
Reactive TestBench

Generation Option

User’s Manual

www.syncad.com

Reactive TestBench Generation Option User’s Manual
(rev 10.0) copyright 1994-2005 SynaptiCAD

Trademarks

- Timing Diagrammer Pro, WaveFormer Pro, TestBencher Pro, VeriLogger Pro, DataSheet Pro, BugHunter
Pro, Reactive TestBench Generation Option and SynaptiCAD are trademarks of SynaptiCAD Inc.

- VERA, OpenVera, VCS, and VCSi are trademarks of Sysnopsys, Inc.
- NC Verilog, NC VHDL, and Verilog-XL are trademarks of Cadence Design Systems, Inc.
- Pod-A-Lyzer is a trademark of Boulder Creek Engineering.
- PeakVHDL and PeakFPGA are trademarks of Accolade Design Automation Inc.
- V-System and ModelSim are trademarks of Model Technology Incorporated.
- Viewlogic, Workview, and Viewsim are registered trademarks of Viewlogic Inc.
- HP and Agilent are trademarks of Hewlett Packard.
- Tektronix copyright Tektronix, Inc.
- PI-2005 and PI-Pat are trademarks of Pulse Instruments.
- Timing Designer and Chronology are registered trademarks of Chronology Corp.
- DesignWorks is a trademark of Capilano Computing.
- Mentor and QuickSim II are registered trademarks of Mentor Graphics Inc.
- OrCAD is a registered trademark of OrCAD.
- PSpice is a registered trademark of MicroSim.
- Windows, Windows NT, and Windows 95/98/2000 are registered trademarks of Microsoft.

All other brand and product names are the trademarks of their respective holders.

Information in this documentation is subject to change without notice and does not represent a commitment on the part
of SynaptiCAD. Not all functions listed in manual apply to Timing Diagrammer Pro, WaveFormer Pro, DataSheet Pro,
or VeriLogger Pro. The software and associated documentation is provided under a license agreement and is the prop-
erty of SynaptiCAD. Copying the software in violation of Federal Copyright Law is a criminal offense. Violators will
be prosecuted to the full extent of the law.

No part of this document may be reproduced or transmitted in any manner or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the written permission of SynaptiCAD.

For latest product information and updates contact SynaptiCAD at:

web site: http://www.syncad.com

email: sales@syncad.com

phone: (540)953-3390

3

Table of Contents

Table of Contents ..3

Introduction ...5

Chapter 1: Waveforms and Signals ...7
1.1 Drawing Waveforms and Bi-Directional Signals .. 7

1.2 Driving Waveform States with Variables ... 8

1.3 Driving Conditional State Values ... 9

1.4 Adding Signals .. 9

1.5 Boolean Equations with Delays .. 10

1.6 Advanced Gate Representation ... 11

1.7 Register and Latch Equations .. 11

1.8 Controlling the Triggering Order of Parameters ... 13

1.9 Sensitive Edges ... 14

1.10 Transaction Architecture ... 14

1.11 Diagram Properties ... 17

Chapter 2: Delays, Setups and Holds ..19
2.1 Adding and Editing Parameters ... 19

2.2 Delays .. 20

2.3 Resolving Multiple Delays .. 21

2.4 Setups and Holds ... 22

Chapter 3: Samples ...23
3.1 Adding a New Sample ... 23

3.2 Sample Condition and Actions .. 24

3.3 Interpreting Sample Conditions and Blocking Points ... 26

3.4 Samples Triggering a Delayed Transition or Another Sample .. 27

3.5 Using Sample Variables .. 28

3.6 Storing Sample Values in User Defined Variables ... 29

Chapter 4: Markers ..31
4.1 Adding a Marker to a Diagram ... 31

4.2 End Diagram Markers ... 32

4.3 Loop Markers .. 32

4.4 HDL Code Markers ... 34

4.5 Wait Until Marker ... 34

4.6 Pause Simulation Marker (Verilog Only) ... 35

4.7 Documentation and Time Break Markers ... 35

Chapter 5: Variables and Class Methods ...37
5.1 Variables .. 37

5.2 Class Methods ... 38

5.3 Language Independent Types .. 39

Chapter 6: Test Bench Techniques..43
6.1 Testing a Counter Model ... 43

6.2 Waiting for Signal Transitions .. 43

Index ...45

4

Introduction 5

Introduction

The Reactive Test Bench Generation Option bridges the gap between the stimulus waveform test benches that are na-
tive to most of the SynaptiCAD product line and the bus-functional model generation of TestBencher Pro. This option
allows users to describe single timing diagram test benches that react to the model under test and generate pass/fail
reports. The Reactive Test Bench Generation Option can be added to WaveFormer Pro, WaveFormer Lite, DataSheet
Pro, VeriLogger Pro, and BugHunter Pro.

With "Reactive Test Bench Generation" users have the option of drawing "expected" waveforms on the MUT output
ports and adding "samples" to the waveforms to test for specific cases. During simulation the code generated by the
samples would watch the output from the model under test and compare it to drawn states. The samples can perform
a variety of functions such as pausing the simulation to debug a problem, reporting errors and warnings, user-defined
actions, and triggering other samples.

The Reactive Test Bench Generation also includes markers that can be used to wait for activity from the model under
test and/or loop over a section of a diagram. Markers can also be used to call user-written HDL functions ands tasks
from within a diagram.

Reactive test bench generation also allows the option of creating "clock-based" test benches as well as the "time-based"
test benches currently supported by the stimulus based generation models. Clock-based test benches delay in clock cy-
cles instead of times, allowing the user to change his clock frequency without needing to change his timing diagram.
Clock-based test benches are also required when testing using high-speed "cycle-based" simulators.

 6 Introduction

Chapter 1: Waveforms and Signals 7

Chapter 1: Waveforms and Signals

Signals and waveforms are the heart of the timing diagram. The waveforms can be quickly sketched using the built-in
timing diagram editor. The state values of waveforms can be hard coded. In TestBencher, state values can also be
passed into waveforms through a variable, or conditionally driven by a variable.

Most of the signals will be automatically added to the timing diagrams by extracting the signal and port information
from the model under test files. However signals can be added manually. Several types of signals including internal
and clock signals can be added to the timing diagram to achieve different behaviors.

The edges on waveforms are responsible for triggering the markers and parameters that are attached to them. If more
than one parameter or marker is attached to the same edge then triggering order can be set using the Edge Properties
dialog. Also, edges of a can be made sensitive so that the transaction will wait for that particular edge to occur.

Generation of Reactive HDL Code

The Reactive Export feature (included in TestBencher Pro and optionally in other products) includes the generation of
Boolean Equations with delays, registers, latched signals and behavioral Verilog code. Boolean equations and regis-
tered logic are useful for modeling interface glue logic that is not part of the model under test itself. The equations are
entered through the Logic Wizard section of the Signal Properties, which can be reached by double-clicking on a signal
name. Sections 12.1 Boolean Equations, 12.2 Advanced Gate Representation and 12.3 Register and Latch Equations
discuss the methods useful for generating interface glue-logic in a reactive test bench.

1.1 Drawing Waveforms and Bi-Directional Signals

The timing diagram editor is always in drawing mode. Waveforms are sketched by clicking the mouse button in the
diagram window. The state buttons control which type of waveforms will be drawn next. The state buttons are the but-
tons with the waveforms drawn on their face: HIGH, LOW, TRIstate, VALid, INValid, WHI weak high, and WLO
weak low. When a state button is activated, it is pushed in and colored red. The active state will be the type of wave-
form that is drawn next. Waveforms can also be edited by dragging and dropping edges, and by selecting segments
and choosing another waveform state. The Timing Diagram Editor on-line manual provides in-depth information for
the drawing environment.

To Draw a Waveform:

- Click the type of state that you want to add in the group of 7 states on the right side of the Signal Button Bar.

- Click in the waveform section of the Diagram window to the right of the signal or bus name at the approximate
time that you want the state transition to occur. This will place the transition in the waveform. Waveforms are
built from left to right.

- Repeat the first two steps until you have completed the signal’s waveform.

Signals with a direction of output or internal have black waveforms, and signals with a direction of input have blue
waveforms. Bi-directional signals with a direction of inout will be drawn with mixed black and blue segments to in-
dicate which segments will be driven by the transaction and which are inputs to the transaction.

By default all of the waveform segments on a bi-directional signals signal are assumed to have a direction of output
and are colored black to indicate their direction. To change a segment to be an input segment (un-driven):

- Double-click on the input segment. This opens the Edit Bus State dialog.

- Uncheck the Driven check box. This indicates that the test bench does not drive this segment; this segment will
be an input to the test bench.

 8 Chapter 1: Waveforms and Signals

- Click OK to close the dialog or use <Alt>-N or <Alt>-P (or the Next or Previous buttons) to edit other segments
on the same signal. The segment for which you unchecked the driven flag should now be colored blue.

1.2 Driving Waveform States with Variables

Waveforms are normally driven to the drawn graphical state (high, low, tri-state, weak-high, and weak-low). However,
waveforms with a graphical state of valid need to be driven to a distinct value during simulation. Using the Edit Bus
State dialog you can hard code in a value, choose an existing variable in the timing diagram to drive the state, or in
TestBencher define a state variable. If a waveform segment is drawn with a graphical state other than valid, that graph-
ical state will be used to drive the signal and any other state information entered through the Edit Bus State dialog will
be ignored.

In TestBencher, using variables to drive waveform states allows new values to be passed into the transaction each time
it is called. This is convenient for timing diagrams that have data and address buses because each time the diagram is
called new values can be passed into the timing diagram. State variables and Diagram-level variables can be used
to drive a waveform state (see section Section 3.3: Transaction Level Variables of the TestBencher Manual). Parameter
based variables should not be used to drive waveform states because their type is fixed to hold time values not state
values.

TestBencher state variables can be quickly defined in the Edit Bus State dialog by typing in a variable name that begins
with two dollar signs like $$addr. State variables are automatically added to the parameter list for the transaction call.
The type and size for these variables are determined by the signal that is being driven. Each time the transaction is
called, a new state value can be passed into the variable. The same state variable can also be used on several signals
and the maximum size will be determined by the min and max of all of the signals used. For example $$addr apears
in SIG0[3:0] and SIG1[12:9], then the $$addr will have a size of [12:0].

Both TestBencher and the Reactive TestBench option support Diagram-level variables. The type and size are con-
trolled by the user during the declaration of the variables. so they require a little more setup work (see Section 3.3
Transaction Level Variables of the TestBencher Manual). Also diagram-level variables can be conditionally driven by
different sources like samples and signal states within the timing diagram during simulation as well as being passed
into diagram.

To edit the state of a valid signal segment:

- Double-click on the segment of the signal to
open the Edit Bus State dialog.

- The Virtual edit box accepts values, variables,
and Boolean equations that meet the format
shown in Appendix C: Language Indepen-
dent Operators. For example, $$addr+@in-
crement is an acceptable equation for the
Virtual edit box.

- To hard code a value, type the value in the Virtual edit box.

- To add a state variable, type the variable name using a $$ prefix into the Virtual edit box. For example,
$$data might be the name of the variable for the value of data bus. This variable will appear in the timing
diagrams apply call.

- To add a diagram-level variable:

- Click the Variables button to open the Select Variables dialog. Double-click on the variable and click
OK to close the dialog. The variable name with a @ prefix will be added to the Virtual box.

