
SynaptiCAD Tutorials

www.syncad.com

SynaptiCAD Tutorials
(rev 10.0) copyright 1994-2005 SynaptiCAD

Trademarks

- Timing Diagrammer Pro, WaveFormer Pro, TestBencher Pro, VeriLogger Pro, DataSheet Pro, BugHunter
Pro and SynaptiCAD are trademarks of SynaptiCAD Inc.

- VERA, OpenVera, VCS, and VCSi are trademarks of Sysnopsys, Inc.
- NC Verilog, NC VHDL, and Verilog-XL are trademarks of Cadence Design Systems, Inc.
- Pod-A-Lyzer is a trademark of Boulder Creek Engineering.
- PeakVHDL and PeakFPGA are trademarks of Accolade Design Automation Inc.
- V-System and ModelSim are trademarks of Model Technology Incorporated.
- Viewlogic, Workview, and Viewsim are registered trademarks of Viewlogic Inc.
- HP and Agilent are trademarks of Hewlett Packard.
- Tektronix copyright Tektronix, Inc.
- PI-2005 and PI-Pat are trademarks of Pulse Instruments.
- Timing Designer and Chronology are registered trademarks of Chronology Corp.
- DesignWorks is a trademark of Capilano Computing.
- Mentor and QuickSim II are registered trademarks of Mentor Graphics Inc.
- OrCAD is a registered trademark of OrCAD.
- PSpice is a registered trademark of MicroSim.
- Windows, Windows NT, and Windows 95/98/2000 are registered trademarks of Microsoft.

All other brand and product names are the trademarks of their respective holders.

Information in this documentation is subject to change without notice and does not represent a commitment on the part
of SynaptiCAD. Not all functions listed in manual apply to Timing Diagrammer Pro, WaveFormer Pro, DataSheet Pro,
or VeriLogger Pro. The software and associated documentation is provided under a license agreement and is the prop-
erty of SynaptiCAD. Copying the software in violation of Federal Copyright Law is a criminal offense. Violators will
be prosecuted to the full extent of the law.

No part of this document may be reproduced or transmitted in any manner or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the written permission of SynaptiCAD.

For latest product information and updates contact SynaptiCAD at:

web site: http://www.syncad.com

email: sales@syncad.com

phone: (540)953-3390

Table of Contents 3

Table of Contents

Table of Contents ..3

Introduction ...6

Basic Drawing And Timing Analysis...8
1) Set the Base Time Unit ... 9

2) Set the Display Time Unit ... 10

3) Add the Clock ... 10

4) Add Signals ... 11

5) Drawing Signal Waveforms .. 12

6) Edit Signal Waveforms ... 13

7) Adjust Diagram to Match Figure .. 14

8) Moving and Reordering Signals ... 14

9) The Right Mouse Button ... 15

10) Add the D Flip-Flop Propagation Delay ... 15

11) Add the Inverter Propagation Delay ... 17

12) Add the Setup for the Dinput to Clock ... 18

13) Add a Free Parameter .. 19

14) Using Formulas and Constants ... 20

15) Summary ... 20

Interactive HDL Simulation Tutorial..22
1) Interactive HDL Simulation .. 22

2) Generate Waveforms From Boolean Equations ... 23

3) Boolean Equations with Delays .. 24

4) Register and Latch Signals .. 26

5) Set and Clear Lines ... 27

6) Multi-bit Equations ... 28

7) Experiment with Behavioral HDL Code ... 29

8) Summary ... 31

Waveform Generation And Bus Tutorial ...32
1) Generate Waveforms from Temporal Equations .. 32

2) Bus Overview .. 33

2.1) Creating Virtual Buses ... 34

2.2) Creating Group Buses .. 35

2.3) Creating Simulated Buses .. 37

3) Summary ... 37

Display and Documentation Tutorial ..38
1) Controlling the Parameter Display String ... 38

2) Repeating Parameters .. 40

3) Editing Waveform Edges From an Equation .. 41

4) Drag and Drop Parameter End Points ... 41

5) Adjusting the Vertical Placement of a Parameter ... 42

6) Clock Jitter and Display .. 42

7) Markers ... 43

8) Edit Text Blocks ... 45

9) Summary ... 46

Advanced Modeling and Simulation ...47

Table of Contents 4

1) Set up a New Timing Diagram ... 48

2) Generate the Clock, Draw Waveforms, and Use Waveform Equations ... 48

3) Modeling State Machines ... 50

4) Checking for Simulation Errors .. 51

5) Incremental Simulation ... 52

6) Modeling Combinatorial Logic ... 53

7) Entering Direct HDL Code for Simulated Signals ... 53

8) Modeling n-bit Gates .. 54

9) Incorporating Pre-Written HDL Models into Waveformer Simulations .. 54

10) Modeling the Incrementor and Latch Circuit .. 55

11) Modeling Tri-State Gates .. 56

12) Debugging External Verilog Models .. 56

13) Verify the Histogram Circuit .. 56

14) Controlling the Length of the Simulation ... 57

15) Editing Verilog Source Files ... 57

16) Simulating Your Model with Traditional Verilog Simulators .. 58

17) Summary ... 58

Parameter Libraries..59
1) Adding Libraries to the Project’s "Library Search List" ... 59

2) Setting Library Specifications ... 61

3) Startup Library Configuration ... 61

4) Referencing Parameters in Libraries ... 61

5) Using Macros to Examine Tradeoffs Between Different Libraries .. 63

Advanced HDL Stimulus Generation..65
1) Getting Started .. 65

2) Default Mappings: Hex and Binary Translations ... 66

3) Generating Verilog Code .. 67

4) VHDL - Advanced Data Types ... 67

5) Exporting to VHDL .. 67

Basic Verilog Simulation ..69
Part 1: Project Management and Simulation ... 69

1.1) Add Files to the Project .. 69

1.2) Build the Tree and Use the Editor Window ... 70

1.3) Simulate the Project ... 70

1.4) Watch and View Internal Signals .. 71

1.5) Save the Project, Waveforms and Source Code ... 71

Part 2: Graphical Test Bench Generation .. 72

2.1) Remove TestBench Model and Clean Results Diagram .. 72

2.2) Build the Project and Examine the Black Signals ... 72

2.3) Use the Debug Run and Simulation Mode .. 73

2.4) How to Draw Waveforms .. 73

2.5) How to Edit Waveforms .. 73

2.6) Draw the Stimulus Waveforms .. 74

2.7) Simulate Using the Auto Run Simulation Mode ... 74

2.8) Import and Generate Waveforms ... 75

3) Breakpoints, Stepping and Tracing ... 76

Reactive TestBench Tutorial ..77
1) Overview ... 77

2) The Model Under Test .. 77

Table of Contents 5

3) Create Signals ... 78

4) Draw Single Write (without waiting on TRDY) ... 79

5) Add Wait for TRD Assertion .. 79

6) Draw Single Read ... 81

7) Add a Sample to Verify Data Read from MUT .. 81

8) Drive Data Using a Test Vector Spreadsheet File .. 82

9) Create For-Loop to Perform Multiple Writes and Reads .. 83

10) TestBencher Pro Transactor - Add Address Argument .. 83

11) Alternatives ... 84

TestBencher Pro: Basic Tutorial ...85
1) Create a Project ... 85

2) Create the Write Cycle Transaction Diagram ... 87

3) Create the Read Cycle Transaction Diagram .. 88

4) Create the Initialize Transaction Diagram .. 90

5) Modify the Sequencer Process .. 91

6) Generate Test Bench and Simulate ... 94

 6

Introduction

There are several tutorials shipped with all versions SynaptiCAD's software. These tutorials dem-
onstrate everything from how to draw basic timing diagrams to advanced VHDL and Verilog sim-

ulation techniques. The following chart describes the recommended tutorials for each of our
products.

After installing one of SynaptiCAD's products, choose the Help > Tutorials menu to open the tutorial help page. Each
tutorial can be printed by using the print command in the help window.

Evaluators: If you are evaluating the product we recommend that you do at least the General Design tutorials. These
will give you a good idea of the flexibility of the product. If you design in VHDL or Verilog you should also look at
the HDL tutorial and the TestBencher tutorial.

General Design Tutorials
The Basic Drawing And Timing Analysis tutorial explains the basic timing diagram editing environment: how

to set the base time unit and the display time unit of a timing diagram; how to draw and edit signals, delays,
and setups; and how to perform time measurements. This tutorial is essential to anyone evaluating or learning
to use any SynaptiCAD product.

The Interactive HDL Simulation tutorial explores the various time saving techniques of generating waveforms
using equations. This tutorial explains how the Interactive HDL Simulator can simulate Boolean Equations
with delays, register and latched signals, and behavioral Verilog code. It also demonstrates how instant res-
imulations can be performed when input waveforms are modified, so that tedious calculations, once done by
hand, are now automatically generated.

Timing

Diagrammer
WaveFormer DataSheet TestBencher

VeriLogger

BugHunter

Basic Drawing and Timing Analysis **** **** **** ***

Interactive HDL Simulation **** * *

Waveform Generation and Bus **** **** *** * *

Display and Documentation **** ** **** **

Advanced Modeling and Simulation *** * *

Parameter Libraries ** ** **

Advanced HDL Stimulus Generation ***

TestBencher Pro: Basic Tutorial ****

Basic Verilog Simulation ****

Table 1: Determining which tutorials to perform

 7

The Waveform Generation and Bus tutorial demonstrates techniques for working with multiple bit signals.
These techniques include generating the waveforms and automatically labeling those waveforms using equa-
tions. This tutorial also covers how to create Virtual, Group, and Simulated buses for solving different design
problems. These features augment the drawing environment and provide a quick way to generate signals with-
out having to draw each signal transition.

The Display and Documentation tutorial demonstrates different methods for controlling the information that is
displayed by delays, setups, holds, and samples. It also describes how to manipulate the vertical placement
of a parameter, and how to change the transition attachments. These features allow you to control the infor-
mation displayed and the appearance of the timing diagram.

The Advanced Modeling and Simulation demonstrates how WaveFormer Pro can quickly model and simulate
a digital system of moderate complexity. This tutorial will teach you how to model state machines using Bool-
ean equations, use the Report window to find simulation errors, enter direct HDL code, model tristate gates,
model n-bit gates, and call external HDL models. All WaveFormer and TestBencher Pro users should do this
tutorial.

Specialized Feature Tutorials
The Parameter Libraries tutorial covers the use of libraries and macro lists. This tutorial is important to do before

starting a large project. Using Libraries and macro lists can save you a great deal of time if they are configured
properly.

The Advanced HDL Stimulus Generation tutorial covers the basic concepts of HDL stimulus generation, such
as graphical waveform states, language-independent hexadecimal and binary bus translation, and user-de-
fined types. WaveFormer Pro and TestBencher Pro users should do this tutorial.

The Basic Verilog Simulation tutorial covers the basic simulation features of BugHunter Pro. This tutorial also
discusses how to create and manage projects, as well as how to build and simulate your design. BugHunter
Pro and TestBencher Pro users should perform this tutorial.

The TestBencher Pro: Basic TestBencher Tutorial covers the basic concepts of using TestBencher Pro to gen-
erate bus-functional models for Verilog, VHDL, & OpenVera. It covers signal properties (type, direction,
vector size, and bi-directional segments), samples, parameterized state values, end diagram markers, interface
diagrams, modifying top-level template files, and generating test benches. TestBencher Pro users should do
this tutorial.

Basic Drawing And Timing Analysis 8

Basic Drawing And Timing Analysis

This tutorial demonstrates the basic timing diagram editor features. It teaches you how to draw tim-
ing diagrams using delays, setups, clocks and part libraries and how to use timing diagrams to help
detect timing errors in digital designs. It also covers the waveform editing features, measurement and
quick access buttons.

You will draw the timing diagram for the circuit shown in Figure 1. This circuit divides the clock
frequency in half. Both the flip-flop and the inverter have propagation times that delay the arrival of
the Dinput signal. If the Dinput is delayed too long it will violate the data-to-clock setup time. This
increases the risk of the flip-flop failing to clock in the data and may lead to the flip-flop entering a
metastable state.

Circuit Parameters:

Figure 2 is the completed timing diagram. The first thing you may notice is the gray signal transitions
caused by the min/max values of the component delays. The gray areas of the signal transitions are
uncertainty regions, which indicate that the signal may transition any time during that period. This
is a little disconcerting especially if you have been using a low-end simulator that cannot compute
both min and max at the same time. This representation shows the entire range of possible circuit
performance. With WaveFormer Pro, there won't be any surprises during production when you get
components at extreme ends of their tolerance range.

clk 20MHz (50ns period)
DFFtp 5-18ns D flip-flop (74ALS74): Clock to Q propagation time
Dsetup 15ns minimum D flip-flop (74ALS74): D to rising edge Clock setup time
INVtp 3-11ns Inverter (74ALS04): propagation time

 9 Basic Drawing And Timing Analysis

Figure 2: Completed Timing Diagram

1) Set the Base Time Unit

At the beginning of each project, you will set the base time unit. The base time unit is the smallest
representable amount of time that WaveFormer Pro can display. The base time unit determines the
range of times that can be represented in your timing diagram. All time values are internally stored
in terms of the base time unit.

In the circuit in Fig.1, the propagation
times for the gates are in units of
nanoseconds and the clock has a peri-
od of 20ns. Generally it is a good idea
to set the base time unit for your
project one unit below the units you
are working in for best rounding per-
formance during division operations
(clock frequencies are inverted and
stored internally as clock periods).
Therefore we will set the base time
units to picoseconds. To set the base
time unit:

1.Select the Options > Base
Time Unit menu option.
This displays the Base Time
Unit dialog box with radio
buttons that set the base time
unit. The other options con-

Basic Drawing And Timing Analysis 10

trol how any existing parameters or signals are changed when the base time unit is changed
and have no effect on an empty timing diagram. See the on-line help if you want to know
more about these options.

2. Click on the ps radio button to make picoseconds the base time unit (if it is not already se-
lected).

3. Press the OK button to close the dialog.

2) Set the Display Time Unit

Next you need to set the display time unit. The display time unit sets the units for times which you
enter and for times which are displayed. Set the display time unit to the units you most commonly
use in the design. To set the display time unit:

1. Select the Options > Display Unit
menu option. This will display a
submenu of display time units. The
checked time is the current display
time unit (Default is ns = nanosec-
onds).

2. Click on ns, to make nanoseconds the
display time unit if it is not already
checked.

3) Add the Clock

First we will create the clock. The clock is named clk, has a period of 50ns (20MHz), and starts with
a low segment.

To add a clock:

1. Move the mouse cursor over the Add Clock button (DO NOT CLICK), located
in the top left hand corner of the Diagram Window.

2. Notice that the status bar at the very bottom of the window reads "Left click to add a clock
signal, right click to set clock name prefix" This status bar changes depending on the
mouse location and the mode that you are in. Move the mouse around and watch the status
bar change. The status bar is very useful when you want to know what buttons do or
when you need to know what to do next in the middle of a program operation.

3. Click the Add Clock button.

4. The Edit Clock Parameters dialog box will appear.

 11 Basic Drawing And Timing Analysis

5. Enter the name clk in the Name: edit box.

6. Enter 50 in the Period: box. Make sure the
MHz/ns radio button is selected. Note
that the frequency will change to match
the new period value, when you move
the selection to another control.

7. Check the invert check box. Clocks are
normally displayed high at time zero, so
"invert" makes the clock start low at time
zero.

8. Click the OK button to close the dialog
box.

Note: For more information on clocks, master
clocks, clocks with formulas, and clock grids read
Chapter 2: Clocks in the on-line help. If you made
a mistake designing the clock, then double left
click on the clock segment to reopen the Edit
Clock Parameters dialog box. Double left click-
ing on a clock edge opens up the Edge Properties
dialog box which displays the edge time. You
may also reach the Edit Clock Parameters dialog
box by double clicking on the clock name and
choosing the clock properties button in the Signal
Properties dialog.

4) Add Signals

Next, add two signals and name them "Qoutput"
and "Dinput".

1. Click twice on the Add Signal button

 to add two signals. The sig-
nals will have default names such as
SIG0 and SIG1.

2. Double left click on the SIG0 signal name
to open the Signal Properties dialog.

Basic Drawing And Timing Analysis 12

3. Enter Qoutput into the Name: edit box. (DO NOT CLOSE THE DIALOG)

4. Click the Next button or ALT-N to move to the next signal on the list. SIG1 is now displayed
in the Name: edit box.

5. Enter Dinput into the Name: edit box and press the OK button to close the dialog.

If you accidentally close the Signal Properties dialog, double click on the signal name to open the
dialog again. The Boolean Equation and Simulation features of the Signal Properties dialog are cov-
ered in the Interactive HDL Simulation tutorial. The Signal Properties dialog is modeless, so you
can leave the dialog open while you perform actions on the timing diagram.

5) Drawing Signal Waveforms

Next, we will draw some random waveforms to become familiar with the drawing environment.

1. Notice the buttons with the waveforms drawn
on them. These are the State Buttons. The ac-
tive button is colored red and indicates the
type of signal state that will be drawn next. In
this case, the HIGH signal state is active.

2. Move the mouse
cursor to inside
the Diagram win-
dow at the same
level as the signal
name Qoutput,
and at about 40ns.

3. Click to draw a
waveform segment from 0ns to the cursor. Notice that a HIGH signal was created.

4. A different state button is now activated. The State Buttons automatically toggle be-
tween the two most recently activated states. The small red T above the signal name
denotes the toggle state, for instance. (If you have a 3 button mouse, click the mid-
dle mouse button to toggle between the two most recently activated state buttons.)

5. Move the cursor to about 80ns on the same signal and left click. Now a LOW segment is
drawn from the end of the HIGH signal to the location of the cursor.

6. Left click on the TRI button to activate the tristate State Button and draw another waveform
segment.

 13 Basic Drawing And Timing Analysis

7. Draw more segments, using all the states except the HEX button. The HEX state button is
used in defining multi-bit signals and signals which have a user defined VHDL type. This
button is covered in later tutorials. For now, experiment with the graphical states.

Your drawing should be a mess, or at least look nothing like Figure 2.

6) Edit Signal Waveforms

There are four main editing techniques used to modify existing signals (Note: these techniques will
not work on clocks). The most commonly used technique is the dragging of signal transitions to ad-
just their location. The other three techniques all act on signal segments, the waveforms between any
two consecutive signal transitions. The segment waveform can be changed, deleted, or a new seg-
ment can be inserted within another segment. Use each of the following techniques:

1. Move a signal transition: Left click and hold down the mouse button on a signal transition

and drag it to the desired location. A green bar will appear that follows the mouse
cursor. Release the mouse button when the green bar is at the location where you wish to
place the transition.

2. Change the state of a segment: A segment is the waveform between two consecutive signal
transitions. Click on the segment to select it (a selected segment has a highlighted box

drawn around it). Then click on the State Button of the new state
desired.

If you try to select a narrow segment and one of the transitions gets selected, widen the seg-

ment by clicking the Zoom In button. This button is located on the right hand
corner of the button bar.

3. Delete a segment: Select a segment (see above) and then press the delete key on the key-
board.

4. Insert a segment: Inside a large segment, click and drag to the right or left then release. A
new segment will be added in the middle of the original segment. For this operation to work
the original segment must be wide enough to be selected.

These techniques will not work on clocks, because clocks have fixed edges and segments. To edit a
clock, double-click on a segment of the clock waveform in the Diagram window. This causes the
Edit Clock Parameters dialog box to appear. All clock parameters can be changed in this dialog box.
If you cannot double-click on a segment without selecting a transition, zoom in until the segment is
large enough.

For more information, read Chapter 1: Signals and Waveforms in the Diagram Editor & Universal
Features on-line help.

Basic Drawing And Timing Analysis 14

7) Adjust Diagram to Match Figure

Now use the above techniques to edit the signals so they have roughly the same transitions as the
signals in the figure below. This is not the normal way to create a timing diagram, but it will teach
you how to use the editing features of WaveFormer Pro. Make sure you try all the editing techniques.

Tile the Parameter and Diagram windows so that you will be able to see the interaction between the
two windows. The Report window is not used in this tutorial, so you can minimize it if your screen
is small.

- Select one of the Window > Tile menu options in the timing window.

Adjust the zoom level of the drawing so that only 3 whole clock periods are shown on the screen.

- Click the Zoom In or Zoom Out buttons, which are located on the right hand corner of the
button bar, to show less or more of the waveforms. Zooming can also be performed with
the 'Click-and-Drag' method. Simply click in the time bar over the waveforms and drag the
cursor to the left or right to zoom out or in, respectively.

