
TestBencher Pro

User’s Manual

www.syncad.com

TestBencher Pro Manual
(rev 10.0) copyright 1994-2005 SynaptiCAD

Trademarks

- Timing Diagrammer Pro, WaveFormer Pro, TestBencher Pro, VeriLogger Pro, DataSheet Pro, BugHunter
Pro, Reactive TestBench Generation Option and SynaptiCAD are trademarks of SynaptiCAD Inc.

- VERA, OpenVera, VCS, and VCSi are trademarks of Sysnopsys, Inc.
- NC Verilog, NC VHDL, and Verilog-XL are trademarks of Cadence Design Systems, Inc.
- Pod-A-Lyzer is a trademark of Boulder Creek Engineering.
- PeakVHDL and PeakFPGA are trademarks of Accolade Design Automation Inc.
- V-System and ModelSim are trademarks of Model Technology Incorporated.
- Viewlogic, Workview, and Viewsim are registered trademarks of Viewlogic Inc.
- HP and Agilent are trademarks of Hewlett Packard.
- Tektronix copyright Tektronix, Inc.
- PI-2005 and PI-Pat are trademarks of Pulse Instruments.
- Timing Designer and Chronology are registered trademarks of Chronology Corp.
- DesignWorks is a trademark of Capilano Computing.
- Mentor and QuickSim II are registered trademarks of Mentor Graphics Inc.
- OrCAD is a registered trademark of OrCAD.
- PSpice is a registered trademark of MicroSim.
- Windows, Windows NT, and Windows 95/98/2000 are registered trademarks of Microsoft.

All other brand and product names are the trademarks of their respective holders.

Information in this documentation is subject to change without notice and does not represent a commitment on the part
of SynaptiCAD. Not all functions listed in manual apply to Timing Diagrammer Pro, WaveFormer Pro, DataSheet Pro,
or VeriLogger Pro. The software and associated documentation is provided under a license agreement and is the prop-
erty of SynaptiCAD. Copying the software in violation of Federal Copyright Law is a criminal offense. Violators will
be prosecuted to the full extent of the law.

No part of this document may be reproduced or transmitted in any manner or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the written permission of SynaptiCAD.

For latest product information and updates contact SynaptiCAD at:

web site: http://www.syncad.com

email: sales@syncad.com

phone: (540)953-3390

3

Table of Contents

Table of Contents ..3

Introduction ...7

Chapter 1: TestBencher Pro Design Flow...9
Step 1: Create a New Project ... 9

Step 2: Add the MUT to the Project .. 10

Step 3: Extract Port Information ... 11

Step 4: Create a Timing Transaction ... 11

Step 5: Define Sequencer Process ... 12

Step 6: Generate the Test Bench ... 13

Step 7: Setting Up Simulators ... 14

Step 8: Simulate Test Bench ... 15

Chapter 2: Projects and Component Generation ..17
2.1 Creating, Opening and Saving Projects ... 17

2.2 The Project Window ... 18

2.3 Sub-Projects .. 19

2.4 Component Instances of Sub-Projects ... 20

2.5 Component and Component Instance Generation Properties ... 21

2.6 Signals and Ports for Components .. 23

2.7 Golden Reference Models ... 24

2.8 Libraries and Use Clauses (VHDL only) .. 25

Chapter 3: Transaction Overview ...27
3.1 Template Diagram and New Transactions .. 27

3.2 Extracting MUT Ports into a Timing Diagram .. 28

3.3 Transaction Level Variables ... 29

3.4 Diagram-Level Class Methods .. 30

3.5 Transaction Architecture ... 30

3.6 Diagram Properties ... 33

3.7 Diagram Settings Dialog - Overview .. 34

3.8 Diagram Settings Dialog - General Tab .. 36

3.9 Diagram Settings Dialog - Language Specific Tabs ... 38

Chapter 4: Transaction Waveforms and Signals ...41
4.1 Drawing Transactions for TestBencher ... 41

4.2 Drawing Waveforms and Bi-Directional Signals .. 42

4.3 Driving Waveform States with Variables ... 42

4.4 Driving Conditional State Values ... 43

4.5 Adding Signals .. 44

4.6 Temporal Expressions for TestBencher .. 45

4.7 Controlling the Triggering Order of Parameters ... 45

4.8 Sensitive Edges ... 46

4

Chapter 5: Transaction Delays, Setups, and Holds......................................49
5.1 Adding and Editing Parameters ... 49

5.2 Delays .. 50

5.3 Resolving Multiple Delays .. 51

5.4 Setups and Holds ... 52

5.5 Creating Continuous Setups and Holds ... 52

Chapter 6: Transaction Samples ...55
6.1 Adding a New Sample ... 55

6.2 Sample Condition and Actions .. 56

6.3 Interpreting Sample Conditions and Blocking Points ... 58

6.4 Samples Triggering a Delayed Transition or Another Sample .. 59

6.5 Using Sample Variables .. 60

6.6 Storing Sample Values in User Defined Variables ... 61

Chapter 7: Transaction Markers...63
7.1 Adding a Marker to a Diagram ... 63

7.2 End Diagram Markers ... 64

7.3 Pause Simulation Marker (Verilog Only) ... 64

7.4 Wait Until Marker ... 65

7.5 Loop Markers .. 65

7.6 HDL Code Markers ... 66

7.7 Semaphore Markers ... 67

7.8 Pipeline Boundary Markers ... 67

7.9 Documentation and Time Break Markers ... 68

Chapter 8: Classes and Variables ...69
8.1 Class Libraries ... 69

8.2 Classes .. 71

8.3 Variables .. 72

8.4 Variable and Class Field Properties .. 73

8.5: Language Independent Types .. 74

8.6 Data Packing ... 76

8.7 Class Methods ... 77

8.8 Constrained Random Number Generation .. 79

8.9 File Input and Ouput Variables ... 81

8.10 Importing Fields from a Template File ... 82

8.11 Semaphores ... 82

Chapter 9: Project Component and Transaction Sequencer85
9.1 Transaction Calls .. 85

9.2 Writing Code in the Template File ... 86

9.3 Transaction Manager and Test Reader .. 87

9.4 Transaction Generator ... 89

9.5 Transaction Monitor .. 91

9.6 Changing a Project’s Template File ... 91

5

Chapter 10: Generation and Simulation ..93
10.1 Generate the Bus Functional Model .. 93

10.2 Simulator and Compiler Settings Dialog .. 93

10.3 Project Simulation Properties Dialog .. 94

10.4 Simulating the Bus Functional Model .. 97

10.5 Generating Command Files for Third Party Simulators .. 99

10.6 TestBencher Simulation Modes .. 99

Chapter 11: Test Bench Techniques..101
11.1 Master and Slave Transactions .. 101

11.2 Waiting for Signal Transitions .. 101

11.3 Burst Mode Transactions .. 102

11.4 Conditionally Moving Signal Edges (Sweep Tests) .. 103

11.5 Reading and Writing Serial Data .. 104

11.6 Testing a Counter Model ... 105

11.7 External Model Support .. 106

Chapter 12: Language Specific Details ..107
12.1 Verilog ... 107

12.2 VHDL .. 108

12.3 TestBuilder .. 112

Appendix A: Editor Commands ..117

Appendix B: Supported Simulators...121

Appendix C: Language Independent Operators ..123

Appendix D: License Agreement ...133

TestBencher Pro: Basic Tutorial ...135
1) Create a Project ... 135

2) Create the Write Cycle Transaction Diagram ... 137

3) Create the Read Cycle Transaction Diagram .. 138

4) Create the Initialize Transaction Diagram .. 140

5) Modify the Sequencer Process .. 141

6) Generate Test Bench and Simulate ... 144

Index ...147

6

Introduction 7

Introduction

TestBencher Pro provides designers with a graphical environment for rapidly generating system level test benches
composed of cycle-based or time-based bus functional models. TestBencher Pro's graphical interface speeds up test
bench development for both expert and novice users. TestBencher generates all of the low-level transaction code, ver-
ification code, sequence detection, error reporting and file I/O code. The graphical representation also enhances the
ability of engineers to share data across projects, even though new engineers might not be familiar with the details of
the test bench design.

Learning to use TestBencher

The quickest way to learn how to use TestBencher Pro is to work through the tutorials and to read through Chapter 1:
TestBencher Pro Design Flow. Advanced features such as constrained random number generation, loops in test bench-
es, generating code from samples, and controlling execution using markers can be found in the later chapters. Some
resources to use when learning TestBencher are:

 - On-line Help: Both the TestBencher and the Timing Diagram Editor manuals are available and cross-reference
each other.

- On-line Tutorials: TestBencher ships with several tutorials that demonstrate how to create different types of
bus-functional models. There are also several timing diagram editor tutorials.

- Test Bench Examples: Several test bench examples ranging from simple test benches to PCI and ARM bus ex-
amples are located in the \Examples subdirectory of the installation directory.

- Context Help: Many of the dialogs that you will use contain a context help feature that will allow you to learn
more about the specific controls within the dialog. The dialogs with this feature have a small button with a

question mark in the upper right hand corner of the dialog (next to the close window button). To use con-

text help, click the question mark, and then click the item in the dialog about which you would like to see help.

- Test Bench Techniques: Chapter 11 of the manual catalogs techniques for generating models with different
types of functionality.

Additional information regarding the architecture and design flow of TestBencher Pro is available at the SynaptiCAD
website (www.syncad.com).

 8 Introduction

Chapter 1: TestBencher Pro Design Flow 9

Chapter 1: TestBencher Pro Design Flow

This chapter will cover the basic design flow for generating a bus-functional model using TestBencher Pro. First you
will create a new project file and add information about the model under test (MUT) files. Next you will create the
timing diagrams that generate the reusable timing transactions. Then you will edit the top-level model and define the
sequence for applying the transactions to the MUT. Finally you will simulate the test bench.

Step 1: Create a New Project

Projects represent bus functional models (BFM) in TestBencher. They hold all the information needed to generate the
entire BFM including the transaction diagrams, top-level file, and the code generation settings. Projects can be includ-
ed hierarchically in other projects. This allows TestBencher to support multiple BFM component instantiation. Once
a project has been completed, the entire bus functional model that it represents, or project component, can be instanti-
ated in another project. Chapter 2: Projects and Component Generation has detailed information about creating
projects, but essentially when you create a new project you set the name, language, and clocking options for the new
BFM.

To create a project:

- Select the Project > New Project menu option. This will open the New Project Wizard dialog.

- The Project Name will be both the name of the project and the directory where the project is stored.

- The Language drop down list defines the generated language for the model. Certain features, such as valid signal
types, are dependent on the generated language so this option affects the operation of TestBencher. If you are
using Verilog and want to enable constrained random number generation, check the Enable TestBuilder In-
tegration checkbox.

- Check the Transaction-based Test Bench Generation to make TestBencher generate bus-functional models
instead of single diagram test benches.

 10 Chapter 1: TestBencher Pro Design Flow

- Click the Next button to move to the next dialog.

- If your project is clocked, then type in the name of the clocking signal.

- Click the Default Diagram Settings button to edit the default dia-
gram settings for new diagrams. By default, the Include Delay
Time setting is not enabled for your design. See Section 3.9: Di-
agram Settings Dialog - Language Specific Settings for infor-
mation about how this setting is used.

- Click the Finish button to close the New Project Wizard and create
the new project.

Notice that TestBencher automatically opens the Project
window (see Section 2.2: The Project Window) and popu-
lates it with the top-level template file (see Chapter 9:
Project Component Sequencer Files) and template dia-
gram (see Section 3.1: Template Diagram and New Trans-
actions). The template diagram is the starting point for any
new transactions that you add to the project. The Project
window will be your main resource for navigating through
the different parts of the bus functional model.

Step 2: Add the MUT to the Project

The Model Under Test, MUT, files of the design should be
added to the project. TestBencher will use these files to ex-
tract the signal and port information for use in the transac-
tion diagrams and will use the file information to build
make files for your simulator.

To add a source file to the project:

- Right-click in the User Source Files folder
in the Project window to open the con-
text menu, and select the Add Files to
User Source File Folder menu option

- OR, choose the Project >Add Files menu option

Chapter 1: TestBencher Pro Design Flow 11

- Both of these functions open a file dialog. Select the files that
you would like to add to the project and click the Open but-
ton to close the dialog. All files necessary to compile and
simulate the MUT should be added to the project because
TestBencher parses the entire design.

Notice that the file names are listed in the User Source Files folder
in the Project window. The source code can be viewed by double-
clicking on the file name.

Step 3: Extract Port Information

The next step is to build the MUT and extract the port information
from it. TestBencher will parse the MUT and display the hierarchy
of the design in the Project window. Also, the top-level ports or signals if there are no ports, will be inserted into cur-
rent timing diagram.

To parse the source files and build the MUT:

- Double-click the diagram template file to
open the timing diagram.

- Click the Extract Ports From MUT but-

ton on the Simulation Button Bar.
This will cause the source files to be
parsed and the components to be built.

- Notice that the signal and port information
has been added to the template diagram.

Click the Save button or choose the
File > Save Timing Diagram menu
item to save the template diagram.

- Notice that the Simulated Model folder in
the Project window displays design hi-
erarchy.

Chapter 3: Transaction Overview has more information about creating internal signals for the diagrams and manually
editing the signal type, direction, and size.

Step 4: Create a Timing Transaction

A timing transaction is a timing diagram that represents a reusable interface specification of the bus-functional model
that you are creating (e.g., read cycle, write cycle, interrupt cycle). Timing diagrams are created using the built-in tim-
ing diagram editor. The tutorials and Chapters 3-7 describe how to draw the timing diagrams and control the generated
code.

New timing diagrams that are created while this project is active will have the same properties and signals as the Tem-
plate Diagram. This diagram is located in the Template Diagram folder in the Project window. Any signals that will
be in all your timing diagrams (such as a global clock signal, or the ports for the MUT) should be in this diagram.

 12 Chapter 1: TestBencher Pro Design Flow

To draw a timing transaction:

- In the Project window, right-click on the Transaction Diagrams folder and choose either Create a new Master
Transactor or Create a new Slave Transactor from the context menu. This opens a file dialog to create and
save the diagram. After closing the dialog, a new diagram is created using the same properties and signals as
the Template Diagram that you modified in Step 3: Extract Port Information. Slave diagrams run in a looping
mode until they receive an abort call, and Master diagrams run once and stop.

- Create a timing diagram by sketching the waveforms using the Timing Diagram Editor. Optional components
such as samples, markers, delays, variables, and class methods will be discussed in more detail later in this
manual and are demonstrated in the tutorials. The optional components needed are determined by the needs
of the test bench.

- Select the File > Save Timing Diagram menu option to save the timing diagram and generate the HDL code.
Each time you save a timing diagram new code is generated for it.

- By default a timing diagram will generate Master Transaction code that will run once and then stop. To generate
Slave Transaction code that will loop continuously you just need to change the diagram setting to slave: right
click on the timing diagram name in Project window and choose Diagram Settings (see Section 3.7: Dia-
gram Settings Dialog Overview) and then check the Slave Transactor radio button.

To view the generated HDL source code:

- Click the Source Code button to open an editor and view the code. Because the source code is gener-
ated for each timing diagram, it should not be edited. It is, however, useful to see how the low level
code changes based on the constructs that are placed in the diagram.

At this point you can either design additional transactions, or you can continue with the next few steps and design the
top-level test bench. By working with the top-level test bench early in the design you will be able to test individual
transactions before constructing the entire bus-functional model.

Step 5: Define Sequencer Process

The top-level template file represents the Component Model. The Component Model controls the execution sequence
and monitors the status of each timing transaction in the project. It is also where the model under test is instantiated
and connected to the test bench model.

Inside the top-level file is a Sequencer Process that controls the order and logic in which the timing transactions are
applied to the model under test. Inside the sequencer process is the place that you will write the system level code to
apply the transactions. In addition to the sequencer process, TestBencher can also generate an advanced Transaction
Manager that can read transactions from files, randomly generate transactions, or accept transactions posted by the
components in the project. Section 9.6: Changing a Project Template File describes the sequencer process, transaction
manager, and the template file in detail.

Use the Insert Diagram Call dialog to add timing diagram apply statements to the Component Model’s Sequencer Pro-
cess:

- Double-click on the Component Model folder in the Project window to open the template file.

Chapter 1: TestBencher Pro Design Flow 13

- Scroll down in the template file until you find the Sequencer Process. A comment block in the code will help to
locate this process. The comment will contain the following text:

//***

// Transaction Sequencer – After this comment, define how to

// apply transactions to the model under test using:

- Click in the Editor window just below this comment. Then right-click and select the Insert Diagram Calls...
menu option from the context menu. This will open the Insert Diagram Calls dialog with a list of statements
that represent each of the timing transactions that have been added to the project.

- Select a timing diagram name. The Run Mode radio buttons will default to Apply for Master transactions to run
them in a blocking mode. For Slaves the default is Apply-nowait to run the transaction concurrently with
subsequent apply calls.

- Choose a Run Mode radio button and press the Insert button.

- Notice that the Apply statement was inserted at the same line as your cursor. The Insert Diagram Call dialog is
a modeless dialog it can remain open while you perform other actions. Inserting additional Apply statements
causes those statements to be added on successive lines.

- If any of the applied transactions contain variables, then edit the Apply call to provide values for variable names.
In the example Apply statement below, a value of hex 55 is assigned to addr.