OR

- Click the Variables Menu Button to display a list of variables that can be inserted into the equation.

Chapter 1: Waveforms and Signals 9

- Click OK to close the dialog box.

Note: State values can also be conditionally driven using the Condition Tree in the bottom of the Edit Bus State dialog.
For more information see Section 1.3: Driving Conditional State Values.

1.3 Driving Conditional State Values

State values can be conditionally driven based on
events and states that occur during simulation. The
Edit Bus State dialog contains a Condition Tree that
can be used to build conditional strings for the state
value. If the state tree is not modified, the value will
be unconditionally driven to the value in the Virtual
edit box. The driven state can be made conditional by
adding a condition to the State Condition tree.

To create a conditional drive for the state value:

- Double-click the segment that is to be condi-
tionally driven to open the Edit Bus State di-
alog.

- Right-click on the If row and choose Add Con-
dition from the context menu to open an edit
box or double click in the Condition/Action
column of the If row.

- Type the text for the condition. The condition
must be written in the generated language of
the transaction and it must equate to a Bool-
ean equation when evaluated during simulation.

- Next, add the state values to the Then or Else rows by right-clicking choosing Add Variable or Add State menu
option. Or double-click in the Condition/Action column and edit the state.

- Optional: Complex conditionals can be created us-
ing the Add If...Then...Else context menu. This
option is available for any existing Then or Else
row. Selecting this option causes a nested
If...Then...Else to be added to the branch of tree
that was selected.

1.4 Adding Signals

Most signals will be automatically added by extracting the signal information from the model under test using the tech-
niques that are discussed in Section 3.2 Extracting MUT Ports into a Timing Diagram of the TestBencher manual. Sig-
nals can also be added manually by using the buttons on the Signal Button Bar. Certain types of signals like compare
and internal signals are always added manually.

The generated bus-functional model can provide stimulus and monitor simulation outputs of the circuit that you are
designing. In order to do this, the signals that will be exported by the bus-functional model have to match the signals
that exist in your designs. If the signals in the timing diagrams are named the same as in your circuit model then the
matching will be automatic. If the signal names do not match you will have to create a sub-project and use the Signal
and Ports dialog to define the signal mapping as covered in Section 2.3 Sub-Projects in the TestBencher manual.

Signals can be added manually by using the Add Signal, Add Clock, Add Bus and Add
Spacer buttons on the signal button bar. The signal name, HDL type, and direction can be
edited using the Signal Properties dialog.

 10 Chapter 1: Waveforms and Signals

To add a Signal, Clock, Bus or Spacer:

- Click the appropriate button in the first group of four. This will add the Signal, Clock, Bus or Spacer to the timing
diagram. Spacers are just for adding space to the diagram and do not generate code.

- If you added a signal, clock or bus, then double-click the name of the new object to open the Signal Properties
dialog.

- Edit the Name. If the signal is to be hooked up to a signal in the HDL model, then use the same name.

- Edit the signal type using the language Type drop down list box in the bottom of the dialog.

- Edit the signal size using the MSB and LSB edit boxes. Clocks are always one bit wide.

- Edit the Direction using the drop down list box. The following directions are available:

- Output indicates that the signal is output from the diagram.

- Input indicates that the signal is what you expect the model under test to generate during simulation (these
signals are inputs to the timing transactions, driven by the model under test). In the timing diagram, Sam-
ple parameters usually end on an input signal, indicating that the input signal should be checked for an
expected value at that point on the signal.

- Inout indicates that the signal is bi-directional (see Section 1.1: Drawing Waveforms and Bi-Directional
Signals). Inout signals contain driven and un-driven signal segments. Driven segments act like signals of
type output.

- Internal indicates that the signal will only be used internally to the diagram component.

- The Clock and Edge/Level specify the clocking signal for the waveform. In TestBencher, these will be automat-
ically set by the Project Wizard options, however, you can pick a different system clock signal and edge using
these controls. TestBencher users can also change the default clock using the Diagram Properties clock.

- For Clocks, the clock period, duty cycle, and clock offset can be changed by either clicking on the Clock Prop-
erties button or by Double-clicking on the clock waveform.

The default signal direction and language type for new signals can be set from the Diagram Settings dialog (see Section
3.7: Diagram Settings Dialog - Overview in the TestBencher manual for more information).

1.5 Boolean Equations with Delays

SynaptiCAD’s Boolean equations combinatorially relate one signal to other signals in the diagram. To describe a sig-
nal with a Boolean equation:

- Double-click on a signal name to open the Signal Properties dialog.

- Make sure the Boolean Equation radio button is selected.

- Enter a Boolean equation into the edit box.

- To view or edit the Verilog HDL code used by the simulator, select the HDL Code radio button.

The Boolean Equation edit box accepts Boolean equations in VHDL, Verilog, and SynaptiCAD's enhanced equation
syntax. The SynaptiCAD format supports the operators: and, or, nand, nor, xor, not, and delay. The delay operator
takes a signal on the left and a time or parameter name on the right and returns a signal. If a parameter name is used
on the right hand side of the delay operator, then the equation will simulate true min/max timing. This true min/max
timing analysis is the main advantage that SynaptiCAD's format has over the VHDL or Verilog format. Instead of min/
max timing, Min-Only or Max-Only simulations can be performed by changing the Options > Simulation Preferenc-
es > Timing Model drop-down list box. Below are sample Boolean equations:

Chapter 1: Waveforms and Signals 11

(SIG0 and SIG1 and SIG3) delay 20ns

This models a 3-input AND gate with a 20ns delay.

(SIG0 delay 20ns) and (SIG1 delay 10ns)

This models an AND gate with 2 different input delays.

(SIG0 and SIG1) delay GateDelay

Assume GateDelay is a delay parameter with a min time of 15ns and a max time of 20ns. This models an
AND gate with a delay between 15ns and 20ns. Each edge of the simulated signal will have a grey un-
certainty region of 5ns.

1.6 Advanced Gate Representation

The Boolean equation edit box of the Signal Properties dialog can accept several advanced operators, like conditional
expressions and signal concatenation. These operators can be used to model multiplexers, tristate gates, and multi-bit
signals. The following demonstrates several of these modeling techniques:

Conditional Expressions for Multiplexers and Tristate gates: The normal C language conditional expression of
conditional ? if_expr : else_expr can be used inside the Boolean Equation edit box to model multiplexers and tristate
gates. Some examples are:

For a Tristate Gate: EnableSig ? SIG0 : 'bz

For a 2-1 MUX: S0 ? SIG0 : SIG1

For a 4-1 MUX: S1 ? (S0 ? SIG0 : SIG1) : (S0 ? SIG3 : SIG2)

Multi-bit Equations are specified by setting the MSB and LSB of the signal (located at the bottom of the Signal Prop-
erties dialog). To change a simple 1-bit equation to a 4-bit equation, all you have to do is set the MSB of the signals
involved to 3.

Concatenation of Signals is supported using the Verilog concatenation operator. You must set the MSB in the Signals
Properties dialog to the proper size. If the size of the concatenated signal is larger than the receiving signal, then the
most significant bits are dropped. Some examples of the concatenation operator:

- Signal Concatenation: {SIG0, SIG1}

- Concatenating bit-slices: {SIG0[3:0], SIG1[7:4]}

1.7 Register and Latch Equations

The generation and simulation of registered and latched equations are supported through the Reactive Export and In-
teractive HDL simulator features. The logic wizard is used to enter information about the circuit for code generation.

 12 Chapter 1: Waveforms and Signals

To describe a signal that is registered or latched:

- Double-click on a signal name to open the Signal Properties dialog.

- Make sure the Boolean Equation radio button is selected.

- Enter the input signal name into the Boolean equation edit box. The input Boolean equation can either be the
name of the input signal or an equation that conditions the input signal.

- Choose the clocking signal from the Clock drop-down list box. The clocking signal can be any clock or signal
in the timing diagram.

- Choose the type of edge or level triggering from the Edge/Level list box. For a Register circuit choose neg for
negative edge triggering, pos for positive edge triggering, or both for edge triggering. For a Latch circuit
choose either low or high level latching.

- The Set, Clear, and Clock Enable are optional signals that model the set, clear, and clock enable lines of the
register or latch. If "Not Used" is chosen for a line, then that line is not modeled. These lines can be active
low or high and synchronous or asynchronous depending on the settings in the Advanced Register and Latch
Controls dialog.

- The Advanced Register button opens the Advanced Register and Latch Controls dialog which determine how
this individual register is generated. The global defaults can be defined using the Options > Simulation Pref-
erences menu. This dialog controls the following options:

- Clock to Out: Describes the delay from the triggering of the clock signal to a change on the output edge.
This setting supports both a Low to High model and a High to Low model.

- Setup: Describes the time for which the input must be stable before the clock-triggering event. If a min/
max time pair is entered, Setup will use the min time. Any violations of this setup time will be reported
to the simulation log (see the simulation log information below).

- Hold: Describes the time for which the input must remain stable after the clock-triggering event. If a min/
max time pair is entered, Hold will use the min time. Any violations of this hold time will be reported
to the simulation log (see the simulation log information below).

Simulation Log Information:

Simulation-Enabled products will report timing violations to the verilog.log log file, shown in the report
window (sample error message shown below). Otherwise, simulation log messages will be reported
through the console of the third party simulator that is being used (e.g. ModelSim).

In the Clock Enable area:

- Active Low: If checked, the clock will be enabled when the clock enable line is low. If unchecked, the
clock will be enabled when the clock enable line is high.

Chapter 1: Waveforms and Signals 13

In the Set and Clear area:

- Active Low: If checked, the set and clear lines will control the output when they are low. If unchecked,
then the set and clear lines will control the output when they are high.

- Asynchronous: If checked, then the set and clear lines will control the output anytime they are active. If
unchecked, the model is synchronous and an active set or clear line does not affect the output until the
next clock trigger event.

- To view or edit the Verilog HDL code that is used by the simulator, select the HDL Code radio button.

1.8 Controlling the Triggering Order of Parameters

Edges on waveforms are responsible for triggering the markers and parameters that are attached to them. If more than
one parameter or marker is attached to the same edge then the triggering order can be set using the Edge Properties
dialog. By default the triggering order is the same as the order in which the objects were attached to the edge. The
triggering order is especially important on edges that define the beginning and ending points of a marker loop, because
the order determines whether the action occurs inside or outside of the loop.

Note: If a marker is relative to an edge, but not exactly on top of the
edge, then order is based off of placement in the timing diagram and
will not show up in the order dialog.

To order Parameters and Markers attached to the same edge:

- Double-click the edge that triggers the parameters and markers
to open the Edge Properties dialog.

- Click the Trigger Order button to open the Parameter and
Marker Order dialog.

- Drag and drop the rows to arrange the parameters and markers
in the desired order. You can also use the arrow buttons on
the right side of the dialog to move selected items up or
down.

- If you need to review the properties of an item before setting the
order, you can double-click the name of the object in the row
to open the Properties dialog for that object.

- Click the OK button to close the Parameter and Marker Order
dialog.

- Click the OK button to close the Edge Properties dialog.