8) Moving and Reordering Signals

All signals are moved by dragging and dropping the signal's name. When several signals are high-
lighted and moved as a group, they will reorder themselves according to the order in which they are
selected. This ability to quickly reorder signals by the order of selection will help you deal with the
large numbers of member signals of buses.

Moving a Single Signal:

1. Select the signal clk by clicking on the name. (A selected signal will be highlighted.)

2. Move the mouse cursor near the very bottom of the selected signal. When
the mouse cursor changes from a normal arrow to an up/down arrow,
click and hold the left mouse button down. A green bar will appear.

3. Drag the green bar until it is in between Qoutput and Dinput.

4. Drop the green bar by releasing the mouse button. Notice that the timing
diagram has redrawn itself.

5. Try dropping clk at the very top and at the very bottom of the diagram. Leave clk at the bot-
tom of the diagram.

 15 Basic Drawing And Timing Analysis

Moving and reordering multiple signals:

1. Select Dinput, then select Qoutput by left clicking on the signal names in that order.

2. Move the signals to the bottom of the diagram. Notice that Dinput is above Qoutput because
that is the order in which they were selected.

3. Select Qoutput and then select Dinput.

4. Move the signals to the top of the diagram. Notice that Qoutput is above Dinput, because
the signals were selected in that order. This is a quick way to reorder a large group of sig-
nals.

5. Return the signals to their original order, (clk, Qoutput, Dinput).

9) The Right Mouse Button

In the next sections we will add delays, setups, and comments to the timing di-
agram. These objects are added using the right mouse button. The function of
the right mouse button is determined by the second group of buttons on the but-
ton bar marked DELAY, HOLD, SETUP, TEXT, SAMPLE and MARKER.
The red or active mode button indicates the current functionality of the right mouse button. To acti-
vate a different mode button, click on it.

10) Add the D Flip-Flop Propagation Delay

Add the delay that represents the propagation time from the positive edge of the clock to the Qoutput
of the D flip-flop. To add the delay do the following:

1. Activate the Delay mode by
clicking the Delay button.

2. Click on the first rising edge of
the clock.

3. Right-click on the first falling
edge of the Qoutput signal.

This will draw the D flip-flop delay, and creates a blank delay in the Parameter window.

When delays are added, they are blank and do not enforce any timing restraints. Notice that the delay
is drawn with gray colored lines, this indicates that the delay is not forcing either the min or max
edges of the Qoutput signal. Now edit the delay's parameters.

Basic Drawing And Timing Analysis 16

1. Double-click on the parameter name D0 in the Parameter window to open the Parameter
Properties dialog. Adjust the position of the Parameter Properties dialog so that you can
see the parameter in the Diagram window and at least part of the parameter in the Param-
eter window. For simplicity, we will refer to the dialog as Parameter Properties, even
though the name at the top may say Delay Properties or Setup Properties.

2. Type 5 into the min edit box and press the TAB key to move to the max edit box (leave max
blank for now). This enters 5 display time units, or 5ns for this project.

Two things happened when you pressed the TAB key:

1. First, the falling edge of Qoutput adjusted itself so that it was 5ns from the clock edge. Mea-
sure this for yourself using the time readouts above the signal name window. Left click on
the first transition and then move the cursor to the second transition. Notice that the blue
readout shows approximately 5ns, depending on the zoom level and the base time unit. The
delay can also be made to display the exact distance by choosing the distance choice of the
Display label section of the Parameter Properties dialog (make sure to return D0 to "Glo-
bal Default" when you are done experimenting).

2. Second, the delay changed from a gray color to a blue color. Delays are color coded to indi-
cate which delays are forcing the min and max edges of a transition. This type of critical
path display is necessary in diagrams where multiple delays drive a single signal transition.
The colors are: Gray = none, Blue = Min only, Green = Max only, Black = both min and
max. After this tutorial you may want to experiment with the multdely.btim file to see the
effects of multiple delays on a single transition and critical path color coding.

Next, finish editing the rest of the parameter. The parameter is named "DFFtp", has a max time of
18ns, and a comment of "Ck to Q propagation time". Use the Parameter Properties dialog that is
still open to add the following data:

1. Click in the Name edit box and
type DFFtp into it.

2. Press TAB twice so that the
Max edit box is selected.

3. Type 18. This means 18 display
time units, or in this project
18ns.

4. TAB once so that the comment
cell is selected.

5. Enter Ck to Q propagation
time and press the Enter key.

 17 Basic Drawing And Timing Analysis

Notice that the DFFtp delay is black which indicates that it is forcing both edges of Qoutput. Also
notice the falling edge of Qoutput now has a gray uncertainty region. Use the time measure readouts
to verify that the edges of the region are 5ns and 18ns from the clock edge (13ns of uncertainty).
Double-click on the edge to see the exact edge values.

The Parameter Properties dialog is modeless (other operations can be performed while the dialog
is open) and interactive (any changes in the dialog fields are reflected in the diagram after you move
out of that field). This tutorial has you open and close it several times so that you learn all the dif-
ferent ways to open the dialog. Also, the tutorial attempts to conserve screen area for laptop users.
However, in a normal design you will probably want to keep this dialog open much of the time.

Tip: When the Parameter Properties dialog is open you can edit a different parameter by double-
clicking in the Diagram or Parameter window on the parameter you want to change. If you double-
click in the Diagram window, that instance of the parameter will be edited (the Change All Instanc-
es checkbox will NOT be checked). If you double click in the Parameter window, ALL instances of
the parameter will be edited (the Change All Instances checkbox will be checked).

11) Add the Inverter Propagation Delay

Add the delay that represents the propagation time of the inverter from its input Q to its output D.
To add the delay do the following:

1. Activate the DELAY mode by clicking on the delay button.

2. Click on the first falling edge of the Qoutput signal (the same edge that ends the "DFFtp"
delay).

3. Right click on the first rising edge of the Dinput signal.

This will draw the inverter delay, and create a blank delay in the Parameter window. Now let's edit
the parameters from the inside of the Diagram window instead of going to the Parameter window.

1. Double-click on the new de-
lay in the Diagram Window
and enter the following val-
ues in the dialog box that
appears:

- Name is INVtp.

- Min time is 3 ns.

- Max time is 11 ns.

- Comment is Inverter (Q
to D) delay.

- Click on the OK button to close the dialog.

Basic Drawing And Timing Analysis 18

Notice the large uncertainty region for the Dinput transition. Click on the first rising edge of Dinput,
then use the blue delta readout to verify that the uncertainty region lasts for 21ns (13ns from DFFtp
+ 8ns from INVtp = 21ns). Next, click on the first edge of clk and measure to the end of the uncer-
tainty region of Dinput. If both the inverter and the D flip-flop are slow, Dinput may not transition
until 29ns after the clock edge.

12) Add the Setup for the Dinput to Clock

Next add the setup for Dinput to clock transition.

1. Activate the Setup
mode by clicking
the Setup button.

2. Left click on the
first rising edge of
the Dinput signal
(the same edge
that ends the "IN-
Vtp" delay).

3. Right click on the
second rising edge
of the clock.

This will draw the setup parameter. Notice that the arrows of the setup are pointing to the control
signal. This means that you added the setup correctly.

Like delays, setups are also created with empty min/max values. They must have a min value before
they start to monitor the data signal's position. Now we will edit the setup.

1. Double left click on the setup
name in the Diagram win-
dow. This will open the Pa-
rameters Properties dialog
box.

2. Enter Dsetup into the Name
edit box.

3. Enter 15 into the min edit box.

4. Enter Check for metastable
condition into the comment edit box.

5. Click the OK button to close the dialog.

 19 Basic Drawing And Timing Analysis

Notice that the margin column in the Parameter window says that there is a 6ns safety region before
the setup is violated. Verify this by clicking on the second rising edge of the clock and placing the
cursor on top of the maximum edge of the Dinput signal. The blue time readout should say -21ns
(setup time 15ns - measured 21ns = -6ns margin).

Next, we will demonstrate what happens when a setup is violated. Increase the inverter's delay so
that the maximum delay is 18ns instead of 11ns:

1. Double-click on IN-
Vtp in the Dia-
gram window.

2. Type 18 into the
max edit box and
TAB to another
control.

Notice that the setup has
turned red in both the Dia-
gram and Parameter win-
dows. Change the inverter delay back to 11ns and click OK to close the dialog.

13) Add a Free Parameter

So far we have always directly edited a parameter's values. This is inefficient and error prone if the
circuit is large. It would be better to define one variable that held the value and make everything that
needed that value reference this variable. Then if the value needs to be changed, you only have to
edit one variable.

Free parameters act as variables that can be referenced by other parameters. They are called "free"
because these parameters are not attached to any signal transitions in the Diagram window. Let's add
a free parameter to hold the propagation times for the inverter.

To add a free parameter:

1. Click the Add Free Parameter button in the Parameter win-
dow. A blank free parameter is added to the Parameter window.

2. Double click on the free parameter to open the Parameter Properties dialog box and enter
(tpFreeInv, 3ns, 11ns, and 74ALS04 inverter delay) for the (name, min, max, and com-
ment cells) of the free parameter.

Basic Drawing And Timing Analysis 20

3. Use the Previous and Next but-
tons in the Parameter Proper-
ties dialog to locate the INVtp
parameter.

4. Type tpFreeInv into the min
and max cells of INVtp.
Changes to the timing values
of the free parameter will now
affect INVtp.

Note: Free parameters can be saved to special library files which can later be merged into other
projects. You can also reference free parameters without including them into your project file by
placing libraries in your library search path (Libraries > Library Preferences menu option). For
more information on free parameters and libraries read the on-line help Chapter 10: Libraries or per-
form the Parameter Libraries Tutorial.

14) Using Formulas and Constants

Parameters can contain mathematical formulas as well as numeric time values. Legal operations are:
multiplication(*), division(/), addition(+), and subtraction(-). For example, the inverter in this circuit
could represent 3 cascaded inverters used to generate a minimum delay of 9ns. To represent this in
your timing diagram:

1. Enter the following equation into INVtp's min edit box:

3 * tpFreeInv

Free parameter names can also be used with an attributed parameter name such as tpFreeInv.min
and tpFreeInv.max. This gives you the flexibility to specify formulas any way you need. If no at-
tribute is added then a min or max is assumed depending on whether the formula is in the min or max
column.

15) Summary

Congratulations! You have completed the Basic Drawing and Timing Analysis tutorial. In this tu-
torial we have covered three main topics. The first is how to start a project. Next we covered signals,
which includes clocks, signals, and drawing the waveforms of the signals. And finally we covered
parameters.

1) Starting a project

- Always set the Base Time Unit one unit below the Display Time Unit to avoid round-
ing errors. Default values are: Base Units= ps and Display Units = ns.

 21 Basic Drawing And Timing Analysis

2) Drawing a timing diagram with Signals and Clocks

- Use the Add Clock and Add Signal buttons to add clocks and signals to the diagram. Dou-
ble left click on the signal name to edit the signal name.

- Left click to draw a waveform with the state of the selected State Button.

3) Editing waveforms

- Drag and drop signal transitions.

- To change the graphical state of a segment, select it then press a State Button to indicate
the new graphical state.

- To Delete a segment, select it then press the delete key on the keyboard.

- To Insert a segment, left click and drag to the right.

3) Timing Analysis with Parameters

- Add delay, setup, and hold parameters by (1) activating the mode button of that name, (2)
left clicking on the first signal transition, and (3) right clicking on the second signal
transition.

- Edit parameters by double left clicking on the parameter in either the Diagram or the Pa-
rameter window.

- Free parameters are variables that other parameters reference. Use the Add Free Param-
eter button in Parameter Window to add a free parameter.

- To use a free parameter, type the name of the free parameter in the min or max column.
Free parameters can also use the dot min/max property to specify a specific value. For
example, Inverter.min retrieves just the minimum value of the parameter called Invert-
er.

Interactive HDL Simulation Tutorial 22

Interactive HDL Simulation Tutorial

This tutorial introduces the Interactive HDL Simulation. WaveFormer, VeriLogger and TestBencher
Pro have a built-in Interactive HDL Simulator that greatly reduces the amount of time needed to
draw and update a timing diagram. Using Boolean and Registered logic equations written in VHDL,
Verilog, or SynaptiCAD's syntax you can describe signals in terms of other signals in the diagram.
You will no longer have to figure the output of a combinational circuit or calculate the critical path
of a synchronous circuit by hand. SynaptiCAD's interactive simulator will generate the HDL code
using information entered into the Logic Wizard dialog and then simulate the result. Since the sim-
ulator is interactive, changes to input waveforms will automatically re-simulate so that your timing
diagrams always reflect accurate design data.

This feature is included in the VeriLogger and TestBencher products even though they have a built
in Verilog simulator because it makes generating test benches and timing diagrams so fast that we
couldn't hold it back. In WaveFormer, it is the backbone of the timing analysis and design features.
The Interactive simulator supports multi-bit equations and true min-max timing. This tutorial con-
tains some examples of equations that are supported.

This tutorial assumes that you are able to draw signals and can add delays, setups, and holds to those
signals. We recommend that beginners start with the Basic Drawing and Timing Analysis Tutorial
to learn the basics of timing diagram editing, before attempting this tutorial.

If you are evaluating Timing Diagrammer Pro and you would like to learn about the simulation fea-
tures, close the program and restart the evaluation version in WaveFormer Pro mode.

1) Interactive HDL Simulation

Figure 1.1: Timing diagram used for the Interactive HDL Simulation Tutorial

Create a timing diagram for experimenting with the Interactive HDL Simulator:

1. Add a clock named CLK0 and accept the default properties of 100ns period.

2. Add two signals, SIG0 and SIG1, to the timing diagram.

3. Draw the waveforms for signals SIG0 and SIG1 so that they resemble the signals in Figure
1.1. These will be the input signals for our simulation.

 23 Interactive HDL Simulation Tutorial

4. In the Parameter window, click the Add Free Parameter button

 to add a free parameter F0 to the Parameter window.

5. Double-click on the free parameter F0 (in the Parameter window) to open the Parameter
Properties dialog.

6. Type 10 in the Min edit box and 15 in the Max edit box.

7. Click the OK button to close the dialog.

8. Add signal SIG2 to the timing diagram. You do not have draw the waveforms now, we will
be simulating this signal.

2) Generate Waveforms From Boolean Equations

We will begin by simulating a Boolean Equation. WaveFormer Pro accepts Boolean equations in
either VHDL, Verilog, or SynaptiCAD's enhanced equation syntax. The SynaptiCAD format sup-
ports the following operators: and or &, or or |, nand, nor, xor or ^, not or ~ or !, and delay.

The delay operator takes a signal on the left, and a time or parameter name on the right, and returns
a signal. If a parameter name is used on the right hand side of the delay operator, then the equation
will simulate true min/max timing. This true min/max timing is the main advantage that Synapti-
CAD's format has over the VHDL or Verilog format.

Simulate a Boolean equation:

1. Double click the SIG2 signal name to open the Signal Properties dialog. Arrange the Signal
Properties dialog so that you can see the dialog and the 3 signals at the same time. This
dialog is modeless, so leave it open for this entire section. All controls and buttons used in
this section are contained in the Signal Properties dialog.

2. Make sure that the Boolean Equation radio button is selected.

3. Type the following equation into
the Boolean equation edit box
(signal names are case sensitive):
SIG0 and SIG1

Interactive HDL Simulation Tutorial 24

4. Click the Simulate Once button and watch the signal draw itself. Notice that SIG2 is the re-
sult of the Boolean Equation "SIG0 and SIG1". By default, the Simulate radio button is not
checked, so if you moved an edge on SIG0, SIG2 is not automatically re-simulated.

Continuously Simulate the Boolean Equation:

1. Enable the Simulate radio button. Notice that the SIG2 is now drawn in purple. This color
means that the signal is being continuously simulated, and changes in the input waveforms
cause automatic resimulations. If you are using VeriLogger Pro or TestBencher Pro, make
sure that the program is in Auto Run simulation mode. Debug Run mode will not contin-
uously update signals. The Auto Run/ Debug Run simulation mode button is located on the
simulation toolbar, in the upper left of the window below the Project menu.

2. Move some of the edges on SIG0 and SIG1 and watch SIG2 re-simulate. (Notice that you
cannot drag and drop SIG2's signal edges because they are calculated edges).

3) Boolean Equations with Delays

Next we will modify the Boolean equation to take into account the propagation delay through the
AND gate. First we simulate a simple 15ns delay, then we will simulate a min/max delay.

Simulate a simple delay:

1. Enter one of the following Verilog, VHDL, or SynaptiCAD equations into the Boolean
Equation edit box of SIG2:

#15 (SIG0 & SIG1)

(SIG0 and SIG1) after 15

(SIG0 and SIG1) delay 15

 25 Interactive HDL Simulation Tutorial

2. Click the Apply button and verify that SIG2 is correctly drawn.

Simulate a true min/max delay using SynaptiCAD syntax:

1. Modify the Boolean Equation of SIG2 to take into account the min and max propagation de-
lay of the AND gate. Enter (SIG0 and SIG1) delay F0 into the Boolean Equation edit box.
This Boolean Equation references the Free Parameter F0 that you added at the beginning
of the tutorial.

2. Click the Apply button to cause a simulation. Notice the gray uncertainty regions on SIG2.
This true min/max timing is the main advantage that SynaptiCAD's format has over the
VHDL or Verilog format.

View the HDL code that models the Boolean equation:

1. Click the Verilog or VHDL radio button to view the HDL code that
simulates the Boolean Equation. Native HDL code can be added here to perform a special
function (ability to use Native HDL code is only supported for Verilog at this time, not for
VHDL). Do not modify the code now. The code should resemble the following example:

wire # F0_min SIG2_wf0 = (SIG0 & SIG1);

wire # F0_max SIG2_wf1 = (SIG0 & SIG1);

assign SIG2 = (SIG2_wf0 === SIG2_wf1) ? SIG2_wf0 : 'bx;

2. Click the Boolean Equation radio button to display the Logic Wizard section (or Boolean
Equation Section) of the Signal Properties dialog.

3. Leave the Signal Properties dialog open. We will be using it in the next section.

Interactive HDL Simulation Tutorial 26

Note: This example demonstrated true min/max simulation, however Min-Only and Max-Only sim-
ulations can be performed by changing the selection in the Timing Model drop-down list of the Sim-
ulation Preferences dialog box. The Simulation Preferences dialog can be opened using the Options
> Diagram Simulation Preferences menu option. The Timing Model drop-down list is in the upper
right corner.

4) Register and Latch Signals

The Interactive Simulator can register or latch the result of a Boolean equation. Figure 1.2 represents
the circuit that is modeled.

The Signal Properties dialog should still be open and displaying the SIG2 information from the last
section. Let's experiment with the register and latch functions:

1. Enter the equation SIG1 into the
Boolean Equation edit box of
SIG2.

2. Click the Simulate Once button to
simulate the equation. SIG2 should look like an exact copy of SIG1. When we register
SIG2 you can visually compare it to SIG1 to see the effects of the register.

3. Next use the Clock drop down list box and choose SIG0 as the
clocking signal. The clocking signal can be any clock or signal
in the timing diagram (the default value "Unclocked" means
no flip-flop is present).

4. Next use the Edge/Level drop down list box (on the right side
of the dialog) and choose both as the triggering edge.

 27 Interactive HDL Simulation Tutorial

5. Click the Simulate Once button to simulate the circuit. Notice that SIG2 only transitions
when SIG0 has a positive or negative edge transition (move some edges on SIG0 and SIG1
to verify this).

Whether a Register or a Latch is simulated depends on the type of triggering in the Edge/Level list
box. For a Register circuit choose neg for negative edge triggering, pos for positive edge triggering,
and both for edge triggering. For a Latch circuit, choose either low or high level latching.

6. Choose different Edge/Level values and press the Simulate Once button to verify the oper-
ation of the register and latch functions.

5) Set and Clear Lines

The Set and Clear lines are useful when defining circuits whose initial value needs to be specified.
In this example we will demonstrate how to design a divide by 2 circuit using a negative edge trig-
gered register with an asynchronous active-low set line.

To specify the initial value:

1. Click the Add Signal button to create a new signal named SIG3.

2. Double-click on the SIG3 name to open the Signal Properties dialog.

3. Type !SIG3 into the Boolean Equation edit box (it references itself in the Boolean Equa-
tion).

4. Choose CLK0 from the Clock drop down list box.

5. Make sure the Edge/Level setting is set to neg.

6. Click the Simulate radio button. Notice that the waveform for SIG3 is completely gray but
that the status bar (in the lower right corner of the window) reports Simulation Good. This
is because SIG3's Boolean equation references itself but it does not provide the simulator
with a known start state.