// Apply_tbwrite(addr, data, delay0_min_bits)

Apply_tbwrite(’h55, ’hee, $realtobits(delay0));

Chapter 12: Language Specific Details has more information about language specific features of editing parameter
variables.

Step 6: Generate the Test Bench

Once the Sequencer Process has been edited, the test bench is ready for generation. This step will expand a series of
macros in the template file. Any code that is between the begin and end statements of a macro will be destroyed and
re-generated. Any code outside of the macros, such the body of the Sequencer Process will be preserved. Chapter 10:
Generation and Simulation describes the generation process.

To generate the test bench:

- Click the Generate Test Bench button on the simulation button bar. This expands the macros in the tem-
plate file.

 14 Chapter 1: TestBencher Pro Design Flow

- Check for generation errors by looking at the waveperl.log file in the Report window. If there are no errors then
you are ready to simulate the BFM.

During the Generate Test Bench process several files are generated and they depend on the generation language (see
Chapter 12: Language Specific Details for more information). All of the generated files are displayed in the Project
window.

Step 7: Setting Up Simulators

TestBencher Pro needs to know where your VHDL/Verilog simulator or C++ compiler is located. If you are using Ver-
iLogger Pro you can skip this section because the simulator was setup during installation.

The Simulator/Compiler Settings dialog contains the path settings for external tools. These settings are saved in the
syncad.ini file each time the program is closed. To specify the path for each simulator or compiler that you will use:

- Choose the Options > Simulator / Compiler Settings menu option to open a dialog of that name.

- In the Tools drop-down choose your simulator or compiler.

- In the Simulator Path edit box either type in the path name or use the browse button to search for the path.

- Continue to setup the paths for each tool that you are interested in using. When you are done click OK button to
close the dialog.

Chapter 1: TestBencher Pro Design Flow 15

Each of the main simulation languages has a default tool and program settings that are stored in the Project file. When
you create a new project, the project language will determine which tools are used. Specify which tool to use and its’
default settings:

- Choose Project > Project Simulation Properties menu option to open the Project Simulation Properties dialog.

- Choose the Settings Template radio button to indicate that you will be editing the default project settings for all
future projects. These settings are saved in the INI file.

- Click on the language tab for the external tool that you are setting up.

- From the Simulator Type drop-down, choose the external tool.

- Choose the Diagram Settings radio button and edit the simulator that is used to simulate individual transactions
(simulated signals in a Diagram window). By default this is setup to use an internal Verilog simulator, but if
you are simulating in a different language set the simulator to your external simulator.

- Press the OK button to close the dialog.

Step 8: Simulate Test Bench

TestBencher Pro ships with a basic version of BugHunter Pro a graphical debugger that can control external simula-
tions. For comprehensive instructions on BugHunter read the BugHunter manual.

Start a simulation:

- Click the Compile the Active Project button on the simulation button bar.

- In the Report window, check compile error in the simulation results file tabs. If there are no errors then continue.

- Either click the green Run button on the simulation button bar or press the <F5> key.

View Simulation Results:

- When the simulation is complete the waveform results will be placed in the Diagram window. The simulation
output will be displayed in the Report window.

 16 Chapter 1: TestBencher Pro Design Flow

Chapter 2: Projects and Component Generation 17

Chapter 2: Projects and Component Generation

TestBencher Pro uses a project file to represent and to control the generation of a bus-functional model (BFM) com-
ponent. The information in the project file is displayed in the Project window. Context sensitive menus provide a list
of actions that can be performed for the elements in the project tree.

Multiple test bench components can be made by including a
project inside of another project, and then instantiating the sub-
project. This allows complex test benches to be developed and
verified in an incremental manner. This method also supports
multiple port testing.

TestBencher can also generate a C++, VHDL or Verilog Golden
Reference model that runs in parallel with the VHDL or Verilog
Model Under Test. During simulation transactions are sent to both
the MUT and the reference model. The results from the two mod-
els are then compared.

2.1 Creating, Opening and Saving Projects

Projects are created, opened, saved, and closed using the Project
menu options.

- Select the Project menu option and choose one of the
project submenus: New Project, Open Project, Save Project, or Close Project.

- The New Project menu option opens the New Project Wizard dialog that steps through the process of creating
a new project.

The New Project Wizard pane one:

- Project Name will be the
name of project and the
subdirectory that the
project will be stored
in.

- Project Directory con-
tains the path for the
base directory of the
project.

- Project Location displays
the complete path to
the project file.

- Project Language con-
trols the test bench
generation language.
The available language
selection is based on your TestBencher License file.

- Enable TestBuilder Integration enables C++ code generation for Verilog projects. This adds many advanced
language features, such as constrained random number generation.

- Transaction-based Test Bench Generation check box enables the generation of the multi-transaction based
bus-functional model generation. If you uncheck this TestBencher will generate single diagram test benches.

 18 Chapter 2: Projects and Component Generation

Click the Next button to view pane two of the New Project Wizard:

-The Template edit boxes specify the original and new (copied) template file names. The new template file will
serve as the top-level source file for the test bench. This file is where the Component Model is generated. A
default original template file name is provided, but you can create your own template files. (Chapter 9:
Project Component and Transaction Sequencer has information on editing and changing the template file).

- The Default Clock drop-
down edit box speci-
fies the default clock to
use when creating new
constructs.

- Edge specifies the default
clocking edge to use
when creating new
constructs.

- Create Default Clock
Generator will create
a transaction diagram
with an output clock
for clocked projects.
This is useful for top-
level projects. Sub-projects usually receive their clocks from the parent projects.

- The Default Diagram Settings button opens the TestBencher Diagram Settings dialog which is used to set up
the default diagram settings, such as verbose code generation. This dialog is discussed in Section 3.7 Diagram
Settings Dialog - Overview.

2.2 The Project Window

The Project window displays all of the
different elements of the bus-functional
model and the user source code (MUT).
This includes all of the available trans-
action diagrams and sub-projects that
can be used in the top-level Component
Model. It also displays the project level
variables and classes.

The basic controls of the Project win-
dow are as follows:

- Right click on any node in the
Project tree to open a context
sensitive pop-up menu that
contains all of the operations
that can be done to that partic-
ular node type.

- Double left click on any node to
perform the default action for
that node (usually open that
file or object in an appropriate
editor).

- To expand or hide branches of a

tree, click or .

Chapter 2: Projects and Component Generation 19

- Drag and drop the column headings to resize columns.

Several folders are created in each project and are used to organize files and objects at the different levels of the test
bench. Each of these folders will be discussed at different points in the manual. As an overview:

- Simulated Model folder contains the compiled Model Under Test and the Stimulus & Results diagram. See
Chapter 10: Generation and Simulation for more information.

- Component Model is the top-level template file for the test bench. The folder contains all of the project-level
classes, variables, class methods, and instances of sub-projects. See Chapter 9: Project Component and
Transaction Sequencer for more information.

- Transaction Diagrams folder contains the template timing diagram and the timing diagrams that have been add-
ed to the project, and their associated source code files (in the level beneath the timing diagram). See Chapter
3: Transaction Overview for more information.

- Test Vector Files folder contains input and output test vector files. See Chapter 8: Classes and Variables for
more information.

- Project Library folder holds any sub-projects that may be instantiated within the current project. Section 2.3:
Sub-Projects discusses this folder.

- User Source Files folder contains source files for use in the test bench. Files with a green checkmark icon have
been compiled into the test bench; files with a red X icon have not yet been compiled. Section 3.2: Extracting
MUT Ports into a Timing Diagram has more information.

2.3 Sub-Projects

TestBencher Pro supports hierarchical BFM design by allowing projects to be instantiated inside other projects. This
lets you develop and verify complex test benches in an incremental manor. For example, if you are designing a test
bench for an ATM switch, you can develop a project that can transmit an ATM cell to an interface port on the ATM
switch. After you have tested your transmitter project, you can make it a sub-project and instantiate a copy of it for
each different port of the ATM switch.

To use a sub-project you first add the sub-project to the Project Library folder in the Project window and then edit
the default signal mappings that will be used when the sub-component is instantiated. Section 2.4 covers the sub-
project instantiation and port mapping.

Add a sub-project to the Project Library folder:

- Right Click on the Project Library folder and
choose the Add Sub-Projects menu option. This
opens a file dialog that lets you browse for
projects. After you close the dialog, a sub-project
with a red chip icon is added to the folder.

- Note the sub-project can be modified while the own-
ing project is open, by expanding the sub-project
tree. The sub-project will remain an independent
project that can be opened and edited alone, as
well.

Once you add the sub-project, you will need to setup the signals to be exported and the default mapping names for the
component. To edit the default signal mappings

- Right-click on the sub-component (red chip icon) and choose Signals and Ports from the context menu. This
opens the Component Model Signals and Ports dialog.

- Create ports for the sub-project by selecting signals in the Component Signals (Internal) section and clicking the
Make Internal/Add to Port List button. This will move the signals up to the Component Ports (exported
signals) section. Signals can also be dragged from one list to the other.

 20 Chapter 2: Projects and Component Generation

- Double-click on cells in the Default Port Mapping column and either type in a name or select a mapping signal
name. Since the sub-project is not the real component you can type in partial names. For example if you plan
to connect each instantiation of the sub-project up to a different port of the MUT with port names like
signame0 and signame1, a good partial port name would be signame. That way, after you instantiate the com-
ponents you will only have to add the port numbers to the signal names.

2.4 Component Instances of Sub-Projects

Projects listed in the Project Library folder can be instantiated and used by the containing project. When a sub-project
is instantiated, TestBencher will generate a component instantiation in the top-level template within the $TBSubCom-
ponentInstantiation macro and make all of the transaction diagrams of the sub-project available to the owning project.
The owning project can call the transactions of each instance of a sub-project. This is discussed in Section 9.1: Trans-
action Calls.

Create a Component Instance of the sub-project:

- Right-click on the sub-project node and select Create Component Instance from the context menu option. This
will open the Create Component Instance dialog.

- Notice that by default the name of the selected Owning Project is the immediate parent project of the sub-project
to be instantiated. The owning project can be changed using the drop-down list box. The Instance of drop
down allows you to change the sub-project that will be instantiated.

- Enter the Instance Name to use in the instantiation of the Project Component.

Chapter 2: Projects and Component Generation 21

- Click OK to close the dialog and add the component instance (green chip icon) to Component Model folder.

After the component instance is created, the port mappings should be edited in order to hook up the model to the signals
in the owning project, unless the default port mapping are correct. To edit the port mapping for a component instance:

- In the Component Model folder, double-click on the name of the component instance to open the Component
Instance Signals and Ports dialog.

- The top part of the dialog displays the ports of the sub-component. The Port Mapping column are the signal
names that will be mapped to the sub-components outputs.

- To change the port mapping, double-click on a cell in the Port Mapping column and either type in a name or
choose a signal name from the drop-down list. The signals in the list are the signals in the current project or
the ports of the MUT.

- Click OK to apply the port mapping and close the dialog.

For more information about the Component Signals and Ports dialog, see Section 2.6: Signals and Ports for Compo-
nents.

The Component Instance will be added to the Project window under the Component Model of the owning project. A
green chip icon is used in the project tree to represent a Component Instance. If the Project Component that is instan-
tiated by the Component Instance has ports, then the port mapping will appear beside the Component Instance.

2.5 Component and Component Instance Generation Properties

The top-level component of the project and each instance of a sub-project has its own set of properties that determine
the way the code is generated for the component. These properties are edited through the Project Generation Proper-
ties dialog. This dialog also gives you access to the variables, parameters, and signal mappings of the Component. To
open the Project Generation Properties dialog:

- Right-click on either the Component Model folder or on a component instance and choose Project Generation
Properties or Component Instance Generation Properties from the drop-down list box to open the Project
Generation Properties dialog.

The controls in this dialog change depending on if you are editing a Component Instance or the actual Component
Model. For a Component Instance the following properties can be set:

- The Instance Name box indicates which component instance is being edited and allows you can change the
name of the component instance.

- Checking the Edit All Instances check box indicates that changes in the properties will affect all instances of a
project. If you are editing from the Component Model folder of either the containing project or in a sub-
projects Component Model folder you will be editing all of the instances.

- The Signals and Ports button opens a dialog that lets you edit how the component instance is hooked up to the
containing project.

 22 Chapter 2: Projects and Component Generation

- The Class Methods button opens a dialog that lets you edit the project level class methods (transaction level
class methods must be edited from the transaction). See Section 8.7: Class Methods for more information.

The top-level project and each sub-project definition contain defaults for the component generation properties used
during code generation. The properties for this component can be edited by finding the Component Model folder and
then opening the Project Generation Properties dialog. For sub-projects, the Component Model folder is located un-
der the Project Library folder tree. When you are editing the properties at the component level you are editing all
instances of that component. The following properties can be edited at the Component Model level:

- Enable Reference Model enables the generation of a golden reference model in C++, VHDL or Verilog. This
feature is covered in Section 2.7: Golden Reference Models.

- Enable Transaction Manager enables the generation of the transaction manager code. This feature is covered
in Section 9.3: Transaction Manager and Test Reader.

- Language and Enable TestBuilder control the generation language for this component. If the language for the
project is changed, then the project template file must also be changed. Section 9.6: Changing a Project Tem-
plate File discusses changing the project template file.

Chapter 2: Projects and Component Generation 23

- The Generate Test Top checkbox is currently not in use.

- Add Timestamp to Each File is useful when the generated code is versioned. Disabling this will prevent the
generated file from being different just because the time is different.

- Verbose Transaction Logging turns on extra reporting features for the Component Model and its transactions.
This is useful for debugging and testing your components.

- The Source Indent Size specifies the number of spaces that are used for indenting blocks of code.

- Transaction Recording enables SDI transaction recording calls. These record every transaction that is run dur-
ing simulation along with applied parameters. This is written to a database that can then be imported into Ca-
dence's SignalScan. The simulation can then be viewed as a set of transactions.

- The Prefix Generated Files With edit box allows a line of text to be output at the beginning of each generated
file. This is useful for noting author information or for adding keywords for version systems.

- The Signals and Ports button opens a dialog used to specify which signals will be available to external projects.
It also allows you to define internal signals that are not contained in any transaction diagram.

- The Classes and Variables button opens a dialog that is used to edit the classes and variables that are included
in that project. See Chapter 8: Classes and Variables for more information.

- The Class Methods button opens a dialog that lets you edit the project level class methods (transaction level
class methods must be edited from the transaction). See Section 8.7: Class Methods for more information.

2.6 Signals and Ports for Components

The Signals and Ports dialog is used to view and edit the ports and internal signals of Component Models and defini-
tions as well as the port mappings of Component Instances. TestBencher automatically creates certain signal and port
information based on the Model Under Test and diagram ports. Internal signals are also created automatically based
on the specified port mappings for component instances.

To open the Signals and Ports dialog:

- Right click the item to be edited (a Component Model, Component Definition or a Component Instance) and
select Signals and Ports from the context menu. This will open the Signals and Ports dialog.

Note: This dialog is modal, which means that selecting any Component or Component Instance in the Project
window will update the information displayed in the dialog for the selected item.

Editing signals and ports with the dialog:

- The signals and ports that have gray cells are automatically generated for the MUT and diagram ports, as well
as from port mappings that have been defined from child projects.

- For Component Definitions, internal signals can have their direction edited, and ports can have either the
direction, default port mapping, or the initial value edited.

 24 Chapter 2: Projects and Component Generation

- Component Instance internal signals can not be edited, and ports can have only the specific Port Mapping
for the instance modified.

- New component level signals can be added when editing signals and ports for the Component Model (the com-
ponent definition) by clicking the New Signal button. These signals can be made ports by changing the Di-
rection of the signal from internal to input or output, or by dragging and dropping the signal from the bottom
grid tree to the top. Note that when editing a Component Instance the signal and port definitions can not be
changed.

- Port Mappings can be specified by double clicking a cell in the Default Port Mapping or Port Mapping col-
umn. When working with a Component Definition, the Default Port Mapping specified provides a default
that will be used for the instances of the component being edited. If a Component Instance is being edited
then the actual Port Mapping for that instance is being specified.

- If the signal that the port should connect to is not yet defined in the owning component, just type the name
of the new signal into the Port Mapping column. TestBencher will automatically create a new signal in
the owning component for this connection.

- A bit slice can be specified for each Port Mapping. TestBencher allows a bit slice to be specified as part
of the port mapping, so that the connecting signal may be larger than the port. If the specified bit slice
for the port mapping is outside of the connecting signal’s bit range in the owning component, TestBench-
er will automatically combine the two bit slices in the connecting signal. Each time the test bench is gen-
erated the bit ranges of component signals will be verified. This means that if a bit range is extended, but
then no longer needed it will be reduced to its original size. The only case in which this will not happen
is if the signal was explicitly added in the Signals and Ports dialog by the user. In this case, TestBencher
may need to extend the bit range, but will never reduce it. The Component Instance Signals and Ports
image above shows an example of a bit slice specification for port AD.

- The Initial Value column provided for ports when editing a Component Definition allows an initialization for
the port to be provided. The string entered in this field is placed directly into the generated source code with-
out formatting.This value can not be edited at the Component Instance level. The images above show an ex-
ample of specifying an initial value for port AD.

The Component Model has both exported signals and internal signals. By default, all signals that are generated by Test-
Bencher are internal, but the Component Signals and Ports dialog allows these signals to be exported by simply chang-
ing the direction of the signal.