Displaying the order of parameter and markers in the timing diagram

It may be useful to display the triggering order for parameters and markers in the timing diagram. This allows the order
of execution to be determined at a glance, without opening the Parameter and Marker Order dialog. One of the display
options for parameters and markers is Name and Order. This setting will display the order number for any parameter
or marker with an order greater than 1, followed by the name of the parameter or marker. Note that the omission of the
number one allows you to make this display setting the global default without displaying an order number when only
one parameter or marker is triggered from an edge.

To change the Name and Order display for a single marker or parameter:

- Double-click the parameter or marker to open the Parameter Properties or Marker Properties dialog.

- Select the Name and Order option from the Display Label dropdown list.

- Click OK to close the dialog and apply the changes.

 14 Chapter 1: Waveforms and Signals

To change the Global Settings for Name and Order:

- Select the Options > Drawing Preferences (Style Sheet) menu option. This will open the Drawing Preferences
(Style Sheet) dialog.

- Select the Name and Order selection from the Parameter Display Label dropdown list.

- Select the Name and Order selection from the Marker Display Label dropdown list.

Note: These two settings do not need to be the same. You may wish to set only one of these two as the global
default.

- Click OK to close the dialog and apply the changes.

1.9 Sensitive Edges

The edges of signals can be made falling edge sensitive and rising edge sensitive using the check boxes in the Signal
Properties dialog. Sensitive edges are usually placed on input signals and the code that gets generated causes the trans-
action to wait for the sensitive edge before continuing.

Sensitive edges cause wait statements to be inserted for that edge. These waits will block the clocking domain that
contains the sensitive edge (see Section 1.10: Transaction Architecture for more details on clocking domains).

To enable sensitive edges on a signal:

- Double-click the name of the signal that you want to watch for events on. This will open the Signal Properties
dialog.

Note: Sequence Recognition watches the events on single bit signals only.

- Check the Rising Edge Sensitive checkbox or the Falling Edge Sensitive checkbox. Enabling both checkboxes
will cause both rising and falling edges to be sensitive.

- Click the OK button to apply the changes and close the Signal Properties dialog.

Sensitive edges will have arrows instead of a line indicating the state transition.

1.10 Transaction Architecture

This section describes how TestBencher models a transaction diagram. A firm understanding of this material will help
you avoid errors in your transaction diagrams and speed the process of debugging your system.

TestBencher generates a transaction for each timing diagram in the project. These transactions are modules for Verilog,
entity/architecture pairs for VHDL, structs for e, and classes for OpenVera, TestBuilder, and SystemC. Regardless of
the language, the transactions use the same general architecture. And in all languages, the transactions have a similar
functional API that can be used to trigger them (diagram apply calls).

Clock domains

Inside each transaction there may be one unclocked sequence process and several clocked sequence processes. A se-
quence process is created for each clock domain in the diagram to drive signals and trigger parameters (Delays, Sam-
ples, Holds, Setups, Markers) that are synchronous to the given clock. Each domain will run in parallel (concurrently)
once the diagram is started. Typically, there will only be one clock domain in the diagram. But, if you have multiple
domains in the diagram, then it’s important to know what is placed in each domain if you have looping or blocking
parameters. For example, a Marker loop that is attached to the falling edge of CLK will only loop around items that
are also in the CLK_neg clock domain. Items that are in the unclocked domain wouldn’t get placed into the loop. Also,
items that can potentially block a process (Samples, Markers, Sensitive Edges) will only block the clock domain that
they are placed in. The following sections will go into more detail on how blocking and looping constructs work.

Chapter 1: Waveforms and Signals 15

The table below shows how the clock domain is determined for each type of construct.

Signals

Signal states are driven based on three factors: how it is drawn, its clocking domain, and the cycle based setting In-
clude Time Delays in the Diagram Settings dialog. Unclocked signals are driven at the times that the edge transitions
are drawn. Clocked signals are driven based on the clocking edges detected during simulation. The Include Time De-
lays option controls whether or not inter-clock cycle delays are generated for clocked signals. If this option is off, then
clocked signals are only driven at clock edges (See Section 3.9 Diagram Settings – Language Tabs in the TestBencher
manual). The event timing for signals is covered in detail in Section 4.1 Drawing Transactions for TestBencher in the
TestBencher manual.

Blocking Constructs (Sensitive Edges, Samples, and Markers)

There are three different types of constructs that can be used to block the execution of a clock domain. A sensitive edge
(Section 1.9: Sensitive Edges) will cause its clock domain to wait on the edge, which will block all other items in that
same clock domain until the edge is detected. A Sample that has the blocking setting checked (Section 3.3: Interper-
ting Sample Conditions and Blocking Points) will block its clock domain until the sample completely finishes, includ-
ing execution of its then or else action. And a Wait Until Marker (Section 4.5: Wait Until Marker) will block its clock
domain until the condition specified becomes true. If the marker is attached to an edge it will only check for the con-
dition at each clock edge of the clock domain.

Samples

The code for samples will sometimes be generated in a separate process and sometimes within the clock sequence pro-
cess that triggers it (in-line). Whenever possible, the sample code will be generated in-line to make it easier to debug
the generated code. However, if the sample is non-blocking and needs to wait for simulation time to pass, then that
sample will be placed in its own process or task and triggered by the sequence at the appropriate time. Some examples
of samples that need to wait for simulation time to pass are windowed samples or samples that are delayed from their
triggering point.

The sequence process that triggers the sample is determined from the combination of the triggering edge and the Sam-
ples Properties dialog clock and edge type settings.

Construct Type Clocking Domain
Signals Clock and Edge of signal (Signal Properties dialog)
Sensitive Edge Clock and Edge of signal that contains sensitive edge
Samples A sample’s clock domain is the process that triggers it. See the

table below to determine a sample’s triggering process.
Delays attached to edge If not unclocked, then Clock and Edge in Delay dialog. Other-

wise, the starting edge of the delay sets the clock domain.
Setups Signal and edge that is pointed to by the Setup
Holds Signal and edge that is pointed to by the Hold
Markers attached to edge The relative edge sets the clock domain
Markers attached to time Unclocked

Triggering Edge Sample Properties
clock and edge type

Triggering Sequence

No trigger (time only) Ignored when no trigger edge Unclocked sequence
Attached to an edge Unclocked Trigger edge sequence
Attached to clock edge Matches triggering edge Clock sequence from dialog
Attached to an edge Different than triggering edge Clock sequence from dialog with a level sen-

sitive check on the triggering signal

 16 Chapter 1: Waveforms and Signals

The example diagram below contains three domains: CLK_pos, CONTROL_neg, and Unclocked.

CLK_pos: This is a clocked diagram so most of the graphical elements were automatically created with the clock/edge
already set to CLK and pos edge in the Properties dialog of the element.

- SAMPLE2: triggered from the third clock edge.

- SAMPLE0: at second clock edge, a level sensitive check is performed on the CONTROL signal and if it is 0
then the sample will trigger. If instead of a level sensitive check on CONTROL, you want to perform an edge
sensitive wait on CONTROL, then set the falling edge sensitive check box in Signal Properties dialog for
the CONTROL signal.

CONTROL_neg: When SAMPLE1 was created we used the Sample Properties dialog to change the clock setting to
unclocked. This setting change will allow SAMPLE1 to be triggered when the CONTROL signal goes negative (com-
pare this to the behavior of SAMPLE0 above).

Unclocked sequence: SAMPLE3 is an absolute sample (not attached to an edge) so it will be placed in the unclocked
sequence. SAMPLE3 will trigger at 125 ns.

Delay Parameters

Delays are placed in clock domains based on the same rules that apply to Samples. The only difference is that it is not
possible to create a delay that is not attached to an edge. So, Delays will never be triggered by the unclocked sequence.

Setups and Holds

Setups and Holds are placed in clock domains based on the edge that they point to. Since they cannot be attached to
time (such as Samples), they will never be triggered by the unclocked sequence.

In the following example there are three different clock domains because the setups and holds point to three different
edges:

- CLK_pos triggers both S0 and H0 at the second positive edge of CLK.

- CONTROL_B_neg triggers S1 at the first negative edge of CONTROL_B.

- CONTROL_B_pos triggers H1 at the first positive edge of CONTROL_B.

Chapter 1: Waveforms and Signals 17

Markers

When looping behavior is needed over a particular set of clock cycles or time, then Looping Markers have to be used
(see Section 4.3: Looping markers for more details on markers). They will only loop over the clocking domain that
they are placed in.

The following example demonstrates how a marker loop might not cover everything in the diagram. The count signal
has its Clock set to "CLK" and Edge set to "neg". The SIG0 signal is unclocked. The marker loop will loop over the
CLK_neg clocking domain since the Begin and End loop markers are attached to falling edges of CLK. Since singal
count is in the same clock domain, during simulation the signal will be incremented at each negative clock edge until
it reaches 5. Since SIG0 is Unclocked it is not included in the loop and therefore will only get incremented once.

Output Clocks (Clock generators)

When creating a clocked test bench with Testbencher, there is usually either one timing diagram that has an output
clock or the clock is generated in the MUT code. All of the other timing diagrams use an input clock. This makes it
easier to synchronize the transactions during simulation.

Each output clock has its own process that generates the clock during a simulation. This clocking process is in addition
to any unclocked or clocked processes that are used to synchronize signals and parameters. The clock generation pro-
cess will take into account as many of the Clock Properties as are supported by the generation language.

1.11 Diagram Properties

The cycle based settings and the include file list of a timing diagram are edited using the TestBencher Diagram Prop-
erties dialog. Diagram properties are significant to the operation of the diagram and can break or dramatically change
the way the diagram works during simulation. These properties are saved in the timing diagram file. Other diagram
settings that affect the generation of the code but not the operation of the diagram are edited through the TestBencher
Settings dialog as discussed next in Section 3.7: Diagram Settings Dialog - Overview in the TestBencher manual.

To edit the Diagram Properties:

- Open the diagram for which you will be changing the properties.

- In the Diagram window, right-click in the signal label area and choose TestBencher Diagram Properties from
the context menu. This will open the TestBencher Diagram Properties dialog.

Including HDL Code Library Files

If you have external code modules that you want to make available to the transaction then you can use the interface in
the Diagram Properties dialog to make that code available. Files can either be included before the transaction, using
the equivalent of the Verilog include statement, or files can be included inside the module. The method for including
code within the transaction varies by language. If possible the code is included using something like the include state-
ment and if that concept is not supported then the code is echoed within the transaction. If you have HDL functions or
tasks that you would like to write and use within a transaction then use the Class Methods dialog as discussed Section
5.2: Class Methods. Class Methods is a newer interface that is more flexible and it makes it easier to modify the code
and parameters of the functions.

 18 Chapter 1: Waveforms and Signals

To Add an HDL Code Library File to the Diagram:

- Click the Add button to the right of the ap-
propriate list box to open a file dialog
that lets you browse for the include file.
Click Open to close the file dialog.

Although the code generation for Verilog and
VHDL will treat the file lists from this dialog
differently, the file selection process for the lan-
guages is the same in this dialog.

Cycle Based Properties

The Cycle Based Properties control how
clocked signals and events are generated. These
settings provide default clocking signals and
edges to be specified for a diagram. This area
also allows existing signals and parameters to be
updated to a new clocking signal and edge.

- The Default Clock and Edge settings pro-
vide default values for the clocking sig-
nal and sensitive clock edge in a
diagram.