Interactive HDL Simulation Tutorial 28

7. Click the Advanced
Register button in
the Signal Proper-
ties to open the Ad-
vanced Register and
Latch Controls dia-
log. All the register
and latch individual
propagation times,
setup/hold con-
straints, clock en-
able, and set/clear
options are set here.
Note that Global de-
faults are set using
the Options > Simulation Preferences menu.

8. Make sure the Active Low and the Asynchronous check boxes in the Set and Clear section
are checked. Click OK to close the dialog.

9. Choose SIG0 in the Set drop down list box of the Signal Properties dialog.

10. Click the Simulate Once button. This button is located at the top left corner of the Signal
Properties dialog, under the signal name. Notice that SIG3 now has a simulated waveform.
Experiment with SIG0 to see how the active low set line affects the operation of the flip-
flop. You may want to redraw SIG0 so that it goes low early in the timing diagram, and
then stays high for four or five clock cycles.

The Clock to Out, Setup, and Hold edit boxes in the Advanced Register dialog accept time values
for various timing constraints on the register and latch circuit. For more information on Register and
Latch timing, see the on-line help Chapter 12: Interactive HDL Simulation.

6) Multi-bit Equations

The Interactive Simulator can automatically generate multi-bit equations for the register, latch and
combinatorial logic circuits. To convert a register or latch circuit into a multi-bit signal, change the
MSB of the input signal and the MSB of the register or latch. If the sizes of the signals do not match,
WaveFormer maps as many LSB's as it can.

First setup the diagram to experiment with multi-bit equations:

1. Delete the SIG3 signal by selecting it and pressing the Delete key.

2. Create a copy of SIG2. Click on the SIG2 name in the Label window to select it. Select the
Edit > Copy Signals menu option to copy the signal, then the Edit > Paste Signals option
to paste the signal. There are now two signals named SIG2 in your diagram. Rename the
bottom SIG2 to SIGX. SIGX should have the exact same waveform as SIG2.

 29 Interactive HDL Simulation Tutorial

Next, change the output of SIGX to a multi-bit signal:

1. Double-click on the SIGX signal name to edit it in the Signal Properties dialog.

2. Make sure the Simulate radio button is selected.

3. Type 3 in the Bus MSB edit box. This will make SIGX a 4-bit signal.

4. Click the Apply button. SIGX's waveform is now drawn as a bus with a 4 bit binary display.
Only the LSB of SIGX is working because the input signal SIG1 is a single bit. Compare
SIG2 and SIGX and verify that they are the same values.

Change the input signal SIG1 to a multi-bit signal:

1. Double-click on the SIG1 signal name to edit it the Signal Properties dialog.

2. Change the name of SIG1 to SIG1[3:0]. Changing the name using the bracket notation has
the same effect as changing the values in the MSB and LSB edit boxes.

3. Click the Apply button to accept the change. Now all four bits of SIGX should be toggling
1111 and 0000. If the radix is in Hex, the signal will toggle between 0 and F. The radix box
is located in the lower left part of the dialog.

If you want to further experiment with multi-bit signals, change SIG1's graphical segments to Valid
regions instead of Highs and Lows. Then double click on a valid region to open the Edit Bus State
dialog box. Type different 4-bit values, like 1010 or 0011, into the Virtual edit box and watch how
it affects the output of SIGX.

Next, set up the diagram for the next section:

1. Delete signals SIG1, SIG2, and SIGX by selecting the names and pressing the Delete key.

2. Add a signal called SIG1. Do not draw the waveform, we will simulate it in the next section.

3. The timing diagram should consist of one clock (CLK0), and two signals (SIG1 and SIG0).

7) Experiment with Behavioral HDL Code

In addition to the simulation of Boolean and registered logic circuits, SynaptiCAD products can sim-
ulate behavioral HDL code. To enter behavioral code for a signal, click on either the Verilog or the
VHDL button in the Signal Properties dialog and type code directly into the edit box.

WaveFormer Pro, VeriLogger Pro and TestBencher Pro also provide a template feature that allows
you auto generate the register and latch models used by the Logic Wizard. In this section we will use
a register template as a starting point to build a circuit that asynchronously counts the number of edg-
es that occur on SIG1 and synchronously presents the total number of edges on the negative edge of
the clock. To model this circuit:

1. Double-click on the SIG1 signal name to edit it in the Signal Properties dialog.

2. Select the Simulate radio button.

Interactive HDL Simulation Tutorial 30

3. Choose CLK0 from the Clock drop-down list box.

4. Choose neg from the Edge/Level drop-down list box.

5. Type 3 into the Bus MSB edit box.

6. Click the Verilog code button to view the resulting template code:

wire [3:0] SIG1_wf1 = PLACEHOLDER ;

wire [3:0] SIG1_wf0;

registerN_Asyn #(4,1,1) registerN_Asyn_SIG1(SIG1_wf0,CLK0,
SIG1_wf1,1'b0,1'b1,1'b1, $realtobits(0.0),$realtobits(0.0),$re-
altobits(0.0),$realtobits(0.0));

assign SIG1 = SIG1_wf0;

Note: the internal wire name SIG1_wf*** will vary depending on how many signals you
have simulated.

The auto generated variable PLACEHOLDER is undefined and will not simulate. If a Boolean
equation was defined for the circuit, it would replace the PLACEHOLDER variable. The
registerN_Asyn line instantiates (defines an instance of) a 4 bit negative-edge-triggered register of
the type used by the logic wizard. This register takes PLACEHOLDER as an input and outputs a
synchronized version on SIG1.

7. We will use the PLACEHOLDER variable to store the edge count. Edit the behavioral code
so that it looks like this (add the bold lines):

reg [3:0] PLACEHOLDER;

initial PLACEHOLDER = 0;

always @(SIG0)

 PLACEHOLDER = PLACEHOLDER + 1;

wire [3:0] SIG1_wf1 = PLACEHOLDER;

wire [3:0] SIG1_wf0;

registerN_Asyn #(4,1,1) registerN_Asyn_SIG1(SIG1_wf0,CLK0,
SIG1_wf1,1'b0,1'b1,1'b1, $realtobits(0.0),$realtobits(0.0),$re-
altobits(0.0),$realtobits(0.0));

assign SIG1 = SIG1_wf0;

8. Click the Simulate radio button. Verify that SIG1 is counting the edges of SIG0. The new
edge count is presented on each negative edge of CLK0.

The code that you just entered is behavioral Verilog code. The first line defines PLACEHOLDER
as a 4-bit register. PLACEHOLDER needs to be defined as a register rather than a wire in this case
because it must "remember" its value. Verilog wires don't remember their values so they must be
constantly driven to retain their value. The second line initializes the value of PLACEHOLDER to
0 when the simulator first runs. The third and fourth lines contain an always block (note for VHDL

 31 Interactive HDL Simulation Tutorial

users: these work like VHDL process blocks). Whenever SIG0 changes state, the always block will
execute, incrementing PLACEHOLDER. The last two lines consist of the automatically generated
template code that instantiates the synchronizing register.

Tip: More information on the HDL simulator can be found in Chapter 12: Interactive
HDL Simulation in the manual and the on-line help. Also the Advanced Modeling and In-
teractive Simulation tutorial demonstrates how to model a complex circuit using external
models, behavioral HDL code, and incremental simulation techniques. The HDL Simula-
tion features are different from the VHDL and Verilog testbench generation features which
are covered in the Advanced HDL Simulation, VeriLogger Pro, and TestBencher Pro tuto-
rials.

8) Summary

Congratulations! You have completed the Interactive HDL Simulation tutorial. In this tutorial we
have introduced the use of Boolean Equations and the beneficial features of the Boolean Equation
edit box. We examined the generation of waveforms using equations, simulation of delays, and
viewing HDL code generated from an equation. We also covered Register and Latched signals,
Multi-Bit signals, and editing behavioral code. For more information please refer to the manual or
the on-line help.

Waveform Generation And Bus Tutorial 32

Waveform Generation And Bus Tutorial

In this tutorial you will learn techniques to quickly generate signals from temporal equations, add
equations to existing signals, and create Virtual, Group and Simulated buses. This tutorial assumes
that you are able to draw signals and are familiar with the features explained in the previous tutorials.
We recommend that beginners start with the Basic Drawing and Timing Analysis Tutorial to learn
the basics of timing diagram editing, before attempting this tutorial.

1) Generate Waveforms from Temporal Equations

Temporal equations provides a quick way to generate signals that have a known pattern that is more
complicated than a periodic clock. Temporal equations are entered in the Signal Properties dialog
using the edit box to the right of the Wfm Eqn button. The edit box contains the default equation:
8ns=Z (5=1 5=0)*5 9=H 9=L 5=V 5=X. The default equation draws a waveform that uses all of the
available waveform states. If you start by editing the default equation you do not have to memorize
the syntax of these equations.

The syntax consists of time-value pairs separated by spaces. The values are 0, 1, Z, V, H, L, and X
which represent the graphical states of the waveforms. For example, the 8ns=Z part of the default
equation draws an 8 ns tristate segment.

To repeat a sequence of states, enclose a list of time-value pairs in parentheses and use the multiply
symbol * followed by the number of times the list is to be repeated. For example (5=1 5=0)*5, draws
five copies of a 5ns strong high segment followed by a 5ns strong low segment.

To experiment with temporal equations:

1. Click the Add Signal button to add a signal, and change its name to TIMEeqn using the Sig-
nal Properties dialog. (If the dialog is closed, double click on the signal name to open it.)

2. In the waveform equation edit box, (to the right of the Wfm Eqn button) enter the equation:

10=Z (6=V 6=X) *3 10=0

3. Click on the Wfm Eqn button to apply the equation.

The 10=Z in the equation means that the signal will be initially tri-stated for 10ns. Next the (6=V1
6=X) will cause the signal to be valid for 6ns then invalid for another 6ns. The *3 will cause the se-
quence inside the parentheses to be repeated three times. Finally, the 10=0 will cause the signal to
be a strong low for 10ns.

The text in the diagram above is made with a combination of text objects and setup parameters with
custom labels. It is used to illustrate the different components of a temporal equation. This is just a
quick demonstration of the documentation abilities of the program. For more information on docu-
mentation read Chapter 8: Formatting Timing Diagrams. You do not have to add the text for this
tutorial.

 33 Waveform Generation And Bus Tutorial

Waveform equations are stored in the waveform equation drop down box, located next to the Wfm
Eqn button. The equations can be used to create new signals or concatenated to the end of an existing
signal.

Adding equations to existing signals:

1. In the Signal Properties dialog, click on the down arrow of the equation drop-down box to
display the previous equations.

2. Select the default equation 8ns=Z (5=1 5=0)*5 9=H 9=L 5=V 5=X. You may have to scroll
down to find it.

3. Click the Wfm Eqn button. Notice that the waveform was added to the end of the TIMEeqn
signal.

Temporal Equations and a related feature called State Label Equations provide a quick method of
generating and then labeling signals that represent Counter and Shifter circuits. The on-line help
Chapter 11: Waveform Equation Generation has more information on these features.

2) Bus Overview

There are three kinds of buses supported by the timing diagram editor: group buses, virtual buses,
and simulated buses.

2.1 Virtual Buses are normal signals that use extended state information to represent bus val-
ues. Virtual buses are added using the Add Signal button. The state information is added
using the HEX state button and the Virtual edit box. A virtual bus does not have member
signals.

2.2 Group Buses are composite signals whose transitions and state values are determined by
their member signals. Instead of individually editing related signals (like the address lines
of a part), a group bus can compress all the signals’ data into one compact signal. The in-
dividual member signals can be uncoupled, or displayed along with the bus. Buses are add-
ed using the Add Bus button.

2.3 Simulated Buses are similar to group buses. The primary difference is that a simulated bus
is purely simulated - the member signals cannot be edited manually. When any kind of sim-
ulation is performed, the simulated bus will be re-simulated and any changes will take place
at that time.

Waveform Generation And Bus Tutorial 34

2.1) Creating Virtual Buses

Virtual Buses are the recommended way to display and work with bus information. Virtual Buses
are also supported by the VHDL and Verilog stimulus and test bench generation features. If timing
parameters are attached to a bus then virtual buses will increase computational performance for tim-
ing diagrams that use large buses (32 bits or more). To create a virtual bus:

1. Click the Add Signal button to add a new signal and name it VirtualBus.

2. Click the VAL state button twice, so that it stays active (state buttons will not toggle).
The Valid button should be red and have a red T at the top of the button .

3. Draw four consecutive valid segments similar to the VirtualBus signal in the figure
below.

4. Double click on the first segment in the signal to open the Edit Bus State dialog box.

5. Enter data into the Virtual field and use either the Next and Previous buttons or the key com-
binations Alt-N and Alt-P to move between the different segments. Any string of charac-
ters and numbers can be displayed in the bus. We used the following data: ABAB, E389,
34C8, valid data.

6. Click OK to close the Edit Bus State dialog when all the segments have been edited.

7. Click the ZOOM OUT button a couple of times to demonstrate how the extended state
data automatically hides itself when its segment becomes too small to display the text.

8. Click the ZOOM IN button the same number of times to return the diagram to its orig-
inal zoom level.

When exporting to VHDL or Verilog, the Virtual State information contained in a valid supersedes
the graphical state of a segment. This allows you to export the state values of signals with types that
have no graphical representation (integers for example).

 35 Waveform Generation And Bus Tutorial

2.2) Creating Group Buses

Use group buses only when you need to get access to an individual bus signal at some point in your
design or if you need to compress several signals that already exist. Group buses are useful for anal-
ysis of data that is imported from simulators or test equipment. Before a group bus can be created,
its member signals must either be specified by selecting the signal names or new signals need to be
created. We will use both methods in this tutorial.

To create a group bus and its member signals:

1. Make sure that no signal names are selected (clear selected signals by clicking in the Diagram
window).

2. Click on the Add Bus button. This will open the Add Bus dialog box.

3. Type data into the Name box. The member
signals will be named the same name as the
bus, plus their signal number.

4. Enter 0 into the Start(LSB#): edit box. This
is the least significant bit of the bus.

5. Enter 1 into the End(MSB#): edit box. This
is the most significant bit of the bus.

6. Make sure the Group Bus radio button is se-
lected. The radio buttons provide an easy
method for creating group or virtual buses.

7. Verify that the Hide
member signals
check box is NOT
checked. We want to
be able to see the
member signals in this
demonstration.

8. Click the OK button to
create the bus. There
should be 3 signals
generated: data (the
bus), and data0 and
data1 (the bus member signals). If the member signals are not shown, use the View > Show
Hidden Signals to show them.

9. Next draw 5 high and low segments on data (the bus signal) and notice that the member sig-
nals are automatically drawn.

10. Double click on the first segment of data to open the Edit Bus State dialog.

Waveform Generation And Bus Tutorial 36

11. Type the value 0 into
the Hex edit box.

12. Use the Alt-N key
combination to move
to the next segment.
Enter the values:
1,2,3,0 into the re-
maining four seg-
ments. Notice that the
member signals have
redrawn properly (ex-
cept the red transition
markers which we will fix later). The red transition markers preserve all the edge informa-
tion of the member signals during a bus editing session. Click OK to close the dialog.

13. Select the Edit > Clear Red Events menu option to remove the edge place holders on the
member signals.

Creating a group bus from existing signals

Select the signal names to be grouped, in order from LSB to MSB, then click the Add Bus button.
In the next example we will create a second group bus whose member signals are reversed from the
data bus.

1. Select data1 by clicking
on the name. This will
be the LSB of the new
bus.

2. Select data0 by clicking
on the name. This will
be the MSB of the new
bus.

3. Click on the Add Bus
button to open the
Choose Bus Type dia-
log. Notice that the New
Bus dialog did not open
up because this bus will be automatically created from the selected signals.

4. Select the Group Bus radio button and click OK to close the dialog. Notice that a new bus,
data, was added to the diagram and that it has a different MSB and LSB than data.

Group buses have many features that are covered in Chapter 3: Group, Simulated, and Virtual Buses
of the manual and the on-line help. Before you use group buses extensively, you should read this
chapter and experiment with the align, bind, and expand features.

 37 Waveform Generation And Bus Tutorial

2.3) Creating Simulated Buses

Simulated Buses are similar to Group Buses. The primary difference is that the bus is generated us-
ing a Boolean Equation. A simulated bus can be referenced in another signal's Boolean equation,
(group buses cannot). Also, TestBencher will generate a Boolean equation for the timing transaction
so that the simulated bus can include input signals as member signals.

To add a Simulated Bus:

1. Make sure that no signals are selected.

2. Click the Add Bus button to open the Add Bus dialog.

3. Select the Simulated Bus radio button and name the bus SimBus with an LSB of 0 and an
MSB of 2.

4. Click OK to close the dialog and add SimBus and 3 member signals to the diagram.

5. Double click on the SimBus name to open the Signal Properties dialog. Notice that the Bool-
ean equation is a concatenation of the member signal signals. Draw the member signal
waveforms and watch the Simulated Bus change. If the diagram did not simulate, choose
“Options > Diagram Simulation Preferences” menu and check the “Continuously Simu-
late” check box.

3) Summary

Congratulations! You have completed the Waveform Generation and Bus tutorial. In this tutorial we
covered the generation of Waveforms from Temporal equations and adding to existing signals. We
also covered virtual buses, group buses, and creating a group bus from existing signals. We exam-
ined the differences between Virtual, Group, and Simulated buses, and the recommended use for
each. For more information, please refer to the manual or the on-line help.

Display and Documentation Tutorial 38

Display and Documentation Tutorial

This tutorial introduces techniques for controlling the display of parameters, clocks, waveforms,
markers and text objects. These techniques that will allow you to control exactly what your timing
diagrams look like and what information is displayed. It is recommended that you are comfortable
drawing waveforms and adding parameters before you begin this tutorial. These features are covered
in the Basic Drawing and Timing Analysis tutorial.

Load the starting timing diagram for this tutorial:

1. Open the file tutdocstart.btim in the SynaptiCAD\Examples\Tutorial\DisplayAndDocumen-
tation directory.

2. Select the File > Save As menu option, and save this file as mystart.btim.

1) Controlling the Parameter Display String

A Delay, Setup, Hold, or Sample parameter can display a specific attribute or a custom display
string. The Parameter Properties dialog box has the Display Label and Custom String controls that
manage the display properties of the parameter. Individual instances or all instances of a parameter
are configured depending on where the Parameter Properties dialog is opened. For individual in-
stances double click on a parameter in the Diagram window. To configure all instances of a param-
eter double click on a parameter in the Parameter window.

Setups and Holds are often used in a timing diagram to display information like distance measure-
ments or used for cycle annotation, because these parameters monitor state information instead of
forcing edges like a delay parameters. First lets experiment with using simple attributes to display
margin and distance calculations of the setup parameters.

1. Double-click on the setup label S0 to open the Parameter Properties dialog. Arrange the di-
alog so that you can see the S0 in the diagram window and the dialog at the same time.

 39 Display and Documentation Tutorial

2. Use the Display Label drop-down list box to select the min/max Margin display. Notice that
the label for the parameter now displays, [9,], the min/max margin, instead of the name S0.
This display will change if the setup’s edges are moved. Margin is the amount of time avail-
able before a setup or hold constraint is violated. The max is blank because there is no max-
imum setup time specified in the parameter.

3. Click the Next button to display the setup S1 in the Parameter Properties dialog. We will use
S1 to display the distance between two edges, so we have not bothered to define the min
and max values.

4. Select the Distance from the Display Label drop-down list box. The label now shows the
minimum and maximum distances between the transitions.

5. Check the Outward
Arrows check
box to make the
parameter’s ar-
rows display the type of arrows that are usually used for distance measurements.

NOTE: The default display for all parameters can be set using the Options > Drawing Preferences
dialog box.

1.1 Parameter Custom Strings

A parameter label can be made to show more than one attribute or to show a custom string of char-
acters and attributes using the Custom string in the Parameter Properties dialog. In a custom string,
certain character sequences are interpreted as attribute control codes, and when such a sequence is
found it is replaced with that parameter’s attribute.

Attribute control codes start with a % character followed by one or two letters. The control codes
are: name (%n), value (%mv, %Mv), formula (%mf, %Mf), margin (%mm, %Mm), distance
(%md, %Md), and comment (%c). The lower case m means minimum, and the upper case M
means maximum. Now lets experiment with D0’s custom string.

1. Double click on D0 delay parameter to open the Parameter Properties dialog.

2. Select Custom from the Display Label drop-down list box. This will cause the string in the
Custom edit box to be displayed as the parameters label.

