, ¢ is the angle of twist, /, is the polar second
moment of the area of the section about the shear centre =1, + 1, 1, is St Venant’s
torsional constant of the section, /,, is the warping constant of the section, and
G and FE are shear and Young’s modulus of rigidity of the material.

The general solutions to the above differential equation is given by

¢=Asinpx + A,cospx + Ax + A,

A pin-ended column, with rotation about x-axis prevented at each end but with
warping not restricted at the ends, results in the following solution for the smallest
critical stress (Bleich 1952)

Jor = G/, + (A7/L?) (EL, /1) (18.25a)
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This equation gives the stress f,,, at which torsional buckling begins, provided the
strut is perfectly straight, free of residual stress, etc. Although this equation was
derived for the cruciform cross section shown in Fig. 18.14, it holds for any cross
section for which the shear centre and centroid coincide. Equation (18.25a) can be
expressed in terms of the effective length as

Jor = WGLYL] + [ZNKL)*] [(EL,)/1,] (18.25b)
where K = 1, if the ends are free to warp, and K = 0.5, if warping at the ends are
completely restrained.

It should be noted that Eqn (18.25) is applicable only for buckling, which begins
when the stressf;, is less than the proportional limit stress of steel. Hence, the most
probable buckling mode may involve the tangent modulus or double modulus of
lateral bending about the z and y axes. Thus, the problem involves three critical
values of axial load; bending about either principal axis and twisting about the
longitudinal axis. In wide flange sections, with extra wide flanges and having short
lengths, torsional buckling may be important.

It is important to observe that pure torsional buckling is possible only if the
centroid and shear centre of the cross section are coincident. Thus, the critical
value of buckling stress is strictly applicable to sections having either double or
point symmetry. However, for common single angle struts, since the distance
between the centroid and the shear centre of the cross section is small, Eqn (18.25b)
will provide a reasonable approximation of the torsional buckling stress.

For doubly or point symmetric sections (such as built-up I-sections having thin
elements, cruciform sections, and Z-sections), when the flexural torsional limit
state is evaluated, an equivalent radius of gyration », may be compared with »_ and
r,, to reduce the computations. To develop the r, equation, set Eqn (18.25b) equal
to the Euler equation {Eqn (9.9)}.

(PE)(KLIr,* = (GI,/1,) + EI,7*/[1,(KL)*]
Thus,

ro= /1, + GIL (K LYNEL7)]
Substituting E/G = 2.6, we get

ro= JI(L/1,)+0.04(1, (K I)1,)] (18.26)

for doubly symmetric sections. Note that only for short lengths, », will be lower
than r, or r, for I-sections.

Using the value of r, from Eqn (18.26), the slenderness ratio (KL/r,) can be
calculated and the design compressive stress aboutz-z and y-y axes can be computed
using Tables 9.3 and 9.4 and Fig. 9.23 given in Chapter 9 (Tables 7.4, 7.2, and
Fig. 7.1 of the code). Thus, the column strength Eqns (9.38) and (9.39) are generic
equations that can be used for torsional flexural or flexural torsional buckling. In
Eqn (18.26), the torsional buckling effective length factor K, may be conservatively
taken as 1.0. For greater accuracy, if both ends of the column have a connection
that restraints warping (say by boxing the end over a length at least equal to the
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depth of the member), we can take K, = 0.5. If one end of the member is restrained
from warping and the other end is free to warp, then we can take K. = 0.7.

18.8 Torsional Deformations

The angle of rotation in radians, for all types of cross sections is
o= Tx/GI, (18.27)

where 7 is the applied torsional moment (due to working load), in kN m, x is the
distance from support, in mm, G is the shear modulus of rigidity (for steel =F/2.6),
in N/mm?, and 1, is the torsional constant, in mm?®.
When bending moments are applied along with torsion, it will be usually

sufficient to determine the deformations at working loads due to

(a) major axis bending,

(b) minor axis bending, and

(c) torsion
separately, and if required combine them vectorially to determine the actual
movement.