2.7 Golden Reference Models

TestBencher can generate C++, VHDL and Verilog golden reference models that run in parallel with a VHDL or Ver-
ilog RTL model. Golden reference models are high-level descriptions of a design and are used to compare to the results
of an RTL-level model during simulation. Reference models usually model interaction between components at the
transaction level (e.g. read transaction/write transaction) instead of at the signal level. When the reference model is

Chapter 2: Projects and Component Generation 25

created the apply calls will call both the diagram transactions and the equvalent reference model transaction. At the
end of each transaction the outputs for the MUT and the reference model are compared and logged to the simulation
log file.

TestBencher generates all of the stub-functions for the golden reference model, keeping the transaction interface to the
reference model the same as the HDL level model. TestBencher uses the TestBuilder library to generate the C++ mod-
els. The user writes the behavioral C++, VHDL or Verilog code inside the stub-functions that enables the golden ref-
erence model to emulate the RTL-level model. To enable Reference Model Generation:

- In the Project window, right click on the Component Model folder and choose Project Generation Properties
from the context menu. This opens the Project Generation Properties dialog.

- Check the Enable Reference Model checkbox and click OK to close the dialog.

- During the next code generation TestBencher will generate either a C++ or Verilog reference module depending
on the generation language. Section 10.1:Generate the Bus Functional Model describes how to generate the
project code.

- The reference model file is written to the Project directory and is named projectName_skeleton with the appro-
priate extension for the language (.cpp, .vhd, or .v). For C++ there is also a header file named
projectName_emulator.h that contains the cless declaration for the reference model.

- Copy the projectName_skeleton.cpp, .vhd or .v to a file named projectName_emulator.cpp, .vhd or .v.

- Inside projectName_emulator file uncomment any functions that you want to model, and insert behavioral code
into the functions.

- Section 10.2: Simulator and Compiler Settings Dialog describes how to setup the C++ compiler so the Test-
Bencher can compile the model and hand it off to the HDL simulator.

- During the simulation the reference model will automatically compare the results of the MUT to the results of
the reference model and send the results to the simulation log file.

2.8 Libraries and Use Clauses (VHDL only)

The VHDL Libraries and Use Clauses to Include dialog allows you to control the libraries and use clauses used by the
VHDL diagrams in your project and by the top-level template file of the project.

To open the VHDL Libraries and Use Clauses dialog:

- Select Options > VHDL Libraries and Use Clauses... from the main menu.

OR

 26 Chapter 2: Projects and Component Generation

- Right-click on the project and choose
VHDL Libraries and Use Clauses...
from the context menu.

Changes made in this dialog will be applied to the
current project, and stored in the .hpj file. If no
project is open then the current settings will be
applied to any new projects that are created, and
saved in the TestBencher configuration.

The View dropdown allows you to change be-
tween selecting the VHDL libraries and the use
clauses to include in your diagram.

To edit or add a new use clause or library in-
clude:

- Select Use Clauses or VHDL Libraries
from the View dropdown.

- Double-click on an entry or on the first
empty line in the list window and type in the use clause or library name. If the use or library tag is omitted
from the statement, TestBencher will automatically add the tag to the statement before including it in the
source code. Semicolons are also added as needed.

- All three of the following use clauses will work:

use myLib1.all;

myLib2.all;

myLib3.all

- All three of the following VHDL Library statements will work:

library myLib1;

myLib2;

myLib3

To delete a use clause or library include:

- Click on a clause or library in the list window to select the entry.

- Click the Delete Item button.

The OK button saves the current settings and closes the dialog. The Cancel button closes the dialog without saving
the new settings. The Save Defaults button allows the current settings to be applied to any new projects that are started.
If no project is open then this button will not be present, as settings will automatically be saved as defaults.

Exporting a diagram to VHDL

Whenever VHDL code is generated for a diagram, TestBencher checks to see if the diagram is included in the current
project. If it is, then the settings for that project are used. If the diagram is not included in the current project, then the
diagram will be exported using the default settings.

Chapter 3: Transaction Overview 27

Chapter 3: Transaction Overview

TestBencher uses graphical timing diagrams to generate reusable timing transactions (e.g., read cycle, write cycle, in-
terrupt cycle). The built-in timing diagram editor allows timing transactions to be described graphically using wave-
forms, samples, markers, delays, setups, and holds. A combination of variables and class methods are used to define
algorithmic functions and attach them to the diagram.

The Transaction Diagrams folder in the Project window holds all of the transactions and the template diagram for
the project. This branch in the project tree is used to create new diagrams, open diagrams for editing, and edit the trans-
action settings including Master and Slave setting. TestBencher can extract signal and port information from the user
MUT files and place it in a timing diagram.

The next four chapters cover the graphical elements that make up a timing diagram: signals and waveforms, timing
parameters, samples, and markers. Timing diagrams can contain variables and class methods in addition to graphical
elements. Transaction Level Variables can be used to pass information to and from the transaction and can also be used
internally to store the results of calculations and samples. Class methods provide a graphical interface for developing
functions and tasks that the timing diagram can call during simulation. To perform a calculation that is not easy to de-
scribe graphically, a HDL Code Marker can call a class method to do the calculation.

Timing Diagrams are used to generate the HDL code transactions for the bus functional model. The sections on Trans-
action Architecture, Diagram Properties, and Diagram Settings will provide a better understanding on how the trans-
actions are generated and what type code is generated for the graphical elements.

3.1 Template Diagram and New Transactions

The Transaction Diagrams folder in the Project window holds all of the transactions and the template diagram for
the project. The template diagram will serve as a beginning diagram for all new transactions that are added to the
project. You can add common elements to the template diagram like signals, waveforms, and variables. Each time you
create a new transaction diagram for the project it will copy all of the elements of the template diagram into the new
transaction. Then you can edit the new transaction as needed.

 28 Chapter 3: Transaction Overview

By expanding Transaction Diagrams tree and right-clicking on the tree nodes you can access a context menu with
commands that will act on that node in the tree. Each Transaction consists of several files including the timing diagram
file (*.btim, binary timing diagram format) and depending on the generation language one or more code generation
files. Each time the timing diagram is saved the source code updated for the transaction.

To create a new transaction dia-
gram:

- Right-click on the Transaction
Diagrams folder and choose
either Create a new Master
Transactor or Create a
new Slave Transactor from
the context menu. This will
open a file dialog.

- Name the new transaction and
save the file. This will add a
name.btim file to the Transaction Diagram folder and load the new timing diagram into the Diagram win-
dow. The new timing diagram will contain all of the elements and settings of the template diagram.

To open an existing timing diagram:

- Double-clicking on a timing diagram node will open the timing diagram file in the Diagram window.

To change the Master or Slave Setting of a Timing Diagram:

- Right click on the timing diagram name and choose Diagram Settings from the context menu to open the Dia-
gram Settings dialog.

- Choose either Master Transactor or Slave Transactor from the Diagram Execution section. Master transactors
will run once and then stop. Slaves will continuously loop. For more information, see Section 9.1: Transac-
tion Calls in the TestBencher Pro manual.

3.2 Extracting MUT Ports into a Timing Diagram

TestBencher can extract port and signal information from the user source files and place the data in the active timing
diagram. Usually you will want to place the signals in the template diagram for the project, so that the same set of
signals will be available for all new transactions that will be added to the project.

Add the MUT files and extract the ports:

- Right-click on the User Source Files directory and choose Add Files to User Source Files Folder from the
context menu. This will open a file dialog that will let you browse and add the model under test files.

- Click the Extract MUT ports into diagram button on the Simulation Button Bar. This will cause the source

files to be parsed, the MUT to be built, and the top-level port information to be added to the active timing
diagram.

Note: After Extract MUT Ports has been performed, the MUT can be changed to any module in the User
Source Files folder by right-clicking and choosing Set As MUT from the context menu. You can then
rerun the Extract MUT Ports to grab the ports from new module.

When the Extract MUT ports step is performed, one of the components is selected as the top-level MUT file. This com-
ponent is designated by one set of brackets (ex., <tbsram>) and placed in the Simulated Model folder. For Verilog
users, the selected component will be the top-level component found in the hierarchy specified by the source code. For
VHDL users, this will be the first parsed component.

Chapter 3: Transaction Overview 29

3.3 Transaction Level Variables

In addition to the graphical elements of a transaction, timing diagrams can use variables to store sampled data, used
within an expression (e.g., a sample’s condition), or as an input/output to the transaction. There are three types of vari-
ables that can be used inside a transaction: diagram level, state variables, and parameter based variables. This section
gives a quick overview of the variable types and how they can be used. Later sections cover the specific variable types
in greater detail.

When using a variable as an input or output to the transaction there are certain rules that are based on how the variable
type is defined. The following table describes the differences and uses for the different variable types when used as a
port in the transaction.

Diagram Variables

These are the most versatile structures for holding information and for passing information into and out of the Trans-
action. Section 8.3: Variables has more information on defining and using these structures.

To add and use a diagram variable:

- To create a diagram level variable, click the View Variables button in the Diagram window to open Classes and
Variables dialog. Define a Variable as described in Section 8.3: Variables.

- To use a diagram variable as a waveform state, put an @ symbol prefix in front of the name like @name to in-
dicate that it is a variable and not just a text string. You can also select the variable from a list by clicking the
Variables button in the Bus State dialog.

- To use a diagram variable in a block of code just use the variable name. Some examples of code that might use
a variable are class methods, condition statements for samples and markers, and marker loop parameters such
as begin, end, and increment values.

- To use a diagram variable to store a sample value, use the Variable features of sample’s Code Generation Op-
tions dialog as described in Section 6.6: Storing Sample Values in User Defined Variables.

State Variables

State variables are a special form of diagram variables that are used exclusively for setting waveform state values. The
size of the state variable is set by the containing signals. For example if $$addr is used in two signals Address_low[3:0]
and Address_high[12:8] then $$addr will be defined to have a size of [12:0] or 13 bits. Section 4.3: Driving Waveform
States with Variables has more information on state variables.

Structure Direction Advantage Disadvantage

Diagram Variable Input, Output, or

Internal to the

diagram

Size and Type are controlled by

the definition. Type can be simple

or complex. Most versatile vari-

able type.

Only visible in the View Variables

dialog until referenced in the dia-

gram. Not convenient for driving

Parameter constructs such as

Delays.

State Variable Input only Very quick to add. Size and direction is controlled by

the signal and waveform direction to

which the variable is attached.

Parameter Input, Output for

Samples

Contains both min and max val-

ues for passing time values to

Parameter constructs.

Both min and max values are not

needed for many situations.

Assumed to hold either a real or

clock time.

Table 1: Transaction Level Variable Types

 30 Chapter 3: Transaction Overview

To add a State variable:

- Double-click on a waveform segment to open the Edit Bus State dialog.

- Type in a name with the prefix $$ into the Virtual Edit box. For example, $$addr is a valid name for a state vari-
able.

Parameter Variables

Graphical and free parameters can be used to hold information and to pass information into a transaction. Samples can
also pass information out of a transaction. These are specially designed variables that are used to pass time (either real
time or clock cycle time) to transactions. These variables can have either a one or both a min and a max value defined
for one variable name.

These are the recommended variable type to use to pass information to the min and max boxes for delay, setup, hold,
or sample parameters. They are also the recommended variable type to use in a Clock period formula. Other variables
can be used but then you need two of them, unless you want the min and max to be the same value.

To add a parameter variable:

- Either add a graphical parameter to a timing diagram (delay, setup, hold, or sample) or click the Add Free Pa-
rameter button in the Parameter Window.

- Double-click on the parameter to open the Parameter Properties dialog. Check the Is Apply Subroutine Input
and the Enable HDL Code Generation check boxes. This causes a subroutine parameter to be added to the
transaction apply calls.

- Samples can also generate an output parameter that passes the sample value out of the transaction when the trans-
action ends. To do this, check the Store Sample Values as Subroutine Output check box, in the Code Gen-
eration Options dialog (see Section 6.2: Sample Conditions and Actions).

- To reference the parameter variable use parameterName_min or parameterName_max in any code block, con-
dition statement, or in the min or max boxes of a parameter. For parameters you can also use the name without
the min/max suffix, and TestBencher will make the best guess as to which value you want.

3.4 Diagram-Level Class Methods

In addition to the graphical elements of a transaction, timing diagrams can use class methods. Class methods are user
defined functions or tasks that can be called from within the transaction to perform an algorithmic process. Class meth-
ods can be defined at the diagram and project level. Diagram level class methods can access any diagram-level vari-
able, state variable, or parameter variable (Section 3.3: Transaction Level Variables).

Class methods can be called by HDL Code Markers and the Sample Actions to perform zero time calculations for the
timing diagram. Diagram-level class methods are written the in the transaction generation language. See Section 8.7:
Class Methods for more details. To define a diagram-level class method:

- Click the Class Methods button in the Timing Diagram window. This will open the Class Methods dialog that
is used to define and edit diagram-level class methods. Section 8.7: Class Methods describes how to use this
dialog.

- To use a diagram-level class method in an HDL Code marker (see Section 7.6: HDL Code Markers for more
information), type in the name of the class method along with any parameters into the code box of the marker.

- To use a diagram-level class method in a Sample Action, choose User Defined Action for the action type. Then
type in the name of the class method along with any parameters into the code box of the marker.

3.5 Transaction Architecture

This section describes how TestBencher models a transaction diagram. A firm understanding of this material will help
you avoid errors in your transaction diagrams and speed the process of debugging your system.

Chapter 3: Transaction Overview 31

TestBencher generates a transaction for each timing diagram in the project. These transactions are modules for Verilog,
entity/architecture pairs for VHDL, and classes for TestBuilder. Regardless of the language, the transactions use the
same general architecture. And in all languages, the transactions have a similar functional API that can be used to trig-
ger them (diagram apply calls).

Clock domains

Inside each transaction there may be one unclocked sequence process and several clocked sequence processes. A se-
quence process is created for each clocking domain in the diagram to drive signals and trigger parameters (Delays,
Samples, Holds, Setups, Markers) that are synchronous with the given clock. Each domain will run in parallel (con-
currently) once the diagram is started. Typically, there will only be one clock domain in the diagram. But, if you have
multiple domains in the diagram, then it’s important to know what is placed in each domain if you have looping or
blocking parameters. For example, a Marker loop that is attached to the falling edge of CLK will only loop around
items that are also in the CLK_neg clock domain. Items that are in the unclocked domain wouldn’t get placed into the
loop. Also, items that can potentially block a process (Samples, Markers, Sensitive Edges) will only block the clock
domain that they are placed in. The following sections will go into more detail on how blocking and looping constructs
work.

The table below shows how the clock domain is determined for each type of construct.

Signals

Signal states are driven based on three factors: how it is drawn, its clocking domain, and the cycle based setting In-
clude Time Delays in the Diagram Settings dialog. Unclocked signals are driven at the times that the edge transitions
are drawn. Clocked signals are driven based on the clocking edges detected during simulation. The Include Time De-
lays option controls whether or not inter-clock cycle delays are generated for clocked signals. If this option is off, then
clocked signals are only driven at clock edges (See Section 3.9 Diagram Settings – Language Tabs). The event timing
for signals is covered in detail in Section 4.1 Drawing Waveforms.

Blocking Constructs (Sensitive Edges, Samples, and Markers)

There are three different types of constructs that can be used to block the execution of a clock domain. A sensitive edge
(Section 4.8) will cause its clock domain to wait on the edge, which will block all other items in that same clock domain
until the edge is detected. A Sample that has the blocking setting checked (Section 6.3) will block its clock domain
until the sample completely finishes, including execution of its then or else action. And a Wait Until Marker (Section
7.4) will block its clock domain until the condition specified becomes true. If the marker is attached to an edge it will
only check for the condition at each clock edge of the clock domain.

Samples

The code for samples will sometimes be generated in a separate process and sometimes within the clock sequence pro-
cess that triggers it (in-line). Whenever possible, the sample code will be generated in-line to make it easier to debug
the generated code. However, if the sample is non-blocking and needs to wait for simulation time to pass, then that
sample will be placed in its own process or task and triggered by the sequence at the appropriate time. Some examples
of samples that need to wait for simulation time to pass are windowed samples or samples that are delayed from their
triggering point.

Construct Type Clocking Domain
Signals Clock and Edge of signal (Signal Properties dialog)
Sensitive Edge Clock and Edge of signal that contains sensitive edge
Samples A sample’s clock domain is the process that triggers it. See the

table below to determine a sample’s triggering proces.
Delays attached to edge If not unclocked, then Clock and Edge in Delay dialog. Other-

wise, the starting edge of the delay sets the clock domain.
Setups Signal and edge that is pointed to by the Setup
Holds Signal and edge that is pointed to by the Hold
Markers attached to edge The relative edge sets the clock domain
Markers attached to time Unclocked

 32 Chapter 3: Transaction Overview

The sequence process that triggers the sample is determined from the combination of the triggering edge and the Sam-
ples Properties dialog clock and edge type settings.

The example diagram below contains three domains: CLK_pos, CONTROL_neg, and Unclocked.

CLK_pos: This is a clocked diagram so most of the graphical elements were automatically created with the clock/edge
already set to CLK and pos edge in the Properties dialog of the element.

- SAMPLE2: triggered from the third clock edge.

- SAMPLE0: at second clock edge, a level sensitive check is performed on the CONTROL signal and if it is 0
then the sample will trigger. If instead of a level sensitive check on CONTROL, you want to perform an edge
sensitive wait on CONTROL, then set the falling edge sensitive check box in Signal Properties dialog for
the CONTROL signal.