3. Compare the default Custom string to the label that is displayed in the diagram. The default
custom string is a little messy to look at, however it contains all of the control codes so you
don't have to remember them. When you want to make a custom label just edit the default
string. The default custom string should be:

%n v= %mv,%Mv f=%mf,%Mf m=%mm,%Mm d=%md,%Md %c

4. Next, make the parameter label display only the parameter name and min and max values.
Edit the contents of the custom string so that the string reads: %n value = %mv,%Mv

Display and Documentation Tutorial 40

5. Click the Apply button. The and D0’s label will show:

2) Repeating Parameters

Once you have drawn a delay, setup, or hold parameter, that parameter can be automatically drawn
between similar edges across the timing diagram. When the Repeat button, in the Parameter Prop-
erties dialog, is pushed the program will search for the next beginning edge, and add a parameter
between that edge and the next ending edge. This will continue until the end of the diagram. Some
caution should be taken when repeating delays because the delays cause edges to move.

1. For this demonstration arrange Diagram window so that you can see the entire diagram. You
may need to use the zoom in buttons.

2. In the diagram window, double-click on D0 to open the Parameter Properties dialog.

3. Press the Repeat button. This will cause delays to be added to each of the falling edges of
SIG0 that have a matching edge on SIG1. Also notice that the margin for setup S1 is now
violated and is displayed in red. This happened because the second D0 moved the edge that
S1 is attached to.

4. Close the Parameter Properties dialog.

 41 Display and Documentation Tutorial

3) Editing Waveform Edges From an Equation

In the last section, our new delay caused the setup S1 to fail. To fix the setup, we would like to shift
all of the edges on both SIG0 and SIG1 over by 5ns. This could be done by dragging and dropping
each edge, but a faster way would be to apply an equation to the waveform edges.

1. Select the SIG0 and
SIG1 names by
clicking on the sig-
nal names.

2. Choose the Edit >
Edit Waveform
Edges menu to open
a dialog of the same
name that will act on
all of the selected
signals. Notice that
the dialog can be
setup to act on a
range of edges, clear
sections of the
waveforms, or apply
an equation to each
edge of the wave-
form.

3. Type $time + 5 into the Edge Time Equation edit box. The $time variable represents the
time of each edge.

4. Press the OK button to apply the equation and close the dialog. Notice the edges have shifted
over and the S1 setup is satisfied.

4) Drag and Drop Parameter End Points

When a parameter is created it is attached to two signal transitions. These signal transitions can be
changed by dragging and dropping one of the parameter endpoints to a new signal transition. To
demonstrate dragging and dropping a parameter’s endpoint:

1. In the Diagram window, select the first delay
parameter D0 to select it by clicking on it. A
selected parameter is surrounded by a rect-
angle with a solid handle box on either end.

2. Place the mouse over the solid handle box on
the right side of the selection rectangle.

Display and Documentation Tutorial 42

3. Click and drag the mouse to the edge indicated
on SIG2 so that it is highlighted. If the entire
parameter is changing its vertical position
then you clicked on the middle of the param-
eter instead of a handle box.

4. Release the mouse button. Now D0 ends on this transition.

5) Adjusting the Vertical Placement of a Parameter

Normally, the vertical placement for parameters on the sreen is set automatically. However, you can
also place parameters at a specific height by dragging the parameter to a new position.

1. Click and hold on the center of the delay
parameter, D0, and drag it up to a new
vertical position closer to the top of the
screen.

2. Release the mouse button to place the pa-
rameter.

After you move a parameter, it is considered user
placed and it will not be moved from that position
unless you choose to move it. Any new parameters will arrange themselves around user placed sig-
nals. To return vertical placement control to the program:

1. Open D0’s Parameter Properties dialog box by double-clicking on the parameter.

2. Uncheck the User Placed box, and the delay will return to its original position.

3. Click the OK to close the dialog box.

6) Clock Jitter and Display

Clocks have many display and timing analysis settings that are covered in Chapter 2: Clocks. In this
section we will add edge jitter and see the effect on the distance measurement. We will also add ar-

 43 Display and Documentation Tutorial

rows to the falling edge of the clock and change the slant of the waveform edges.

The timing analysis features are controlled through the Edit Clock Parameters dialog:

1. Double click on waveform segment on CLK0 to open the Edit Clock Parameters dialog.

2. Type 4 into the Rise Jitter (range) edit box and tab to another control. This will add an un-
certainity region to the rising edge of the clock and also change the distance measurement.

3. Click OK to close the dialog

The display features for signals and clocks are controlled through the Signal Properties dialog:

1. Double click on the CLK0 signal name to open the Signal Properties dialog.

2. Check the Falling Edge Sensitive box and push the Apply button. This causes arrows to be
added to the falling edge of the clock.

3. Press the Analog Props
button to open the Ana-
log Properties dialog.

4. Check the Use Straight
Edges box and press OK to close the analog dialog. This will cause the clock to be drawn
with straight edges instead of the normal slanted edges.

5. Press the Grid Lines button to open the Grid Options dialog.

6. Check the Enable Grid box and press the Apply button. This draws grid lines on the clock.

7. Play around with the grid options and make the grid draw on different edges. Also draw dif-
ferent color edges and line styles.

8. When you are done uncheck Enable Grid and close both dialogs.

7) Markers

Time markers (vertical lines) can be added to a timing diagram for documentation, time compres-
sion, and to indicate the end of the diagram. TestBencher Pro also uses markers to specify loops and
to insert HDL code into a transaction.

Next add a documentation marker the diagram and experiment with the display and time compres-
sion.

Time markers (vertical lines) can be added to a timing diagram for documentation, time compres-
sion, and to indicate the end of the diagram. TestBencher Pro also uses markers to specify loops and
to insert HDL code into a transaction.

Display and Documentation Tutorial 44

Next add a documentation marker the diagram and experiment with the display and time compres-
sion.

1. Press the Marker button, on the top of the Diagram window, to put the
program in marker drawing mode.

2. Left click on the third falling edge of CLK0 (250ns), to select it, and then
right click to add a Marker.

3. Double click on the marker to open the Edit Time Marker dialog. Since an edge was selected
when you added the marker it is automatically be attached to the selected edge, and the at-
tachment is listed in the middle of the dialog as EDGE CLK0 250.

4. Uncheck the Draw line from marker to edge box. When marker is attached to an edge, this
box determines if a dotted line will be drawn between the edge and the marker.

5. From the Display Label box, choose Comment. Since the comment for the marker is blank,
no label will be displayed for the marker.

6. From the Marker Type box, choose Timebreak(Curved) to make the marker use a double
curved line display.

7. Press OK to close the dialog. Notice that the marker is curved and does not display its label.
Double click on the marker to open the Edit Time Marker dialog again.

8. Type 15 into the Time Break compresses time by box and press OK to close the dialog.
Notice that 15ns of the next clock cycle is not displayed in the diagram. All the parameters
inside a compressed region continue to function, just part of the diagram is not shown.

9. Drag and Drop the parameter and watch the compression marker make objects disappear.

A marker can also be used to indicate the end of a timing diagram. This is a useful feature if you are
using the export scripts. You can also make the ends of all the signals snap to the marker for a cleaner
looking timing diagram.

1. Make sure that no edges are selected in the diagram, and then right click at the top of the di-
agram at about 400ns. This will add a marker to the right of all the drawn signals.

2. Double Left click on the marker to open the Edit Time Marker dialog. Notice that the attach-
ment is listed as Time because no edges where selected when the marker was added.

3. From the Marker Type box, choose End Diagram to indicate that the marker is the end of
the diagram. This causes the marker to draw itself with the purple simulation line.

4. From the Display Label box, choose Type to make the marker display End Diagram as the
display label.

5. Check the Signal ends snap to marker box and press OK to close the dialog. Notice that all
of the drawn waveforms have drawn themselves over to the marker.

 45 Display and Documentation Tutorial

6. Drag and drop the end diagram marker and notice how the waveforms draw themselves.

8) Edit Text Blocks

Text objects can be placed any-
where in a diagram to annotate
cycles, edges, or segments. The
font and color of each text object
can be changed to stress the im-
portance of that particular text ob-
ject. The fonts also support
superscripts, subscripts, and bold
and italic attributes so your timing
diagrams can use the same names
and comments that are commonly
used in data books.

1. Press the Text button, on
the top of the Diagram
window, to put the pro-
gram in text drawing
mode.

2. At the top of the diagram,
around 50ns, right click
to open a text editing
box and type Read
Cycle2tp, and then press

Display and Documentation Tutorial 46

the Enter key to close the editing box. This will add a text block to the top of the diagram
using the default font.

3. Double click on the text block to open the Edit Text dialog. From this dialog you can edit the
text, add multi-line text blocks, and set the bold, italics, superscript, and subscript settings.

4. Select the 2 in the text box and press the super script button. Select tp and press the subscript
button.

5. Press the Font key to open the Font dialog.

6. Change the font size to 16 and the color to blue and close both dialogs.

7. Drag and Drop the text object to a new location.

8. Experiment by adding more text blocks. In the Edit Text dialog, add a multilane text block.

9) Summary

Congratulations! You have completed the Display and Documentation tutorial. In this tutorial you
experimented with parameter display settings including how to add distance measurements and cus-
tom display strings. You have also touched on the some of the display options for markers, text ob-
jects, and clocks but these objects have many more features that are covered in the manual.

Advanced Modeling and Simulation 47

Advanced Modeling and Simulation

This tutorial demonstrates how WaveFormer Pro can quickly model and simulate a digital system of moderate com-
plexity. We will be modeling a circuit that computes histograms for 64K of data generated by a 12-bit Analog-To-
Digital converter (this is a popular method for testing dynamic SNR for ADCs). This circuit is a simplified form of a
real VME board that would take several months to model and simulate using conventional EDA tools. Using Wave-
Former, we will model and simulate this simplified circuit in 20 minutes. The full circuit with the complete VME bus
interface protocol could be modeled and debugged in about 4 hours.

Figure 1: Histogram circuit block diagram.

This tutorial teaches the user how to:

1. Model state machines using the Boolean Equation interface.

2. Generate input signals using temporal and label equations.

3. Use the simulation log to find design entry errors.

4. Simulate incrementally by temporarily modeling outputs as drawn inputs.

5. Enter direct HDL code for simulated signals.

6. Use external HDL source code models.

Advanced Modeling and Simulation 48

7. Model tri-state gates using the conditional operator.

8. Model n-bit gates using reduction operators.

9. Model transparent latches.

10. Debug Verilog source code using $display statements.

11. Control length of simulation time using a Time Marker.

12. Edit an external HDL file with WaveFormer's Report window.

Before you begin the tutorial you may wish to view Figure 3 in Section 13 which shows a completed version of the
diagram that we will generate. File tutsim.btim included in the product directory is a finished tutorial file. You will not
use this file during the tutorial itself, but you can always refer back to this file if you encounter any problems during
the tutorial.

Circuit Operation

A histogram is a graph displaying the count of same 12-bit values received from the ADC. To store the histogram count

values we will use a 4K SRAM (212 storage cells) to hold a count for each possible 12-bit value that the ADC can
generate. The width of the SRAM depends on how many data values we will accumulate from the ADC. In the worst
case, the ADC could generate the same value for the entire histogram accumulation, so the SRAM must be able to store

a value of up to 4K. Thus we will use 2 8-bit wide SRAMs (216 = 64K > 4K).

When the circuit starts operation, the SRAM should contain zeros at every address. Each time a data value is generated
by the ADC, that data value is used as an address to look up the current count for the data value in the SRAM. The
count is incremented by one and the new value is written back to the SRAM. This continues until the circuit has r

1) Set up a New Timing Diagram

Create a new timing diagram to model the histogram circuit:

1. Select the File > New Timing Diagram menu option to create a new diagram.

2. Minimize the Parameter window. It is not used in this tutorial.

3. Select the Window > Tile Horizontally menu option. This will provide us with optimal viewing by rearranging
the Diagram window and the Report window (if either of these windows is not visible, select the menu option
Window > Diagram or Window > Report to make it visible).

Now that we have a new diagram to work with, we are ready to model the components of our circuit.

2) Generate the Clock, Draw Waveforms, and Use Waveform Equations

The histogram circuit has a system clock, CLK0, and three signal inputs, POWER, START and ADDR. We will create
the waveforms for each of these signals using three different methods: generating from clock parameters, drawing
waveforms by hand, and automatically generating waveforms from temporal equations.

2.1 Automatically generate the CLK0 system clock

Add a clock named CLK0 with a period of 100 ns:

1. Click the Add Clock button to open the Edit Clock Parameters dialog.

2. Verify that the default values are: name = CLK0, period = 100 ns, and duty = 50%. If not then make the nec-
essary adjustments.

3. Press OK to accept the default values for the clock.

Advanced Modeling and Simulation 49

2.2 Graphically draw the POWER and START signal

The POWER signal is a power-on reset signal that we will use to set the initial state of our state machine. The START
signal is an external input to the system that pulses high to initiate acquisition in the histogram circuit. The POWER
and START waveforms are relatively simple, so we will draw them with the mouse.

1. Click on the Add Signal button twice to add two signals.

2. Double-click on a signal name to open the Signal Properties dialog. Use this dialog to change the names of the
signals to POWER and START.

3. Draw the POWER signal so that it is low for 80ns, then high for 2000ns.

4. Draw the START signal so that it is low for 60ns, high for 100ns, and then low for 800ns:

5. Verify that the timing diagram looks like:

Waveform drawing and editing techniques can be found in Chapter 1: Signals and Waveforms in the online help.

2.3 Use Temporal and Label Equations to model ADDR (A/D converter's output data)

We will model the A/D converter just as a data source, so all we need to do is generate a virtual bus signal called ADDR
(the output from the ADC) that drives the address lines of the SRAMs. The ADDR waveform has a regular pattern that
can be described easily using an equation, but would be tedious to draw by hand.

Add a virtual bus signal called ADDR:

1. Add a signal and change the name to ADDR. Leave the Signal Properties dialog open for the rest of the section.

2. Set the signal’s Radix to hex and the MSB to 11.
Changing the MSB and Radix defines ADDR as a
12-bit signal that display its values in hexadecimal
format.

The A/D converter is driven by a clock that is 1/2 the frequency of the state machine clock CLK0, so the ADDR value
should change every other clock cycle (this maintains the same address for the read out of each RAM cell's count data
and its write back after it is incremented). The ADDR signal should be unknown for 170ns then it should have twenty
valid states, each 200ns in duration. Use the Waveform Equation interface of the Signal Properties dialog to gener-
ate the ADDR waveform:

1. Enter the following equation into the edit box next to the
Wfm Eqn button: 170=X (200=V)*20

2. Press the Wfm Eqn button to apply the waveform equa-
tion. Notice that the waveform drew itself. If the waveform didn't draw, a syntax error was made when typing
in the equation. To determine what the error was, look at the file waveperl.log displayed in the Report win-
dow. This file will show you which part of the equation could not be parsed. Fix the error, and press the Wfm
Eqn button again.

Next, we will label the states of the ADDR bus using a Label Equation. Each state could be labeled individually using
the extended state field of the HEX dialog box, but labeling twenty states would take a long time. Instead, we will write
an equation to label all the states at once. Chapter 11 covers all the different state labeling functions.

Advanced Modeling and Simulation 50

1. Enter the following equation into the edit box next to
the Label Eqn button Skip(1), Rep((0,1,2,3,4), 4).

2. Press the Label Eqn button to apply the equation.

This equation will generate a hex count from 0 to 4, and then repeat it 4 times. The Skip(1) means start labeling after
the first state (which we defined to be an invalid state using our waveform equation). Your timing diagram (at the ap-
propriate zoom level) should now resemble the diagram below.

3) Modeling State Machines

We will use a simple one-hot state machine to control the circuit, and we will model it using Boolean Equations. A
one-hot state machine uses a single flip-flop for each state. At any given time, only the flip-flop representing the cur-
rent state will contain a 1, the other flip-flops will be at 0 (hence the name one-hot).

Figure 2: State diagram and design equations for the histogram controller state machine

The state machine (SM) initializes to the IDLE state. On the negative edge of the clock after START goes high, the
SM will enter the READ state and look up the current count for the current address value being output by the A/D
converter. This value will be incremented by a simple fast-increment circuit. On the next clock, the SM will enter the
WRITE state, latching the incremented value into a transparent latch called DBUS_INC and initiating the write back
of the incremented data to the SRAM. The state machine will continue to toggle between the READ and WRITE state
until the desired number of data values have been histogrammed (determined by the size of the binary counter called
COUNT), at which point the SM will return to the IDLE state. Figure 2 shows the SM that we will model.

The state machine is modeled in WaveFormer using one signal for each state. Next we will enter the equations for the
state machine, however these signals are not simulated until Section 5 because signal DONE has not yet been de-
fined.

1. Add 3 signals and name them IDLE, READ and WRITE.

Advanced Modeling and Simulation 51

2. For each signal, enter state machine Equation, select Simulate button, setup the clock and trigger edge, and setup
the set and clear signals as shown in the following pictures:

Notice the display in the bottom right hand corner and notice that the state machine signal names
turned gray . This is because the IDLE and READ equations reference a signal called DONE. This signal has not been
defined so if you try to simulate you get errors. In the next section we will investigate the different ways to detect and
fix simulation errors.

4) Checking for Simulation Errors

If you check the simulator log file, simulation.log in the Report window, you will see an error mes-
sage reporting that DONE is not declared. The log file also reports the lines in the WaveFormer-generated Verilog
source code file where this error occurred. The WaveFormer-generated source file will have the same filename as your
diagram, but with a file extension of .v instead of .btim (so if your diagram is untitled.btim, the source code file is
untitled.v). This source file is automatically opened by the Report window whenever WaveFormer Pro generates this
file (by default this occurs every time you make a change to your design while simulating signals).

Advanced Modeling and Simulation 52

View the HDL lines where the errors occur:

1. Check the log file for the line number at which the error(s) occurred. In the Report window, click on the simu-
lation.log tab. When we ran the simulator, our error occured at line number 57 (your run may be different) ,
as indicated by the error message: C:\SynaptiCAD\UNTITLED.v: L57: error: 'DONE' not declared

2. Click on the tab for the *.v file at the bottom of the Report window. This will
open your source file in the Report window.

3. Click inside the Report window, and press <Ctrl>-G. This brings up the Go To
Line window. Enter 57 as the line number you wish to jump to, and press OK.

4. As expected, these lines show the HDL code that simulates the IDLE and READ
signals.

NOTE: Do not make changes in this source file as your changes will automatically be overwritten the next time a sim-
ulation is performed; instead, we will make the appropriate changes in the Diagram window and Signal Properties
dialog.

5) Incremental Simulation

One common problem in simulating and debugging digital systems is that large parts of the design have to be entered
before testing can begin because the parts provide input to each other. One solution is to break a design up into pieces
and test each piece with test vectors that represent the output of the other pieces. However, generation of the test vec-
tors can be time consuming.

SynaptiCAD products provide a very simple and quick method for testing small parts of a design: graphically draw the
signals for the missing parts of the design to test the design at its current state of development. Then later add the design
information that models these signals (in other words, we temporarily model simulated outputs as drawn inputs).

We will now use this method below to verify the operation of our state machine before we enter the HDL code that
generates the DONE signal:

1. Add a signal called DONE.

2. Draw a low segment for 1.6 us, followed by high pulse that lasts for at least one clock cycle. Click on Apply
to run the simulation.

3. The diagram should now show the simulation output from your state machine. The simulated signals are pink
to distinguish them from graphically drawn signals.

Make sure everything is working properly:

1. First make sure that the simulation status indicators read Simulation Good. If the indi-
cators still show an error, then the simulation.log file will help you to pinpoint the er-
ror in your diagram.

Advanced Modeling and Simulation 53

2. Next, check your diagram against the figure above to verify that your state machine is simulating correctly.

3. If the simulation succeeded and there are still discrepancies in the output, check your design equations and the
input stimulus you’ve drawn (START and DONE signals).

Once you have the circuit simulating properly, let’s see what happens if the START pulse gets too small:

1. Drag the falling edge of the START pulse back to approximate 140 ns (before the falling clock edge at 150 ns).
This step causes the state machine to stay in the IDLE state (the IDLE signal stays high).

2. Double click on the falling START edge and enter a time of 160 into the Edge Properties dialog to restore proper
operation.

6) Modeling Combinatorial Logic

In addition to the state signals, the state machine has one other output signal called ENABLE that is used to enable the
SRAM, the DONE counter, and the ADC. ENABLE is just the output of an OR gate with the READ and WRITE sig-
nals as inputs. In Section 3 we used the Boolean Equation interface to model the flip-flops of the state machine. We
will use the same interface to model combinatorial logic. To do this choose the default clock called unclocked. If a
signal other then unclocked is selected, then the Boolean Equation interface models registers or latches depending on
the type of Edge/Level trigger selected. Chapter 12 covers the advanced features of the Boolean Equation interface
including the min/max delay features.