Examples

Example 18.1 4 twisting moment of 15 kN m is applied at the end of a 1.5-m long
shaft as shown in Fig. 18.15(a). Determine (a) the maximum shear stress, and
(b) the maximum angle of rotation assuming the sections as shown in Figs 18.15(b),
(c) and (d). Assume G = E/2.6 = 76923 N/mm’ and St Venant's torsion.

15 kNm
]
\
1500 mm <

<

! Solid, 250 mm Outer diameter = 250 mm
in diameter Inner diameter = 200 mm
(a) (b) (©)
25 mm>-| |« 1250
250 !
(d)
Fig. 18.15

Solution

(a) Solid circular cross section
The only force is the torsional moment and no axial forces and bending moments
are acting on the shaft. Because round bars do not warp, this is the case of
St Venant torsion. Normal stresses are zero throughout the shaft.



(b)

(©)
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Torsional stress,
Jo= T,
where [, =1,= aRY/2
The maximum stresses are at the outer edge, where » = R = 250/2 = 125 mm
Thus,

I, = rx 125%2 =383.5 x 10° mm*
The maximum shear stress,
fi= TR/, =15 x 10% x 125/383.5 x 10° = 4.9 N/mm?
The maximum angle of rotation occurs at the free end, thus,
¢=TL/GI,= 15 x 10° x 1500/(76923 x 383.5 x 10°)
=7.627 x 107 radians
To convert it into degrees, recall that 360° = 2 r radians. Hence,
¢=17.627 x 107 x 180/ = 0.044°

The torsional behaviour of a hollow circular shaft is similar to that of a round
bar. Thus for St Venant torsion there is no warping and there are no normal
stresses. The torsional shear stress is given by

fu=Tr/l,and I,= 72 (R§ — RY)

Thus,
I, = 2 (125 — 100%) = 226.42 x 10° mm*

The maximum shear stress is at the outer edge, wherer = R, = 125 mm. Hence,
fi=15x10% x 125/(226.42 x 10°) = 8.28 N/mm?

The angle of twist or rotation in radians
o= (180/7)(TL/GI) = (180/m)(15 x 10° x 1500/(226.42 x

10 x 76923)) = 0.074°

When a square tube is twisted, warping is minor. Hence, the normal and shear
stresses due to warping may be neglected. For a square tube, the St Venant
torsional stresses are

Ja=T/241)
where A4 is the area contained in the mean line of walls.
A= (250 —25)* = 50,625 mm?
fi=15x10%(2 x 50625 x 25) = 5.97 N/mm?
1,=44%([ ds/t) = 4 x 50625%/[(225/25) x 4]
=284.77 x 10° mm*
The maximum angle of rotation will be at the free end.
9= (180/m)TL/GI,
= (180/7) x 15 x 10° x 1500/(76923 x 284.77 x 10°)
=0.0589°
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Example 18.2 A4 wide flange section W 460 x 190 x 106 beam used for a 7 m
simply supported span is loaded with a concentrated load of 80 kN at mid-span.
The ends of the beam are simply supported with respect to torsional restraint (i.e.,
¢ = 0) and the concentrated load acts with a 50-mm eccentricity from the plane of
the web (see Fig. 18.16). Compute the combined bending and torsional stresses.

_|<—b:19¢->|

|<— 3500 —} 80 kN

W 460 x 190

e P W 460 x 190

! < 7000 > !