CONTROL_neg: When SAMPLE1 was created we used the Sample Properties dialog to change the clock setting to
unclocked. This setting change will allow SAMPLE1 to be triggered when the CONTROL signal goes negative (com-
pare this to the behavior of SAMPLE0 above).

Unclocked sequence: SAMPLE3 is an absolute sample (not attached to an edge) so it will be placed in the unclocked
sequence. SAMPLE3 will trigger at 125 ns.

Delay Parameters

Delays are placed in clock domains based on the same rules that apply to Samples. The only difference is that it is not
possible to create a delay that is not attached to an edge. So, Delays will never be triggered by the unclocked sequence.

Setups and Holds

Setups and Holds are placed in clock domains based on the edge that they point to. Since they cannot be attached to
time (such as Samples), they will never be triggered by the unclocked sequence.

In the following example there are three different clock domains because the setups and holds point to three different
edges:

- CLK_pos triggers both S0 and H0 at the second positive edge of CLK.

- CONTROL_B_neg triggers S1 at the first negative edge of CONTROL_B.

- CONTROL_B_pos triggers H1 at the first positive edge of CONTROL_B.

Triggering Edge Sample Properties
clock and edge type

Triggering Sequence

No trigger (time only) Ignored when no trigger edge Unclocked sequence
Attached to an edge Unclocked Trigger edge sequence
Attached to clock edge Matches triggering edge Clock sequence from dialog
Attached to an edge Different than triggering edge Clock sequence from dialog with a level sen-

sitive check on the triggering signal

Chapter 3: Transaction Overview 33

Markers

When looping behavior is needed over a particular set of clock cycles or time, then Looping Markers have to be used
(see Section 7.5 for more details on markers). They will only loop over the clocking domain that they are placed in.

The following example demonstrates how a marker loop might not cover everything in the diagram. The count signal
has its Clock set to "CLK" and Edge set to "neg". The SIG0 signal is unclocked. The marker loop will loop over the
CLK_neg clocking domain since the Begin and End loop markers are attached to falling edges of CLK. Since signal
count is in the same clock domain, during simulation the signal will be incremented at each negative clock edge until
it reaches 5. Since SIG0 is Unclocked it is not included in the loop and therefore will only get incremented once.

Output Clocks (Clock generators)

When creating a clocked test bench with TestBencher, there is usually either one timing diagram that has an output
clock or the clock is generated in the MUT code. All of the other timing diagrams use an input clock. This makes it
easier to synchronize the transactions during simulation.

Each output clock has its own process that generates the clock during a simulation. This clocking process is in addition
to any unclocked or clocked processes that are used to synchronize signals and parameters. The clock generation pro-
cess will take into account as many of the Clock Properties as are supported by the generation language.

3.6 Diagram Properties

The cycle based settings and the include file list of a timing diagram are edited using the TestBencher Diagram Prop-
erties dialog. Diagram properties are significant to the operation of the diagram and can break or dramatically change
the way the diagram works during simulation. These properties are saved in the timing diagram file. Other diagram
settings that affect the generation of the code but not the operation of the diagram are edited through the TestBencher
Settings dialog as discussed next in Section 3.7: Diagram Settings Dialog - Overview.

To edit the Diagram Properties:

- Open the diagram for which you will be changing the properties.

- In the Diagram window, right-click in the signal label area and choose TestBencher Diagram Properties from
the context menu. This will open the TestBencher Diagram Properties dialog.

 34 Chapter 3: Transaction Overview

Including HDL Code Library Files

If you have external code modules that you want to make available to the transaction then you can use the interface in
the Diagram Properties dialog to make that code available. Files can either be included before the transaction, using
the equlivant of the Verilog include statement, or files can be included inside the module. The method for including
code within the transaction varies by language. If possible the code is included using something like the include state-
ment and if that concept is not supported then the code is echoed within the transaction. If you have HDL functions or
tasks that you would like to write and use within a transaction then use the Class Methods dialog as discussed Section
8.7: Class Methods. Class Methods is a newer interface that is more flexible and it makes it easier to modify the code
and parameters of the functions.

To Add an HDL Code Library File to the Diagram:

- Click the Add button to the right of the ap-
propriate list box to open a file dialog
that lets you browse for the include file.
Click Open to close the file dialog.

Although the code generation for Verilog and
VHDL will treat the file lists from this dialog
differently, the file selection process for the lan-
guages is the same in this dialog.

Cycle Based Properties

The Cycle Based Properties control how
clocked signals and events are generated. These
settings provide default clocking signals and
edges to be specified for a diagram. This area
also allows existing signals and parameters to be
updated to a new clocking signal and edge.

- The Default Clock and Edge settings pro-
vide default values for the clocking sig-
nal and sensitive clock edge in a
diagram.

- The Update Existing button is used to up-
date all signals, samples, delays and
anything with a clocking signal defined
to the currently selected Clock and
Edge/Level.

3.7 Diagram Settings Dialog -
Overview

The TestBencher Diagram Settings dialog allows you to change the settings for a specific diagram in the project, or to
change the default settings for new timing diagrams created while the project is open. These settings control how the
source code is generated for a timing diagram and provide defaults for new items added to a timing diagram. In par-
ticular, this dialog lets you enable verbose code generation options for each timing diagram, which is especially useful
for debugging a transaction. Properties that affect the basic operation of the timing diagram like cycle based settings
and the include file list are edited using the Diagram Properties dialog as discussed in Section 3.6: Diagram Proper-
ties.

The diagram settings are saved as part of the project. The settings for the default diagram and for each timing diagram
in the project are saved separately. Since this dialog controls code generation options that are specific to TestBencher
it is not available for VeriLogger-style projects.

Chapter 3: Transaction Overview 35

To open the Diagram Settings dialog:

- Right-click on the diagram name in the Project window, and choose Diagram Settings... from the context menu.

OR

- Select Project > Default Diagram Settings... from the main menu.

Diagram Operation:

- The View Settings drop down allows you to quickly view the settings for different timing diagrams in the
project.

- There are several options available for saving and closing the dialog.

- The OK button to saves the new settings

- The Cancel button undoes all of the changes.

- The Update All Diagrams button changes the settings of all timing diagrams associated with the current
project to these settings.

- The Reset Defaults returns the settings for the current diagram to the application default settings (not the
New Diagram Defaults).

 36 Chapter 3: Transaction Overview

- The Save Defaults button saves the current settings as default diagram settings for new projects.

The Diagram Settings dialog contains a General tab and one or more language-specific tabs. The language-specific
tabs that are present will depend on what languages you have licensed for use with TestBencher. TestBencher can cur-
rently support Verilog, VHDL and TestBuilder. These settings are covered in sections 3.8 Diagram Settings - General
Tab and 3.9 Diagram Settings - Language Specific Tabs.

3.8 Diagram Settings Dialog - General Tab

The General Tab in the Diagram Settings dialog controls code generation features for non-language specific items,
such as Verbose settings and the default actions for samples. Section 3.7: Diagram Settings Dialog - Overview covers
the basic operation of the dialog, and Section 3.9: Diagram Settings Dialog - Language Specific Tabs covers the lan-
guage specific options.

Project Simulation Properties

The Language dropdown controls what language the timing diagram will
be generated with. The language choices depend on what languages have
been licensed for use with TestBencher. TestBencher can generate Ver-
ilog and VHDL testbenches.

Signal HDL

The Direction dropdown allows you to select the default signal direction
for new signals. For more information on signal directions, see Section
4.2 Drawing Waveforms and Bi-directional Signals. The Type deter-
mines the default Syncad signal type for new signals.The Syncad signal
types are language-independent - these are converted to the appropriate
language-specific signal types during generation.

Code Generation

The three check boxes in the General tab allow you to toggle whether
HDL code generation is enabled for samples, markers and delays .

Diagram Execution

The Diagram Execution settings control how the diagram will be execut-
ed in the test bench. There are two types of transactors available, Master and Slave. Execution control is specified in
the Sequencer Process of the Template File (Section 9.1: Transaction Calls has more information):

- The Master Transactor type runs a single time, and can either
block the execution of other transactors or it can be executed
concurrently. An abort method is also provided for Master
Transactors.

- The Slave Transactor type runs in a looping mode until it is
stopped with an Abort method. Slaves can either execute concurrently or block other transactions while they
are looping.

For more information, see Section 9.1: Transaction Calls.

Chapter 3: Transaction Overview 37

Instance Settings

The Instance Settings are used to specify information for Piplin-
ing Transactions.

- The Count determines the number of instances of a trans-
action. These instances will be automatically instanti-
ated in the test bench.

Sample Parameter (General)

Sample parameters generate self-testing code in the test bench.
By default, if the sampled state matches the expected state, then
the code will continue as planned; otherwise, the code will dis-
play an error message in the message log. The default condi-
tions for new samples created in the diagram can be set from
these three dropdowns. For more information, see Chapter 6:
Transaction Samples.

Verbose Settings (General)

The Verbose Output Settings are used to control the amount of
debugging output that occurs during simulation. The verbosity
settings in this dialog will control the level of information that
is output during the transaction execution for the active timing
diagram.

Note: All of the verbose messages include the diagram name
and simulation time.

Verbose Sensitive Edges display for VHDL and Verilog:

- When Sequence Verification process starts.

- When an edge is detected on a sensitive signal.

- When an unexpected edge occurs on a sensitive signal.

Verbose Delays display:

- When the delay starts.

- When a conditional test fails, causing the Delay to be disabled

- When the Delay makes a signal assignment.

Verbose Samples display:

- When the Sample has been triggered to run.

- When the Sample window has been entered.

- When a Sample causes the diagram to restart.

- When a Sample triggers another sample.

- When a Sample triggers a delay.

Verbose Markers display their name, type, and the simulation time. Some markers display more information:

- Wait Until Marker:

- When the marker starts waiting for its particular condition.

- When the marker finishes waiting.

 38 Chapter 3: Transaction Overview

- While Loop Marker, For Loop Marker, and Repeat Loop Marker display:

- When the loop starts.

- Each subsequent time and condition for the loop

- Exit Loop When Marker displays when and the condition for breaking the loop.

Display Applied Inputs

- When enabled, all inputs to calls for the selected transactor will be displayed in the simulation log.

3.9 Diagram Settings Dialog - Language Specific Tabs

The Language Specific Tabs in the Diagram Settings dialog controls code generation features for the language spe-
cific items like default signal type that are different for each generation language. Section 3.7: Diagram Settings Dia-
log - Overview covers the basic operation of the dialog, and Section 3.8: Diagram Settings Dialog - General Tab covers
the general options that are the same across languages.

Cycle Based Settings

This setting affects code that is generated for clocked signals. If Fixed is
selected, then the amount of time specified is the delay after the clock
edge before events occur. If As Drawn is specified then the length of the
delay is dependent upon the time at which events on the signal are drawn.
This option is a direct replacement for the Include Time Delays option
in previous versions of TestBencher. Previous projects will be converted
as follows:

- Include Time Delays ON => As Drawn

- Include Time Delays OFF => Fixed to 0

Code Generation (VHDL Only)

The Enable Abort Code checkbox allows you to toggle whether or not
abort code will be generated. The biggest advantage for turning off this
code generation is that the amount of code for each diagram will be re-
duced. The disadvantage is that certain features will be disabled because
they rely on the abort code to function. These features include abort
transaction apply call, end diagram marker, end diagram sample conditions, diagram timeouts, and delay timeouts.

It is expected that this feature will be used mostly for limited testing or for diagrams that do not need an abort. The
global clock diagram, for instance, should never have the abort code turned off or you would have to manually end the
simulation.

Time-out Settings (Language-Specific)

A transaction timeout will aid in the prevention of an endless
wait condition occurring in a timing transaction. The time se-
lected as a time-out duration is measured in diagram lengths for

Chapter 3: Transaction Overview 39

an individual diagram. For instance, a diagram whose entire execution should be complete in 150ns could have a time-
out duration of 150ns, 300ns, 450ns, etc.

Delay Settings (Verilog & VHDL)

The delay settings determine how delays will be computed dur-
ing diagram code generation. This setting determines which de-
lay value is used in min:typ:max expressions. The random
setting allows a random value to be computed from within the
range of the min and max specified for the delay.

 40 Chapter 3: Transaction Overview

Chapter 4: Transaction Waveforms and Signals 41

Chapter 4: Transaction Waveforms and Signals

Signals and waveforms are the heart of the timing diagram. The waveforms can be quickly sketched using the built-in
timing diagram editor. The state values of waveforms can be hard coded. In TestBencher, state values can also be
passed into waveforms through a variable, or conditionally driven by a variable.

Most of the signals will be automatically added to the timing diagrams by extracting the signal and port information
from the model under test files. However signals can be added manually. Several types of signals including internal
and clock signals can be added to the timing diagram to achieve different behaviors.

The edges on waveforms are responsible for triggering the markers and parameters that are attached to them. If more
than one parameter or marker is attached to the same edge then triggering order can be set using the Edge Properties
dialog. Also, edges of a can be made sensitive so that the transaction will wait for that particular edge to occur.

4.1 Drawing Transactions for TestBencher

When drawing the waveforms for a timing diagram it is important to remember that transactions do not automatically
include an event at time zero and that only the drawn events are driven. This is a feature that allows transactions to be
reused any time during simulation without implying any initialization information. Below is a timing diagram that we
drew, and a simulation results diagram that shows what happens when the timing diagram is applied twice. In the sim-
ulation results diagram, note that both signals are tri-stated until they are driven the first time. Also notice the transi-
tions of clocked_sig automatically sync up to the clock edges, because clocked_sig is a clocked signal with Include
Time Delays (see Section 3.9: Diagram Settings Dialog - Language Specific Tabs) is unchecked.

When signals require a specific initial state, there are two ways to do it: an initialization event and an initialization
timing diagram. A small initialization event can be drawn at the beginning of the timing diagram as shown in the ini-
tialization signal. A potential disadvantage is that this event will be driven each time the transaction is called. To over-
come this disadvantage, an initialization diagram can be developed and called once at the start of the test bench
execution. An initialization diagram is just a simple timing diagram with waveforms that drive the required signals to
an initial state. The TestBencher Pro Basic tutorial provides an example of an initialization diagram.

How TestBencher generates the code for the waveform depends on three things: how it is drawn, the clocking domain,
and the cycle based setting Include Delay Time in the Diagram Settings dialog. When TestBencher generates code
for clocked signals they are driven based on the clocked cycle that they are drawn in. If the Include Delay Time cycle
based setting is checked then the signal will be driven as drawn after the clock edge. If the Include Delay Time cycle
based setting is not checked the signals will be driven at the sensitive clock edge so it is not important to sketch the
waveform at exact times for these kind of clocked signals. Section 3.9 Diagram Settings Dialog - Language Specific
Tabs has more information on the Include Delay Time setting. For unclocked signals waveform events will be gen-
erated at the times they are drawn.

 42 Chapter 4: Transaction Waveforms and Signals

4.2 Drawing Waveforms and Bi-Directional Signals

The timing diagram editor is always in drawing mode. Waveforms are sketched by clicking the mouse button in the
diagram window. The state buttons control which type of waveforms will be drawn next. The state buttons are the but-
tons with the waveforms drawn on their face: HIGH, LOW, TRIstate, VALid, INValid, WHI weak high, and WLO
weak low. When a state button is activated, it is pushed in and colored red. The active state will be the type of wave-
form that is drawn next. Waveforms can also be edited by dragging and dropping edges, and by selecting segments
and choosing another waveform state. The Timing Diagram Editor on-line menu provides in-depth information for the
drawing environment.

To Draw a Waveform:

- Click the type of state that you want to add in the group of 7 states on the right side of the Signal Button Bar.

- Click in the waveform section of the Diagram window to the right of the signal or bus name at the approximate
time that you want the state transition to occur. This will place the transition in the waveform. Waveforms are
built from left to right.

- Repeat the first two steps until you have completed the signal’s waveform.

Signals with a direction of output or internal have black waveforms, and signals with a direction of input have blue
waveforms. Bi-directional signals with a direction of inout will be drawn with mixed black and blue segments to in-
dicate which segments will be driven by the transaction and which are inputs to the transaction.

By default all of the waveform segments on a bi-directional signals signal are assumed to have a direction of output
and are colored black to indicate their direction. To change a segment to be an input segment (un-driven):

- Double-click on the input segment. This opens the Edit Bus State dialog.

- Uncheck the Driven check box. This indicates that the test bench does not drive this segment; this segment will
be an input to the test bench.

- Click OK to close the dialog or use <Alt>-N or <Alt>-P (or the Next or Previous buttons) to edit other segments
on the same signal. The segment for which you unchecked the driven flag should now be colored blue.

4.3 Driving Waveform States with Variables

Waveforms are normally driven to the drawn graphical state (high, low, tri-state, weak-high, and weak-low). However,
waveforms with a graphical state of valid need to be driven to a distinct value during simulation. Using the Edit Bus
State dialog you can hard code in a value, choose an existing variable in the timing diagram to drive the state, or in
TestBencher define a state variable. If a waveform segment is drawn with a graphical state other than valid, that graph-
ical state will be used to drive the signal and any other state information entered through the Edit Bus State dialog will
be ignored.

In TestBencher, using variables to drive waveform states allows new values to be passed into the transaction each time
it is called. This is convenient for timing diagrams that have data and address buses because each time the diagram is
called new values can be passed into the timing diagram. State variables and Diagram-level variables can be used
to drive a waveform state (see section Section 3.3: Transaction Level Variables). Parameter based variables should not
be used to drive waveform states because their type is fixed to hold time values not state values.