Model the Enable logic:

1. Create a new signal called ENABLE.

2. Enter the equation: READ | WRITE into the Boolean Equation edit box in the Signal Properties dialog.

3. Check the Simulate radio button.

4. Verify that ENABLE is the OR of READ and WRITE. If ENABLE did not simulate, use the techniques found
in section 4 to find your error. Remember that signal names are case-sensitive.

5. Click OK to close the dialog.

7) Entering Direct HDL Code for Simulated Signals

For simplicity, the counter output COUNT is modeled using a simple block of behavioral HDL Code instead of using
Boolean equations. It would take a large number of Boolean equations to model the counter and the equations would
be difficult to modify if the counter operation had to be changed. For this tutorial we will create a 4-bit counter to test
our system. This counter could be easily modified later to make it 12-bit (to acquire 4K worth of data). To enter direct
HDL code for the COUNT signal:

1. Create a signal called COUNT.

2. In the Signal Properties dialog, set the Radix to hex, its MSB to 3, and check the Simulate radio button.

3. Press the Verilog radio button to switch from the Equation view to the HDL Code view/editor.

Advanced Modeling and Simulation 54

4. Enter the Verilog code below in the HDL Code editor of the Signal Properties dialog (comments begin with /
/ and can be skipped during code entry). You can copy and paste the text into WaveFormer instead of typing
it (Select and copy to clipboard the source code below, then click into the HDL Code window in WaveFormer
and press <Ctrl>-V to paste the text):

reg [3:0] COUNTER; //declare a 4-bit register called COUNTER

always @(negedge CLK0) //on each falling edge of CLK0

 begin

 if (ENABLE)

 COUNTER = COUNTER + 1; // count while ENABLE is high

 else

 COUNTER = 0; // synchronous reset if ENABLE is low

 end

assign COUNT = COUNTER; //drive wire COUNT with reg COUNTER value

5. Click the Simulate Once button to simulate the COUNT signal.

Note: All signals in WaveFormer are modeled as wires, so the assign is required at the end of the HDL code block to
drive the COUNT wire with the value of COUNTER (which must be a register in order to remember its value).

To increase the size of the counter to acquire 4K data values (do not do this now), we could change the MSB of
COUNT to 11 and change the declaration of COUNTER in the HDL code to:

reg [11:0] COUNTER; //example only, don't do in this tutorial

8) Modeling n-bit Gates

Next we will model the DONE signal that we originally drew as an input to the state machine. The DONE signal is
generated by performing a bitwise AND of the COUNT signal (we are done whenever all the counter bits are high).

To model the DONE Signal:

1. Double click on the DONE signal name to open the Signal Properties dialog box.

2. Enter the following equation in the Boolean Equation edit box: &COUNT

3. Check the Simulate radio button. The resulting signal should look like the hand drawn signal except that it is
a purple simulated signal.

The & operator when used as a unary operator is called a reduction-AND operation. A reduction-AND indicates that
all the bits of the input signal should be ANDed together to generate a single bit output. This is equivalent to the fol-
lowing equation: COUNT[0] & COUNT[1] & COUNT[2] & ...

One nice benefit of using a reduction operator instead of the above equation is that it automatically scales the circuit
to match the current size of the COUNT signal (it’s also a lot easier to type)!

9) Incorporating Pre-Written HDL Models into Waveformer Simulations

We will use an SRAM HDL module contained in an external file (sram.v) to model the SRAM. This model is fairly
complex and accurately models the asynchronous interface that is commonly used by most off-the-shelf SRAMs. One
special feature is that the SRAM resets all its memory cells to zero when it first starts up. In a real circuit, we would
need to add extra logic to iterate through the addresses, writing zeros at each one. A full description of the Verilog
modeling of this SRAM is outside the scope of this tutorial, but let’s take a quick look at it inside the Report window:

1. Select the Report > Open Report Tab menu option and open the file sram.v (located in the Synapti-
CAD\lib\Verilog directory). Verify that you can view the file in the Report window. Keep this file open be-
cause we will be referring back to this file later in the tutorial.

Advanced Modeling and Simulation 55

9.1 Including an external SRAM Verilog model file into WaveFormer

To add the SRAM model to our design we need to modify the wavelib_exact.v file that contains the models used by
WaveFormer. The SRAM model code cannot be entered into a signal’s HDL code window because the model declares
a module and modules cannot be nested in Verilog (WaveFormer puts all the HDL code from signals into a single mod-
ule called testbed). All user-written Verilog modules should be declared in wavelib_exact.v (or preferably, included
from separate files into wavelib_exact.v using the include directive as will be doing). In this case, the source code for
the SRAM is already contained in a separate file called sram.v and we only need to add an include statement to
wavelib_exact.v to let WaveFormer know about it. To modify the wavelib_exact.v file:

1. Select the menu option Report > Open Report Tab and open the wavelib_exact.v file in the SynaptiCAD\hdl
directory.

2. Add the following line to the beginning of the wavelib_exact.v (it may already be there depending on which
SynaptiCAD product you are using): `include "lib\verilog\sram.v"

3. Select the Report > Save Report Tab menu option to save your change.

9.2 Instantiating the SRAM component models

To drive the data bus DBUS, we need to instantiate two instances of the SRAM model:

1. Create a new signal called DBUS.

2. Set the Radix to hex, set the MSB to 15, check the Simulate radio button, and select the Verilog radio button.

3. Enter the following HDL code into DBUS’s HDL code window:

wire CSB = !ENABLE;

sram BinMem1(CSB,READ,ADDR,DBUS[7:0]);

sram BinMem2(CSB,READ,ADDR,DBUS[15:8]);

The first line creates an internal signal that is an inverted version of the ENABLE line (the SRAM is active low en-
abled). The next two lines instantiate two 4Kx8 SRAMs and connect up their inputs and outputs (the first SRAM con-
tains the low byte of the count and the second contains the high byte).

10) Modeling the Incrementor and Latch Circuit

In Section 3 we used the Boolean Equation interface to model the state machine using negative edge-triggered regis-
ters. Now we will use the same interface to generate level-triggered latches used to model the increment-and-latch cir-
cuit. The value stored in the SRAMs is placed on DBUS and the incrementor circuit takes that value, adds one to it,
and latches the incremented value:

1. Create a new signal called DBUS_INC.

2. Enter the following equation into the Boolean Equation edit box: DBUS + 1

3. Choose the READ signal from the clock drop-down list box.

4. Choose high from the Edge/Level drop-down list box. This selects the type of latch to be used.

5. Set Radix to hex, MSB to 15, and check the Simulate radio button.

6. Press the Simulate Once button and verify that DBUS_INC is an incremented version of DBUS. If
DBUS_INC did not simulate, use the methods in section 4 to determine the error.

Advanced Modeling and Simulation 56

11) Modeling Tri-State Gates

There are 2 possible drivers for DBUS: the SRAMS which we modeled in section 9, and the tri-stated output of the
DBUS_INC signal. All the drivers for a bus should be included in the code for the bus.

To add the tri-state gate to DBUS:

1. Double click on the DBUS signal name to open the Signal Properties dialog box.

2. In the direct HDL code edit box add a 4th line of HDL code to DBUS:

assign DBUS = WRITE ? DBUS_INC : 'hz;

Line 4 models the tri-state gates that follow the latches in the histogram circuit. These tri-state gates are enabled when-
ever the WRITE signal is high. We use the conditional operator (condition ? x : y) which acts like an if-then-else state-
ment (if condition then x else y). If WRITE is high, DBUS is driven by DBUS_INC (the incremented version of DBUS
that we latched), else the tri-state drivers are disabled (‘hz means all bits are tri-stated).

12) Debugging External Verilog Models

Verilog contains two system tasks (commands), $display and $monitor, that can be included in Verilog source files
for debugging purposes. $display acts like a C-language printf statement which prints to the simulation log file sim-
ulation.log whenever it is executed by the Verilog simulator. $monitor is similar, but it automatically prints to the log
file whenever any of the signals listed in this command change state. The SRAM model file sram.v contains two $dis-
play statements that output the address and data values for the SRAM whenever the SRAM is read from or written to
(you can view the $display commands in sram.v in the Report window). You can see the output of the $display com-
mands by viewing simulation.log in the Report window. Each time the SRAM performs a read or write a message is
sent to the log file.

13) Verify the Histogram Circuit

At this point we have modeled the entire histogram circuit, so your diagram should resemble the figure below. If it
doesn’t, check the simulation.log for errors and correct as necessary. The output of the $display commands will be
particularly useful if you are getting x’s on your DBUS signal which indicates unknown data is being read from your
RAMs. One thing to check for is that your diagram is never performing a write to an unknown address (an address
containing x's) in your RAM bank. If you write a value to an unknown address, the memory model has no way of know-
ing which memory location has been changed. Therefore, all the memory locations in the entire address space of the
RAM bank may or may not have been changed. The memory model is forced to represent this unknown state by setting
all memory locations in the SRAM to x!

Advanced Modeling and Simulation 57

Figure 3: Completed Timing Diagram

14) Controlling the Length of the Simulation

By default, WaveFormer simulates to the last drawn signal edge. You can also use a time marker to control the length
of the simulation. To place a time marker:

1. Click the Marker button found on the button bar. This turns the Marker button red which indicates that
right clicks in the Diagram window will add marker lines.

2. Right click at about 1us in the Diagram window. A new time marker line will appear.

3. Double click on the marker to open the Edit Time Marker dialog.

4. Set the marker type to End Diagram.

5. Click OK to close the dialog, then drag the marker on the screen. As you move the marker, the simulator will
automatically resimulate the design up to the time location of the marker.

15) Editing Verilog Source Files

To demonstrate how to make changes to a Verilog source file inside WaveFormer, we will edit the SRAM model file
sram.v in the Report window:

1. Change line 18 from: ram[i] = 0; To ram[i] = 8;

This causes the SRAM cells to be initialized with 8 instead of zero.

2. Select the Report > Save Report Tab menu option to save your change.

Let's see the effect of this change:

3. Press the Simulate Once button in the Signal Properties dialog, or move an input edge. Either of these steps
initiates a resimulation.

You may have anticipated that DBUS would now show 8 (we did when we first did this tutorial!), but it is correct in
showing 808 because our DBUS is a 16-bit value composed of the data in two parallel SRAMs each initialized with
08 (hence 0808 = 808).

Advanced Modeling and Simulation 58

4. Reset the line back to ram[i] = 0;

16) Simulating Your Model with Traditional Verilog Simulators

The Verilog model of your system created by WaveFormer can also be simulated by traditional Verilog simulators.
The complete verilog model simulated by WaveFormer is composed of (1) the verilog file generated by WaveFormer
(untitled.v for this tutorial), (2) the WaveFormer library file wavelib.v, and (3) any external model files you have in-
cluded (e.g. sram.v for this tutorial). Follow the instructions of your Verilog simulator to simulate these files together.

17) Summary

This concludes the advanced simulation tutorial. Other simulation features not covered in this tutorial that you may
wish to experiment with are: flip-flop timing characteristics (clock to output propagation delay and continuous setup
and hold time checking) in the Signal Properties Dialog and the global simulation options in the Options > Simulation
Preferences Dialog.

Parameter Libraries 59

Parameter Libraries

This tutorial explains how to use the library functions of WaveFormer Pro, TestBencher Pro, Ver-
iLogger Pro and Timing Diagrammer Pro. It starts up where the basic tutorial ends. If you do not
want to go through the first tutorial, a completed diagram of the first tutorial is on your disk under
the filename tutorial.btim (can be loaded directly by clicking on the tutorial icon). A completed di-
agram of the Library tutorial is also on your disk under the filename tutlib.btim if you wish to check
your diagram at the end of this tutorial.

Getting Started

First, configure your program, and load the file tutlib.btim.

1. Minimize the Report window (and Project window if applicable). They are not used in this
tutorial.

2. Select the Window > Tile Horizontally menu option. Both the Diagram and the Parameter
windows should be visible during this tutorial. If you are unable to view one of the win-
dows, use the Window > Parameter or Window > Diagram menu option to open the
missing window.

3. Select the File > Open Timing Diagram menu option and load tutlib.btim from the Synap-
tiCAD\Examples\TutorialFiles\ParameterLibraries directory.

4. Select the File > Save As menu option and save the file as mylib.btim (this will keep the
original file intact).

5. Click Open to load the file.

1) Adding Libraries to the Project’s "Library Search List"

In order for a project to use a library, it must know the library's name and path location. This infor-
mation is kept in the project's library search list.

 60 Parameter Libraries

To edit the library search list of the mylib.btim file:

1. Select the ParameterLibs > Parameter Library Preferences menu option. This opens the
Parameter Library Preferences dialog.

2. Click the Add Library to List button to open the Parameter Library Browse dialog to search
for libraries on your disk.

3. Select the two sample libraries ac.txt and 3ac.txt, located in the SynaptiCAD\Examples\Tu-
torialFiles\ParameterLibraries directory.

4. Click the OK button. This adds the selected files to your search list, and close the Parameter
Library Browse dialog.

Now in the Parameter Library Preferences dialog, both libraries should be selected in the library
search list path section. The next section also uses the Parameter Library Preferences dialog so
leave it open.

Note: the filenames for the libraries will have their path names attached unless you have unchecked
the "Use full path names" check box. Generally you will want to leave this option checked as this
allows you to use libraries in multiple directories.

Parameter Libraries 61

2) Setting Library Specifications

After adding libraries to the project's search list, you need to define the library specification. Library
specifications allow SynaptiCAD products to distinguish between similarly named parts in different
parameter libraries. Libraries 3ac.txt and ac.txt contain parameters with the same names. If you do
not assign specifications and you referenced these parameter names in your design, the values from
the first library in the list would be used.

To assign specifications:

1. Select both the 3act.txt and the
ac.txt library files.

2. Click on the right arrow button
in the Parameter Library
Preferences. This will assign
specifications to the selected
libraries.

Now the specification for ac.txt is ac
and the specification for 3ac.txt is
3ac. To eliminate the specification for
a library, select it and press the left ar-
row button.

3) Startup Library Configuration

Another useful feature of the Parameter Library Preferences dialog which we will not use in this
tutorial is the Edit Parameter Libraries and the Edit Default Libraries radio buttons. The Edit
Parameter Libraries radio button should currently be selected. This allows you to change the param-
eter library settings for the current project. If you have a set of libraries that you wish to use with all
new projects, select the Edit Default Libraries radio button and add these libraries to the Startup li-
brary search list. These libraries will not be added to the current project, but any new project will
automatically have these libraries included in their library search list.

Close the Parameter Library Preferences dialog:

1. Make sure the Edit Parameter Libraries radio button is selected.

2. Click the OK button to close the Parameter Library Preferences dialog.

4) Referencing Parameters in Libraries

Now that we have added the libraries and set the specifications, we want to reference the library pa-
rameters in our project.

1. Double click on the min value of the DSetup parameter (in the parameter window) to edit
the value. This opens the Parameter Properties dialog box.

 62 Parameter Libraries

2. Delete the value in the min edit box, then press the Library button to open the View Param-
eters in Libraries dialog.

- Notice that there are three libraries on the library list; the 3ac.txt and Ac.txt that you add-
ed, and one called Parameter Data Table. This extra library is a virtual library that lists
all the user-added parameters in the project. You can use virtual library parameters in
formulas just like regular library parameters.

3. Select the Ac.txt library from the library list. This displays the parameters in this library in
the library parts list on the right.

4. Scroll down in the library parts list to find the parameter 074;D2CK_ts. Left click to select
the parameter, and press the Insert Into Formula button.

5. Click OK to close the View Parameters in Libraries dialog.

You are still in edit mode in the formula edit box, but now it should contain the name of the param-
eter we just inserted (Note: the library specification "Ac" is added to the parameter name, separated
name by a colon, i.e. +ac:074;D2CK_ts).

Next, we will edit both the min and max value of the delay INVtp at the same time.

1. Double click on the INVtp parameter (in the Parameter window) to update the Parameter
Properties dialog display with the values for INVtp.

2. Click on the Library button to open the View Parameters in Libraries dialog.

Parameter Libraries 63

3. Select the ac.txt library and insert the parameter 004;tp into min value. (Select the parameter
and press the Insert Into Formula button).

4. Choose the OK button to close the View Parameters in Libraries dialog.

- Notice that the ac:004;tp parameter was added to the values that were already in the min
and max edit boxes.

5. Delete the original values from the min and max edit boxes, leaving only the ac:004;tp value.

6. Click the OK button to close the Parameter Properties dialog.

Repeat the above process for the min and max values of DFFtp, inserting 074;CK2Q_tp from the
ac.txt library. Try using the Search For edit box in the View Parameters in Libraries dialog, instead
of scrolling, to find a parameter name.

5) Using Macros to Examine Tradeoffs Between Different Libraries

Your diagram is now using values for the AC logic family operating at 5V. If you want to examine
the impact of changing your design to 3.3V, you need to change the library specifications of the pa-
rameters to "3ac". It can get tedious changing back and forth between different libraries when you
have to change the name of each parameter. To avoid this you can create a macro which you use in
place of the library specification in your parameter names. Then to change libraries you just need to
change the value of the macro.

To create a macro:

1. Select the ParameterLibs > Macro Substitution List menu option to open the Edit Formula
Macros dialog.

2. Enter %ac% into the name edit box.

3. Select ac from the Value drop down box. The drop down box contains all libraries that have
specifications.

 64 Parameter Libraries

4. Click OK to add the macro to your macro list.

Now edit the five min & max values of your parameters, replacing ac with %ac%. Your design
should still be using the 5V AC values. When editing the values, try using the Next and Previous
buttons in the Parameter Properties dialog to move between parameters.

To make your design reference the 3V library, change the value of the macro.

1. Select the ParameterLibs > Macro Substitution List menu option, to open the Edit Formu-
la Macros dialog.

2. Click on the macro %ac% in the list box. This places this macro into the Name/Value edit
boxes.

3. Use the Value drop down box to change the value of the macro to 3ac. Click OK to close the
dialog.

Your design should now be using the 3V AC values (the delays should be longer due to the decreased
supply voltage). You have now completed the parameter library tutorial.

Note: Macros can also be used to make short or alternative names for library parameters without
having to edit the library names.

Advanced HDL Stimulus Generation 65

Advanced HDL Stimulus Generation

This tutorial describes how to generate Verilog and VHDL stimulus files using WaveFormer Pro,
VeriLogger Pro and TestBencher Pro. This tutorial is important because it describes exactly how the
waveforms of a single timing diagram will be exported. It also covers advanced data types that are
used in VHDL generation.

TestBencher Pro customers should also work through the on-line TestBencher Tutorials, which cov-
er the sample parameters that generate the self-testing code, and modifying the template files used
to generate multi-diagram test benches.

This tutorial covers how the following objects are exported into VHDL and Verilog:

- clocks & signals

- graphical waveform states (high, low, tristate, valid, invalid, weak high, weak low)

- virtual buses with hex, binary, and other data values

- VHDL user-defined types and integer types

1) Getting Started

Get a Full Version License

If you are evaluating WaveFormer Pro, VeriLogger Pro or TestBencher Pro you need to upgrade the
evaluation version by obtaining a two week trial license. This license will turn your evaluation ver-
sion into a full version for two weeks. To obtain a two week evaluation license, complete the form
under Help > Request License, or contact our sales department.

1. Select the File > Open menu option and load file tuthdl.btim from the SynaptiCAD\Exam-
ples\TutorialFiles\AdvancedHDLStimulusGenerationdirectory.

2. Select the File > Save As menu option and save the project as test.btim (this will keep the
original file intact).

The first signal, CLK0, is a clock with a period of 50ns. The second signal, SIG0, is a waveform
that contains all of the graphical states available in WaveFormer Pro. The third signal, VirtualBus,
is a waveform drawn with valid and tristate segments.

 66 Advanced HDL Stimulus Generation

2) Default Mappings: Hex and Binary Translations

WaveFormer Pro supports a language independent bus format for hexadecimal and binary bus val-
ues.

During the translation to Verilog or VHDL, the extended state value of a segment is evaluated to
determine if it is a hexadecimal or binary number. If the extended state value begins with a 'b or 'h
then it is assumed that the number is a binary or hexadecimal number and the number will be trans-
lated to the appropriate VHDL or Verilog bus value. If the extended state value does not start with
'b or 'h then the value is written out as it was entered, without any translation.