Fig. 18.16

Solution
The solution of the differential equation for this type of loading and end condition
is
¢=(T/2GAl) [Ax — (sinhAx/cosh AL/2)]
Applied torsional moment,
T'=280x 50 =4000 kN mm
I, =Xbf/3 = 1/3[2 x 194 x 20.6° + 427.8 x 12.6°] = 1,415,861 mm*
for u=0.3,
E/G=2E(1 + p/E=2.6

I,=1,h*/2 = (194" x 20.6/12) x (469 — 20.6)*/2 = 1.26 x 10'> mm®

Hence A= \[GI/(EL,)] :\/ [1,415,861/(2.6 x1.26 x10'%)]
=1/1521=6.574 x 107

The function values required are k, = AL = 7000 x 6.574 x 10~* = 4.6.
Since k, is greater than 2 and less than 5, both warping and uniform torsion effects
will be predominant (see Section 18.2.2 and Fig. 18.8).

X Ax sinhAx coshAx
0.1L 0.46 0.476 1.108
0.2L 0.92 1.055 1.454
0.3L 1.38 1.862 2.113
0.4L 1.84 3.069 3.228
0.5L 2.3 4.937 5.037

(a) Stresses due to St Venant’s torsion (pure torsion):

Ju=Gt ¢
where ¢ = T/(2G1) [1 — (cosh(Ax)/cosh(AL/2)]



(b)

(©)
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Hence,
S = TH(21)[1 — (cosh(Ax)/5.037)]
=4000 x 103t/(2 x 1,415,861) [1 — (cosh(Ax)/5.037)]

The shear stress is maximum at x = 0 and zero at x = L/2.
Hence f (flange at x = 0) = (4000 X 103 x 20.6)/(2 x 1,415,861)
[1—(1/5.037)]
=23.32 N/mm?

f., (web at x = 0) = 23.32 x (12.6/20.6) = 14.26 N/mm?
Stresses due to warping torsion (due to bending of flanges):

fo = (ED*h/16)¢”

¢”’= TA?/(2GI,)[—cosh(Ax)/cosh(AL/2)]; with 4*> = GI,/EI,

fo = TI2L,)(b*h/16) [—cosh(Ax)/cosh(AL/2)]

This shear stress acts at the mid-width of the flange, and the maximum and
minimum values occur at x = L/2 and x = 0, respectively.

flange at x = L/2) = [(4000 x 10%)/(2 x 1.26 x 10'?)]
SwW

[(194% x 427.8)/16]
=1.60 N/mm?

f., (flange at x = 0) = 1.6 x (1/5.037) = 0.32 N/mm?>.
For normal stress in flanges due to warping,
Sy = (Ebh/4)¢”
¢’ = TA/(2G1 )[-sinh(Ax)/cosh(AL/2)]
Joaw = [(T' X 2.64bh)/81,] [sinh(Ax)/cosh(AL/2)]
which is maximum at x = L/2 and zero at x = 0. Hence,
fpw(flange at x = L/2) = [(4000 x 10% X 2.6 x 194 x 427.8)/
(8 x 1,415,861 x 1521)] [4.937/5.037]
=49.1 N/mm?

Stresses due to ordinary flexure:
Max. normal stress f;, (at x = L/2) = PL/4Z,

Z,=2B1,(D - t)/2 + 1d°/4
=2 x 194 X 20.6 (469 — 20.6)/2 + (469 — 2 x 20.6)* x 12.6/4
=2,368,476 mm’
Thus, maximum normal stress (at x = L/2) = 80 x 10°> x 7000/(4 x 2,368,476)
=59.1 N/mm?
The shear stresses due to flexure are constant forx = 0 to L/2 and are computed
by
f.=VOILt with I = 48790 x 10* mm* and Q = 4y
Maximum flange shear stress, occurs at the face of the web, thus,
0 =1[(194 — 12.6)/2] 20.6 x 448.4/2 = 418,899 mm>

Shear stress f;, (flange at x = 0) = (418,899 x 40 x 10°)/(48,790 x 10* x 20.6)
= 1.66 N/mm*
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For maximum web shear stress,
0 =194 x20.6 X (448.4/2) + (427.8/2) 12.6 x (427.8/4)
= 11,84,238 mm’®
Shear stress f;,, (web at x = 0) = (1,184,238 x 40 x 10%)/(48790 x 10* x 12.6)
=7.70 N/mm?