TestBencher state variables can be quickly defined in the Edit Bus State dialog by typing in a variable name that begins
with two dollar signs like $$addr. State variables are automatically added to the parameter list for the transaction call.
The type and size for these variables are determined by the signal that is being driven. Each time the transaction is
called, a new state value can be passed into the variable. The same state variable can also be used on several signals
and the maximum size will be determined by the min and max of all of the signals used. For example $$addr apears
in SIG0[3:0] and SIG1[12:9], then the $$addr will have a size of [12:0].

Chapter 4: Transaction Waveforms and Signals 43

Both TestBencher and the Reactive TestBench option support Diagram-level variables. The type and size are con-
trolled by the user during the declaration of the variables. so they require a little more setup work (see Section 3.3
Transaction Level Variables). Also diagram-level variables can be conditionally driven by different sources like sam-
ples and signal states within the timing diagram during simulation as well as being passed into diagram.

To edit the state of a valid signal segment:

- Double-click on the segment of the signal to
open the Edit Bus State dialog.

- The Virtual edit box accepts values, variables,
and Boolean equations that meet the format
shown in Appendix C: Language Indepen-
dent Operators. For example, $$addr+@in-
crement is an acceptable equation for the
Virtual edit box.

- To hard code a value, type the value in the Virtual edit box.

- To add a state variable, type the variable name using a $$ prefix into the Virtual edit box. For example,
$$data might be the name of the variable for the value of data bus. This variable will appear in the timing
diagrams apply call.

- To add a diagram-level variable:

- Click the Variables button to open the Select Variables dialog. Double-click on the variable and click
OK to close the dialog. The variable name with a @ prefix will be added to the Virtual box.

OR

- Click the Variables Menu Button to display a list of variables that can be inserted into the equation.

- Click OK to close the dialog box.

Note: State values can also be conditionally driven using the Condition Tree in the bottom of the Edit Bus State dialog.
For more information see Section 4.4: Driving Conditional State Values.

4.4 Driving Conditional State Values

State values can be conditionally driven based on
events and states that occur during simulation. The
Edit Bus State dialog contains a Condition Tree that
can be used to build conditional strings for the state
value. If the state tree is not modified, the value will
be unconditionally driven to the value in the Virtual
edit box. The driven state can be made conditional by
adding a condition to the State Condition tree.

To create a conditional drive for the state value:

- Double-click the segment that is to be condi-
tionally driven to open the Edit Bus State di-
alog.

- Right-click on the If row and choose Add Con-
dition from the context menu to open an edit
box or double click in the Condition/Action
column of the If row.

 44 Chapter 4: Transaction Waveforms and Signals

- Type the text for the condition. The condition must be written in the generated language of the transaction and
it must equate to a Boolean equation when evaluated during simulation.

- Next, add the state values to the Then or Else rows by right-clicking choosing Add Variable or Add State menu
option. Or double-click in the Condition/Action column and edit the state.

- Optional: Complex conditionals can be created us-
ing the Add If...Then...Else context menu. This
option is available for any existing Then or Else
row. Selecting this option causes a nested
If...Then...Else to be added to the branch of tree
that was selected.

4.5 Adding Signals

Most signals will be automatically added by extracting the signal information from the model under test using the tech-
niques that are discussed in Section 3.2 Extracting MUT Ports into a Timing Diagram. Signals can also be added man-
ually by using the buttons on the Signal Button Bar. Certain types of signals like compare and internal signals are
always added manually.

The generated bus-functional model can provide stimulus and monitor simulation outputs of the circuit that you are
designing. In order to do this, the signals that will be exported by the bus-functional model have to match the signals
that exist in your designs. If the signals in the timing diagrams are named the same as in your circuit model then the
matching will be automatic. If the signal names do not match you will have to create a sub-project and use the Signal
and Ports dialog to define the signal mapping as covered in Section 2.3 Sub-Projects.

Signals can be added manually by using the Add Signal, Add Clock, Add Bus and Add
Spacer buttons on the signal button bar. The signal name, HDL type, and direction can be
edited using the Signal Properties dialog.

To add a Signal, Clock, Bus or Spacer:

- Click the appropriate button in the first group of four. This will add the Signal, Clock, Bus or Spacer to the timing
diagram. Spacers are just for adding space to the diagram and do not generate code.

- If you added a signal, clock or bus, then double-click the name of the new object to open the Signal Properties
dialog.

- Edit the Name. If the signal is to be hooked up to a signal in the HDL model, then use the same name.

- Edit the signal type using the language Type drop down list box in the bottom of the dialog.

- Edit the signal size using the MSB and LSB edit boxes. Clocks are always one bit wide.

- Edit the Direction using the drop down list box. The following directions are available:

- Output indicates that the signal is output from the diagram.

- Input indicates that the signal is what you expect the model under test to generate during simulation (these
signals are inputs to the timing transactions, driven by the model under test). In the timing diagram, Sam-
ple parameters usually end on an input signal, indicating that the input signal should be checked for an
expected value at that point on the signal.

- Inout indicates that the signal is bi-directional (see Section 4.2). Inout signals contain driven and un-driven
signal segments. Driven segments act like signals of type output.

- Internal indicates that the signal will only be used internally to the diagram component.

- The Clock and Edge/Level specify the clocking signal for the waveform. In TestBencher, these will be automat-
ically set by the Project Wizard options, however, you can pick a different system clock signal and edge using
these controls. TestBencher users can also change the default clock using the Diagram Properties clock.

Chapter 4: Transaction Waveforms and Signals 45

- For Clocks, the clock period, duty cycle, and clock offset can be changed by either clicking on the Clock Prop-
erties button or by Double-clicking on the clock waveform.

The default signal direction and language type for new signals can be set from the Diagram Settings dialog (see Section
3.7: Diagram Settings Dialog - Overview for more information).

4.6 Temporal Expressions for TestBencher

Temporal expressions provide a method for looking for patterns of events within a transaction. TestBencher supports
temporal expression through a direct text method described in this section and through graphical samples (see Chapter
6: Transaction Samples). Samples sometimes generate temporal expressions and other times they generate procedural
code that produces the same functionality as a complex temporal expression. If a temporal expression is simple it is
often better to describe it using the graphical samples because they are self-documenting. However if a temporal ex-
pression is complicated then the easiest method is just to type in the equation.

To add a temporal expression to a timing diagram, you will add a signal, set the type to temporal expression, and then
type in the equation. TestBencher echoes the equation out to the proper section in the transaction code. The waveform
of the temporal expression signal is ignored by TestBencher and should not be used as the end point for a sample or
as the trigger for any parameters or markers in the diagram.

To add a temporal expression:

- Press the Add Signal button to add a signal to the diagram.

- Double click on the signal name to open the Signal Properties dialog.

- Edit the name of the signal, this will be the name of the temporal expression.

- Choose the te radio button. This opens a different pane in the Signal Properties dialog where you can type in the
temporal expression.

- Press the Ok button to close the dialog and then save the timing diagram file. This will generate the temporal
expression in the transaction code.

4.7 Controlling the Triggering Order of Parameters

Edges on waveforms are responsible for triggering the markers and parameters that are attached to them. If more than
one parameter or marker is attached to the same edge then the triggering order can be set using the Edge Properties
dialog. By default the triggering order is the same as the order in which the objects were attached to the edge. The
triggering order is especially important on edges that define the beginning and ending points of a marker loop, because
the order determines whether the action occurs inside or outside of the loop.

 46 Chapter 4: Transaction Waveforms and Signals

Note: If a marker is relative to an edge, but not exactly on top of the
edge, then order is based off of placement in the timing diagram and
will not show up in the order dialog.

To order Parameters and Markers attached to the same edge:

- Double-click the edge that triggers the parameters and markers
to open the Edge Properties dialog.

- Click the Trigger Order button to open the Parameter and
Marker Order dialog.

- Drag and drop the rows to arrange the parameters and markers
in the desired order. You can also use the arrow buttons on
the right side of the dialog to move selected items up or
down.

- If you need to review the properties of an item before setting the
order, you can double-click the name of the object in the row
to open the Properties dialog for that object.

- Click the OK button to close the Parameter and Marker Order
dialog.

- Click the OK button to close the Edge Properties dialog.

Displaying the order of parameter and markers in the timing diagram

It may be useful to display the triggering order for parameters and markers in the timing diagram. This allows the order
of execution to be determined at a glance, without opening the Parameter and Marker Order dialog. One of the display
options for parameters and markers is Name and Order. This setting will display the order number for any parameter
or marker with an order greater than 1, followed by the name of the parameter or marker. Note that the omission of the
number one allows you to make this display setting the global default without displaying an order number when only
one parameter or marker is triggered from an edge.

To change the Name and Order display for a single marker or parameter:

- Double-click the parameter or marker to open the Parameter Properties or Marker Properties dialog.

- Select the Name and Order option from the Display Label dropdown list.

- Click OK to close the dialog and apply the changes.

To change the Global Settings for Name and Order:

- Select the Options > Drawing Preferences (Style Sheet) menu option. This will open the Drawing Preferences
(Style Sheet) dialog.

- Select the Name and Order selection from the Parameter Display Label dropdown list.

- Select the Name and Order selection from the Marker Display Label dropdown list.

Note: These two settings do not need to be the same. You may wish to set only one of these two as the global
default.

- Click OK to close the dialog and apply the changes.

4.8 Sensitive Edges

The edges of signals can be made falling edge sensitive and rising edge sensitive using the check boxes in the Signal
Properties dialog. Sensitive edges are usually placed on input signals and the code that gets generated causes the trans-
action to wait for the sensitive edge before continuing.

Chapter 4: Transaction Waveforms and Signals 47

Sensitive edges cause wait statements to be inserted for that edge. These waits will block the clocking domain that
contains the sensitive edge (see Section 3.5: Transaction Architecture for more detailson clocking domains).

To enable sensitive edges on a signal:

- Double-click the name of the signal that you want to watch for events on. This will open the Signal Properties
dialog.

Note: Sequence Recognition watches the events on single bit signals only.

- Check the Rising Edge Sensitive checkbox or the Falling Edge Sensitive checkbox. Enabling both checkboxes
will cause both rising and falling edges to be sensitive.

- Click the OK button to apply the changes and close the Signal Properties dialog.

Sensitive edges will have arrows instead of a line indicating the state transition.

 48 Chapter 4: Transaction Waveforms and Signals

Chapter 5: Transaction Delays, Setups, and Holds 49

Chapter 5: Transaction Delays, Setups, and Holds

Timing diagrams can include graphical parameters like delays, setups, holds, and samples. These parameters generate
transaction code that monitors and conditionally controls signal transitions. By combining and chaining together the
parameters, you are graphically describing temporal expressions that will execute during simulation. In TestBencher,
Temporal Expressions can also be entered manually using a signal as described in Section 4.6: Temporal Expressions
for TestBencher.

This chapter will cover delays, setups, and holds that are parameters that perform actions between two signal transi-
tions. Samples are placed on signal states (not transitions) and monitor the state of a signal. Samples are the main type
of parameter used in TestBencher timing diagrams and they are covered in detail in Chapter 6: Transaction Samples.

Delays

Delays are used to specify a fixed time between signal transitions. The time between signal transitions can be a hard
coded value or it can be a variable that is set during simulation. Delays can conditionally drive state values by trigger-
ing from a sample or by using an internal delay condition. The condition is checked after the delay is triggered, and
before the delay time has been waited for. This is especially good for modeling control signals that go active after cer-
tain conditions in the transaction are met.

Setups and Holds

Setups and Holds perform a check to determine if a signal is stable with respect to another signal. The graphical setup
and hold parameters perform a one-time check between two signal transitions. A continuous check between two sig-
nals can also be created by using the properties for the signal.

5.1 Adding and Editing Parameters

Parameters are added by selecting a parameter button on the button bar, left clicking on the relative edge, and then right
clicking on the second edge in the waveform window. After a parameter is added, its values can be edited by double-
clicking on the parameter to open the Parameter Properties dialog. The properties for each parameter type are dis-
cussed in the section for that type.

To add a Delay, Setup, or Hold:

- Select the parameter button on the Signal Button Bar for the type of parameter you want to add.

- Click on a transition to select it. For a delay this is the forcing transition. For a setup or hold this is the transition
that will be monitored.

- Right-click on the second transition to add a parameter between the first and second transitions. For a delay this
is the transition that will be moved. For a setup or hold this is the control signal.

- Double-click the name of the parameter to open the Parameter Properties dialog for that parameter and edit the
properties of the parameter.

The Parameter Properties dialog has many settings that control how the parameter is displayed in the timing diagram
and these features are covered in the Timing Diagram Editor on-line help Section 4.4: Parameter Properties. Test-
Bencher uses only a few controls for code generation and these are discussed below. A few additional controls are
available for delays (discussed in Section 5.2: Delays) and samples (discussed in Chapter 6: Transaction Samples).
The following controls are common to all parameters and are used in code generation:

- The Name edit box allows the user to specify the name of the parameter.

 50 Chapter 5: Transaction Delays, Setups, and Holds

- The Min and Max edit boxes specify the minimum and maximum time for the parameter to execute. Each type
of parameter handles the Min and Max values differently; for more information, see the sections on delays
(Section 5.2), setups and holds (Section 5.4), and samples (Chapter 6).

- The Is Apply Subroutine Input checkbox, for
TestBencher, allows you to generate ports be-
tween the Component Model and the timing
transaction with which to specify the values to
use for the Min and Max settings of the param-
eter. If only one of the values is specified, then
a port will only be made for that value. If there
is no value specified for either setting, then a
port will be made for the min value by default.

- The Enable HDL Code Generation checkbox al-
lows you to turn the code generation for the pa-
rameter on and off without removing the
parameter from the timing diagram. This
checkbox must be checked in order to produce
any HDL code for the parameter.

Note: The HDL code generation for all delays,
samples, and markers in a timing diagram
can be disabled through the TestBencher
Diagram Settings dialog. See Section 3.8:
Diagram Settings Dialog - General Tab
for more information on this feature.

5.2 Delays

A delay specifies a fixed time between two signal transi-
tions. Delays can also conditionally drive their second
edge. In TestBencher, the value for the delay time can be
passed into the delay at simulation so that delays can be
used to perform sweep tests to see when a circuit will fail.

The first edge (left most edge) that the delay is attached to is called the trigger edge. If the trigger edge is on a clocked
signal then the delay will activate at the next clock edge if a level sensitive check of the trigger signal passes. If the
trigger edge for the delay is on an unclocked signal, then the delay will activate when the signal transition occurs. If
the level sensitive check fails, or if the unclocked trigger signal never transitions then the delay will not activate.

Once a delay is activated, then the delay process will wait for the amount of time (or clock cycles) specified in the min
or max value of the parameter, and then drive the second edge. For more information, see Section 3.5 Transaction Ar-
chitecture.

To add a Delay to a Timing Diagram:

- Click the Delay button on the Signal Button Bar.

- Click on a transition to select it. This transition is the forcing
transition.

- Right-click on the second transition to add a delay between
the first and second transitions. This transition is the tran-
sition that will be delayed.

- Double-click on the delay to open the Delay Properties dialog. Most of the controls in the Delay Properties di-
alog were covered in Section 5.1 Adding and Editing Parameters.

Chapter 5: Transaction Delays, Setups, and Holds 51

The following controls are specific to delays:

- Count Clock Edges determines if the Min
and Max settings are time or cycle based
values. If the delay is Unclocked then the
values are time. If a clock is specified then
the values are numbers of clock cycles.

- Min and Max set the minimum and maximum
time or number of clock cycles to be used for the delay. At simulation time only one value min, max, or
typical (average of min & max) will be used. In TestBencher, the Diagram Settings dialog (discussed in
Section 3.7: Diagram Settings Overview), has the settings that determine which value will be used during
simulation. If only one of the two settings has been given a value (min or max), the other setting will
internally be given the same value.

- HDL code button opens the Boolean Condition
for Delay dialog, that stores the condition
that is checked before the delay drives the
second edge. By default the condition is
TRUE. You can type in the text for a new
condition in the generated language. The
condition can be any equation that evaluates
to a TRUE or FALSE at simulation time. If
the condition is not true after the triggering
edge is detected, then the second edge will not be driven. The condition must be written in the generated
language of the transaction. Note: If the condition is based on state values that occur during simulation,
a graphical conditional delay can be constructed by triggering the delay from a sample parameter (see
Section 6.4: Samples Triggering a Delayed Transition or Another Delay).

5.3 Resolving Multiple Delays

If the same edge is affected by multiple delays, there will be several possible ways for TestBencher to resolve the actual
delay. The value for the edge is calculated based on the Multiple Delay Resolution setting in the Edge Properties
dialog. The default setting for the timing diagram is set in the Options > Design Preferences dialog.

To open the Edge Properties dialog:

- Double-click on the edge to open the
Edge Properties dialog.

- In the Multiple Delay Resolution
section, choose one of Transition
Settings:

- Earliest Transitions uses the de-
lay that will place the edge as
early in the diagram as possi-
ble.

- Latest Transitions uses the de-
lay that will place the edge as
late in the diagram as possible.

- Max Uncertainty and Min Un-
certainty are not currently
supported for TestBencher
Code generation.