To demonstrate the hex and binary translations, we will edit the signal VirtualBus so that it will cor-
rectly export as an 8-bit bus. We will also use the 'b and 'h values to set the segment values and com-
pare how they export in VHDL and Verilog. Later in the tutorial we will generate the Verilog and
VHDL code.

Setting the size of a virtual bus to 8 bits:

1. Double click on the VirtualBus signal name to open the Signal Properties dialog box.

2. Type 7 into the Bus MSB edit box.

3. Type 0 into the Bus LSB edit box.

4. Click OK to close the dialog box.

Setting the values in a virtual bus waveform:

1. Select the first waveform segment
of VirtualBus by clicking on it. A
selected segment has a box
around it.

2. Click on the HEX button at
the top of the window to open the
Edit Bus State dialog box. The Edit Bus State dialog box can also be opened by double-
clicking on the selected segment.

3. Type 'b11101110 into the Virtual edit box. This is an 8-bit binary number.

4. Press ALT-N (or press the Next button) two times to advance to the next valid segment.

5. Type 'hA into the Virtual edit box. This is the 8-bit hexadecimal number A (00001010 in
binary). The program automatically left pads missing bits with zeros.

6. Click the OK button to close the Edit Bus State dialog.

Advanced HDL Stimulus Generation 67

3) Generating Verilog Code

Next we will demonstrate how to generate Verilog stimulus vectors from timing diagrams.

1. Choose the Export > Export Timing Diagram As menu option to open the Export dialog.

2. In the Save as Type list box in the lower left corner of the dialog, choose the Verilog (*.v)
script. This indicates that the timing diagram will be exported to a Verilog code file with a
default file extension of ".v".

3. Choose test.v as the file name and click the Save button to close the dialog. WaveFormer Pro
will produce a Verilog file named test.v.

4. The file test.v is automatically displayed
in the Report window. If you cannot
see the Report window, select the
Window > Report Window menu option to bring the window to the top.

Look at the resulting file by clicking on the test.v tab on the bottom of the Report window. Notice
how CLK0 uses a while loop to produce its transitions and how SIG0 uses assignment statements.
Also note, values for the VirtualBus assignments have a 8’ in front which indicates that VirtualBus
is an 8-bit vector. The first segment of VirtualBus has a value of, 8’b11101110, which is the correct
Verilog syntax for an 8-bit bus with a binary value of 'b11101110. The next segment has a value of
8’bzzzzzzzz which is the value for an 8-bit tri-stated bus. Next value is 8’b00001010 which is a zero
padded translation of the hexadecimal value 'hA.

4) VHDL - Advanced Data Types

5) Exporting to VHDL

Export to a VHDL stimulus file:

1. Choose the Export > Export Timing Diagram As menu option to open the Save As dialog.

2. Choose VHDL (*.vhd) script using the Save File as Type list box in the lower left corner of
the Save As dialog.

3. Click Save to close the edit box and generate the VHDL transport stimulus file.

View the file test.vhd inside the Report window. Notice the entity and architecture structures and
the types of all the signals. CLK0 uses a while loop to calculate its value. SIG0 shows how the graph-
ical states are exported. VirtualBus is defined as an 8-bit logic vector. SIG1's values are exported
as integers. SIG2's values are exported as RED, GREEN, and BLUE.

Congratulations, you have now completed the HDL stimulus generation tutorial.

 68 Advanced HDL Stimulus Generation

Basic Verilog Simulation 69

Basic Verilog Simulation

This tutorial demonstrates the basic simulation features of VeriLogger Pro. It teaches you how to create and manage
a project and how to build, simulate, and debug your design. It also demonstrates the graphical test bench generation
features that are unique to VeriLogger Pro. This is a stand alone tutorial which you should be able to complete without
reading any of the other tutorials. However, if you plan to make extensive use of the graphical stimulus generation
features then you may also want to perform the Basic Drawing and Timing Analysis tutorial and Waveform Generation
and Bus tutorial which cover the time-saving features of the timing diagram editor.

In this tutorial, you will compile and simulate a 4-bit adder and a test bench module contained in files add4.v and
add4test.v. Figure 1 shows a schematic of the circuit. Later in the tutorial you will learn to graphically enter the stim-
ulus vectors instead of using a test bench module. Also you will get to practice using the basic debugging features of
breakpoints, single stepping, and viewing different signals in the file.

Figure 1: Schematic of the 4-bit adder simulated in this tutorial.

Part 1: Project Management and Simulation

In this section, you will create, build, and simulate a project. VeriLogger uses a project to control all aspects of simu-
lation and design including specifying the files to be simulated, controlling simulation options, and setting watches on
signals. The project also stores the hierarchical structure of the Verilog components contained in the design and dis-
plays this information on the tree control in the Project window.

1.1) Add Files to the Project

VeriLogger Pro uses a project to store information about the simulation settings and the list of files to be simulated.
First you will create a project and add the Verilog model files.

Basic Verilog Simulation 70

1. Run VeriLogger Pro and select the Project > New Project menu option to open the New Project Wizard dialog.

2. Type add4test.hpj into the Project Name edit box and press the Finish button to create a new project and
project directory.

3. Right click the User Source Files folder in the Project window to open the context menu and choose the Add
HDL File(s) to Source File Folder menu option. This opens the Add Files dialog.

4. Select the add4.v and add4test.v files located in the SynaptiCAD\Examples\TutorialFiles\VeriloggerBa-
sicVerilogSimulation directory. To select multiple files at the same time, select the first file then hold down
the <CTRL> key while using the mouse to select any additional files.

5. Press the Open button to add the files to the project. Both file names should be visible on the project tree. If
you do not see both files then repeat instructions 3 and 4 to add the missing file to the project.

VeriLogger Pro ships with a built in editor that can be used to view and edit source code. The built in editor can be
replaced with your favorite editor as described in Section 4.6: Using an External Editor of the BugHunter Pro and Ver-
iLogger Pro User's Manual.

In the Project window:

1. Double click on the add4.v file to view the source code. Scan the source code and see how the modules model
the schematic for the 4-bit adder. Close the editor window when you are finished.

2. Click the Editor menu. Notice the Save HDL File, Open HDL File, and Editor/Report Preferences menu
options. You will probably be using these options the most.

1.2) Build the Tree and Use the Editor Window

In this section we will build the project tree and use the tree to view the internal modules. When files are first added
to the project, you can see the file name but you cannot see a hierarchical view of the modules inside the files. To view
the internal modules on the project tree you must first build or run a simulation. The build command compiles the
Verilog files and builds the Verilog tree. It does not run a simulation. For large projects build lets you quickly construct
the tree without having to wait for a simulation to run. To build a project:

1. Press the yellow Build button on the simulation button bar. This will populate the Stimulus and Results
diagram and fill out the Simulated Module in the Project window.

One module, testbed, is placed in the Simulated Model folder and surrounded by brackets to indicate that it is the top-
level module (the highest-level instantiated component). All sub-modules can be viewed by descending the top-level
module's tree. When the tree is expanded it can display the signals, ports, and components contained in each module.
Expand the tree by using the + buttons:

1. Press the + button to the left of <<<testbed>>> to expand the project tree. Explore the sub nodes using the +
buttons until you open the components folder of A1.

2. Double click on the fa0 component. This will open an editor window scrolled to the instantiation of fa0 and
there is a yellow arrow to the left of the editor screen indicating the correct line. This feature lets you very
quickly view component code in a large design. Close the editor when you are done.

1.3) Simulate the Project

When we built the project in the last section, the names of the internal signals in the top-level module were automati-
cally added to the Stimulus and Results timing diagram window. This feature allows you to quickly set up a project
and start simulating and debugging without having to stop and specify a set of signals. For large projects you may want
to turn off this feature by choosing the Project > Project Settings menu and un-checking the Grab top level signals
check box. For small projects the automatic signal watches save a lot of time so we will leave it on for the tutorial.
First, let's simulate with the default signals:

Basic Verilog Simulation 71

1. Click the green Run button on the simulation button bar. This causes a simulation to start and run until the
end of the simulation time or until a breakpoint is reached. The Diagram window should contain purple wave-
forms.

2. Verify that the sum and c_out are correctly being computed as x + y + c_in.

1.4) Watch and View Internal Signals

With VeriLogger you can watch any combination of signals listed under the top-level module tree in the Simulated
Model folder. To demonstrate this we will set watches on the sum outputs for the full adders sub-modules that make
up the 4-bit adder:

1. In the Project window, expand the top-level module tree of the Simulated Model and find the fa0 component.

2. Right click on the sum port for fa0 to open a context menu and choose the Watch Connection menu option.
This adds the testbed.A1.fa0.sum signal to the Diagram window.

3. Press the green Run button to run another simulation. Verify that the testbed.A1.fa0.sum signal is the 0 bit of
the testbed.sum[3:0] signal.

Signals can be removed from the watch list by selecting the signal name in the Stimulus and Results diagram and press-
ing the delete key.

Next we will experiment with different ways to view waveforms in the Diagram window:

1. In the time line above the signals in the Diagram window, left click down and hold to show a marker that dis-
plays the value of each signal. Release the mouse button without dragging.

2. Left click and drag the marker about 50ns in the time line window. When you release the mouse button, the
window will zoom to display the time range that the mouse was dragged over.

3. Right click in the time line to zoom out on the waveforms.

4. Press the Zoom Full button on the Diagram window to return the zoom level to the entire simulation range.

1.5) Save the Project, Waveforms and Source Code

Next we will learn to save the project, waveforms, and source code. The project saves the simulation options and the
names of the files contained on the project tree. It does not save the source code or the watched signals. To save the
project:

1. Choose the Project > Save Project menu option.

The watch signals and simulation results are saved in the correct stimulus and results file. By making the watched sig-
nals separate from the project file, VeriLogger lets you set up different sets of watched signals so that you do not have
to watch your entire design each time you simulate. Also watching small sections of your design makes it easier to

Basic Verilog Simulation 72

detect bugs in a particular section and speeds up simulation execution. In the evaluation version of VeriLogger you
cannot save the waveforms, however in the full version you can save using the following menu command:

1. Select the File > Save Timing Diagram menu option to save the active timing diagram window.

2. In the Project window, right click Stimulus & Results to open the context menu. These functions allow you to
change the current Stimulus and Results diagram.

Each time you simulate, every open editor is queried to determine if the source code needs to be saved before the sim-
ulation starts. If you need to save the code before you are ready to perform a simulation, use one of the following menu
options:

1. The Editor > Save HDL File menu option to save the source code in the editor with the focus.

2. The Editor > Save All menu option to save the source code in all opened editors.

To re-open a VeriLogger Project, first open the project and then load the timing diagram files.

Part 2: Graphical Test Bench Generation

In this section you will draw and simulate a test bench using the timing diagram editor.

2.1) Remove TestBench Model and Clean Results Diagram

Now we will set up the project for this section by removing the test bench file and saving the project under a different
name.

1. Select the Project > Save Project As menu option and save the project under the name of add4wave.hpj.

2. In the Project window User Source File Folder, right click add4test.v and select the Remove Selected File
from the Folder from the context menu.

3. Delete all of the signals in the Stimulus and Results diagram by selecting the signal names and clicking the de-
lete key.

4. Verify that only one file, add4.v, is listed on the project tree, and that the Diagram window is empty.

2.2) Build the Project and Examine the Black Signals

In the previous section, all the signals were purple to indicate that they were simulated signals that were generated by
the Verilog code. In this section we have deleted the testbed module and the new top level module has input port signals
that are not being driven by any other module in the project. To verify this:

1. Verify that the Simulate > Simulate Diagram With Project menu option is checked. This option lets the sim-
ulator compile both the drawn waveforms and the Verilog source code files together.

2. Press the Extract the MUT Ports into Diagram button on the simulation button bar.

Basic Verilog Simulation 73

3. Notice that the Diagram window now has two purple signals and three black signals. The purple signals are
"simulated" signals whose values will be determined during the next simulation (once they are simulated they
will turn purple). The black signals are input signals that need to be defined before a non-trivial simulation
can take place.

4. Use the Project tree to verify that the black signals are input ports of the <FourBitAdder> module.

2.3) Use the Debug Run and Simulation Mode

VeriLogger has two simulation modes: Auto Run and Debug Run. The simulation mode is displayed on the left most
button on the simulation button bar. In the Debug Run mode, simulations are started only when the user presses the
Run or Single Step buttons (similar to a standard Verilog simulator). In Auto Run mode the simulator will automat-
ically run a simulation each time a waveform is edited in the Waveform window. This mode makes it easy to quickly
test small modules and perform bottom-up testing. While drawing the original test bench we will set the simulator to
Debug Run mode:

1. Press the simulation mode button to toggle the display to
Debug Run.

2.4) How to Draw Waveforms

If you are already familiar with SynaptiCAD's timing diagram editing environment, skip ahead to Section 2.6 where
you will draw stimulus vectors and use the Virtual State edit box to define the values for the x and y busses.

If this is your first time using a SynaptiCAD timing diagram editor then we will first draw several random waveforms
to familiarize you with the drawing environment.

1. Notice the buttons with the waveforms drawn on them. These
are the state buttons. The active button is colored red and indi-
cates the state of the next segment drawn. In this case, the
HIGH state button is probably active.

2. Move the mouse cursor to inside the drawing window at the same level as the signal name c_in, and at about
40ns.

3. Left click to draw a waveform segment from 0ns to the cursor. Notice that a HIGH signal was created.

4. A different state button is now activated. The state buttons automatically toggle between the two most recently
activated states. The small red T above the state name denotes the toggle state.

5. Move the cursor to about 80ns on the same signal and left click. Now a LOW segment is drawn from the end
of the HIGH signal to the location of the cursor.

6. Left click on the VAL button to activate the valid state button and draw another waveform segment.

7. Draw more segments, using all the states except the HEX button. We will use this button later to define the state
values for the multi-bit signals. For now, experiment with the graphical states on each of the black signals
(the purple signals are outputs of the simulation and cannot be drawn on).

Your drawing should be a mess, or at least look nothing like Figure 2 located in Section 2.6.

2.5) How to Edit Waveforms

There are four main editing techniques used to modify existing signals (Note: these techniques will not work on clocks
and simulated signals). The most commonly used technique is the dragging of signal transitions to adjust their location.
The other three techniques all act on signal segments (the waveforms between two consecutive signal transitions). The
segment waveform can be changed, deleted, or a new segment can be inserted within another segment. Use each of the
following techniques:

Basic Verilog Simulation 74

1. Move a signal transition: Left click and hold on a signal transition. A green bar will appear that follows the
mouse cursor. Release the mouse button when the green bar is at the desired location.

2. Change the state of a segment: A segment is the waveform between two consecutive signal transitions. Left
click on the segment to select it (a selected segment has a highlighted box drawn around it). Then left click
on the state button of the new state desired.

3. Delete a segment: Select a segment, then press the <delete> key.

4. Insert a segment: Inside a large segment, left click down and drag to the right, then release. A new segment
will be added in the middle of the original segment. For this operation to work, the original segment must be
wide enough to be selected.

More waveform generation techniques are covered in the Timing Diagram Editor - Chapter 1: Signals and Waveforms
on-line help.

2.6) Draw the Stimulus Waveforms

Now use the above techniques to edit the signals so they have roughly the same transitions and graphical states as the
signals in the figure below. This is not the normal way to create a timing diagram, but it will teach you how to use the
editing features of SynaptiCAD's timing diagram editor. Make sure you try all the editing techniques.

Figure 2: Stimulus vectors for the 4-bit adder circuit

Next, edit the virtual bus states of the valid segments on the x and y buses:

1. Double click on the first segment on the x signal to open the Edit Bus State dialog.

2. Verify that the default radix is hex.

3. Enter 1 into the Virtual edit box.

4. Press the ALT-N keys or Next button to move to the next segment on the signal.

5. Continue to enter values into each segment so that it matches Figure 2 and press the OK button to accept the
last value.

6. Repeat the above instructions for the y signal.

At this point, the c_in, x[3:0], and y[3:0] signals should look like Figure 2. Exact placement of edges is not required
for this tutorial.

2.7) Simulate Using the Auto Run Simulation Mode

Currently the simulator is in Debug Run mode, so simulations are started only when the Run button is pressed. Start
a simulation:

Basic Verilog Simulation 75

1. Press the yellow Compile Model and Testbench button on the simulation button bar. This will generate

the test bench and compile the MUT and test bench together.

2. Press the green Run button on the simulation button bar.

3. Verify that the sum and c_out are correctly being computed as x + y +c_in.

4. Next, drag-and-drop an edge on the x[3:0] signal. Notice that the simulated signals do NOT change values be-
cause the simulator is in Debug Run mode.

5. Press the green Run button to update the simulation values.

Next we will demonstrate the Auto Run mode which allows interactive debugging of modules. This mode is especially
useful for debugging small modules.

1. Press the simulation mode button to toggle the display to Auto Run.

2. Drag-and-drop an edge on the x[3:0] signal. Notice that the simulated signals change values as soon as you drop
the edge.

3. Experiment with dragging edges and changing the values of the virtual states. If this was a low-level module
that you just designed, you could quickly check the functionality of the module without having to design a
formal test bench.

2.8) Import and Generate Waveforms

The most difficult and tedious part of designing test benches is accurately entering the waveform data. VeriLogger
accelerates this process by accepting waveform data via four different methods: Verilog code, drawing, simulator out-
put, and equation generation. So far we have demonstrated the drawing of waveforms and the use of standard Verilog
code which are excellent choices for designing small test benches. However, for large test benches it is easier to use
automated techniques to generate your data. The equation-based generation of waveforms is covered in Chapter 11:
Waveform Equation Generation. If you purchase the “Waveform Import” option then you can also import waveform
data from Agilent and Tektronix logic analyzers, spreadsheets, and SPICE simulators.

Let us quickly demonstrate the waveform equation features using the following steps:

1. Double click on the x[3:0] signal name to open the Signal Properties dialog box.

2. Notice the drop-down edit box to the right of the Wfm Eqn button. This box is where temporal equations are
entered. The default equation contains the syntax for all the possible states. If you start by editing this equation
you will not have to look up the syntax for writing the temporal equation.

8ns=Z (5=1 5=0)*5 9=H 9=L 5=V 5=X

3. Press the Wfm Eqn button to apply the above equation to the signal.

Basic Verilog Simulation 76

4. Look at the generated waveform and compare it to the equation. Notice that the equation is a list of the form
time_duration=state_of_segment elements. To repeat parts of the list use the syntax (list)*repeat_number.

You can also automatically label waveforms by using the Label Waveform Equation functions. These are more com-
plex than the waveform equations so you will have to read Chapter 11 in the TestBencher and WaveFormer manual
to get the full benefit of these features.

1. Double click on the x[3:0] signal name to open the Signal Properties dialog box.

2. Notice the drop-down edit box to the right of the Label Eqn button. This box is where label waveform equations
are entered.

3. Enter the following equation into the drop-down edit box: Hex(Inc(0,1,16))

4. Press the Label Eqn button to label the signal for x[3:0]. This equation generates increments from 0 in steps of
1 for 16 times and outputs a hexadecimal value.

5. Notice how the labels have changed on the signal (you may need to Zoom In to clearly see all the segments).
Also notice how the simulation output changed for the valid segments but it did not change for the non-valid
segments. This is because the virtual state values are only used to define the state of the valid segments.

3) Breakpoints, Stepping and Tracing

If you would like to practice debugging, first read the Getting Started and Chapter 3: Simulation and Debug Functions
chapters in the on-line VeriLogger Help. Next, introduce a syntax error into the add4.v file and attempt to find it using
the Errors tag in the Report window. Fix the syntax error. Then introduce a semantic error in the full adder code so that
it does not handle the carry correctly. Use breakpoints and single-step debugging to locate the error.

 77

Reactive TestBench Tutorial

1) Overview

This tutorial introduces some of the optional reactive test bench feature set. This feature set is included with Test-
Bencher Pro and can be optionally be added to WaveFormer Lite, WaveFormer Pro, Datasheet Pro, and BugHunter
Pro. When running any of these products, documentation on these features can be found in the Reactive TestBench
Generation manual.

The following features will be covered in this tutorial:

- Cycle-based test bench generation

- For Loop Markers (see Section 4.3: Loop Markers)

- Point Samples (see Section 3.3: Interpreting Sample Conditions and Blocking Points) for checking model out-
put

- Sensitive Edges (see Section 1.9: Sensitive Edges)

- Bi-Directional Signals (see Section 1.1: Drawing Waveforms and Bi-Directional Signals)

All of the relevant files for this tutorial can be found in the<SYNCAD_INSTALL>\Examples\TutorialFiles\Reac-
tiveTestBench directory. At the end of this tutorial, you will have created one timing diagram that uses many different
reactive features. There are also pre-made diagrams for each completed step allowing you to start at any step of the
tutorial desired. These completed diagrams can be found in the ReactiveTestBench\CompletedDiagrams directory.