Compared to the average shear stress = V/(Dt,)
=40 x 10%/(469 x 12.6) = 6.77N/mm?

A summary of stresses showing combinations is given in the following table.

Type of Stress Support, x =0 Mid-span, x = L/2
Compression or tension, maximum stresses:
Vertical bending, f, 0 59.1
Torsional bending, f; ,, 0 49.1
108.2 MPa
Shear stress, web:
St Venant’s torsion, f; 14.26 0
Vertical bending, fy, 7.70 7.70
21.96 MPa 7.70 MPa
Shear stress, flange:
St Venant’s torsion, f; 23.32 0
Warping torsion, f, 0.32 1.60
Vertical bending, fy, 1.66 1.66
25.30 MPa 3.26 MPa

Example 18.3 Compute the stresses on a wide flange section W 460 x 190 x 106
beam of Example 18.2, using the flexural analogy rather than the differential
equation solutions.

Solution
The substitute system is shown in Fig. 18.17.

= T T
|<— 3500 4>lPH =88ng 5&44&4 : T-4000kNmm 5
—————————— et
<
V¢ V= 4.46 kN
*T ;
= Py
2 o Al ||||||IIII|||““"II||
A
Py
<——7000 mm —>| 0.18 Ty
Flexure analogy shear Warping torsion shear

() (b)
Fig. 18.17
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Calculation of plastic moduli of W 460 x 190 x 106 section
Z,, = 2Bi(D - t)/2 + td*/4
=2 x 194 x 20.6(469 — 20.6)/2 + (469 — 2 x 20.6)* x 12.6/4
=2,368,476 mm’
Z,, =2t:B°/4 + di*/4
=12 % 20.6 x 194%/4 + (469 — 2 x 20.6) x 12.6%/4
= 404,630 mm®
I,= 1,415,861 mm* (from Example 18.2)
The lateral bending moment acting on one flange
M= V/(L/2)=446x3.5=15.61 kNm
Twice the moment acting on the entire section gives
Jow=2M,/Z,, =2 % 15.61 x 10%/404,630 = 77.2 N/mm’
For torsional shear stress, since M, = 7/2 = 2000 kN mm,
fio=Mt/I,= 2000 x 10° x 20.6/1,415,861 = 29.1 N/mm? (flange)
£, =29.1(12.6/20.6) = 17.8 N/mm? (web)
For lateral bending, flange shear stress,
Jow =V, QslIty) = (446 X 10° X 96912.7/1253.4 x 10* x 20.6)

=1.67 N/mm’>

where O, = (bt;/2) (b/4) = (194 x 20.6/2) (194/4) = 96,912.7 mm’
1= b1,/12 = 194’ X 20.6/12 = 1253.4 x 10* mm*

The results of the two methods (Examples 18.2 and 18.3) are compared as
follows:

Type of Stress Flexural Analogy Differential Equation
Compression/tension stress =f, + f;,,, = 59.1* + 77.2 136.30 MPa 108.2 MPa
Web shear stress = f, + f, = 17.8 + 7.7* 25.50 MPa 21.96 MPa
Flange shear stress = f;, + fy, + fo, = 29.1 + 1.66* + 1.67 32.43 MPa 25.30 MPa

*Values taken from Example 18.2

It is observed that the stresses obtained by flexure analogy are very conservative,
especially the value of lateral bending stress £, (77.2 N/mm? as against 49.1
N/mm? using differential equations). Hence, Salmon and Johnson (1996) suggest
the use of a reduction factor £, using which the value of f, may be calculated
more precisely. 3 values are given by them in the form of tables for various end
conditions in terms of AL.