- The Update Existing button is used to up-
date all signals, samples, delays and
anything with a clocking signal defined
to the currently selected Clock and
Edge/Level.

Chapter 1: Waveforms and Signals 19

Chapter 2: Delays, Setups and Holds

Timing diagrams can include graphical parameters like delays, setups, holds, and samples. These parameters generate
transaction code that monitors and conditionally controls signal transitions. By combining and chaining together the
parameters, you are graphically describing temporal expressions that will execute during simulation. In TestBencher,
Temporal Expressions can also be entered manually using a signal as described in Section 4.6: Temporal Expressions
for TestBencher in the TestBencher Manual.

This chapter will cover delays, setups, and holds that are parameters that perform actions between two signal transi-
tions. Samples are placed on signal states (not transitions) and monitor the state of a signal. Samples are the main type
of parameter used in TestBencher timing diagrams and they are covered in detail in Chapter 3: Transaction Samples.

Delays

Delays are used to specify a fixed time between signal transitions. The time between signal transitions can be a hard
coded value or it can be a variable that is set during simulation. Delays can conditionally drive state values by trigger-
ing from a sample or by using an internal delay condition. The condition is checked after the delay is triggered, and
before the delay time has been waited for. This is especially good for modeling control signals that go active after cer-
tain conditions in the transaction are met.

Setups and Holds

Setups and Holds perform a check to determine if a signal is stable with respect to another signal. The graphical setup
and hold parameters perform a one-time check between two signal transitions. A continuous check between two sig-
nals can also be created by using the properties for the signal.

2.1 Adding and Editing Parameters

Parameters are added by selecting a parameter button on the button bar, left clicking on the relative edge, and then right
clicking on the second edge in the waveform window. After a parameter is added, its values can be edited by double-
clicking on the parameter to open the Parameter Properties dialog. The properties for each parameter type are dis-
cussed in the section for that type.

To add a Delay, Setup, or Hold:

- Select the parameter button on the Signal Button Bar for the type of parameter you want to add.

- Click on a transition to select it. For a delay this is the forcing transition. For a setup or hold this is the transition
that will be monitored.

- Right-click on the second transition to add a parameter between the first and second transitions. For a delay this
is the transition that will be moved. For a setup or hold this is the control signal.

- Double-click the name of the parameter to open the Parameter Properties dialog for that parameter and edit the
properties of the parameter.

The Parameter Properties dialog has many settings that control how the parameter is displayed in the timing diagram
and these features are covered in the Timing Diagram Editor on-line help Section 4.4: Parameter Properties in the
TestBencher manual. TestBencher uses only a few controls for code generation and these are discussed below. A few
additional controls are available for delays (discussed in Section 2.2: Delays) and samples (discussed in Chapter 3:
Transaction Samples). The following controls are common to all parameters and are used in code generation:

- The Name edit box allows the user to specify the name of the parameter.

 20 Chapter 1: Waveforms and Signals

- The Min and Max edit boxes specify the minimum
and maximum time for the parameter to exe-
cute. Each type of parameter handles the Min
and Max values differently; for more informa-
tion, see the sections on delays (Section 2.2),
setups and holds (Section 2.4), and samples
(Chapter 3).

- The Is Apply Subroutine Input checkbox, for
TestBencher, allows you to generate ports be-
tween the Component Model and the timing
transaction with which to specify the values to
use for the Min and Max settings of the param-
eter. If only one of the values is specified, then
a port will only be made for that value. If there
is no value specified for either setting, then a
port will be made for the min value by default.

- The Enable HDL Code Generation checkbox al-
lows you to turn the code generation for the pa-
rameter on and off without removing the
parameter from the timing diagram. This
checkbox must be checked in order to produce
any HDL code for the parameter.

Note: The HDL code generation for all delays,
samples, and markers in a timing diagram
can be disabled through the TestBencher
Diagram Settings dialog. See Section 3.8:
Diagram Settings Dialog - Overview in
the TestBencher manual for more information on this feature.

2.2 Delays

A delay specifies a fixed time between two signal transitions. Delays can also conditionally drive their second edge.
In TestBencher, the value for the delay time can be passed into the delay at simulation so that delays can be used to
perform sweep tests to see when a circuit will fail.

The first edge (left most edge) that the delay is attached to is called the trigger edge. If the trigger edge is on a clocked
signal then the delay will activate at the next clock edge if a level sensitive check of the trigger signal passes. If the
trigger edge for the delay is on an unclocked signal, then the delay will activate when the signal transition occurs. If
the level sensitive check fails, or if the unclocked trigger signal never transitions then the delay will not activate.

Once a delay is activated, then the delay process will wait for the amount of time (or clock cycles) specified in the min
or max value of the parameter, and then drive the second edge. For more information, see Section 1.10 Transaction
Architecture.

To add a Delay to a Timing Diagram:

- Click the Delay button on the Signal Button Bar.

- Click on a transition to select it. This transition is the forcing
transition.

- Right-click on the second transition to add a delay between
the first and second transitions. This transition is the tran-
sition that will be delayed.

Chapter 1: Waveforms and Signals 21

- Double-click on the delay to open the Delay Properties dialog. Most of the controls in the Delay Properties di-
alog were covered in Section 2.1 Adding and Editing Parameters.

The following controls are specific to delays:

- Count Clock Edges determines if the Min
and Max settings are time or cycle based
values. If the delay is Unclocked then the
values are time. If a clock is specified then
the values are numbers of clock cycles.

- Min and Max set the minimum and maximum
time or number of clock cycles to be used for the delay. At simulation time only one value min, max, or
typical (average of min & max) will be used. In TestBencher, the Diagram Settings dialog (discussed in
Section 3.7: Diagram Settings Overview in the TestBencher manual), has the settings that determine
which value will be used during simulation. If only one of the two settings has been given a value (min
or max), the other setting will internally be given the same value.

- HDL code button opens the Boolean Condition
for Delay dialog, that stores the condition
that is checked before the delay drives the
second edge. By default the condition is
TRUE. You can type in the text for a new
condition in the generated language. The
condition can be any equation that evaluates
to a TRUE or FALSE at simulation time. If
the condition is not true after the triggering
edge is detected, then the second edge will not be driven. The condition must be written in the generated
language of the transaction. Note: If the condition is based on state values that occur during simulation,
a graphical conditional delay can be constructed by triggering the delay from a sample parameter (see
Section 3.4: Samples Triggering a Delayed Transition or Another Delay).

2.3 Resolving Multiple Delays

If the same edge is affected by multiple delays, there will be several possible ways for TestBencher to resolve the actual
delay. The value for the edge is calculated based on the Multiple Delay Resolution setting in the Edge Properties
dialog. The default setting for the timing diagram is set in the Options > Design Preferences dialog.

To open the Edge Properties dialog:

- Double-click on the edge to open the
Edge Properties dialog.

- In the Multiple Delay Resolution
section, choose one of Transition
Settings:

- Earliest Transitions uses the de-
lay that will place the edge as
early in the diagram as possi-
ble.

- Latest Transitions uses the de-
lay that will place the edge as
late in the diagram as possible.

- Max Uncertainty and Min Un-
certainty are not currently
supported for TestBencher
Code generation.

 22 Chapter 1: Waveforms and Signals

2.4 Setups and Holds

Setups and Holds check timing requirements for a design. Setups are the minimum time necessary for a signal to be
stable before a control signal transition. Holds are the minimum time that a signal must be stable after a control signal
transition. Setups and Holds perform one check between two signal transitions. If the setup or hold fails then it outputs
a warning in the simulation log file and prints the expected and actual values. If you want to perform a continuous
check between two signals you can use the method described in Section 5.5 Creating Continuous Setups and Holds in
the TestBencher manual.

To create a setup or hold:

- Click the Setup or Hold button.

- Click on a transition to select it. This is the transition that will be monitored.

- Right-click on a second transition to add a setup or hold between the first and second transitions. This is the con-
trol signal.

- Double-click on the setup or hold to open the Parameter Properties dialog. Most of the controls in the Parameter
Properties dialog were covered in Section 2.1 Adding and Editing Parameters.

The following controls are specific to setups and holds:

- The Min field sets the minimum time that the data transition can occur before a setup or after a hold on the
control signal.

- The Max field sets the maximum time that the data transition can occur before or after the control transition.
This field is optional and usually not specified for setups and holds.

If a time is specified for the Max field, then the data transition must occur between the Min and Max times.

- The Outward Arrows checkbox changes the direction that the arrows on the parameter are drawn. This
does not affect code generation but it is a popular graphical feature.

Chapter 1: Waveforms and Signals 23

Chapter 3: Samples

Samples generate the self-testing code within a transaction using either temporal expressions or procedural code that
produces the same functionality as a complex temporal expression. In TestBencher, temporal expressions can also be
entered manually as described in Section 4.6: Temporal Expressions for TestBencher in the TestBencher manual. Sam-
ples are used to monitor the signal values coming back from the model under test. Samples can be run at a specific
time, triggered from an event, or triggered from another sample. The value that is sampled can be exported to the top-
level module. This could be used, for instance, to provide an input value for a state variable in another timing transac-
tion or to determine if a specific timing transaction is to be executed or not. Samples can also be used to trigger a delay
based on its success or failure. Below are the terms used to describe the different monitoring times and triggering
events of a sample.

Monitoring Time

Samples that monitor a signal at a specific time are called Point Samples. And samples
that monitor a signal over an interval of time are called Window Samples. Window sam-
ples are useful for testing that the value of a given signal does not change over a specified
time frame, or for verifying that the signal goes through a specified sequence of states.
Window samples draw themselves with a box indicating the monitoring interval. If you
need to sample over a large window and you do not want to display it graphically then
you can use the Multiplier control in the Code Generation Options dialog described in
Section 3.2 Sample Condition and Actions.

Triggering Process

Point or Window Samples can be either triggered at a specific time in the diagram (Absolute Sample) or they can be
triggered by a transition on a signal or another sample (Relative Sample). The point and window samples shown in the
above image are both absolute samples. The images below show relative samples that are triggered by a transition on
a signal. If the triggering event is on a clocked signal, then at the next clock edge a level sensitive check will be per-
formed and if it fails the sample will not execute. If the triggering event is on an unclocked signal, then if the transition
does not occur during simulation then the sample will not execute.

Check for Condition and Trigger an Action

The Sample’s Code Generation Options dialog is used to define the condition the sample checks for and the actions it
performs on the success and failure of the condition. Section 3.3: Interpreting Sample Conditions and Blocking Points
describes how to control how the sample’s condition is tested.

Sample Variables and Files

Samples generate several diagram-level variables that can be accessed by other graphical elements in the diagram (Sec-
tion 3.5). Sampled values can also be written out to a file (Section 3.6).

3.1 Adding a New Sample

To create a sample you will define the triggering event by how you draw the sample. The monitoring time or interval
will be set using the Samples Properties dialog. The sample actions to take if it succeeds or fails will be set using the
Code Generation Options dialog discussed in Section 3.2.

 24 Chapter 1: Waveforms and Signals

To add a new sample:

- Click the Sample button on the Signal Button Bar.

- If you want the sample to be relative, then click the edge that you want the sample to be relative to.

- Right-click on the signal to be sampled. This will add the sample to the timing diagram. The exact time at which
the sample is placed can be changed using the Samples Properties dialog discussed in the next step.