2) The Model Under Test

We will use a simplified version of a PCI slave device as the model to be tested. The model is contained in mymut.v
and the module is named mymut. No experience with PCI is required to perform and understand this tutorial. There
is no arbitration, the MUT responds to all addresses, and the only valid commands are single reads and writes. It con-
tains a memory that can be written to and read from and has the following ports (all control signals are active low):

- CLK (input): device is clocked on the negative edge

- FRAME (input): indicates start of transaction.

- WRITE (input): indicates write transaction.

- IRDY (input): stands for initiator ready. Indicates when the master device is ready for transaction to complete
(the master will be the test bench in this case).

- TRDY (output): stands for target ready. During a write, this indicates that the MUT has finished writing data
to it's memory. During a read, this indicates that the MUT has read the data from memory and put it on the
DATA bus.

- ADDR (output): Address to write to or read from.

- DATA (inout): Data to write to memory or data that is read from memory.

Each transaction consists of an address cycle and data cycle. During the address cycle, the WRITE and ADDR signals
must be valid. During a write data cycle, the DATA signal must be valid before IRDY is asserted. Then the MUT
indicates that it is finished storing the data by asserting TRDY. During a read data cycle, the MUT must drive DATA
before asserting TRDY. Then, the master asserts IRDY when it is finished reading the data. Once IRDY or TRDY is
asserted, they must remain asserted until the transaction is finished which is indicated by the de-assertion of FRAME.

 78

3) Create Signals

3.1 Extract Ports from MUT

If you're running TestBencher Pro or BugHunter Pro you can create a new project that contains the mymut.v source
file and use the Extract MUT ports into Diagram button to create all of the signals. If you're using Libero, the ports
will automatically be extracted into a new diagram when WaveFormer is launched.

3.2 Create Clock Waveform

Once the ports are extracted, convert the signal named CLK to a Clock by right-clicking on the name of the signal and
selecting Signal <-> Clock. This will draw a clock waveform with a default frequency of 10MHz.

3.3 Set Default Clocking Signal and Edge

Next we set the Clock signal and Edge for all of the signals in the diagram so that the test bench will be cycle-based
instead of time-based (this means the test bench stimulus will change after waiting on clock transitions instead of time
delays). Right-click in the signal name list in the diagram window and select Diagram Properties. Select CLK as the
default Clock to use and pos as the Edge. Then click Update Existing to set the clock for existing signals. Press OK
to close the dialog.

Following is an example of the difference between a cycle-based and time-based test bench. Both of these code seg-
ments were exported from the diagram you will be drawing in the next step. The example on the left is time-based and
the example on the right is cycle-based.

Time-based Cycle-based

#137;

FRAME_driver <= 1'b0

#3;

WRITE_driver <= 1'b0

ADDR_driver <= 8'h00

#100;

WRITE_driver <= 1'b1

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx

DATA_driver <= 8'hAA

#100;

FRAME_driver <= 1'b1

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz

#101;

repeat (2)

begin

 @(posedge CLK);

end

FRAME_driver <= 1'b0;

WRITE_driver <= 1'b0;

ADDR_driver <= 8'h00;

@(posedge CLK);

WRITE_driver <= 1'b1;

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx;

DATA_driver <= 8'hAA;

@(posedge CLK);

FRAME_driver <= 1'b1;

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz;

@(posedge CLK);

Table 2: Comparing Source for Time-Based to Cycle-Based

 79

4) Draw Single Write (without waiting on TRDY)

Draw the write transaction shown below. This transaction could be used as a simple test bench that just drives the input
ports of the MUT, but it ignores the TRDY signal and doesn't verify that the data was actually written successfully to
the MUT. We will add this functionality in the next couple of steps.

5) Add Wait for TRD Assertion

There are two ways to perform this step. One method uses the Sensitive Edge feature and will wait indefinitely for
TRDY to assert. The other method uses a Sample instead, where a timeout can be specified. Both methods are ex-
plained below. Before doing either method though, you need to draw the expected TRDY waveform shown below.

Note: TRDY's waveform is blue because it is an input to the diagram, so the data shown is predicted data, not data to
be driven. The tool automatically determined the direction of TRDY when the Extract Ports from MUT step was
performed.

5.1 Draw Expected TRDY Waveform

Note: If you want to specify a timeout for this wait, skip this step and go to 5.3.

Double-click on TRDY to open the Signal Properties dialog, enable the Falling Edge Sensitive check box, and click
OK. When this is enabled, the test bench will wait on every drawn falling edge on TRDY. This is indicated graphically
by an arrow on the falling edge. Make sure that the falling edge of TRDY is drawn after the falling edge of IRDY,
otherwise the test bench will wait for TRDY to assert before asserting IRDY.

5.2 Wait Methods

5.2.1 Wait Indefinitely Using Sensitive Edges

Note: If you want to specify a timeout for this wait, skip this step and go to 5.2.2.

 80

Double-click on TRDY to open the Signal Properties dialog (see Section 1.4: Add Signals), enable the Falling Edge
Sensitive check box, and click OK. When this is enabled, the test bench will wait on every drawn falling edge on
TRDY. This is indicated graphically by an arrow on the falling edge. Make sure that the falling edge of TRDY is
drawn after the falling edge of IRDY, otherwise the test bench will wait for TRDY to assert before asserting IRDY.

5.2.2 Wait with a Timeout Using a Sample (see Chapter 3: Samples)

Note: Skip this step if you performed step 5.2.1.

Depress the Sample button. To create a sample, left-click on the rising edge of CLK at 300ns, then right-click on
TRDY at 300ns. Double-click on the new sample's name to open the Sample Properties dialog. Change the name to
WaitForTRDY” then click on the HDL Code button to open the Code Generation Options dialog. Here is where you
can control the behavior of the Sample once it is triggered to run. Make the following changes:

- Disable the Full Expect check box.

- Specify 100 for the Multiplier.

- Enable the Blocking check box.

These three options work together to achieve the “wait with timeout” behavior we want. With Full Expect off and the
Multiplier set to 100, this Sample will wait for up to 100 clock cycles for TRDY to assert. The Blocking check box
causes the rest of the transaction to wait on the Sample to finish. Otherwise, the Sample would be run in parallel with
the stimulus. More details on these options can be found in the Reactive TestBench Generation manual. Here's what
the diagram should look like at this point:

 81

6) Draw Single Read

6.1 Draw the Waveforms

Draw a complete read transaction following the write transaction. Here is what the waveforms should look like (as-
suming you used the edge sensitive wait; the sample version will look slightly different, of course):

6.2 Disable Drive for the DATA Segment

The test bench must not drive the DATA bus during the read cycle to avoid contention as the MUT will be driving it
then. Since the DATA bus is a bi-directional signal, you can specify which parts of the waveform are driven by the
test bench and which are not. One way to do this is to draw the bus with the TRI state, but in this case we need to
specify the expected data on the bus, so the TRI state can't be used. Instead, double-click on the waveform segment of
DATA that happens during the read. Disable the Driven check box and click OK. The segment will be drawn in blue
now, indicating that the DATA signal will not be driven by the test bench during this time period (just like the entire
TRDY signal).

7) Add a Sample to Verify Data Read from MUT

Depress the Sample button, then left-click on the positive clock edge at 600ns and right-click on the DATA segment
directly below it. This will place a Sample that will trigger at that clock edge and verify that the data read from the
MUT is what we expect (indicated by the waveform drawn under the Sample). This is the default behavior of the Sam-
ple. Next, make the following changes to the Sample:

- Double-click on the Sample name and change its Name to VerifyDataRead

- Click the HDL Code button to open the Code Generation Options dialog.

- Select Display Message for the Then Action. Select Note for the severity level of this action. This will make the
Sample display a note during simulation when it succeeds.

- Click OK to close these dialogs.

 82

Here is what the diagram should look like after adding the Sample:

8) Drive Data Using a Test Vector Spreadsheet File

This step will use an input file to drive the DATA bus during the write cycle. This will increase the effectiveness of
the test bench by writing different patterns to different addresses. The basic idea is to create a user-defined array vari-
able that is initialized from a file. Here are the steps to create the variable.

- Click the View Variables button in the diagram to open the Variable List dialog.

- Click the New Variable button, then click on the name and change it to inputData. This name is important be-
cause it must match a column name in the input file that we choose.

- Under the Structure column select array.

- Set Size to 256.

- Set Data Type to 2_state then change MSB to 7.

- Enable the Initialize Structure With File checkbox near the bottom of the dialog. Browse to the inputData
directory and select inputData.txt. Hit OK.

Now that the variable is created, the next step is to refer to this array to drive and verify data. So, both of the AA states
need to be changed. For the two AA states, do the following:

- Double-click on the state to open the Edit Bus State dialog.

- Set the Virtual State to @inputData[address] and click OK. The @ symbol is used to refer to a variable defined
in the Variable List dialog.

 83

9) Create For-Loop to Perform Multiple Writes and Reads

This step sets up the diagram to perform multiple writes and reads.

Note: If you are creating a TestBencher transactor then the next step should be performed, TestBencher Pro Transactor
- Add Address Argument. Perform this step if you are unsure as it is also valid for TestBencher transactors.

- Depress the Marker button, left-click the positive clock edge at 100ns, then right-click to place the Marker.

- Place another marker at the positive clock edge at 800ns.

- Double-click the first Marker to open the Edit Time Marker dialog.

- Select For Loop in the Type drop down list.

- Set Name to AddressLoop.

- Set Index to address.

- Set End to 10.

- Click OK to close the dialog.

- Double-click the second Marker to open the Edit Time Marker dia-
log.

- Change Type to Loop End and click OK.

The two markers should now be connected graphically as shown below.

10) TestBencher Pro Transactor - Add Address Argument

This step is optional and should only be performed if you are creating a TestBencher transactor. In this case, the for-
loop can be omitted from the diagram and an argument can be set up for the address (i.e. the address can be passed in
via the diagram apply call). It's not invalid to create a for-loop as performed in the previous step, but avoiding the for-
loop gives the transactor greater flexibility.

Note: The primary purpose of this tutorial is to demonstrate various features available to all Reactive Test-
Bench users. So, there are several steps that may not make as much sense for TestBencher users. For instance,
two transactors could have been created instead of one: one for the write cycle and one for the read cycle.
Also, the data could have been passed in as an argument to the diagram apply call (a function call that causes
the transactor to perform a transaction with a given set of transaction arguments).

 84

To add an address argument, do the following for the two address states (which currently are set to 00):

- Double-click on the state to open the Edit Bus State dialog.

- Enter $$address for the state value and click OK.

Here's what the final transactor should look like:

Now when an apply call in inserted for this transactor in the sequencer process, you will be able to specify which
address to use.

11) Alternatives

11.1 Consecutive Writes followed by Consecutive Reads

If you want to perform multiple writes concurrently, followed by multiple concurrent reads, then two for-loops are
needed. The array of data can be referenced in each loop in the same manner already demonstrated.

11.2 Random Data

In Verilog, you could $random() as the state value for DATA during the write transaction. A user-defined function
can also be embedded into the generated test bench using the Class Methods dialog which could be used to generate
data values. In both of these cases, you would need to modify the state value under the VerifyDataRead sample since
the inputData array is no longer used. A Sample must be placed on the driven DATA segment to capture the expected
data. For example, you could create a Sample named ExpectedData that is triggered from the clock edge at 300ns.
Then the state under the VerifyDataRead Sample would be set to ExpectedData instead of @inputData[address].

TestBencher Pro: Basic Tutorial 85

TestBencher Pro: Basic Tutorial

In less then 30 minutes you will create a reusable test bench that can apply different stimulus and verify the results of
a clocked SRAM. Below is a schematic of the different components that you will construct. First you will create the
Project file that controls the generation of the interface model (test bench). Next you will draw the different transaction
diagrams that are needed to communicate with the SRAM. And then you will edit the sequencer process to apply the
transactions to the model under test. Finally you will simulate the design and verify the operation of the SRAM model.

Preparation

Before we begin there are few things to setup and understand:

1. This tutorial requires a full version license or an evaluation license. If you are evaluating then you can obtain a
license by completing the form under Help > Request License menu item and contacting our sales depart-
ment. To check that you have a good license, verify that you can save a timing diagram.

2. This tutorial assumes that you are familiar with the SynaptiCAD timing diagram editing environment. If you
would like more information on the drawing environment then work through the short Help > Tutorial > Ba-
sic Drawing and Timing Analysis tutorial.

3. This tutorial can be use to generate VHDL, Verilog, TestBuilder, OpenVera and e code. Sometimes a file name
will be written as filename.<language extension>. This means that the file extension will be different depend-
ing on the language used: Verilog *.v, VHDL *.vhd, TestBuilder *.cpp, OpenVera *.vr, and e code *.e.

1) Create a Project

TestBencher Pro uses a project file to represent and to control the generation of a bus-functional model (BFM) com-
ponent. The information in the project file is displayed in the Project window and context sensitive menus provide a
list of actions that can be performed for the elements in the project tree. In this section the project will be created, the
Model Under Test (MUT) file will be added to the project, and the template diagram will be constructed.

1.1 Use the New Project Wizard to Create a Project

Projects are created using New Project Wizard dialog. This dialog helps setup the project directory, the generated lan-
guage, and the clocking signal for the project.

To create a new project:

1. Select the Project > New Project menu option to launch the New Project Wizard dialog.

2. Enter sramtest in the Project Name edit box. The actual project directory will be a subdirectory below the dis-
played path in the Project Directory edit box. This subdirectory will have the same name as the project.

TestBencher Pro: Basic Tutorial 86

Unix users: Make sure that you have read/write access to the directory specified in the Project Directory edit
box.

3. From the Project Language dropdown, select the code generation language.

4. Check the Transaction-based Test Bench Generation checkbox.

5. Click the Next button to move to the second page of the New Project Wizard.

6. Note that the name of the New Template is sramtest (the name of the project). TestBencher will use this file to
generate the top-level module of the test bench. The Original Template, named tbench, is copied into the New
Template file.

7. Type CLK into the Default Clock dropdown, and choose neg from the Edge dropdown box. Selecting a default
clock causes the test bench to be cycle-based; if no clock is specified, the test bench will be event-based.

8. Check the Create Default Clock Generator box. This will cause TestBencher to create a slave timing diagram
called Clk_generator.btim that will drive the CLK signal.

9. Click the Finish button to close the New Project Wizard, create the project, and populate the Project window.

1.2 Add the MUT to the Project

Next we will add the clocked SRAM model file to the project. TestBencher uses the model under test files to extract
the signal and port information for use in the transaction diagrams. TestBencher also uses the MUT file information
to instantiate it in the component model (template file).

Note for Remote Simulators: If your simulator or HVL tools are running on a different computer then TestBencher
Pro, then the external simulator integration feature requires that all files used for the project be in the project directory,
or a subdirectory thereof. If you are working a remote simulator, copy the appropriate MUT file (clksram.v or clk-
sram.vhd) from the SynaptiCAD > Examples > TestBencherBasicTutorial directory into the project directory prior
to adding the MUT to the project.

To add the MUT to the project:

1. Right-click the User Source Files folder in the Project window and select the Add File(s) to User Source File
Folder... from the context menu option. This will open the Add Files... dialog.

2. Select the file to use as the MUT from the SynaptiCAD > Examples > TutorialFiles > TestBencherBasicT-
utorial directory (or from the project directory if your simulator is on a remote machine):

Verilog model file is clksram.v.

VHDL model file is clksram.vhd.

3. Click the Open button to close the dialog and add the file to the User Source Files folder in the Project window.

1.3 Extract Port Information from the MUT into the Template Diagram

When TestBencher created the project it also generated a template diagram. New transaction diagrams that are created
for this project will contain the same signals, waveforms, parameters, and properties as the template diagram. Currently
the CLK signal is the only signal in this diagram and we are going to add the port signals for the clocked SRAM.

To extract the ports from the SRAM into the template diagram:

1. In the Project window, under the Template Diagram folder, double click on sramtest_templateDiagram.btim
to open the template diagram window.

2. Click the Extract Ports from MUT button. This will build the MUT and insert the signals for the MUT

ports into the template diagram.

TestBencher Pro: Basic Tutorial 87

3. Notice that <clksram> is now present in the Project
window under the Simulated Model folder. The sin-
gle angle brackets indicate that clksram is the Model
Under Test. Expanding this tree will display signal,
port, and component information of the MUT.

Note: If <clksram> was not generated as the MUT, then
change the simulation preferences by choosing the Options >
Diagram Simulation Preferences menu. Check the Auto-create test bench and tree check box. Press the Extract
Ports from MUT button to rebuild the MUT.

1.4 Modify the Template Diagram

The transaction diagrams use an End Diagram Marker to indicate the exact time that the transaction ends. So we will
add an end diagram marker to the template diagram, so all new transactions will get the marker.

To add an end diagram marker:

1. Click on the Marker button on the diagram button bar.

2. Click on the fourth falling edge of the CLK signal (at 350 ns) to select it. Then right-click to draw a marker that
is attached to the edge.

3. Double-click on the marker to open the Edit Time Marker dialog.

4. Select a Marker Type of End Diagram from the drop down list box.
This end diagram marker will force the transaction to end at the
fourth falling edge of the CLK signal.

5. Select Type from the Display Label list box. This will cause the marker to display its type rather then its name.

6. Click OK to close the Edit Time Marker dialog.

7. Use the File > Save All Files menu option to save the project and the template diagram.

The template diagram should look like the following:

Figure 2: Completed Template Diagram

2) Create the Write Cycle Transaction Diagram

TestBencher Pro uses timing diagrams that represent reusable bus transactions to generate the test bench. This tutorial
will use two timing diagrams, tbread.btim and tbwrite.btim, to represent the read and write cycles used in testing the
memory module. First, the write cycle diagram will be created. Then this diagram will be used as a basis for creating
the read cycle diagram. Variables will be used in the diagrams so that values can be passed into the address and data
buses.

2.1 Draw the Timing Diagram for the Write Cycle

This section explains how to create the timing diagram that represents the write cycle transaction.

TestBencher Pro: Basic Tutorial 88

1. In the Project window, right click the Transaction Diagrams folder and select Create a new Master Transac-
tor from the context menu. This will cause the Save As dialog to open.

2. Name the file tbwrite and press the Save button. This will copy the template diagram to the new file, list the
file in the Transaction Diagram folder, and open the new diagram.

3. Draw the following waveforms (the state values will be added in the next section):

Figure 3: Completed Write Cycle Diagram

Note: If you have trouble drawing the waveforms, then refer to the Basic Drawing and Timing Analysis tutorial.

2.2 Add Parameterized State Values for Write Cycle

The next step is to add state variables to the timing diagram so that values for the address and data buses may be passed
into the test bench transaction. Parameterized state values, called state variables, are passed into the transaction call
in the top-level template file, and are used to provide state or comparison values during transaction execution. The
write cycle diagram will have a state variable for the value on the address bus, and a state variable for the value on the
data bus. When the top-level template file is modified, values will be passed into the state variables.

To add the address and data state variables to the diagram:

1. Double click on the valid segment in the center of ABUS to open the Edit Bus State dialog.

2. Type $$addr into the Virtual edit box. The
"$$" in front of the variable name indicates
that this is a state variable. If the "$$" is
missing, TestBencher Pro will assume that
this is the value of the address rather than a
variable that will accept a value at a later
time.

3. Click on the valid segment in the center of
DBUS to move the focus of the Edit Bus
State dialog to the new segment.

4. Type $$data in the Virtual edit box.

5. Click OK to close the Edit Bus State dialog. The two edited segments will display the state variables.

6. Click the diskette icon on the main toolbar to save the timing diagram.

3) Create the Read Cycle Transaction Diagram

The read cycle will initiate a read with the clocked SRAM and monitor the data bus to verify the result of the read. For
the read cycle, the data bus will be an input signal (not driven like the write cycle), and the $$data variable will be used
for comparison with the actual value driven by the SRAM.

TestBencher Pro: Basic Tutorial 89

3.1 Create Read Cycle Diagram and Add it to the Project

Since the signals for the read diagram are so similar to the write diagram, a modified copy of tbwrite.btim can be used
to create the read diagram.

Create the read cycle timing diagram and add it to the project:

1. In the tbwrite diagram window, right-click in the Label window and select the Save As... menu option to open
the Save As dialog.

2. Name the file tbread, and press the Save button. This will create a new file, but you still will need to add the
file to the project.