Example 18.4 Design a cantilever beam of length 4 m, subjected to a load at the
tip of the cantilever of 50 kN, which is applied at an eccentricity of 30 mm.
Solution
Assuming an ISMB 450 section
The horizontal force acting on each flange

P;=50x 1000 x 30/(450 — 17.4) = 3467 N.
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Properties of ISMB 450
D =450 mm, ¢, = 9.4 mm, = 17.4 mm, B =150 mm
M,=3467 x 4000 = 13.868 X 10° Nmm
M, =50 x 1000 x 4000 = 0.2 x 10° Nmm
Z, .= 2Bt (D —t)/2 + 1d*/4
=2 x 150 X 17.4(450 — 17.4)/2 + 9.4 x (450 — 2 x 17.4)*/4
=1534.2 x 10° mm?
Z, ,=2,B/4+ di’/4
=2x17.4x 150%/4 + (450 — 2 x 17.4) x 9.4%/4
=204.9 x 10> mm’
C,=(Z,./Z, )=15342x10%204.9 x 10° = 7.486
Required Z, , > (M, + 2C,M)/(f,/%,)

!Z_

Thus  Z,.>(0.2x 107 +2 x 7.486 x 13.868 x 10°)/(250/1.1)
=1793.58 x 10* mm® > 1534.2 x 10° mm?
Hence, adopt ISMB 500 with Z, . =2074.67 X 10> mm?
Z, , of ISMB 500 = 21,B%/4 + df*/4
=2x17.2 x 180%/4 + (500 — 2 x 17.2) x 10.2/4
=290.74 x 10°> mm?
Check
(M, /(Zy, X [ 1)) + [Myy (Zyy X £/ %))
=[(0.2x 10°)/(2074.67x 10° x 250/1.1)] +[(13.868 x 10°)/(290.74
x 10% x 250/1.1)]
=0.424+0.210=0.634 < 1.0

Hence the beam is safe.

Example 18.5 Design a suitable wide flange section to carry a 6 kN/m dead load,
in addition to the weight of the beam, and a live load of 20 kN/m. The load is
applied eccentrically 150 mm from the centre of the web on the simply supported
beam of 8 m span as shown in Fig. 18.18. Assume the ends of the beam have
torsional simple supports.

150 mm
A= w = 26 kN/m + beam wt - s
I A I A A )
; : EEd=4=3=:3<E€
A< i Y7 A A v
! ém ! meert Section A-A
Vertical support Torsional support
(a) (b)
Fig. 18.18

Solution
(a) Compute factored loads, assuming the weight of beam as 1.96 kN/m (assuming
W 360 % 370 x 196 section, h =372 —26.2 = 345.8 mm).

w, = 1.5(20 + 6 + 1.96) = 41.94 kN/m
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(b) The bending moment is
M, = wL?/8 = 41.94 x 8%/8 = 335.52 kN/m

(c) Bending moment due to torsion
The factored uniformly distributed torsional moment

m, =1.5(20+ 6)x 0.15 =5.85 kNm/m
Using the flexure analogy, the lateral bending moment acting on one flange is
M= m,L*/(8 X h)
=5.85 x 8%/(8 x 0.3458) = 135.34 kNm
Thus, the required Z, . (assuming Z, ./Z,, as 3.0)
Z, .2 M,/(f,/1.1) + M /(f,/1.D][Z, ./Z,]
=335.52 x 10%/(250/1.1) + 3 x 135.34 x 10%/(250/1.1)
=3262.7 x 10° mm?
Z, .of W360 x 370 x 196 (B =374 mm, D = 372 mm, /= 26.2 mm, {, =
16.4 mm)
=2B1,(D - 1)/2 + 1,,d°/4
=2 %374 x26.2(372 - 26.2)/2 + 16.4 x (372 — 2 X 26.2)*/4
=3807.2 x 10° mm’ > 3262.7 x 10* mm’

Hence the section is safe.