 52 Chapter 5: Transaction Delays, Setups, and Holds

5.4 Setups and Holds

Setups and Holds check timing requirements for a design. Setups are the minimum time necessary for a signal to be
stable before a control signal transition. Holds are the minimum time that a signal must be stable after a control signal
transition. Setups and Holds perform one check between two signal transitions. If the setup or hold fails then it outputs
a warning in the simulation log file and prints the expected and actual values. If you want to perform a continuous
check between two signals you can use the method described in Section 5.5 Creating Continuous Setups and Holds.

To create a setup or hold:

- Click the Setup or Hold button.

- Click on a transition to select it. This is the transition that will be monitored.

- Right-click on a second transition to add a setup or hold between the first and second transitions. This is the con-
trol signal.

- Double-click on the setup or hold to open the Parameter Properties dialog. Most of the controls in the Parameter
Properties dialog were covered in Section 5.1 Adding and Editing Parameters.

The following controls are specific to setups and holds:

- The Min field sets the minimum time that the data transition can occur before a setup or after a hold on the
control signal.

- The Max field sets the maximum time that the data transition can occur before or after the control transition.
This field is optional and usually not specified for setups and holds.

If a time is specified for the Max field, then the data transition must occur between the Min and Max times.

- The Outward Arrows checkbox changes the direction that the arrows on the parameter are drawn. This
does not affect code generation but it is a popular graphical feature.

5.5 Creating Continuous Setups and Holds

Continuous setups and holds can be created for any two signals in a timing diagram. A continuous setup or hold is
created by using the Advanced Register and Latch Controls in the Signal Properties dialog. Continuous setups and
holds can be useful in ensuring that a data signal remains stable long enough to be written at every clock edge, for
example.

This feature is currently only supported in VHDL and Verilog, because it uses a feature called simulated signals. The
simulated signals can be used to create registered and latch logic, so there are several of optional controls that you can
choose to use. This feature is not supported in Waveformer Lite. To perform a continuous setup or hold just specify
the clocking signals, edge type, and either the sample or hold value.

To Create a Continuous Setup or Hold:

- Double-click on one of the signals to monitor (pick the non-clock if one of them is a clock). This opens the Signal
Properties dialog.

- Select the clocking signal from the Clock drop-down list box. The clocking signal can be any clock or signal in
the timing diagram.

- Select the type of edge or level triggering from the Edge/Level list box. For a Register circuit, choose neg for
negative edge triggering, pos for positive edge triggering, or both for edge triggering. For a Latch circuit
choose either low or high level latching.

- (OPTIONAL) The Set, Clear, and Clock Enable are optional signals that model the set, clear, and clock enable
lines of the register or latch. If "Not Used" is chosen for a line, then that line is not modeled. These lines can
be active low or high and synchronous or asynchronous depending on the settings in the Advanced Register
and Latch Controls dialog.

Chapter 5: Transaction Delays, Setups, and Holds 53

- Click the Advanced Register button to open the Advanced Register and Latch Controls dialog that determines
how this individual register is generated. The global defaults can be defined using the Options > Simulation
Preferences menu. This dialog controls the following options:

- Setup: Describes the time for which the input must be stable before the clocking event. If a min/max time
pair is entered, Setup will use the min time. Any violations of this setup time will be reported to the sim-
ulation log file verilog.log, shown in the report window.

- Hold: Describes the time for which
the input must remain stable after
the clocking event. If a min/max
time pair is entered, Hold will use
the min time. Any violations of
this hold time will be reported to
the simulation log file verilog.log,
shown in the report window.

- (OPTIONAL) Clock to Out: De-
scribes the delay from the trigger-
ing of the clock signal to a change
on the output edge.

- (OPTIONAL) Set and Clear Active
Low: If checked, the set and clear lines will control the output when they are low. If unchecked, then the
set and clear lines will control the output when they are high.

- (OPTIONAL) Set and Clear Asynchronous: If checked, then the set and clear lines will control the output
anytime they are active. If unchecked, the model is synchronous and an active set or clear line does not
affect the output until the next clock trigger event.

- (OPTIONAL) Clock Enable Active Low: If checked, the clock will be enabled when the clock enable line
is low. If unchecked, the clock will be enabled when the clock enable line is high.

 54 Chapter 5: Transaction Delays, Setups, and Holds

Chapter 6: Transaction Samples 55

Chapter 6: Transaction Samples

Samples generate the self-testing code within a transaction using either temporal expressions or procedural code that
produces the same functionality as a complex temporal expression. In TestBencher, temporal expressions can also be
entered manually as described in Section 4.6: Temporal Expressions for TestBencher. Samples are used to monitor the
signal values coming back from the model under test. Samples can be run at a specific time, triggered from an event,
or triggered from another sample. The value that is sampled can be exported to the top-level module. This could be
used, for instance, to provide an input value for a state variable in another timing transaction or to determine if a spe-
cific timing transaction is to be executed or not. Samples can also be used to trigger a delay based on its success or
failure. Below are the terms used to describe the different monitoring times and triggering events of a sample.

Monitoring Time

Samples that monitor a signal at a specific time are called Point Samples. And samples
that monitor a signal over an interval of time are called Window Samples. Window sam-
ples are useful for testing that the value of a given signal does not change over a specified
time frame, or for verifying that the signal goes through a specified sequence of states.
Window samples draw themselves with a box indicating the monitoring interval. If you
need to sample over a large window and you do not want to display it graphically then
you can use the Multiplier control in the Code Generation Options dialog described in
Section 6.2.

Triggering Process

Point or Window Samples can be either triggered at a specific time in the diagram (Absolute Sample) or they can be
triggered by a transition on a signal or another sample (Relative Sample). The point and window samples shown in the
above image are both absolute samples. The images below show relative samples that are triggered by a transition on
a signal. If the triggering event is on a clocked signal, then at the next clock edge a level sensitive check will be per-
formed and if it fails the sample will not execute. If the triggering event is on an unclocked signal, then if the transition
does not occur during simulation then the sample will not execute.

Check for Condition and Trigger an Action

The Sample’s Code Generation Options dialog is used to define the condition the sample checks for and the actions it
performs on the success and failure of the condition. Section 6.3: Interpreting Sample Conditions and Blocking Points
describes how to control how the sample’s condition is tested.

Sample Variables and Files

Samples generate several diagram-level variables that can be accessed by other graphical elements in the diagram (Sec-
tion 6.5). Sampled values can also be written out to a file (Section 6.6).

6.1 Adding a New Sample

To create a sample you will define the triggering event by how you draw the sample. The monitoring time or interval
will be set using the Samples Properties dialog. The sample actions to take if it succeeds or fails will be set using the
Code Generation Options dialog discussed in Section 6.2.

 56 Chapter 6: Transaction Samples

To add a new sample:

- Click the Sample button on the Signal Button Bar.

- If you want the sample to be relative, then click the edge that you want the sample to be relative to.

- Right-click on the signal to be sampled. This will add the sample to the timing diagram. The exact time at which
the sample is placed can be changed using the Samples Properties dialog discussed in the next step.

To edit the monitoring time and properties of the sample:

- Double-click the sample name to open the Sample Properties dialog.

- Type real time or clock cycles into the Min and Max edit box. If the min and max are different than the sample
will be a Window Sample.

The Sample Properties dialog has many settings that con-
trol how the sample is displayed in the timing diagram
and these features are covered in the Timing Diagram Ed-
itor on-line help Section 4.4 Parameters Properties. Test-
Bencher uses only a few controls for code generation and
these are discussed below.

- The Min and Max edit boxes are used to specify
the beginning and ending times or clock cycles
for a sample window.

- Checking the Is Apply Subroutine Input, for
TestBencher, generates input ports to the timing
transaction that can be used to specify the values
to use for the min and max settings of the sam-
ple. (Section 6.2 describes how the monitored
value can be made to be an output port of the
transaction.)

- Samples can be cycle-based instead of time-based.
The Count Clock Edges settings allow a clock-
ing signal and edge to be specified for the sam-
ple.

- The Enable HDL Code Generation checkbox
must be checked for any code to be generated
for the sample.

- The HDL Code button opens the Code Generation
Options dialog that defines the actions of the
sample. This is covered in Section 6.2: Sample
Condition and Actions.

6.2 Sample Condition and Actions

When a sample is triggered, the sample will test for a condition and then perform an action based on the success or
failure of the condition. Both the condition and the actions can be changed using the Code Generation Options dialog.
You can choose from several predefined conditions and actions or directly enter the HDL code. The user defined con-
dition and action usually call class methods that have been defined for the transaction (Section 3.3: Transaction Level
Variables) or are short HDL expressions that make use of the internally generated sample variables (Section 6.5: Using
Sample Variables).

Chapter 6: Transaction Samples 57

To define the condition and actions of a sample:

- Double-click on the sample name to open the Sample Properties dialog.

- Click the HDL Code button in the lower left-hand side of the dialog to open the Code Generation Options dialog.

- The If Condition drop down list box controls what the sample checks for. Select one of the following conditions:

- Sample state matches: If the monitored value matches the expected value the Then Action will be taken oth-
erwise the Else Action will occur.

- Sample State doesn't match: If the monitored value matches the expected value the Else Action will be taken
otherwise the Then Action will occur.

- User-defined condition: Directly enter the HDL code to execute see Section 6.5: Using Sample Variables

- The Then Action and Else Action drop
down list boxes control which ac-
tions are taken on the success or fail-
ure of the sample condition. Select
one of the following actions:

- Do nothing: take no action if this
branch is executed.

- Display Message: Display a mes-
sage in the simulation log using
the severity level defined by the
radio buttons below the action.

- Restart Diagram: Resets and re-
starts the transaction execution.

- End Diagram (set status to Done):
Ends execution of this particu-
lar transaction. The bus-func-
tional model will continue to
execute as if this transaction
had normally ended.

- Pause Simulation (Verilog only):
Stops the entire simulation.

- Do Delayed Transition: Creates a
delayed state transition (see
Section 6.4: Samples Trigger
Delayed Transition or Another
Sample) that triggers based on
the results of the If Condition.

- Trigger Sample: creates a trig-
gered sample (see Section 6.4:
Samples Trigger Delayed Tran-
sition or Another Sample) that will fire based upon the results of the If Condition.

- Break Loop: stops the loop that immediately surrounds the sample.

- Continue Loop: returns to the beginning of the loop immediately surrounding the sample, skipping the last
part of the loop

- User-defined action (enter below): lets the user directly enter VHDL or Verilog code for the action into the
edit box below the action drop-down list box. See Section 6.5: Using Sample Variables for more infor-
mation.

 58 Chapter 6: Transaction Samples

- When the Full Expect checkbox is checked, every transition that occurs within the window range is checked. If
the option is not enabled, the sample will check for the condition to be true (Simple Expect), or the event to
occur (Restricted Expect) depending on how the waveform is drawn. See Section 6.3: Interpreting Sample
Conditions and Blocking Points for more information.

- The Multiplier property extends the window of time for a sample. The difference between the min and max
values will be multiplied by the value of the multiplier to determine the length of the sample. This also pro-
vides a method to indirectly specify a timeout for a sample. Since this method of extending the sample win-
dow does not appear graphically it can be used for very large windows that would not be very pretty to look at.

- In TestBencher, the Enable Variable control enables the sampled value to be output to a file in a spreadsheet-
like format or stored in a variable. Set to Then if you want the data to be stored if the sample condition suc-
ceeds or Else if you want the data to be stored if the sample fails. Select Always if you want the data to be
stored regardless of the condition. See Section 6.6 Storing Sample Values in User Defined Variables for more
information.

- In TestBencher, the Store Sampled Value As Subroutine Output checkbox creates an output port to the trans-
action and when the transaction terminates it passes the sampled value out to the port. How this is implement-
ed depends on the generation language:

- In Verilog, TestBencher will automatically create a variable in the top-level project that the transaction is
stored. The variable is named transactionName_sampleName and at the end of the transaction the sam-
ple value will be passed out to this variable.

- In all the other languages, you must create a variable in the calling project that has the same type as the signal
that is being sampled. This variable is then passed into the transaction apply call. The variable will be set
during the transaction execution.

- The Blocking option determines whether or not the triggering process or sequence of the sample will wait for
the sample to complete before continuing execution. If the option is enabled, the triggering process will trig-
ger the sample and then wait until the sample process is complete before continuing execution. Otherwise,
the two processes will execute concurrently once the sample is triggered. Samples, by default, are non-block-
ing. Section 6.3: Interpreting Sample Conditions and Blocking Points discusses this feature.

6.3 Interpreting Sample Conditions and Blocking Points

The drawn waveform and the Full Expect check box in the Code Generation Options dialog determine when Win-
dowed Samples execute an action. The sample can also be made to block other graphical elements in the diagram by
using the Blocking check box in the Code Generation Options dialog. If Blocking is enabled then other elements in
the same clocking domain as the sample will be paused until the sample condition executes an action. If Blocking is
disabled, the other graphical elements will continue to function regardless of whether the sample condition is satisfied.
Below are some examples of different types of samples.

Full Expect Samples

If the Full Expect box is checked then the sample will wait until the end of the sampling window to determine if all
conditions where met. This is called a Full Expect sample. This type of sample will test every state transition drawn
within the sample window. For instance, if a Full Expect sample has a condition of Sample state matches, it will test
that every expected transition matches what is drawn in the sample window. The appropriate Full Expect sample action
is executed at the end of the sample window. This is indicated visually by the dot at the end of the sampling window.

If the sample is clocked then the value of the waveform will be sampled at each clock edge in the sample window.

Chapter 6: Transaction Samples 59

Simple Expect and Restricted Expect Samples

Simple and Restricted Expect samples are created when the Full Expect setting is disabled. The manner in which the
expected waveform is drawn determines whether the sample is a Simple Expect or a Restricted Expect sample.

A sample that is drawn above a stable section of a waveform will test for the condition to be true at any time during
the sample window. This is called a Simple Expect sample. A sample that is drawn over a stable low waveform, for
example, will watch for the condition to be true at any time during the sample window. This means that a Simple Ex-
pect sample will trigger its action at the beginning of the sample window if the expected state matches the driven state
during simulation.

If a sample is drawn above a waveform with one or more transitions, the sample will test for each transition in the
window. This is called a Restricted Expect sample. A Restricted Expect sample will test the first transition to see if
it matches the first transition in the drawn waveform. If the transition matches, then the next transition is evaluated in
the same manner. Once all of the transitions are found, the sample condition will pass and execute theThen action. If
a wrong transition is found, the condition will immediately fail and execute the Else action. If not enough transitions
are detected then the sample times out at the end of the window and the Else action is executed.

Both Simple Expect and Restricted Expect samples are drawn with a dot in the middle of the sample window to in-
dicate that the trigger time is determined at simulation time and can occur before the end of the window.

Blocking Sample

The Blocking setting in the Code Generation Options dialog controls whether or not a sample blocks other constucts
in the same process. Samples with this setting enabled prevent other constructs from proceeding until the sample con-
dition triggers an action. Section 3.5: Transaction Architecture discusses how blocking samples will pause a portion
of the timing transaction. If a sample has Blocking enabled, then the clocking domain will pause until the Then or Else
action is executed. Blocking samples are shown visually with a solid arrowhead. Non-blocking samples display with
a hollow arrowhead.

6.4 Samples Triggering a Delayed Transition or Another Sample

Samples can be used to trigger delayed state transitions or other samples. These actions are performed by use of trig-
gered delays and samples. These constructs are triggered when the appropriate action is called for the Then or Else
segment of a sample. Several samples can be chained together to test for a complex set of conditions.

If a sample is triggering a delay, then that sample condition-
ally controls the signal transition. This is especially useful if
several conditions must be met prior to a transition on a con-
trol signal. An alternate, non-graphical method for condi-
tionally triggering transitions is discussed in Section 5.2:
Delays.

There are two different methods you can use to add a param-
eter to a sample. The recommended way is to add a parameter that is relative to a sample. This is the fastest way to add
samples and delays to the Then and Else actions. The other method is to use the Sample’s Code Generation Options
dialog. Either method will set one of the sample actions to Do Delayed Transition or Trigger Sample and attach a
graphical parameter to the sample.

 60 Chapter 6: Transaction Samples

Method 1: (Recommended) Add a Delay or Sample to relative to a Sample

- Click the Delay button or the Sample button in the Diagram window.

- Click on the sample name to select the sample that will trigger the new parameter.

- For delays, right-click on the state transition that you want to be conditionally delayed. This will open a context
menu. Choose either Then Sample Delay or Else Sample Delay to create the new conditional delay.

- For samples, right-click on the waveform you want to sample. This will open a context menu. Choose either
Then Triggered Sample or Else Triggered Sample to create a chained sample.

Method 2: Using the Code Generation Options dialog to add a triggered delay or sample. Note only add one delay
or sample at a time:

- Double-click the name of a sample to open the Sample Properties dialog.

- Click the HDL Code button to open the Code Generation Options dialog.

- For Delays, choose Do Delayed Transition from the Then Action or Else Action drop down list box.

- For Samples, choose Trigger Sample from the Then Action or Else Action drop down list box.

- Click the OK button to close the Code Generation Options dialog.

Note: When you close the Code Generation Options dialog you will enter a special select mode. While you
are in this mode, the Sample Properties dialog will disappear. When you exit the select mode, the Sample
Properties dialog will reappear.

- Right-click the state transition that will be delayed or the waveform that will be sampled. This will add the delay
or sample to the diagram.