3. Right-click in tbread's Label window, and select Add Master Diagram to Project from the context menu. This
will add tbread to the Transaction Diagrams folder in the Project window.

3.2 Edit the Waveforms for Read Cycle

The WRB and DBUS signals need to be changed for the Read cycle. The write control signal, WRB, should stay high
(inactive) for the duration of the read. And during the read the DBUS signal will be driven by the SRAM, so the data
segment of the signal needs to be set to input. Also since our SRAM is clocked the data comes out on the clock cycle
after the chip select signal, CSB, goes active.

To edit the waveforms:

1. Make the WRB signal high for the entire read cycle. Select the center segment and press the delete key to re-
move the low signal segment.

2. Shift the start of the DBUS data segment to 200ns. Hold down the <2> key (the number 2 key) on the keyboard,
while dragging the starting transition to 200ns. The <2> key causes transitions to the right of the selected edge
to move with the dragged edge.

3. Set the DBUS data segment to be a blue input segment. Double click on the data segment to open the Edit Bus
State dialog, uncheck Driven (Export to source code) checkbox.

Figure 4: Completed Read Cycle Diagram

3.3 Add a Sample to Verify Data

Next a Sample will be added to the timing diagram. Samples compare the actual state value of an input signal to the
expected state value, and conditionally react to the results of the comparison.

To add a Sample:

1. Click on the Sample button on the button bar.

2. Click on the third falling edge (250ns) of CLK to select the edge.

3. Right-click near the end of the blue valid segment on DBUS. This adds a Sample parameter named SAMPLE0
that lines up with the third neg edge of the CLK signal. Refer the image in the previous section.

TestBencher Pro: Basic Tutorial 90

The default behavior of the sample compares the run time value with the drawn value ($$data) and throws an Error if
they are different. This is the behavior that we need for the tutorial. The next few steps show you the HDL code gen-
eration dialog and how to control the generated code. You do not need to make any changes to the dialog defaults.

1. Double-click on the sample name SAMPLE0 in the drawing window to open the Sample Properties dialog.

2. Press the HDL Code button in the dialog to open the Code Generation Options dialog.

3. In the If Condition dropdown, select Sample state matches. This means that during simulation,
the test bench will compare the actual value on the data bus with the value passed into the timing diagram
($$data).

4. In the Then Action dropdown, select Do nothing. If the value on the data bus matches the value of $$data, then
the circuit is working properly and no action should be taken.

5. In the Else Action dropdown, select
Display Message. This means that
if the values don't match, a message
will be displayed during the simu-
lation.

6. Below the Else Action dropdown,
choose the Error radio button.
These radio buttons allow a severi-
ty level to be defined for the mes-
sage that is displayed.

7. Click OK to close the Code Genera-
tion Options dialog.

8. Click OK to close the Sample Prop-
erties dialog.

9. Save the timing diagram by selecting
File > Save Timing Diagram from
the main TestBencher menu.

4) Create the Initialize Transac-
tion Diagram

When drawing the waveforms for a transac-
tion diagram it is important to remember that
transactions do not automatically include an
event at time zero and that only the drawn
events are driven. This is a feature that al-
lows transactions to be reused any time dur-
ing simulation without implying any
initialization information. In our example
the clocked SRAM control signals, CSB and
WRB, need to be initialized before the read
and write cycles are applied to the model. We will draw a simple initialization diagram that will drive the control sig-
nals to high (inactive).

4.1 Draw the Initialization Waveforms

Create the Initialization diagram by first copying the template diagram, removing the extra signals, and drawing the
waveforms.

1. In the Project window, right click the Transaction Diagrams folder and select the Create a new Master Trans-
actor from the context menu. This will cause the Save As dialog to open.

TestBencher Pro: Basic Tutorial 91

2. Name the file tbinitialize and press the Save button. This will save the diagram, add it to the Transaction Di-
agram folder, and open the new diagram.

3. Remove the ABUS and DBUS signals, because the tri-state bus signals do not need to be initialized. Select the
ABUS and DBUS signals by clicking on them, and then press the <delete> key to delete the selected signals.

4. Draw the following waveforms:

Figure 5: Completed Initialization Diagram

4.2 Move the End Diagram Marker for Initialization Diagram

The initialization timing diagram will only need one clock cycle to initialize the control signals. Therefore, the End
Diagram marker can be moved to the 1st negative clock edge.

To move the End Diagram marker:

1. Double-click on the marker to open the Edit Time Marker dialog.

2. Select Attach to Edge from the radio buttons.

3. Click OK to close the Edit Time Marker dialog. This will put TestBencher into a special select mode.

4. Click on the first negative clock edge (at 50ns) to attach the marker to that edge.

5. Click the diskette icon on the main toolbar to save the timing diagram.

5) Modify the Sequencer Process

Inside the primary template file for the project is a Sequencer Process. The Sequencer Process is the place in the top-
level test bench that defines the order in which the timing transactions are applied to the model under test.

The Insert Diagram Subroutine Calls dialog generates diagram apply calls so you do not need to memorize the func-
tion syntax. Each timing diagram generates three task calls: Apply, Apply-nowait, and Abort. Apply runs the transac-
tion in a blocking mode, and Apply-nowait runs the transaction concurrently with other transactions. The Master/Slave
Diagram Setting determines how many times a transaction executes. Master Transactors, like the Read, Write, and Ini-
tialize diagrams run once and stop. Slave Transactors like the Global Clock Generator run in a looping mode until an
Abort call is received.

In addition to these task calls, you can also place HDL code in the sequencer. One example where this would be useful
is if you wish to place conditions on whether or not a timing transaction is called, or on the parameter values that you
wish to have applied.

An alternative method to placing transaction calls in the sequencer process is to create a file external to the bus-func-
tional model with transaction calls and during simulation read the transaction calls from a file (see Section 9.4: Trans-
action Manager and Test Reader in the online TestBencher Manual).

5.1 Adding Apply Calls to the Sequencer Process

Use the Insert Diagram Subroutine Calls dialog to add apply statements to the Sequencer. We will first start the clock,
initialize the control signals, write to the SRAM, the read from the SRAM twice, and then abort the clock.

TestBencher Pro: Basic Tutorial 92

To edit the sequencer process:

1. In the Project window, double click on the Component Model folder to open an editor window with the
sramtest template file.

2. Scroll down in the sramtest editor window near the end of the file until you find the comment block that
has this line:

Transaction Sequencer - After this comment, define how to apply transactions to

 the model under test using:

3. Click in the sramtest editor window below this comment so that the blinking cursor is in the place where the
apply statement should be added.

4. Right-click in the editor window and select Insert Diagram Calls to open the Insert Diagram Subroutine Call
dialog.

5. Arrange the windows so you can see the editor and the dialog at the same time.

Use the Insert Diagram Subroutine Calls dialog to add the apply calls. When you select a slave diagram, the dialog
will automatically default to Apply-nowait, because most of the time slave diagrams will run concurrently with other
diagrams. When you select a master diagram, the dialog will automatically default to Apply, because most of the time
master diagrams run in a blocking mode:

1. Double click on the CLK_generator entry in the Insert Diagram Subroutine Calls dialog. This adds an apply
call to the editor window.

2. Double click on the tbinitialize entry.

3. Double click on the tbwrite entry.

4. Double click on the tbread entry TWO times to insert the code to add two read calls.

5. Select CLK_generator entry, choose Abort radio button, and then press the Insert button to insert the code.
This will add the abort call to stop the clock generator.

6. The apply call should look similar to the following code block. Different languages may have extra parameters.

//***

// Transaction Sequencer - After this comment, define how to

// apply transactions to the model under test using:

TestBencher Pro: Basic Tutorial 93

//

// - Transaction calls (Insert Diagram Calls in right-click menu)

// - Source code in Verilog

//**

Apply_CLK_generator_looping_nowait;

Apply_tbinitialize;

// Apply_tbwrite(addr, data);

Apply_tbwrite(addr, data);

// Apply_tbread(addr, data);

Apply_tbread(addr, data);

// Apply_tbread(addr, data);

Apply_tbread(addr, data);

Abort_CLK_generator;

5.2 Providing Values for Variables in Timing Transactions

The tbwrite and tbread transactions have parameterized state values. These values are passed to the transaction in the
Apply statements.

To set the values of the state variables in the transaction apply calls:

1. Edit the write and read Apply code lines and replace the state variable names with actual variables that will be
passed into the timing diagrams. The comment lines are there to document the parameter variable names.
Note: The code to be entered is bold.

For Verilog type:

Apply_tbwrite('hF0 , 'hAE);

Apply_tbread('hF0 , 'hAE);

Apply_tbread('hF0 , 'hEE);

For VHDL type:

Apply_tbwrite(tb_Control, tb_InstancePath, x"F0" , x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0" , x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0" , x"EE");

For OpenVera type:

tb_tbwrite.ExecuteOnce('hF0 , 'hAE);

tb_tbread.ExecuteOnce('hF0 , 'hAE);

tb_tbread.ExecuteOnce('hF0 , 'hEE);

2. Save the top-level template file by right-clicking in the editor window and selecting Save.

Notice that the tbwrite apply statement writes the hex value AE to memory cell F0. The tbread diagram calls will then
read the value from the same memory cell. The data values provided in the tbread diagram calls will be used to com-
pare with the actual value. The first call to tbread will expect to find a value of hex AE in the address F0. The second
call to tbread will expect to find the hex value EE instead. This will cause the sample to report an error during the
second execution of tbread.

TestBencher Pro: Basic Tutorial 94

6) Generate Test Bench and Simulate

At this point all the timing diagrams have been created and you have edited the Sequencer process. Next we will gen-
erate the test bench and simulate the entire design.

6.1 Setup the Simulator

TestBencher can control external simulators and compilers or use its built-in Verilog to compile and simulate the de-
sign. If you are using the built-in simulator, skip ahead to next section. Section 10.3: External Program Integration in
the online manual has a complete list of instructions for working with remote simulators and for setting up a compiler
for TestBuilder.

To configure a third-party simulator:

1. Choose the Options > Simulator and Compiler Settings menu option. This will open the Simulator and Com-
piler Settings dialog.

2. From the Simulator and Compiler tools dropdown select the appropriate simulator.

3. Enter the directory that contains the simulator executable in the Simulator Path edit box.

4. Click OK to close the Simulator and Compiler Settings dialog.

Select the third-party simulator:

1. Select the Project > Project Settings menu option. This will open the Project Settings dialog.

2. Select the tab for the language you are working with.

3. Select the desired simulator from the Simulator Type dropdown.

4. Click OK to close the Project Settings dialog.

6.2 Generate the Test Bench and Simulate

Once the simulator is setup you are ready to generate the test bench and simulate the design.

To generate the test bench:

1. Click on the Make TB button on the main TestBencher toolbar. This will expand the macros in the tem-
plate file and pop up a dialog that says "Finished generating test bench. Please check waveperl.log for er-
rors." Close this dialog by clicking the OK button.

2. In the Report window, check the waveperl.log tab to see if TestBencher encountered any errors during the test
bench generation. If it did, fix the error and regenerate the test bench. (If you can not see the Report window,
choose the Window > Report menu to bring it to the front.)

To simulate the design:

1. Click the yellow Compile Model and Test Bench button. This builds (parses) the project using the tools

specified in the Project Settings and Simulator and Compiler Settings dialogs.

In the bottom right corner, a yellow Simulation Built status message indicates the build was successful and
that you are ready to simulate.

If the status indicates an error, the Report window Errors tab displays the compile errors. If there are errors
then fix them, regenerate the test bench, and recompile.

2. Click the green run button on the simulation button bar. This will simulate the design and display the results

in the StimulusAndResults diagram and the Report window simulation.log tab.

In the bottom right corner, a Simulation Good status message indicates that the simulation has reached a successful
end.

TestBencher Pro: Basic Tutorial 95

6.3 Examine Report Window Results

The Report window simulation.log tab displays the default log file for the simulator. TestBencher automatically
writes a message to the log file each time a transaction starts and stops. The clocked SRAM contains code to display
a message each time it performs a read or write. We also added a sample parameter to the Read Cycle, and set it to
generate an error message when the data from the SRAM does not match the expected value.

Examine the log file:

1. In the Report window, open the simulation.log tab and display the following results:

Running...

TB> Note: In "sramtest_CLK_generator" at 0.000ns: Executing LOOPING

TB> Note: In "sramtest_tbinitialize" at 0.000ns: Executing ONCE

TB> Note: In "sramtest_tbinitialize" at 50.000ns: Execution DONE

TB> Note: In "sramtest_tbwrite" at 50.000ns: Executing ONCE

In clksram at 150.000ns: Writing ae to address f0

TB> Note: In "sramtest_tbwrite" at 350.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 350.000ns: Executing ONCE

In clksram at 450.000ns: Reading ae to address f0

TB> Note: In "sramtest_tbread" at 650.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 650.000ns: Executing ONCE

In clksram at 750.000ns: Reading ae to address f0

TB> Error: In "sramtest_tbread" at 850.000ns: Sample SAMPLE0_process sampled

 signal: DBUS expected: ee ; detected: ae

TB> Note: In "sramtest_tbread" at 950.000ns: Execution DONE

TB> Note: In "sramtest_CLK_generator" at 950.000ns: Execution DONE

0 Errors, 0 Warnings

Compile time = 0.01000, Load time = 0.02000, Execution time = 0.05000

Normal exit

2. Notice that the clock generator starts at time zero and continues until the end of the simulation when the abort
call is issued.

3. The initialization diagram also starts executing at time zero and blocks the next transaction until it is complete.

4. The write diagram starts next and writes a value to the SRAM. The SRAM acknowledges that is writing the
value to the specified address.

5. The first read diagram executes successfully.

6. The second read diagram throws a warning because the expected value did not match the value from the MUT.
We purposely passed in a bad expected data value so we could see how the sample throws the error.

7. Next the abort call to the clock stops the clock transaction and ends the simulation.

6.4 Examine the Stimulus and Results Diagram

After simulation the Stimulus and Results diagram will contain all of the top level signals of the project, the driver
signals, and status and trigger signals for each transaction.

TestBencher Pro: Basic Tutorial 96

1. Hide some of the signals in the Stimulus and Results diagram by selecting the signal names and choosing View
> Hide Selected Signals until the diagram looks like this:

2. A status signal of <1> indicates the transaction is running. You can see that the initialization diagram runs fol-
lowed by the write cycle and two read cycles.

3. During the write cycle, the data AE is written to address F0. When comparing the simulated write cycle to the
drawn transaction, remember that this is a negative clock edge diagram.

4. The read cycles read back the data from the memory.

	Table of Contents
	Introduction
	General Design Tutorials
	Specialized Feature Tutorials

	Basic Drawing And Timing Analysis
	1) Set the Base Time Unit
	2) Set the Display Time Unit
	3) Add the Clock
	4) Add Signals
	5) Drawing Signal Waveforms
	6) Edit Signal Waveforms
	7) Adjust Diagram to Match Figure
	8) Moving and Reordering Signals
	9) The Right Mouse Button
	10) Add the D Flip-Flop Propagation Delay
	11) Add the Inverter Propagation Delay
	12) Add the Setup for the Dinput to Clock
	13) Add a Free Parameter
	14) Using Formulas and Constants
	15) Summary

	Interactive HDL Simulation Tutorial
	1) Interactive HDL Simulation
	2) Generate Waveforms From Boolean Equations
	3) Boolean Equations with Delays
	4) Register and Latch Signals
	5) Set and Clear Lines
	6) Multi-bit Equations
	7) Experiment with Behavioral HDL Code
	8) Summary

	Waveform Generation And Bus Tutorial
	1) Generate Waveforms from Temporal Equations
	2) Bus Overview
	2.1) Creating Virtual Buses
	2.2) Creating Group Buses
	2.3) Creating Simulated Buses
	3) Summary

	Display and Documentation Tutorial
	1) Controlling the Parameter Display String
	1.1 Parameter Custom Strings

	2) Repeating Parameters
	3) Editing Waveform Edges From an Equation
	4) Drag and Drop Parameter End Points
	5) Adjusting the Vertical Placement of a Parameter
	6) Clock Jitter and Display
	7) Markers
	8) Edit Text Blocks
	9) Summary

	Advanced Modeling and Simulation
	Circuit Operation
	1) Set up a New Timing Diagram
	2) Generate the Clock, Draw Waveforms, and Use Waveform Equations
	2.1 Automatically generate the CLK0 system clock
	2.2 Graphically draw the POWER and START signal
	2.3 Use Temporal and Label Equations to model ADDR (A/D converter's output data)

	3) Modeling State Machines
	4) Checking for Simulation Errors
	5) Incremental Simulation
	6) Modeling Combinatorial Logic
	7) Entering Direct HDL Code for Simulated Signals
	8) Modeling n-bit Gates
	9) Incorporating Pre-Written HDL Models into Waveformer Simulations
	9.1 Including an external SRAM Verilog model file into WaveFormer
	9.2 Instantiating the SRAM component models

	10) Modeling the Incrementor and Latch Circuit
	11) Modeling Tri-State Gates
	12) Debugging External Verilog Models
	13) Verify the Histogram Circuit
	14) Controlling the Length of the Simulation
	15) Editing Verilog Source Files
	16) Simulating Your Model with Traditional Verilog Simulators
	17) Summary

	Parameter Libraries
	Getting Started
	1) Adding Libraries to the Project’s "Library Search List"
	2) Setting Library Specifications
	3) Startup Library Configuration
	4) Referencing Parameters in Libraries
	5) Using Macros to Examine Tradeoffs Between Different Libraries

	Advanced HDL Stimulus Generation
	1) Getting Started
	2) Default Mappings: Hex and Binary Translations
	3) Generating Verilog Code
	4) VHDL - Advanced Data Types
	5) Exporting to VHDL

	Basic Verilog Simulation
	Part 1: Project Management and Simulation
	1.1) Add Files to the Project
	1.2) Build the Tree and Use the Editor Window
	1.3) Simulate the Project
	1.4) Watch and View Internal Signals
	1.5) Save the Project, Waveforms and Source Code
	Part 2: Graphical Test Bench Generation
	2.1) Remove TestBench Model and Clean Results Diagram
	2.2) Build the Project and Examine the Black Signals
	2.3) Use the Debug Run and Simulation Mode
	2.4) How to Draw Waveforms
	2.5) How to Edit Waveforms
	2.6) Draw the Stimulus Waveforms
	2.7) Simulate Using the Auto Run Simulation Mode
	2.8) Import and Generate Waveforms
	3) Breakpoints, Stepping and Tracing

	Reactive TestBench Tutorial
	1) Overview
	2) The Model Under Test
	3) Create Signals
	3.1 Extract Ports from MUT
	3.2 Create Clock Waveform
	3.3 Set Default Clocking Signal and Edge

	4) Draw Single Write (without waiting on TRDY)
	5) Add Wait for TRD Assertion
	5.1 Draw Expected TRDY Waveform
	5.2 Wait Methods
	5.2.1 Wait Indefinitely Using Sensitive Edges
	5.2.2 Wait with a Timeout Using a Sample (see Chapter 3: Samples)

	6) Draw Single Read
	6.1 Draw the Waveforms
	6.2 Disable Drive for the DATA Segment

	7) Add a Sample to Verify Data Read from MUT
	8) Drive Data Using a Test Vector Spreadsheet File
	9) Create For-Loop to Perform Multiple Writes and Reads
	10) TestBencher Pro Transactor - Add Address Argument
	11) Alternatives
	11.1 Consecutive Writes followed by Consecutive Reads
	11.2 Random Data

	TestBencher Pro: Basic Tutorial
	Preparation
	1) Create a Project
	1.1 Use the New Project Wizard to Create a Project
	1.2 Add the MUT to the Project
	1.3 Extract Port Information from the MUT into the Template Diagram
	1.4 Modify the Template Diagram

	2) Create the Write Cycle Transaction Diagram
	2.1 Draw the Timing Diagram for the Write Cycle
	2.2 Add Parameterized State Values for Write Cycle

	3) Create the Read Cycle Transaction Diagram
	3.1 Create Read Cycle Diagram and Add it to the Project
	3.2 Edit the Waveforms for Read Cycle
	3.3 Add a Sample to Verify Data

	4) Create the Initialize Transaction Diagram
	4.1 Draw the Initialization Waveforms
	4.2 Move the End Diagram Marker for Initialization Diagram

	5) Modify the Sequencer Process
	5.1 Adding Apply Calls to the Sequencer Process
	5.2 Providing Values for Variables in Timing Transactions

	6) Generate Test Bench and Simulate
	6.1 Setup the Simulator
	6.2 Generate the Test Bench and Simulate
	6.3 Examine Report Window Results
	6.4 Examine the Stimulus and Results Diagram