To edit the monitoring time and properties of the sample:

- Double-click the sample name to open the Sample Properties dialog.

- Type real time or clock cycles into the Min and Max edit box. If the min and max are different than the sample
will be a Window Sample.

The Sample Properties dialog has many settings that con-
trol how the sample is displayed in the timing diagram
and these features are covered in the Timing Diagram Ed-
itor on-line help Section 4.4 Parameters Properties in the
TestBencher manual. TestBencher uses only a few con-
trols for code generation and these are discussed below.

- The Min and Max edit boxes are used to specify
the beginning and ending times or clock cycles
for a sample window.

- Checking the Is Apply Subroutine Input, for
TestBencher, generates input ports to the timing
transaction that can be used to specify the values
to use for the min and max settings of the sam-
ple. (Section 3.2 describes how the monitored
value can be made to be an output port of the
transaction.)

- Samples can be cycle-based instead of time-based.
The Count Clock Edges settings allow a clock-
ing signal and edge to be specified for the sam-
ple.

- The Enable HDL Code Generation checkbox
must be checked for any code to be generated
for the sample.

- The HDL Code button opens the Code Generation
Options dialog that defines the actions of the
sample. This is covered in Section 3.2: Sample
Condition and Actions.

3.2 Sample Condition and Actions

When a sample is triggered, the sample will test for a condition and then perform an action based on the success or
failure of the condition. Both the condition and the actions can be changed using the Code Generation Options dialog.
You can choose from several predefined conditions and actions or directly enter the HDL code. The user defined con-
dition and action usually call class methods that have been defined for the transaction (Section 3.3: Transaction Level
Variables in the TestBencher manual) or are short HDL expressions that make use of the internally generated sample
variables (Section 3.5: Using Sample Variables).

Chapter 1: Waveforms and Signals 25

To define the condition and actions of a sample:

- Double-click on the sample name to open the Sample Properties dialog.

- Click the HDL Code button in the lower left-hand side of the dialog to open the Code Generation Options dialog.

- The If Condition drop down list box controls what the sample checks for. Select one of the following conditions:

- Sample state matches: If the monitored value matches the expected value the Then Action will be taken oth-
erwise the Else Action will occur.

- Sample State doesn't match: If the monitored value matches the expected value the Else Action will be taken
otherwise the Then Action will occur.

- User-defined condition: Directly enter the HDL code to execute see Section 3.5: Using Sample Variables

- The Then Action and Else Action drop
down list boxes control which ac-
tions are taken on the success or fail-
ure of the sample condition. Select
one of the following actions:

- Do nothing: take no action if this
branch is executed.

- Display Message: Display a mes-
sage in the simulation log using
the severity level defined by the
radio buttons below the action.

- Restart Diagram: Resets and re-
starts the transaction execution.

- End Diagram (set status to Done):
Ends execution of this particu-
lar transaction. The bus-func-
tional model will continue to
execute as if this transaction
had normally ended.

- Pause Simulation (Verilog only):
Stops the entire simulation.

- Do Delayed Transition: Creates a
delayed state transition (see
Section 3.4: Samples Trigger
Delayed Transition or Another
Sample) that triggers based on
the results of the If Condition.

- Trigger Sample: creates a trig-
gered sample (see Section 3.4:
Samples Trigger Delayed Tran-
sition or Another Sample) that will fire based upon the results of the If Condition.

- Break Loop: stops the loop that immediately surrounds the sample.

- Continue Loop: returns to the beginning of the loop immediately surrounding the sample, skipping the last
part of the loop

- User-defined action (enter below): lets the user directly enter VHDL or Verilog code for the action into the
edit box below the action drop-down list box. See Section 3.5: Using Sample Variables for more infor-
mation.

 26 Chapter 1: Waveforms and Signals

- When the Full Expect checkbox is checked, every transition that occurs within the window range is checked. If
the option is not enabled, the sample will check for the condition to be true (Simple Expect), or the event to
occur (Restricted Expect) depending on how the waveform is drawn. See Section 3.3: Interpreting Sample
Conditions and Blocking Points for more information.

- The Multiplier property extends the window of time for a sample. The difference between the min and max
values will be multiplied by the value of the multiplier to determine the length of the sample. This also pro-
vides a method to indirectly specify a timeout for a sample. Since this method of extending the sample win-
dow does not appear graphically it can be used for very large windows that would not be very pretty to look at.

- In TestBencher, the Enable Variable control enables the sampled value to be output to a file in a spreadsheet-
like format or stored in a variable. Set to Then if you want the data to be stored if the sample condition suc-
ceeds or Else if you want the data to be stored if the sample fails. Select Always if you want the data to be
stored regardless of the condition. See Section 3.6 Storing Sample Values in User Defined Variables for more
information.

- In TestBencher, the Store Sampled Value As Subroutine Output checkbox creates an output port to the trans-
action and when the transaction terminates it passes the sampled value out to the port. How this is implement-
ed depends on the generation language:

- In Verilog, TestBencher will automatically create a variable in the top-level project that the transaction is
stored. The variable is named transactionName_sampleName and at the end of the transaction the sam-
ple value will be passed out to this variable.

- In all the other languages, you must create a variable in the calling project that has the same type as the signal
that is being sampled. This variable is then passed into the transaction apply call. The variable will be set
during the transaction execution.

- The Blocking option determines whether or not the triggering process or sequence of the sample will wait for
the sample to complete before continuing execution. If the option is enabled, the triggering process will trig-
ger the sample and then wait until the sample process is complete before continuing execution. Otherwise,
the two processes will execute concurrently once the sample is triggered. Samples, by default, are non-block-
ing. Section 3.3: Interpreting Sample Conditions and Blocking Points discusses this feature.

3.3 Interpreting Sample Conditions and Blocking Points

The drawn waveform and the Full Expect check box in the Code Generation Options dialog determine when Win-
dowed Samples execute an action. The sample can also be made to block other graphical elements in the diagram by
using the Blocking check box in the Code Generation Options dialog. If Blocking is enabled then other elements in
the same clocking domain as the sample will be paused until the sample condition executes an action. If Blocking is
disabled, the other graphical elements will continue to function regardless of whether the sample condition is satisfied.
Below are some examples of different types of samples.

Full Expect Samples

If the Full Expect box is checked then the sample will wait until the end of the sampling window to determine if all
conditions where met. This is called a Full Expect sample. This type of sample will test every state transition drawn
within the sample window. For instance, if a Full Expect sample has a condition of Sample state matches, it will test
that every expected transition matches what is drawn in the sample window. The appropriate Full Expect sample action
is executed at the end of the sample window. This is indicated visually by the dot at the end of the sampling window.

If the sample is clocked then the value of the waveform will be sampled at each clock edge in the sample window. For
OpenVera, clocked Full Expect samples check for the last state in the drawn waveform.

Chapter 1: Waveforms and Signals 27

Simple Expect and Restricted Expect Samples

Simple and Restricted Expect samples are created when the Full Expect setting is disabled. The manner in which the
expected waveform is drawn determines whether the sample is a Simple Expect or a Restricted Expect sample.

A sample that is drawn above a stable section of a waveform will test for the condition to be true at any time during
the sample window. This is called a Simple Expect sample. A sample that is drawn over a stable low waveform, for
example, will watch for the condition to be true at any time during the sample window. This means that a Simple Ex-
pect sample will trigger its action at the beginning of the sample window if the expected state matches the driven state
during simulation.

If a sample is drawn above a waveform with one or more transitions, the sample will test for each transition in the
window. This is called a Restricted Expect sample. A Restricted Expect sample will test the first transition to see if
it matches the first transition in the drawn waveform. If the transition matches, then the next transition is evaluated in
the same manner. Once all of the transitions are found, the sample condition will pass and execute theThen action. If
a wrong transition is found, the condition will immediately fail and execute the Else action. If not enough transitions
are detected then the sample times out at the end of the window and the Else action is executed.

Both Simple Expect and Restricted Expect samples are drawn with a dot in the middle of the sample window to in-
dicate that the trigger time is determined at simulation time and can occur before the end of the window.

Blocking Sample

The Blocking setting in the Code Generation Options dialog controls whether or not a sample blocks other constucts
in the same process. Samples with this setting enabled prevent other constructs from proceeding until the sample con-
dition triggers an action. Section 1.10: Transaction Architecture discusses how blocking samples will pause a portion
of the timing transaction. If a sample has Blocking enabled, then the clocking domain will pause until the Then or Else
action is executed. Blocking samples are shown visually with a solid arrowhead. Non-blocking samples display with
a hollow arrowhead.

3.4 Samples Triggering a Delayed Transition or Another Sample

Samples can be used to trigger delayed state transitions or other samples. These actions are performed by use of trig-
gered delays and samples. These constructs are triggered when the appropriate action is called for the Then or Else
segment of a sample. Several samples can be chained together to test for a complex set of conditions.

If a sample is triggering a delay, then that sample condition-
ally controls the signal transition. This is especially useful if
several conditions must be met prior to a transition on a con-
trol signal. An alternate, non-graphical method for condi-
tionally triggering transitions is discussed in Section 2.2:
Delays.

There are two different methods you can use to add a param-
eter to a sample. The recommended way is to add a parameter that is relative to a sample. This is the fastest way to add
samples and delays to the Then and Else actions. The other method is to use the Sample’s Code Generation Options
dialog. Either method will set one of the sample actions to Do Delayed Transition or Trigger Sample and attach a
graphical parameter to the sample.

 28 Chapter 1: Waveforms and Signals

Method 1: (Recommended) Add a Delay or Sample to relative to a Sample

- Click the Delay button or the Sample button in the Diagram window.

- Click on the sample name to select the sample that will trigger the new parameter.

- For delays, right-click on the state transition that you want to be conditionally delayed. This will open a context
menu. Choose either Then Sample Delay or Else Sample Delay to create the new conditional delay.

- For samples, right-click on the waveform you want to sample. This will open a context menu. Choose either
Then Triggered Sample or Else Triggered Sample to create a chained sample.

Method 2: Using the Code Generation Options dialog to add a triggered delay or sample. Note only add one delay
or sample at a time:

- Double-click the name of a sample to open the Sample Properties dialog.

- Click the HDL Code button to open the Code Generation Options dialog.

- For Delays, choose Do Delayed Transition from the Then Action or Else Action drop down list box.

- For Samples, choose Trigger Sample from the Then Action or Else Action drop down list box.

- Click the OK button to close the Code Generation Options dialog.

Note: When you close the Code Generation Options dialog you will enter a special select mode. While you
are in this mode, the Sample Properties dialog will disappear. When you exit the select mode, the Sample
Properties dialog will reappear.

- Right-click the state transition that will be delayed or the waveform that will be sampled. This will add the delay
or sample to the diagram.

The delay ending position can be moved to other signal transitions by selecting the delay then dragging and dropping
the right handle of the delay to the new transition. Triggered samples can be edited just like regular samples.

3.5 Using Sample Variables

Two sample variables are automatically generated for each sample: sampleName_Flag and sampleName. The
sampleName_Flag variable is a Boolean flag that indicates whether the sample condition was true or false. And sam-
pleName is a state variable that contains the value of the sampled signal at the time the sample’s condition was met or
timed out. These are diagram-level variables and can be referenced anywhere in the timing diagram including other
sample’s actions and conditions, HDL Code Markers, and Class Methods

In TestBencher, the sample value, sampleName, can also be exported from the transaction by checking the Store Sam-
pled Value as Subroutine Output checkbox in the Code Generation Options dialog as described in Section 3.2: Sam-
ple Condition and Actions.