The delay ending position can be moved to other signal transitions by selecting the delay then dragging and dropping
the right handle of the delay to the new transition. Triggered samples can be edited just like regular samples.

6.5 Using Sample Variables

Two sample variables are automatically generated for each sample: sampleName_Flag and sampleName. The
sampleName_Flag variable is a Boolean flag that indicates whether the sample condition was true or false. And sam-
pleName is a state variable that contains the value of the sampled signal at the time the sample’s condition was met or
timed out. These are diagram-level variables and can be referenced anywhere in the timing diagram including other
sample’s actions and conditions, HDL Code Markers, and Class Methods

In TestBencher, the sample value, sampleName, can also be exported from the transaction by checking the Store Sam-
pled Value as Subroutine Output checkbox in the Code Generation Options dialog as described in Section 6.2: Sam-
ple Condition and Actions.

Example of using Sample Flag Conditions

It is frequently desirable to define a sample con-
dition in terms of previously executed samples.
For example, you might wish to execute an ac-
tion if two different previous samples were both
true. This can be accomplished by writing HDL
code accessing the flag variables that store in-
formation about previously executed samples. Assume you have a diagram with three samples (SAMPLE0,
SAMPLE1, and SAMPLE2) where the first two samples test the values of two signals. To make SAMPLE2 true if
both SAMPLE0 and SAMPLE1 are true, you would enter the User-Defined Condition of SAMPLE0_Flag and
SAMPLE1_Flag.

Chapter 6: Transaction Samples 61

Example of using Sample Values in the Diagram

You can also use the sample values to build user-defined conditions for samples. For example, to test that the value
sampled by SAMPLE0 is equal to the value sampled by SAMPLE1, enter the following User-Defined Condition for
SAMPLE2.

Note: the types of the signals sampled by SAMPLE0 and SAMPLE1 must be the same, or you will get a type mismatch
error when you compile your test bench.

6.6 Storing Sample Values in User Defined Variables

In addition to the automatically created sample variables, a sampled value can be stored in a user-defined variable. The
stored sample value can be used in the diagram to define a marker loop expression or a conditional delay equation.

In TestBencher, the sampled value can be used to drive another signal or stored in a file. By enabling and selecting a
variable, the sampled value will be stored each time the sample completes. File Output variables write the sampled
value to the specified file when the transaction completes.

To store a sample value in a user defined variable:

- Open the Sample Properties dialog by double-clicking the name of the sample.

- Click the HDL Code button to open the Code Generation Options dialog.

- Select the desired enable option from the Enable Variable drop-
down. This option will determine the condition under which the
sampled value will be stored in the variable. This option can be
set to Always, Never, Then, and Else. The Then and Else op-
tions specify that the data will be stored only if the Then Action
or Else Action is executed, respectively.

- Click the Select Variable button to open the Select Variable dia-
log.

- Click a field name or the variable name in the Name column of the selection tree to select a variable. Note that
default Index, MSB, and LSB values are defined.

Note: For any given transaction, only one sample can output to a specific column in the file. If more than one
sample is using the same field name within the same timing diagram, only the last instance to occur dur-
ing simulation will output to the column.

Any item that cannot be edited will have a gray background in the tree (except the name). To edit a value in
the tree:

- Double-click the text that needs to be edited.

- Edit the text

- Click the Insert Into Equation button to set the variabel property for the sample.

- Click Close to close the dialog. This will set the variable property for the sample.

You will be able to change the variable or field name at any time by opening the Code Generation Options dialog for
the sample and repeating this process.

 62 Chapter 6: Transaction Samples

Chapter 7: Transaction Markers 63

Chapter 7: Transaction Markers

Markers can be added to timing diagrams to specify specific actions to be taken by the transaction during execution.
These actions can include identifying the end of a transaction, creating loops in the transaction, executing HDL code,
blocking, and pausing the simulation.

Markers are triggered either by the unclocked process or by the clocked process of edge they are relative to. Loop and
Wait Until markers act on their triggering process so it is important when using these types of markers to setup the
triggering event correctly (Section 3.5 Transaction Architecture).

7.1 Adding a Marker to a Diagram

As with samples, markers can be absolute or relative. An absolute marker is attached to a specific time, while a relative
marker is attached to a specific edge. Relative markers will be triggered by the process associated with the clocking
domain (See Section 3.5 Transaction Architecture). Double clicking the marker opens the Edit Time Marker dialog
that is used to control the code generation options for the marker.

To place a marker in a diagram:

- Click the Maker button on the Signal Button Bar.

- If you want the marker to be relative, then select the edge that you
want the marker to be relative to.

- Right-click in the Diagram window to place the marker. This will
add a documentation marker to the diagram window.

To Edit a Marker:

- Double-click on the marker line or on the marker name to open the
Edit Time Marker dialog.

- The Marker Type controls the function of the markers. The rest of
the chapter is devoted to the details of each of the marker types:

- End Diagram causes the transaction to terminate at that point.

- Pause Simulation (Verilog only) stops the entire simulation.

- While Loop, For Loop, Repeat Loop, Loop End, and Exit Loop
When are used to create loops for a single process in the
transaction.

- HDL Code marker inserts user written source code.

- Wait Until causes the process that triggers the marker to block
until the condition becomes true.

- Semaphore used to define critical regions in a transaction.

- Pipeline Boundary is used to specify a pipeline region in a
transactor. This is used when multiple instances of a trans-
actor are running in parallel.

- Documentation markers are used to annotate the timing diagram.

- Time Break Markers are used to hide sections of the timing diagram but do not cause code to be generated.

- The Attach to time controls are used to change the attachment or placement of a marker.

- To move a relative marker to the exact edge time, type 0 into the Attach to edge edit box.

 64 Chapter 7: Transaction Markers

- To attach to a new edge, check the Attach to edge radio button and click OK to close the dialog and enter
into an edge selection mode. As you move the cursor a green bar will hop to the closest edge. Left click
on the edge that you want to attach the marker.

- To attach to a new time, check the Attach to time radio button and enter a time into the edit box.

- The Snap Signal Ends to Marker feature is generally for documentation purposes - the ends of all drawn wave-
forms will be attached to the marker and move with it.

- Draw Line From Marker To Edge will cause a dotted line to be drawn for markers that are attached to an edge.
This is a nice feature to be able to quickly see that the marker is attached to an edge and not a time, and also
which edge the marker is attached to.

- Auto Adjust Display Label Position allows the diagram editor to automatically adjust the position of the marker
display to ensure that it does not over-write or get overwritten by other items in the diagram window.

- Click the OK button to close the dialog.

7.2 End Diagram Markers

End Diagram Markers are used to indicate the execution end of a timing
diagram. These markers are useful for extending a transaction past the last
drawn waveform. In TestBencher End Diagram markers are especially
useful for syncing up multiple timing diagrams that share the same clock.
For example, it is convenient to place an End Diagram Marker at the exact
ending transition of a clock cycle.

If there are no End Diagram markers then the longest non-clock signal will
determine the end of the timing diagram. If there is more than one End Di-
agram Marker then the earliest one will determine the end of the timing
diagram. End Diagram Markers are displayed using a purple line.

To modify a time marker to be an end diagram marker:

- Add a marker and then double-click on the marker to open the Edit
Time Marker dialog.

- Select End Diagram from the Marker Type drop down list.

- If the Marker is not located at the exact location or attachment that
is needed, then use the Attach to radio buttons to move the mark-
er. In this example the edge is attached to the CLK0 edge at ex-
actly time 250ns.

- (OPTIONAL) Choosing Type from the Display Label control caus-
es the marker to display the words End Diagram instead of the
marker name.

- Click the OK button to close the dialog.

7.3 Pause Simulation Marker (Verilog Only)

A Pause Simulation marker will pause the entire simulation when it reach-
es the marker. This provides a graphical breakpoint. While the diagram is
paused you can check variables and signal states. When you are done, use your simulator run button or run command
to continue the simulation.

This feature is not supported in VHDL because there is no language construct that can stop the simulator. However,
some simulators can be configured to pause on assert failures. If your simulator supports this feature, then you can use
an HDL code marker to place an assert in the timing diagram.

Chapter 7: Transaction Markers 65

To specify a Pause Simulation marker:

- Add a marker to the timing diagram. The exact placement or attachment does not matter because the marker will
pause all processes in the entire model.

- Double-click on the marker to will open the Edit Time Marker dialog.

- From the Marker Type drop-down list, choose Pause Simulation (Verilog only).

- Click OK to close the Edit Time Marker dialog.

7.4 Wait Until Marker

Wait Until markers provide a mechanism for indefinitely pausing the execution of one clocked process within a trans-
action. This type of marker pauses the transaction until its condition becomes true. Blocking samples also pause the
execution of a process, but they have a time out built into the window and multiplier settings. Wait Until markers will
not time out. The process that gets paused will be the triggering process of the Marker (see Section 3.5: Transaction
Architecture).

To specify a Wait Until condition:

- Add a marker that is attached to some signal transition in the diagram.

- Double-click on the marker to open the Edit Time Marker dialog.

- From the Marker Type drop-down list, choose Wait Until. This rela-
tive marker it will pause the execution of all signals and graphical
elements that are relative to the same signal and edge type.

- In the Wait Until Condition edit box, enter a condition. The condition can be any equation in the generation
language that evaluates to a TRUE or FALSE at simulation time.

- Click OK to close the Edit Time Marker dialog.

When this transaction is applied, it will now pause execution (of the transaction, not the simulation) at the time that
the marker is placed until the specified condition has occurred.

7.5 Loop Markers

Loop markers are used to create sections in the transaction that are repeated during simulation. For example if you
were designing a burst read transaction that would need to determine at simulation time the number of cycles needed
to complete the read cycle, then you could use a while loop. The transaction could be setup to continuously loop until
a certain ending condition was met. TestBencher supports while loops, for loops, and repeat loops. The Exit Loop When
marker can be used to terminate a loop in the middle of a cycle. Loop Markers can also be used with samples whose
Break Loop and Continue Loop actions affect the operation of the loop.

The same process must trigger both the beginning loop marker and the end loop marker (see Section 3.5 Transaction
Architecture). For clocked transactions, this means that the begin marker and the end marker need to be attached to the
same edge type of a given signal. When TestBencher recognizes the beginning and ending of a loop it will draw a green
loop line between the markers. In the example below the bad loop will not work because the while marker is triggered
by the rising edge clk process while the loop end is triggered by the unclocked process.

Often the signal edges that trigger the beginning and end of loop markers are also triggering other markers and samples.
When several graphical elements are triggered off of the same edge then the order determines whether the other graph-
ical elements occur inside or outside of the loop. The order is set by double-clicking on the edge and using the Edge
Properties dialog (see Section 4.7: Controlling the Triggering Order of Parameters).

 66 Chapter 7: Transaction Markers

To add a loop to a timing diagram:

- Add two markers to the timing diagram. Both should be relative to the same signal and edge type, or both should
be absolute time markers.

- Double-click on the marker on the left to open the Edit Time Marker di-
alog. Choose one of the following loop types and define the beginning
of the loop:

- While Loop marker when matched with and End Loop marker will
execute continuously over a sequence of test vectors either for-
ever or until a defined condition is met. The condition can be any
equation in the generation language that evaluates to a TRUE or FALSE at simulation time.

- For loop marker will execute for a specified number of iterations.
The Index variable will be automatically created. Each loop the
index variable will be incremented by the Inc number. The loop
will end when the index becomes greater than the End number.

- Repeat Loop marker will execute for a specified number of itera-
tions.

- Click OK to close the dialog.

- Double-click on the marker on the right to open the Edit Time Marker
dialog. Choose the Loop End marker type.

- Click the OK button to close the dialog. If the markers are triggered by
the same process, TestBencher will draw a loop line between the
markers. If there is no loop line then check the attachments of each marker.

Exit Loop When

The Exit Loop When marker will terminate the inner most loop that graphical-
ly surrounds the Exit Loop When marker and that is triggered off of the same
process. The condition can be any equation in the generation language that
evaluates to a TRUE or FALSE at simulation time.

7.6 HDL Code Markers

HDL code markers are used to make calculations and execute code that is not represented graphically. HDL code
markers have a limited amount of space for typing, so it is usually just used to type in the name of a function to call.
The code box accepts direct HDL code in the transaction generation language. You can make calls to class methods
(Section 8.7: Class Methods), library subroutines (2.8 Libraries and Use Clauses), or insert any code that is valid with-
in the context of a process (VHDL) or method (TestBuilder).

Chapter 7: Transaction Markers 67

To add an HDL Code marker:

- Add a marker to the diagram and double-
click on the marker to open the Edit Time
Marker dialog.

- From the Marker Type drop-down list,
choose HDL Code.

- Type in the source code into the HDL Code
edit box.

OR

- Select the <Edit HDL Source...> menu op-
tion to enter multiple lines of source code
for this type of marker.

- Click OK to close the dialog.

7.7 Semaphore Markers

Semaphore markers are used to secure critical regions during a transaction. Semaphore markers can be created for
transactions that are part of a project that contains semaphores. See Section 8.11: Semaphores for information about
creating Semaphores. There are two types of Semaphore Marker - wait and post. A Wait Semaphore Marker waits
for the semaphore variable to be free, then takes ’possession’ of the semaphore and enters the critical region. The Post
Semaphore Marker defines the end of the critical region and causes the release of the semaphore.

To add a Semaphore Marker:

- Add a marker to the diagram and double-click on the marker to open
the Edit Time Marker dialog.

- From the Marker Type drop-down list, choose Semaphore.

- Select either the Post or the Wait semaphore marker type.

- Enter the Semaphore Name. There are two ways to specify the
semaphore name. The name can be typed into the Semaphore
Name history list or selected from the Variable Button Menu.

New Semaphores can be created in the Marker Dialog. Either enter the
name of the new Semaphore in the Semaphore Name combo or select the
<Edit Semaphore List...> menu item from the Variable Button Menu.
The <Edit Semaphore List...> menu item will launch the Classes and
Variables dialog for projects. New Semaphores entered directly in the combo will be given an initial value of 1.

7.8 Pipeline Boundary Markers

Pipeline Boundary Markers are used for pipelined transactors. These markers will automatically create the semaphore
needed to handle a critical region (if the semaphore does not already exist in the project). Loop markers can be placed
within the critical region - but only if the complete loop is inside the region. In other words, the loop cannot overlap
the pipeline phase - it can be entirely inside the phase or around the phase.

he Instance Count of a diagram represents the number of instances of the transaction that are created during simula-
tion. TestBencher will automatically set the Instance Count for the diagram during generation. This setting can be
overridden, but it is not normally necessary to do this. Should this setting be overridden, the pipeline depth must be
less than or equal to the Instance Count of the timing diagram. The Instance Count is set in the Diagram Settings
dialog - see Section 3.8: Diagram Settings: General Tab for more information on setting the Instance Count for a
diagram.

 68 Chapter 7: Transaction Markers

The Semaphore Name specified in the Marker Properties dialog represents the next pipeline phase and is displayed
in the diagram between the start and end boundaries of the phase. The next Pipeline Boundary marker in the diagram
(either the start of the next phase, an End Boundary pipeline marker or and End Diagram marker) represents the end
of the phase. In the diagram below, for instance, the first marker is a Pipeline Boundary marker with addr selected as
the semaphore. This phase is ended by the control Pipeline Boundary marker - which also started the control phase.

To Create a New Pipeline Phase:
- Place a marker at the time or edge that

the phase should begin. Double-click
the marker to open the Marker Prop-
erties dialog.

- Enter the name of the phase in the
Semaphore For Next Phase combo.
If the name is not already in the
project Semaphore list, then a new
Semaphore will be created with Ini-
tial Value of 1 and placed in the
project.

- Place a second marker at the time or
edge that will end the pipeline phase.
This marker must be one of the fol-
lowing three types (otherwise a start
phase without one of these to end it
will produce an error):

1) End Boundary: Place a Pipeline Boundary Marker and select
End Boundary from the Name drop down. Use this to end
the last phase in the transactor when there are other events af-
ter the last phase.

2) Pipeline Boundary: Place a Pipeline Boundary marker to end
this phase and begin the next. This method should be used
when two pipeline phases are consecutive.

3) End Diagram: An End Diagram marker will automatically
end the phase. This is a nice feature to use when the last pipe-
line phase is the last event in the diagram.

7.9 Documentation and Time Break Markers

Documentation and Time Break markers can be used to split the visual image of the timing diagram for whatever pur-
pose may be needed. For example, it may be useful to visually highlight a point of change in the timing diagram. The
time break markers can also hide sections of the timing diagram. These markers generate a comment line in the source
code for the transaction. If Verbose Markers is checked in the Diagram Settings dialog a message is displayed during
simulation (see Section 3.8: Diagram Settings Dialog - General Tab).

Chapter 8: Classes and Variables 69

Chapter 8: Classes and Variables

In addition to the graphical elements of a project, TestBencher also supports generation of user-defined classes and
variables. Classes, which are stored in class libraries, contain data fields and methods. These elements let you pass data
around and compose algorithmic functions that are not easy to define graphically.

Class Libraries are used to store classes and their constraints and can be shared between projects. These libraries can
represent various protocols or commonly used classes. This prevents the need to duplicate class definitions for use with
multiple projects. Once a Class Library is included in a project, all of the classes that are defined in the library are
considered local to the project.