Note that wide flange beams are most suitable where high torsional strength is
required. For the same weight per metre, ISMB sections give a reduced stress from
in-plane (of web) flexure but an increased stress from restraint of torsional warping.
Also note that the section can be reduced by using the tables of modification factors
given in Salmon and Johnson (1996), pp. 448-449. We must also perform the
buckling check, in addition to capacity check {see Eqns (18.20)—(18.22)}.

Example 18.6 Design a rectangular hollow section member of a dome which
is subjected to the following factored forces and moments. Axial compression =
50.0 kN, moments M, = 7.5 kNm, My = 0.75 kNm, and torsion = 0.80 kN m.
Assume the length of the member as 4527 mm and f,, = 250 MPa.
Solution
Try a cold rolled section 172 x 92 x 5.4 RHS

A=2659 mm?, Z, =82.99 x 10> mm’, r, = 61.7 mm,

M, .=146.5%10° mm’

Z.,=117.73 x 10’ mm’, r, = 37.9 mm,

dit=(172 -3 x5.4)/5.4 =28.85>27.3¢but < 29.3¢ (see Table 8.5)

Hence, this section is a compact section. Therefore, local buckling will not be a
problem and the design may be based on the whole section. Since the member is
not supported laterally.

L/r,=0.85x4527/37.9 = 101.53
From Table 7.4(b) of the code (for L/r =101.53, f, =250 MPa),
foq = 115.86 N/mm?
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and
P,=115.86 x 2659 X 1073 =308.07 kN

For L/r=4527/37.9=119.4, D/t =31.8, from Tables 8.1 and 8.2 of the code,
Joa = 64.72 MPa
My, =64.72x 146.5 x 10° = 9.48 kNm
£,Z,=250%82.99 x 10 =20.747 kNm
Combined Axial and Bending
50.0/308.07 + 7.5/9.48 + 0.75/20.747 = 0.989 < 1.0
Torsional shear stress = 7/(2tbd)
2thd = {(172 — 5.4) X (92 — 5.4) X 5.4 x 2} = 155,816 mm’
Shear stress due to torsion = 0.8 x 10%/(155,816) = 5.13 MPa
Bending stress x-x axis = f;,, = 7.5 x 10%(117.73 x 10°) = 63.71 MPa
Bending stress y-y axis = ;. = 0.75 x 10%/(82.99 x 10°) = 9.04 MPa
Combined Shear and Bending

\/ [(63.71+9.04)% +3(5.13)>] = 73.29 < 250/+/3 = 144 MPa
Hence, the provided section is safe.

Example 18.7 Compute the maximum load a column with a cruciform cross section
as shown in Fig. 18.19 can carry. The column is made of Fe 410 steel, 4.5 m long
and supported in such a way that warping at the ends is prevented.

> |« t=125 b=150

—

b=150

— ‘—
< < -
| b=150 | b=150 |
Fig. 18.19

Solution
L=1,=2th/3 = (2% 12.5 x 150°)/3 = 28.125 x 10° mm*
Ip=1.+1,=5625x10°mm*
I, =4(b)/3 = 4 x 150 x 12.5%/3 = 39.0625 x 10* mm*
I,=b/9 = (12.5 x 150)*/9 = 732.422 x 10°® mm°®
A=4x12.5x 150 = 7500 mm?

r.=r,= 174 =/(28.125x 10°/7500) = 6124 mm
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1?2 =[I,+ 0.04I(KL)*VI,
=(732.422x 10° + 0.04 x 39.0625 x 10* x (0.5 x 4500)%)/(56.25 x 10°)
=(732.422 x 10° + 791.016 x 10%)/56.25 x 10° = 1419 mm?
Therefore,
r,=37.67 mm
Since r, <r, <r,, the column fails by torsional buckling
KL/r,= 0.5 x 4500/37.67 = 59.73

From Table 7.4(b) of the code, f,; = 181.35 N/mm?