Example of using Sample Flag Conditions

It is frequently desirable to define a sample con-
dition in terms of previously executed samples.
For example, you might wish to execute an ac-
tion if two different previous samples were both
true. This can be accomplished by writing HDL
code accessing the flag variables that store in-
formation about previously executed samples. Assume you have a diagram with three samples (SAMPLE0,
SAMPLE1, and SAMPLE2) where the first two samples test the values of two signals. To make SAMPLE2 true if
both SAMPLE0 and SAMPLE1 are true, you would enter the User-Defined Condition of SAMPLE0_Flag and
SAMPLE1_Flag.

Chapter 1: Waveforms and Signals 29

Example of using Sample Values in the Diagram

You can also use the sample values to build user-defined conditions for samples. For example, to test that the value
sampled by SAMPLE0 is equal to the value sampled by SAMPLE1, enter the following User-Defined Condition for
SAMPLE2.

Note: the types of the signals sampled by SAMPLE0 and SAMPLE1 must be the same, or you will get a type mismatch
error when you compile your test bench.

3.6 Storing Sample Values in User Defined Variables

In addition to the automatically created sample variables, a sampled value can be stored in a user-defined variable. The
stored sample value can be used in the diagram to define a marker loop expression or a conditional delay equation.

In TestBencher, the sampled value can be used to drive another signal or stored in a file. By enabling and selecting a
variable, the sampled value will be stored each time the sample completes. File Output variables write the sampled
value to the specified file when the transaction completes.

To store a sample value in a user defined variable:

- Open the Sample Properties dialog by double-clicking the name of the sample.

- Click the HDL Code button to open the Code Generation Options dialog.

- Select the desired enable option from the Enable Variable drop-
down. This option will determine the condition under which the
sampled value will be stored in the variable. This option can be
set to Always, Never, Then, and Else. The Then and Else op-
tions specify that the data will be stored only if the Then Action
or Else Action is executed, respectively.

- Click the Select Variable button to open the Select Variable dia-
log.

- Click a field name or the variable name in the Name column of the selection tree to select a variable. Note that
default Index, MSB, and LSB values are defined.

Note: For any given transaction, only one sample can output to a specific column in the file. If more than one
sample is using the same field name within the same timing diagram, only the last instance to occur dur-
ing simulation will output to the column.

Any item that cannot be edited will have a gray background in the tree (except the name). To edit a value in
the tree:

- Double-click the text that needs to be edited.

- Edit the text

- Click the Insert Into Equation button to set the variabel property for the sample.

- Click Close to close the dialog. This will set the variable property for the sample.

You will be able to change the variable or field name at any time by opening the Code Generation Options dialog for
the sample and repeating this process.

 30 Chapter 1: Waveforms and Signals

Chapter 1: Waveforms and Signals 31

Chapter 4: Markers

Markers can be added to timing diagrams to specify specific actions to be taken by the transaction during execution.
These actions can include identifying the end of a transaction, creating loops in the transaction, executing HDL code,
blocking, and pausing the simulation.

Markers are triggered either by the unclocked process or by the clocked process of edge they are relative to. Loop and
Wait Until markers act on their triggering process so it is important when using these types of markers to setup the
triggering event correctly (Section 1.10 Transaction Architecture).

4.1 Adding a Marker to a Diagram

As with samples, markers can be absolute or relative. An absolute marker is attached to a specific time, while a relative
marker is attached to a specific edge. Relative markers will be triggered by the process associated with the clocking
domain (See Section 1.10 Transaction Architecture). Double clicking the marker opens the Edit Time Marker dialog
that is used to control the code generation options for the marker.

To place a marker in a diagram:

- Click the Maker button on the Signal Button Bar.

- If you want the marker to be relative, then select the edge that you
want the marker to be relative to.

- Right-click in the Diagram window to place the marker. This will
add a documentation marker to the diagram window.

To Edit a Marker:

- Double-click on the marker line or on the marker name to open the
Edit Time Marker dialog.

- The Marker Type controls the function of the markers. The rest of
the chapter is devoted to the details of each of the marker types:

- End Diagram causes the transaction to terminate at that point.

- Pause Simulation (Verilog only) stops the entire simulation.

- While Loop, For Loop, Repeat Loop, Loop End, and Exit Loop
When are used to create loops for a single process in the
transaction.

- HDL Code marker inserts user written source code.

- Wait Until causes the process that triggers the marker to block
until the condition becomes true.

- Semaphore used to define critical regions in a transaction. This
Marker type is used by TestBench only.

- Pipeline Boundary is used to specify a pipeline region in a
transactor. This is used when multiple instances of a trans-
actor are running in parallel. This Marker type is used by TestBench only.

- Documentation markers are used to annotate the timing diagram.

- Time Break Markers are used to hide sections of the timing diagram but do not cause code to be generated.

- The Attach to time controls are used to change the attachment or placement of a marker.

 32 Chapter 1: Waveforms and Signals

- To move a relative marker to the exact edge time, type 0 into the Attach to edge edit box.

- To attach to a new edge, check the Attach to edge radio button and click OK to close the dialog and enter
into an edge selection mode. As you move the cursor a green bar will hop to the closest edge. Left click
on the edge that you want to attach the marker.

- To attach to a new time, check the Attach to time radio button and enter a time into the edit box.

- The Snap Signal Ends to Marker feature is generally for documentation purposes - the ends of all drawn wave-
forms will be attached to the marker and move with it.

- Draw Line From Marker To Edge will cause a dotted line to be drawn for markers that are attached to an edge.
This is a nice feature to be able to quickly see that the marker is attached to an edge and not a time, and also
which edge the marker is attached to.

- Auto Adjust Display Label Position allows the diagram editor to automatically adjust the position of the marker
display to ensure that it does not over-write or get overwritten by other items in the diagram window.

- Click the OK button to close the dialog.

4.2 End Diagram Markers

End Diagram Markers are used to indicate the execution end of a timing
diagram. These markers are useful for extending a transaction past the last
drawn waveform. In TestBencher End Diagram markers are especially
useful for syncing up multiple timing diagrams that share the same clock.
For example, it is convenient to place an End Diagram Marker at the exact
ending transition of a clock cycle.

If there are no End Diagram markers then the longest non-clock signal will
determine the end of the timing diagram. If there is more than one End Di-
agram Marker then the earliest one will determine the end of the timing
diagram. End Diagram Markers are displayed using a purple line.

To modify a time marker to be an end diagram marker:

- Add a marker and then double-click on the marker to open the Edit
Time Marker dialog.

- Select End Diagram from the Marker Type drop down list.

- If the Marker is not located at the exact location or attachment that
is needed, then use the Attach to radio buttons to move the mark-
er. In this example the edge is attached to the CLK0 edge at ex-
actly time 250ns.

- (OPTIONAL) Choosing Type from the Display Label control caus-
es the marker to display the words End Diagram instead of the
marker name.

- Click the OK button to close the dialog.

4.3 Loop Markers

Loop markers are used to create sections in the transaction that are repeat-
ed during simulation. For example if you were designing a burst read
transaction that would need to determine at simulation time the number of cycles needed to complete the read cycle,
then you could use a while loop. The transaction could be setup to continuously loop until a certain ending condition

Chapter 1: Waveforms and Signals 33

was met. TestBencher supports while loops, for loops, and repeat loops. The Exit Loop When marker can be used to
terminate a loop in the middle of a cycle. Loop Markers can also be used with samples whose Break Loop and Continue
Loop actions affect the operation of the loop.

The same process must trigger both the beginning loop marker and the end loop marker (see Section 1.10 Transaction
Architecture). For clocked transactions, this means that the begin marker and the end marker need to be attached to the
same edge type of a given signal. When TestBencher recognizes the beginning and ending of a loop it will draw a green
loop line between the markers. In the example below the bad loop will not work because the while marker is triggered
by the rising edge clk process while the loop end is triggered by the unclocked process.

Often the signal edges that trigger the beginning and end of loop markers are also triggering other markers and samples.
When several graphical elements are triggered off of the same edge then the order determines whether the other graph-
ical elements occur inside or outside of the loop. The order is set by double-clicking on the edge and using the Edge
Properties dialog (see Section 1.8: Controlling the Triggering Order of Parameters).

To add a loop to a timing diagram:

- Add two markers to the timing diagram. Both should be relative to the same signal and edge type, or both should
be absolute time markers.

- Double-click on the marker on the left to open the Edit Time Marker di-
alog. Choose one of the following loop types and define the beginning
of the loop:

- While Loop marker when matched with and End Loop marker will
execute continuously over a sequence of test vectors either for-
ever or until a defined condition is met. The condition can be any
equation in the generation language that evaluates to a TRUE or FALSE at simulation time.

- For loop marker will execute for a specified number of iterations.
The Index variable will be automatically created. Each loop the
index variable will be incremented by the Inc number. The loop
will end when the index becomes greater than the End number.

- Repeat Loop marker will execute for a specified number of itera-
tions.

- Click OK to close the dialog.

- Double-click on the marker on the right to open the Edit Time Marker
dialog. Choose the Loop End marker type.

 34 Chapter 1: Waveforms and Signals

- Click the OK button to close the dialog. If the markers are triggered by the same process, TestBencher will draw
a loop line between the markers. If there is no loop line then check the attachments of each marker.

Exit Loop When

The Exit Loop When marker will terminate the inner most loop that graphical-
ly surrounds the Exit Loop When marker and that is triggered off of the same
process. The condition can be any equation in the generation language that
evaluates to a TRUE or FALSE at simulation time.

4.4 HDL Code Markers

HDL code markers are used to make calculations and execute code that is not represented graphically. HDL code
markers have a limited amount of space for typing, so it is usually just used to type in the name of a function to call.
The code box accepts direct HDL code in the transaction generation language. You can make calls to class methods
(Section 5.2: Class Methods), library subroutines (2.7 Libraries and Use Clauses in the TestBencher manual), or insert
any code that is valid within the context of a process (VHDL), always block (Verilog), TCM (e), Task (OpenVera), or
method (TestBuilder).

To add an HDL Code marker:

- Add a marker to the diagram and double-
click on the marker to open the Edit Time
Marker dialog.

- From the Marker Type drop-down list,
choose HDL Code.

- Type in the source code into the HDL Code
edit box.

OR

- Select the <Edit HDL Source...> menu op-
tion to enter multiple lines of source code
for this type of marker.

- Click OK to close the dialog.

4.5 Wait Until Marker

Wait Until markers provide a mechanism for indefinitely pausing the execution of one clocked process within a trans-
action. This type of marker pauses the transaction until its condition becomes true. Blocking samples also pause the
execution of a process, but they have a time out built into the window and multiplier settings. Wait Until markers will
not time out. The process that gets paused will be the triggering process of the Marker (see Section 1.10: Transaction
Architecture).

To specify a Wait Until condition:

- Add a marker that is attached to some signal transition in the diagram.

- Double-click on the marker to open the Edit Time Marker dialog.

- From the Marker Type drop-down list, choose Wait Until. This rela-
tive marker it will pause the execution of all signals and graphical
elements that are relative to the same signal and edge type.

- In the Wait Until Condition edit box, enter a condition. The condition can be any equation in the generation
language that evaluates to a TRUE or FALSE at simulation time.

- Click OK to close the Edit Time Marker dialog.

Chapter 1: Waveforms and Signals 35

When this transaction is applied, it will now pause execution (of the transaction, not the simulation) at the time that
the marker is placed until the specified condition has occurred.

4.6 Pause Simulation Marker (Verilog Only)

A Pause Simulation marker will pause the entire simulation when it reaches the marker. This provides a graphical
breakpoint. While the diagram is paused you can check variables and signal states. When you are done, use your sim-
ulator run button or run command to continue the simulation.

This feature is not supported in VHDL because there is no language construct that can stop the simulator. However,
some simulators can be configured to pause on assert failures. If your simulator supports this feature, then you can use
an HDL code marker to place an assert in the timing diagram.

To specify a Pause Simulation marker:

- Add a marker to the timing diagram. The exact placement or attachment does not matter because the marker will
pause all processes in the entire model.

- Double-click on the marker to will open the Edit Time Marker dialog.

- From the Marker Type drop-down list, choose Pause Simulation (Verilog only).

- Click OK to close the Edit Time Marker dialog.

4.7 Documentation and Time Break Markers

Documentation and Time Break markers can be used to split the visual image of the timing diagram for whatever pur-
pose may be needed. For example, it may be useful to visually highlight a point of change in the timing diagram. The
time break markers can also hide sections of the timing diagram. These markers generate a comment line in the source
code for the transaction. If Verbose Markers is checked in the Diagram Settings dialog a message is displayed during
simulation (see Section 3.8: Diagram Settings Dialog - General Tab in the TestBencher manual).

In addition to the graphical elements of the timing diagram, the Reactive Test Bench Generation option also supports
the generation of user-defined variables and class methods. These elements let you manipulate data from the model
under test and compose algorithmic functions that are not ease to define graphically.

 36 Chapter 1: Waveforms and Signals

Chapter 5: Variables and Class Methods 37

Chapter 5: Variables and Class Methods

In addition to the graphical elements of the timing diagram, the Reactive Test Bench Generation option also supports
the generation of user-defined variables and class methods. These elements let you manipulate data from the model
under test and compose algorithmic functions that are not ease to define graphically.

5.1 Variables

Variables are used to store data that can be set and accessed during simulation. Variables can be used anywhere in a
diagram that you type in HDL code including: Sample values, Loop control variables, HDL code markers, and HDL
states. The data type of a variable can be any of the generation language’s native data types.

Each variable has various properties including the data type and the structure. The data type can be any of the gener-
ation languages native data types. Variables can either be individual instances or arrays of variables.

To Create Variable:

- Press the View Variables button, in the Diagram window, to open the Variables List dialog.

- Press the New Variable button near the bottom of the dialog. You can also just click the blank variable line and
start typing a new variable. Either method creates a new variable with default properties in the Variables list
box.

- Double-click on the column for any property that needs to be edited. This will cause either an edit box or a drop-
down list to be opened that can be used to set the field property. The variable properties are defined below.

- When you are done click OK to close the dialog.

Variable Column Properties

Most of the column properties for variables do not affect code generation for the Reactive Test Bench Generation Op-
tion and are used only by TestBencher's bus-functional model generator. For the Reactive Test Bench Generation fea-
ture the following are the column properties that you must set for a variable:

Variable Name: used when referencing the variable or field of the class.

Size: specifies the number of elements in a complex structure type field. This setting is available for arrays. Be-
cause the default structure type is an element, the default for this property is 1.

BitSize, MSB, and LSB: are used to determine the bit size for field elements. Depending on the language being
used, the bitsize may be specified using an LSB and an MSB. Note that some types, such as a string, may not
use a bitsize, and that others, like bool, may have a limited bitsize.

Data Type: determines the type of the elements of the field. The possible settings for this property are the avail-
able Language Independent Types (such as bool, 2_state, or 2_state_vector) and may also include other class-
es that have been defined in Class Libraries that are included in the project. The default for this property is
int. If a language independent type is selected it will be converted to the appropriate type for the generated
language in the generated test bench. 5.3: Language Independent Types provides more information about
these types as well as a chart showing the conversion values from the language independent type to the gen-
erated language types.

Structure Types: Either an Element or an Array. An element is a single data item (like a single integer). And array
is a series of elements of the same data type.

Initial Value: allows an initialization value to be specified. The variable will be initialized on creation during sim-
ulation. The string entered in this field will be placed directly in the generated code without modification.

 38 Chapter 5: Variables and Class Methods

5.2 Class Methods

Class methods are user defined functions and tasks that let you add HDL algorithms to the timing diagram or bus-func-
tional model. These methods can be added to individual timing diagrams, project components, or user-defined classes.
Once a class method is added to an object it shares the same scoping level as the object. It can be called during simu-
lation to perform activities that are difficult to describe graphically.

Diagram-level class methods, like diagram-level variables, are local to the timing diagram in which they are created.
These methods can be accessed using HDL Code Markers and Sample Actions. They are generated in the diagram
transaction source file so they share the same scoping level of other diagram-level objects. The code for the methods
is stored in the timing diagram file so that the methods are available for other projects (if the diagram is included in
multiple projects).

For TestBencher, project-level class methods can be accessed from the Sequencer Process in the Component Model.
These methods are specific to the project for which they are defined. The top-level module of the bus-functional model
(generated from the top-level template file for the project) contains these methods.

For TestBencher, class-level class methods can be called from the same scoping level as the variable that instantiates
the class. These methods are a part of the class definition and are stored in the respective class library. The methods
are generated in the class source code definition.

The Class Methods dialog is used to create and edit user-defined methods. Class methods are defined in three different
sections of the dialog: name, parameters, and source code. Selecting a different class method name changes the con-
tents of the other sections of the dialog. The parameters represent data that is passed into the method. The source code
is the actual code that will be placed in the generated method definition. This code is written in the generation language.
Class Methods can be specified for every licensed language, allowing diagrams, class definitions, and even the Com-
ponent Model to be language independent. To define a new class method:

- Open the Class Methods dialog from the object that you want to define the class method for:

- For diagram-level methods, click the Class Methods button located in the Diagram window.

- For class-level methods, click the Class Methods button located Classes and Variables dialog for the se-
lected class.

- For project-level methods, right click on the Component Model folder in the Project window and choose
Class Methods from the context menu.

- Create a new class method.

Select the Language that the method is to be defiend for from the Language drop-list.

- Click the New Method button to create a new method with default values.

- Double-click on the cell for any property that needs to be edited. A class method’s properties are:

- Method Name: the
name of the meth-
od.

- Method Type: Test-
Bencher supports
two types of
methods. Tasks
perform an opera-
tion on the param-
eters that they are
passed, but do not
specifically re-

Chapter 5: Variables and Class Methods 39

turn any value. Functions perform an operation on the parameters that they are passed and return a
value.

- Return Type: the data type of the value that is returned by a function. This can be any of the language
independent types defined for the language, or any of the user-defined classes. Appendix D: Lan-
guage Independent Types provides more information about the language independent types and their
conversion to the native languages.

- Bitsize: the size in bits of the value that is returned by a function. This value is only editable if the Re-
turn Type is a bit type.

- Add parameters to the class
method:

- Select the class method in
the Functions and
Tasks list. This will
cause the class methods
parameters and source
code to be displayed in
the rest of the dialog.

- Click the New Parameter button to create a new parameter with default properties.

- Double-click on the column for any property that needs to be edited. A parameter’s properties are:

- Name: the name of the parameter.

- Type: the data type of the parameter. This can be any of the Syncad types defined for the generation
language or any of the classes in the project (Section 8.2: Classes in the TestBencher manual).

- Bitsize: the size in bits of the parameter. This value is only editable if the Type is a bit type.

- Add the class method source code:

- Select the class method in the Functions and
Tasks list. This will cause the class meth-
ods parameters and source code to be dis-
played in the rest of the dialog.

- Type your source code into the Source Code
edit box.

5.3 Language Independent Types

SynaptiCAD has defined a set of language independent
types that is used in generated test benches in place of
the native types for a given language. This is done to fa-
cilitate the development of language independent class
definitions and variables. During test bench generation
the language independent type is converted to the ap-
propriate native type for the language being generated.
Note that not all of the language independent types are
supported by all of the generation languages. The dia-
logs that allow selection of these types, such as the
Class Definitions & Variables dialog, will only display
the language independent types that are supported for at least one of the currently licensed languages. Additionally,
these dialogs support a view that will display only the items that are available for the currently selected language.

 40 Chapter 5: Variables and Class Methods

The chart below provides a description for each of the language independent types (shown in the Syncad Types col-
umn). Following that is a chart that describes the conversion from the language independent types to the native types
for language generation.

Type Conversion

The chart below provides conversion information for converting between the language independent types (shown in
the Sncad Types column) and the generated language types. Cells that are grayed out represent items where no con-
version is available between the language independent type and the native language types.

Syncad Type BitSize Description/Values

bool 1 Truth values (1 or 0)

2_state 1 0, 1

2_state_vector variable 0,1 in vector format

byte 8 Unsigned integer represented by 8 bits

int 32 Signed integer represented by 32 bits

unsigned_int 32 Unsigned integer represented by 32 bits

real 64 Floating poing numbers

fixed_len_string variable Series of characters enclosed by quotes

variable_len_string n/a Series of characters enclosed by quotes

time 64 Simulation time quantities

4_state 1 0, 1, X, Z

4_state_vector variable 0, 1, X, Z in vector format

event n/a Synchronization item

std_logic 1 U, X, 0, 1, Z, W, L, H, -

std_logic_vector variable U, X, 0, 1, Z, W, L, H, - in vector format

std_ulogic 1 Unresolved version of std_logic

std_ulogic_vector variable Unresolved version of std_logic_vector

signed_logic variable Signed version of std_logic_vector

unsigned_logic variable Unsigned version of std_logic_vector

Syncad Type Verilog VHDL TestBuilder

bool reg boolean bool

2_state reg bit tbvSmartSignal2StateT

2_state_vector reg bit_vector tbvSmartSignal2StateT

byte reg bit_vector tbvSmartSignal2StateT

int integer integer tbvSmartIntT

Chapter 5: Variables and Class Methods 41

Note that not all language types are perfectly equivalent to the language independent type. Variances are as follow:

- Verilog reg type is a four state type.

- Verilog integer type is signed.

- VHDL natural is a limited version of the VHDL integer type, so it’s max value is 231, not 232.

- Some languages do not provide an unsigned integer type.

unsigned_int integer natural tbvSmartUnsignedT

real real real tbvSmartDoubleT

fixed_len_string reg string char[]

variable_len_string tbvSmartStringT

time time time

4_state reg std_logic tbvSmartSignal4StateT

4_state_vector reg std_logic_vector tbvSmartSignal4StateT

event event

std_logic std_logic

std_logic_vector std_logic_vector

std_ulogic std_ulogic

std_ulogic_vector std_ulogic_vector

signed_logic signed

unsigned_logic unsigned

Syncad Type Verilog VHDL TestBuilder

 42 Chapter 5: Variables and Class Methods

Chapter 5: Variables and Class Methods 43

Chapter 6: Test Bench Techniques

The Reactive Test Bench Generation feature can generate single timing diagram models that perform complex data
generation and checking. Here we have gathered some of the techniques that we use to model different types of func-
tionality.