Hence P4 = 181.35 x 7500/1000 = 1360.125 kN

Note that the contribution of /,, to the torsional resistance of the cruciform section
is small and hence can be neglected. Similarly the warping resistance of other
cross sections such as angles and tees will also be small and hence can be neglected.

Example 18.8 Compute the maximum load the column with T cross section shown
in Fig. 18.20 can carry. The column is made of Fe 410 steel, 3 m long and supported
so that warping, z-axis bending and y-axis bending are all prevented at each end.

1%
| 150 150 |
[ O' |
| : e —
! 78.48
| ) z
G 1
193.75 24.645 200
- |<«125
Y || 4
Fig. 18.20

Solution
A=12.5 (300 + 193.75) = 6171.875 mm*
IL=300 x 12.5 x 78.48% + 12.5% x 300/12 + 12.5 x 193.75%/12 + 193.75
X 12.5 x 24.645°
=32.193 x 10° mm*
1,=12.5x300°/12 + 193.75 X 12.5%/12
=28.156 x 10® mm*
I,=1+1,+ Ay, =32.193 x 10°+28.156 x 10° + 1671.875 x 24.645
= 64.098 x 10® mm*
I,=(1/3)(300 x 12.5% + 193.75 x 12.5%) = 321.45 x 10* mm*
I,=0.0
r2 =1/4=32.193x 10%6171.875 = 5216 mm?
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1y =1/4=28.156 x 10°/6171.875 = 4562 mm’
r =1/4=64.098 x 10°6171.875 = 10385 mm’

i? =1, + 0.04I(KL)*VI,= [0 + 0.04 x 321.45 x 10° (0.5 x 3000)*}/
(64.098 x 10%)
=451.3 mm’
As per Eqn (9.57) of Chapter 9,

(U= 23/r)r = () + 1) + 1577 =0
where z is the distance between the centroid and shear centre.
Thus,
(1 —78.48%/10385)rf — (4562 +451.3) 2 + 4562 x 451.3 =0

0.4069 rtﬁ —5013.3 rtf, + 2058831 =0
Hence,

rE =(5013.3 £ /25,133,176 —3,350,952)/0.8138 = 425.4 mm*

Ty = N 425.4 =20.63 mm
r,= V4562 =67.54 mm

Since ry, < r,, the column will fail by flexural torsional buckling.
KL/ry = 0.5 x3000/20.63 = 72.71

Hence from Tables 7.2 and 7.4(c) of the code,
fog = 147.66 N/mm*

Capacity of the column = 147.66 x 6171.875/1000 = 911.34 kN

Summary

In actual practice, torsion occurs rarely and hence the code does not contain any
provision for design of members subjected to torsional moments. However, on
many occasions, torsion may occur as a secondary moment in combination with
bending moments. Hence, few design guidelines are provided in this chapter. It is
also of interest to note that the sections which are effective in resisting bending
(such as I-sections) are not equally efficient in resisting torsional moments.
Torsion mainly occurs when transverse loads are applied at a plane not passing
through the shear centre. Torsion may be classified as primary and secondary torsion.
Primary torsion, whose effect must be considered, is again classified as free
(uniform), restrained (warping or non-uniform), and destabilizing. Destabilizing
torsion should not be allowed in structures. Free or uniform torsion results when
plane surfaces remain plane after deformation. Closed tubular and hollow sections
resist torsion better than open cross sections. The torsional shear stress of open
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cross sections such as I- or channel section depends on the torsional constant /,,
which is approximately given by Xb£’/3, where ¢ is the thickness and 4 is the breadth
of the individual rectangular sections.

The end conditions of most of the structural members will prevent uniform
torsion and hence the cross sections of such members undergo warping. Elastic
analysis of members subjected to non-uniform torsion is complex and involves the
use of exponential and hyperbolic functions. The deformations due to non-uniform
torsion are also dependent upon both torsional constant /, and warping constant /,,.
The value of the coefficient k, may be used to predict whether pure torsion or
warping effects are predominant (high values of %, indicate uniform torsion and
low values indicate that warping torsion is predominant).