6.1 Testing a Counter Model

Testing a counter with a reactive test bench is a lot easier than it is with traditional stimulus based test benches. The
test bench can be designed with just a small two cycle timing diagram with a loop. Below is an image of a diagram
that tests a 32-bit counter.

Discussion of the Counter Test Bench:

- Initialize the counter: the first cycle in the diagram is used to initialize the starting value of the counter.

- Counter Loop: two loop markers surround the second cycle. The first marker starts the For-Loop and initializes
an index variable called expectedCount. Each time through the loop expectedCount will be incremented. The
For-loop is defined in the Marker dialog of the first marker.

- Expected Counter Output: The signal counter is blue to indicate that it is the output of the model under test
and an input to the test bench. Each time the counter is incremented we expect the counter model to increment
and to be equal to the index of the For-Loop. The SAMPLE0 compares the actual simulation output with the
value generated by the test bench. The bus state of the counter signal contains code that defines how the model
output should change with each loop. It is language dependent:

VHDL: The image shows a VHDL test bench that converts integer expectedCount to a 32-bit standard logic
vector. The CONV_STD_LOGIC_VECTOR is necessary because VHDL does not automatically con-
vert integers to standard logic vectors.

Verilog: The code would just be expectedCount, because the language is able to automatically do the con-
version.

6.2 Waiting for Signal Transitions

You can use either samples or markers to make a transaction wait for an event or series of events before continuing to
execute. Below is a chart of the different methods of waiting and the recommended usage for each method. Chapter
3: Samples and Chapter 4: Markers have more information about Samples and Markers.

Wait On How Long Construct Used Settings

One or more conditions

(e.g., signal states)

Block until all conditions

are true

Wait Until Marker

One event or condition Block until time out Sample with Multiplier min == max

multiplier > 1

check Blocking

uncheck Full Expect

 44 Chapter 5: Variables and Class Methods

Below is an example of timing diagram that demonstrates these techniques for waiting.

- The Marker called Marker_WaitForGrantAndFrame is a Wait Until Marker type with the condition of
(Grant===0 && Frame ===0) {the condition code is in the generated language, in this example Verilog}.
This marker will block the transaction until the condition becomes true.

- The rising edge on Frame is sensitive. This will cause the diagram to wait for that edge to occur.

- The Sample called Sample0 is setup as blocking and non-full expect with a multiplier of 3. The Multiplier is the
sample's time out. Checking the blocking box causes the sample to block the triggering clocked sequence until
it times out or until the condition becomes true. Disabling the Full Expect box means that the sample will not
expect the drawn condition to be true during the entire window. Instead it will continue sampling as long as
the condition is NOT true and the time out has not been reached.

- This sample also has a conditional delay, SAMPLE0_THEN_Delay, so that when it passes it will cause the val-
ue passed into $$addr to be written out to the Address signal. If Sample0 times out then the Address signal
never gets driven.

- The samples Sample1 and Sample1_THEN check for Grant and Frame to be true over successive clock cycles.
They are defined using the same settings as Sample0 in the previous example except the multiplier is set to 1.

Note: If a Sample has a multiplier of 1 and no window defined at simulation then the blocking check box has no effect
on the behavior of the Sample. The Sample will execute and then immediately pass or fail depending on the condition.

One event or condition Block until time out Sample with window min != max

multiplier == 1

check Blocking

uncheck Full Expect

One event Block indefinitely or until

diagram times out

Sensitive Edge

Several events or condi-

tions across several clock

cycles

Each sample may block

with time out

Several samples chained

together (first samples

will block subsequent

samples

check Blocking

uncheck Full Expect

Wait On How Long Construct Used Settings

45

Index

Numerics
2_state 39, 40
2_state_vector 39, 40
4_state 39, 40
4_state_vector 39, 40

A
Absolute Samples 24
Active low register controls 11
Advanced Register Dialog 12
Apply Calls 9
Attach to Edge 31
Attach to Time 31

B
Bi-directional Signals 7
Blocking Samples 26, 27
bool 39, 40
Boolean Condition For Delay 21
Boolean equations 10, 11

conditional 11
with delays 10

Buses - adding to diagram 10
byte 39, 40

C
Class Methods

creating 38, 39
editing 38, 39
parameters 39
source code 39

Classes

Class Methods 38, 39
Clocking Domain

default 18
Clocks

adding to diagram 10
Code Generation

controlling 24
inserting HDL code 34
samples 24

Code Generation Options Dialog 24, 29
Conditional State Values 9
Count Clock Edges 21
Cycle Based Properties

default Clock 18

default Clock Edge 18

D
Data Targets - see Variables

Delays 20
also see Parameters

attaching to samples 28
conditional 21, 28
creating 20
cycle-based 21
properties 19, 21
resolving multiple delays 21
specifying the order of 13

Diagram-Level Variables 8
Diagrams

adding items 10
adding parameters 19
Class Methods 38, 39
creating 9
cycle based properties 18
default clocking domain 18
drawing waveforms 7
including library files 17
inserting HDL code 34
properties 17

Documentation Markers 35
Driven Flags 7
Driving Events 7

E
Edge Properties

earliest transitions 21
latest transitions 21
multiple delay resolution 21

Edge Properties Dialog 13, 21
Edit Bus State Dialog 8, 9

variables 8
Enable HDL Code Generation 20

for Samples 24
End Diagram Markers 32
Equations

Boolean 10, 11
event 39, 40
Events 7
Exit Loop When 34

F
Falling Edge Sensitive 14

46

fixed_len_string 39, 40
For Loops 32, 33
Full Expect 26

samples 26

H
HDL Code Markers 34
Hold

continuous 11
Holds

also see Parameters

creating 22
properties 19
specifying the order of 13

I
If-Then-Else statements 24

creating 25
Including Library Files 17
Inout Signals 7, 10
Input Signals 10
Insert Into Equation 29
int 39, 40
Internal Signals 10
Is Apply Subroutine Input 20, 24

L
Language Independent Types 40

conversion 40, 41
Latch Equations 11
Libraries

including in diagrams 17
Loop End 33
Looping Markers 32

M
Markers

absolute 31
attach to edge 31
attach to time 31
creating 31
defined 31
Documentation 35
End Diagram 32
For Loop 33
HDL Code 34
loops 32
Pause Simulation 35

relative 31
specifying the order of 13
Time Break 35
type 31
Wait Until 34

Multi-bit Signals 11
Multiple Delay Resolution 21

earliest transitions 21
latest transition 21

Multiplier 26

O
Ordering Parameters 13
Output Signals 10
Outward Arrows 22

P
Parameter Properties Dialog 19
Parameters

adding 19
defining temporal expressions 19
Delays 19, 20
Enable HDL Code Generation 20
for Class Methods 39
Holds 19
Is Apply Subroutine Input 20
markers 31
properties 19
samples 23
Setups 19
specifying the order of 13

Pause Simulation (Verilog) 35
Project

Class Methods 38, 39

R
Reactive Export

generation 7, 10, 11, 12
real 39, 40
Register Equations 11
Relative Samples 24
Repeat Loop 33
Restricted Expect

samples 26, 27
Rising Edge Sensitive 14

S
Sample Flags 28

47

Samples

absolute 23, 24
Actions 25
actions 25, 27
blocking 26, 27
code generation 24
conditions 25
creating 24
data targets 29
defined 23
Enable HDL Code Generation 24
expects 26
multiplier 26
non-blocking 26, 27
point 23
referencing sample variables 28
relative 24
self-testing code 24
specifying the order of 13
storing sampled values 26
triggering delays 28
triggering other samples 28
window 23, 24
with delayed state transitions 27

Select Variable Dialog 29
Self-Testing Code

samples 24
Sensitive Edges 14
Sequence Recognition

ordering events 14
Setup

continuous 11
Setups

also see Parameters

creating 22
properties 19
specifying the order of 13

Signal

Boolean equations 10
clocked 11
conditional 11
latch 11
register 11
simulating 10, 11

Signal Button Bar 9
Signal Direction - see Signals

Signal Properties

sensitive edges 14
Signal Transitions

waiting for 43, 44
Signals

adding to diagram 10
bi-directional 7
direction 7
driven 7
driving events on 7
inout 10
input 10
internal 10
output 10

signed_logic 39, 40
Simple Expect

samples 26, 27
Simulation

advanced gate representation 11
Boolean equations 10
multi-bit equations 11
registers&latches 11

Source Code

adding 39
State Values

conditional 9
simple variables 8

State Variables 8
std_logic 39
std_logic_vector 39, 40
std_ulogic 39
std_ulogic_vector 39
stl_logic 40
stl_ulogic 40
stl_ulogic_vector 40
Store Sampled Value As Subroutine Output 26
Syncad Types 40

conversion 40, 41

T
Temporal Expressions 23

expressing with Parameters 19
Test Bench

looping 32
TestBencher Diagram Properties Dialog 17
time 39, 40
Time Break Markers 35
Transactions

48

applying 9
calling 9

Triggered Delays 28
Delays

conditional 27
Triggered Samples 28
Type Conversion 40, 41

U
unsigned int 40
unsigned_int 39
unsigned_logic 39, 40
Update Existing 18
User Source Code

in Class Methods 39

V
variable_len_string 39, 40
Variables

diagram-level 8
export signal states to a file 29
simple state 8
storing sampled state values 29
storing sampled value in 26

W
Wait Until Marker 34
Waiting for Signal Transitions 43, 44
WaveFormer Lite

reactive export 7
Waveforms 7

driving with variables 8
While Loops 32, 33

	Table of Contents
	Introduction
	Chapter 1: Waveforms and Signals
	1.1 Drawing Waveforms and Bi-Directional Signals
	1.2 Driving Waveform States with Variables
	1.3 Driving Conditional State Values
	1.4 Adding Signals
	1.5 Boolean Equations with Delays
	1.6 Advanced Gate Representation
	1.7 Register and Latch Equations
	1.8 Controlling the Triggering Order of Parameters
	1.9 Sensitive Edges
	1.10 Transaction Architecture
	1.11 Diagram Properties

	Chapter 2: Delays, Setups and Holds
	2.1 Adding and Editing Parameters
	2.2 Delays
	2.3 Resolving Multiple Delays
	2.4 Setups and Holds

	Chapter 3: Samples
	3.1 Adding a New Sample
	3.2 Sample Condition and Actions
	3.3 Interpreting Sample Conditions and Blocking Points
	3.4 Samples Triggering a Delayed Transition or Another Sample
	3.5 Using Sample Variables
	3.6 Storing Sample Values in User Defined Variables

	Chapter 4: Markers
	4.1 Adding a Marker to a Diagram
	4.2 End Diagram Markers
	4.3 Loop Markers
	Exit Loop When

	4.4 HDL Code Markers
	4.5 Wait Until Marker
	4.6 Pause Simulation Marker (Verilog Only)
	4.7 Documentation and Time Break Markers

	Chapter 5: Variables and Class Methods
	5.1 Variables
	Variable Column Properties

	5.2 Class Methods
	5.3 Language Independent Types
	Type Conversion

	Chapter 6: Test Bench Techniques
	6.1 Testing a Counter Model
	6.2 Waiting for Signal Transitions

	Index