Some equations are given for calculating the distance of the shear centre form
the centroid. An approximate design procedure, which is conservative, is suggested
for the design of beams subjected to bending and torsion. In most of the practical
situations, it may be easier to detail the beam ends to minimize the effects of torsion,
rather than allowing torsion and calculating the stresses due to the combined effect
of bending and torsion. Such details are discussed.

The flexural torsional buckling of cruciform sections is discussed and the
approximate design method of these sections based on an equivalent radius of
gyration has been provided. All the concepts discussed are explained with examples.

Exercises

1. A twisting moment of 20 kN 'm is applied at the end of a 2-m long shaft. Determine
(a) the maximum shear stress, and (b) the maximum angle of rotation for
(1) asolid circular section of 250 mm diameter
(i1) acircular hollow section of inner radius 225 mm and outer radius 250 mm
(iii) a square box section of outer side 250 mm and thickness 25 mm

2. A wide flange section 7 310 x 165 x 62 beam used for a 6 m simply supported
span is applied with a torsional moment of 3.0 kN'm at the mid-span. The ends of
the beam are simply supported with respect to torsional restraint (i.e., ¢ = 0).
Compute the combined bending and torsional stresses using the differential equation
solution.

3. Compute the stresses on a wide flange beam of Exercise 2 using flexural analogy
rather than the differential equation solution and compare the results.

4. Design a cantilever beam of length 5 m, subjected to a load at the tip of the cantilever
of 20 kN, which is applied at an eccentricity of 25 mm. Assume f, =250 MPa.

5. Design a suitable wide flange section to carry a factored L.L + D.L of 20 kN m. The
load is applied eccentrically 30 mm from the centre of the web on a simply supported
beam of 6 m span. Assume that the ends of the beam have torsional simple supports
andfy =250 MPa.

6. Design a suitable ISMB section for the simply supported beam given in Exercise 5
and compare the results.

7. Design a rectangular hollow section member to carry the following factored forces
and moments. Axial compression = 30 kN, moments M, = 6 kN m, M} =0.5kNm
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10.

11.

12.

13.
14.

and torsion = 0.50 kN m. Assume the length of the member as 3.5 m and f} =
250 MPa.

. Compute the maximum load of a 4-m long column which has warping at the ends

prevented with:

(a) a cruciform section, with each leg 100 mm long and 10 mm thick (see
Fig. 18.19)

(b) a T-section having flange size 200 X 10 mm and stem 150 X 10 mm.

Review Questions

Which of these sections are stronger in resisting torsion?

(a) I-section (b) channels (c)  tubes and hollow sections
What are the three classifications of primary torsion?

How is the magnitude of secondary torsions predicted?

Cite an example where a destabilizing torsion may occur.

When can St Venant’s torsion occur?

State the equation for calculating the St Venant’s torsional shear stress of
(a) solid circular section, with radius R,

(b) thin walled boxed section,

(c) hollow circular section with internal radius R; and outside radius R,
(d) solid rectangular section, and

(e) thin walled open sections.

State the equation for calculating the St Venant torsional constant for

(a) solid rectangular sections,

(b) thin walled open sections, and

(c) single cell closed sections.

. Draw the approximate shear stress distribution in an I-section subjected to uniform

torsion, non-uniform torsion, and shear force.

74
What does a high value of the coefficient k, = L g[[ signify?

w
Write short notes on the following:

(a) shear centre

(b) approximate design procedure for torsion

What are the methods adopted in practice to minimize the effects of torsion?
State the equation for predicting the critical stress of a column with a cruciform
cross section, due to torsional buckling.

How one can calculate the load carrying capacity of a cruciform or Z-section?
State the equation for calculating the angle of rotation of a cross section subjected
to torsion.