Class fields can use any of the generation language’s native data types or a user-defined data type (another class). Each
field can have a structure of a simple element or depending on the language a queue, an array, or an associative array.
Classes can be used to define a packet class, where each field represents a different portion of the packet. Class meth-
ods can also be added to the class to act on the fields. Classes are supported in all of the generation languages. The
interface for designing and accessing the classes is the same across the generation languages, but the implementation
varies radically depending on the language’s support for classes and user defined data types.

Variables are used to store data that can be set and accessed during simulation. The data type of a variable can be any
of the generation language’s native data types, or any user defined class that is local to the project. Variables can also
be defined to have structures like queues, arrays, associative arrays, input files and output files which are dependent
on the generation language.

During simulation, a random number generator can drive the values for variables. The Constraints dialog is used to
define limits of the random number generation for random variables.

8.1 Class Libraries

Class Libraries are used to store classes and their constraints. Class Libraries can be defined and shared between
projects. Each project also creates a default library, which is named after the project and stored in the project directory.
This default library is independent and can be included in other projects.

 70 Chapter 8: Classes and Variables

All of the class libraries for a project are listed in the Class Li-
brary List folder in the Project window. Double clicking on a li-
brary opens it for editing. All of the class libraries for a particular
project share the same scope, so the class names must be unique for
a particular project. For example, if two libraries contain a class
named ATMCell, they cannot be added to the same project. Test-
Bencher will check for this each time you add a class or add a li-
brary, and warn you about any scoping errors.

Class Libraries are created, edited, and added to the project using
the Classes and Variables dialog. If you open this dialog while a
project is opened you will automatically be editing and creating li-
braries for the current project. Note that whether or not a project is open, modifying a class library will affect any
project that includes the library.

To create, edit, add, or remove a Class Library:

- Open the Classes and Variables dialog by performing one of the following actions:

- Select the Project > Classes and Variables menu option. This is the only way to open the dialog if no
projects are opened.

- In the Project window double-click the Class Library List folder.

By default, the Class Definitions and Variables dialog is displayed in a language independent view. This means that
options may be shown that are not available for the currently selected language. This is provided because class defini-
tions are language independent and can be shared between projects. A language specific view is available for the cur-
rently selected language.

To change between the language independent and language specific views:

- Enable the Only view options available for <Language> checkbox for the language dependent view. Disable
the checkbox for the language independent view.

- Select the Class Definitions tab to display the library functions.

- To create a new library, click the New Library button to open a file dialog. Name the library and save it. The
new library will be listed in the Libraries list box.

- To add an existing library, click the Add Library button to open a file dialog. Browse to find the library and
click OK to add it to the Libraries list box.

- To remove a library, select the library in the Libraries list box and click the Remove Library button. Note the
default library cannot be removed.

- To edit a library, select the library in the Libraries list box. All of the classes for the selected library will be
displayed below in the Classes list box. The selected library is also displayed in the title bar of the dialog.

- Section 8.2: Classes describes how to create new classes for the selected library.

- When you are done editing click the OK button to save the library and close the Classes and Variables dialog.

Chapter 8: Classes and Variables 71

8.2 Classes

To edit or add a class you will open the Classes and Variables dialog and select the library that will contain the class.
The New Class button adds new classes to the Classes list. Selecting a class will cause the fields of the class to be
displayed in the Class Fields list. Clicking the New Field button adds a new field to the selected class. The Constraints
and Class Methods buttons are used to open dialogs that allow the respective elements to be created, edited, and re-
moved from the selected class definition. Any cell in the Classes or Class Fields list that is not grayed out can be edited
by either double clicking or by selecting the cell and then typing.

Classes fields can be defined manually using the New Field button or automatically using a file and the Define from
Template button. Each field can either be a native data type or a class type that is defined in the same class library.
Each Field can have the structure of a single element or depending on the generation language it can have complex
structures like array, associative array, and queue.

Once a Class is created, it is used when creating variables just like any native data type of the language (Section 8.3:
Variables).

To create or edit a class:

- Open the Classes & Variables dialog and select the Library that will contain the class. (Section 8.1: Class Li-
braries has more information on libraries).

- Click the New Class button in the Classes area to add a new class to the list in this area. The class will have
default name and status.

- To edit a class or class property, double-click on the cell to open an edit box. For Verilog, the Network Packing
cell reverses the byte order of the class after packing.

To add a field to a class:

- Select the name of the class that is being edited in the Classes list. This will cause the fields of the class to be
displayed in the Class Field list.

- Fields can be added manually or by reading in from a file:

- Click the New Field button to add a field.

- Click the Define from Template button to open a file dialog. Find the template file and click OK. Section
8.10 Importing Fields from a Template File describes the format of the file.

- Double-click on the cell for any field property that needs to be edited. This will cause an edit box, drop-list, or
dialog to be opened, and this can be used to edit the property. Section 8.4 Variable and Class Field Properties
defines different field columns.

 72 Chapter 8: Classes and Variables

To add a method to a class:

- Select the name of the class that is being edited in the Classes list. Click the Class Methods button to open a
dialog for entering the class method (Section 8.7: Class Methods).

To add a constraint to a class:

- Select the name of the class that is being edited in the Classes list. Click the Constraints button to open a dialog
for entering the constraints (Section 8.8: Constrained Random Number Generation).

8.3 Variables

Variables are used to store data that can be set and accessed during simulation. Variables can be used anywhere in
TestBencher that you type in HDL code including: Boolean equation and Condition boxes, Sample values, Loop con-
trol variables, HDL code markers, class methods, and HDL states.

Variables can be local to either the diagram or to the project component. Diagram-level variables are declared within
the transaction source code, and project-level variables are declared within the corresponding project Component
Model. The following scope rules are applied to Variables:

- Diagram-level variables are only accessible outside of the diagram if they can be hierarchically accessed in the
given language.

- Project-level variables are accessible from the project’s transaction, but the access depends on the language you
are using. Chapter 12: Language Specific Details covers the details on accessing variables.

Each variable has various properties including the data type and the structure. The data type can be any of the gener-
ation languages native data types, or the type of any class that is a part of the project class library or any imported class
library. The structures for variables can be simple elements or depending on the language queues, arrays, associative
arrays, file input and file output structures. The Classes and Variables dialog is used to add Variables and edit their
properties. The scope of the variables being edited (diagram-level or project-level) is determined by the way in which
the dialog is opened.

To Create Variable:

- Open the Classes and Variables dialog from either the Project for project-level variables or from the diagram for
diagram-level variables:

- For Project-level variables, select the Project > Classes and Variables menu option or double-click on the
Variable List folder in the Project window. Another way to open this dialog is to right click the Com-
ponent Model folder and select Classes and Variables from the context menu.

- For Diagram-level variables, click the View Variables button in the Diagram window.

- Select the Variables tab near the top of the dialog. Note the title bar of the dialog indicates which timing diagram
or project file that you are editing the variables for.

- Click the New Variable button near the bottom of the dialog. You can also just click the blank variable line and
start typing a new variable. Either method creates a new variable with default properties in the Variables list
box.

- Double-click on the column for any property that needs to be edited. This will cause either an edit box or a drop-
down list to be opened that can be used to set the field property. The variable properties are defined in Section
8.4: Variable and Class Field Properties.

- When you are done click OK to close the dialog.

Chapter 8: Classes and Variables 73

8.4 Variable and Class Field Properties

The properties of variables and class fields are added and edited using the Classes and Variables dialog as described
in Section 8.3 Variables and Section 8.2 Classes. The section defines the different properties. Certain property settings
like size will depend on the structure property. For instance, an element type forces the size to be 1. Other properties
will change depending on the generation language. Any item that cannot be edited will have a gray background in the
list. The properties include:

- Variable Name or Field Name: used when referencing the variable or field of the class.

- Direction: (Variable Only) this property determines whether or not the variable is and input to the diagram or
component. An applied diagram-level variable will become an input to the transaction apply call, just like a
state value. An applied project-level variable will become an input to the project Component Model, and each
instance of the component can specify an initialization value for the applied project-level variable.

- Packing: (Field Only) allows classes to be converted into bit streams. Double-clicking on this field will cause
the Packing Properties dialog to be opened. This dialog allows packing to be enabled and disabled, and it also
allows Bit and Byte order specification. Note that the packing options that are allowed will depend on the
language being generated and are dicussed in Section 8.6: Data Packing.

- Static: (Field Only) determines whether or not all instances of the class will use the same copy of the data (static)
or if they will maintain their own copy of the data member (non-static). By default, this property is set to non-
static.

- Random: Acts on variables and fields that have a native data type. This setting determines whether or not the
values assumed by the data member will be randomly generated, and if so what method is used. This property
can be set to non-rand and rand. The non-rand selection indicates that the variable is not randomized. If it is
set to rand then random values will be generated for the class. Random fields are generated when the random-
ize method is called on the variable. This method is automatically generated when needed, and can be called
from the Sequencer Process of the Component Model. The generation language may limit the options that
are available for randomization. Section 8.8 Constrained Random Number Generation shows how to con-
strain the random values that are generated for random variables.

- Structure: determines the type of structure for the field. The types available are element, array, associative ar-
ray, and queue. An element type will cause the field to equate to a simple variable in the class. By default,
the structure type for a field is element.

- Size: specifies the number of elements in a complex structure type field. This setting is available for arrays and
queues. Because the default structure type is an element, the default for this property is 1.

- BitSize, MSB, and LSB: are used to determine the bit size for field elements. Depending on the language being
used, the bitsize may be specified using an LSB and an MSB. Note that some types, such as a string, may not
use a bitsize, and that others, like bool, may have a limited bitsize.

- Data Type: determines the type of the elements of the field. The possible settings for this property are the avail-
able language independent types (such as bool, 2_state, or 2_state_vector) and may also include other classes
that have been defined in Class Libraries that are included in the project. The default for this property is int.
Note that only language independent types that are available for at least one of the licensed languages will be
shown. If a language independent type is selected it will be converted to the appropriate type for the generated
language in the generated test bench. Section 8.5: Language Independent Types provides more information
about the language independent types as well as a chart showing the conversion values from these types to
the generated language types.

- Initial Value (variables only): allows an initialization value to be specified. The variable will be initialized on
creation during test bench simulation. An initial value can be specified for both diagram and component level
variables. The assignment to this value will occur once at the beginning of simulation execution. The string
entered in this field will be placed directly in the generated code without modification.

 74 Chapter 8: Classes and Variables

Structure Types

Element: a single data item (like a single integer).

Array: a series of elements of the same data type. Arrays allow data to be randomly accessed through a numeric
index. Arrays have a fixed number of elements.

Associative Array: stores a series of key-value pairs. The key is used to index a particular element in the array
(the value). All of the elements are of the same data type. The size of an associative array grows as data is
added to it. Associative arrays are referenced in the same way that arrays are, with the key representing the
index. Any integer or value that resolves to an integer can be used as a key for an associative array. The two
primary differences between an associative array and an array are that the associative array can grow dynam-
ically (during simulation), and that the numeric keys used to look up a data element do not have to be sequen-
tial.

Queue: is a FIFO (first-in, first-out) access to data. Queues have a fixed number of elements of the same data type.
This type of field is useful if two timing transactions are running concurrently and one of the transactions
needs to process data that is collected in another transaction.

File Structure Types: allow data to be read from or written to a file during transaction execution. File Structure
variables need the Data Type property set to one of the user-defined Classes. Further more, any Class that is
used in this manner should have fields that correspond to the columns in the file. A file that is being used for
input can be used as the Class Template file (Section 8.10: Importing Fields from a Template File). The two
File structure types that are available are described below.

File Output: is used to write information accumulated during transaction execution out to a file. This infor-
mation is written out in a spreadsheet like format, and the column headers describe the field information
(name, bit information, and radix) in the same manner that is used by the Class Template file. These Vari-
ables are used to store state information. The data is written out to the file sequentially, with one row for
each transaction that uses the variable.

File Input: is used to read data from a file using a spreadsheet like format. This type of Variable can be used
to drive state information. The data is written out to the file sequentially, with one row for each transac-
tion that uses the variable.

8.5: Language Independent Types

SynaptiCAD has defined a set of language independent types that is used by TestBencher Pro in place of the native
types for a given language. This is done to facilitate the development of language independent class definitions and
variables. During test bench generation the language independent type is converted to the appropriate native type for
the language being generated. Note that not all of the language independent types are supported by all of the generation
languages. The dialogs that allow selection of these types, such as the Class Definitions & Variables dialog, will only
display the language independent types that are supported for at least one of the currently licensed languages. Addi-
tionally, these dialogs support a view that will display only the items that are available for the currently selected lan-
guage.

The chart below provides a description for each of the language independent types (shown in the Syncad Types col-
umn). Following that is a chart that describes the conversion from the language independent types to the native types
for language generation.

Syncad Type BitSize Description/Values

bool 1 Truth values (1 or 0)

2_state 1 0, 1

2_state_vector variable 0,1 in vector format

byte 8 Unsigned integer represented by 8 bits

Chapter 8: Classes and Variables 75

Type Conversion

The chart below provides conversion information for converting between the language independent types (shown in
the Sncad Types column) and the generated language types. Cells that are grayed out represent items where no con-
version is available between the language independent type and the native language types.

int 32 Signed integer represented by 32 bits

unsigned_int 32 Unsigned integer represented by 32 bits

real 64 Floating poing numbers

fixed_len_string variable Series of characters enclosed by quotes

variable_len_string n/a Series of characters enclosed by quotes

time 64 Simulation time quantities

4_state 1 0, 1, X, Z

4_state_vector variable 0, 1, X, Z in vector format

event n/a Synchronization item

std_logic 1 U, X, 0, 1, Z, W, L, H, -

std_logic_vector variable U, X, 0, 1, Z, W, L, H, - in vector format

std_ulogic 1 Unresolved version of std_logic

std_ulogic_vector variable Unresolved version of std_logic_vector

signed_logic variable Signed version of std_logic_vector

unsigned_logic variable Unsigned version of std_logic_vector

Syncad Type Verilog VHDL TestBuilder

bool reg boolean bool

2_state reg bit tbvSmartSignal2StateT

2_state_vector reg bit_vector tbvSmartSignal2StateT

byte reg bit_vector tbvSmartSignal2StateT

int integer integer tbvSmartIntT

unsigned_int integer natural tbvSmartUnsignedT

real real real tbvSmartDoubleT

fixed_len_string reg string char[]

variable_len_string tbvSmartStringT

time time time

4_state reg std_logic tbvSmartSignal4StateT

Syncad Type BitSize Description/Values

 76 Chapter 8: Classes and Variables

Note that not all language types are perfectly equivalent to the language independent type. Variances are as follow:

- Verilog reg type is a four state type.

- Verilog integer type is signed.

- VHDL natural is a limited version of the VHDL integer type, so it’s max value is 231, not 232.

- Some languages do not provide an unsigned integer type.

8.6 Data Packing

Data packing is the method used to convert data structures to bit streams or byte streams. Data packing is used when
you want to work with data at a higher level of abstraction. Instead of passing data around the test bench using byte
arrays or bit streams, you can create a structure definition which defines the data in a way that is easier more human
readable way. Then, when you want to actually use this data to drive values onto a bus, the data structure can be packed
into a bit stream or array of bytes. Basically, when you pack a data structure, all of the fields will be concatenated in
the way that you specify through the packing options.

When creating structure definitions, packing properties can be individually specified for each field of the structure.
Packing can be enabled individually for each field and when enabled there are several different ways the field can be
packed. These options, which are listed below, control the order in which bits, bytes, and words are packed. Note: the
order in which fields are packed is determined by the order in which they are shown in the structure definition. The
first field (that has packing enabled) is the first field to be packed.

- Endianess: Little Endian (default) or Big Endian. If Big Endian is used, then for each field:

- each pair of bytes is swapped. Note: if the size of the field is not a multiple of 16 then this step will not be
performed.

-each pair of 16 bit words are swapped. Note: if the size of the field is not a multiple of 32 then this step will
not be performed.

- Networking: if this option is selected then the order of the bytes in the resulting packed byte array will be re-
versed.

- Bit Normal: selecting this option causes the data to be arranged so that the most significant bit of each byte is
first in the vector.

- Bit Reverse: this option causes bit vector to be reversed, resulting in the least significant bit of the vector to be
packed first and the most significant bit to be packed last.

4_state_vector reg std_logic_vector tbvSmartSignal4StateT

event event

std_logic std_logic

std_logic_vector std_logic_vector

std_ulogic std_ulogic

std_ulogic_vector std_ulogic_vector

signed_logic signed

unsigned_logic unsigned

Syncad Type Verilog VHDL TestBuilder

Chapter 8: Classes and Variables 77

Chapter 12: Language Specific Details discusses the language specific features of data packing that TestBencher sup-
ports.

8.7 Class Methods

Class methods are user defined functions and tasks that let you add HDL algorithms to the timing diagram or bus-func-
tional model. These methods can be added to individual timing diagrams, project components, or user-defined classes.
Once a class method is added to an object it shares the same scoping level as the object. It can be called during simu-
lation to perform activities that are difficult to describe graphically.

Diagram-level class methods, like diagram-level variables, are local to the timing diagram in which they are created.
These methods can be accessed using HDL Code Markers and Sample Actions. They are generated in the diagram
transaction source file so they share the same scoping level of other diagram-level objects. The code for the methods
is stored in the timing diagram file so that the methods are available for other projects (if the diagram is included in
multiple projects).

For TestBencher, project-level class methods can be accessed from the Sequencer Process in the Component Model.
These methods are specific to the project for which they are defined. The top-level module of the bus-functional model
(generated from the top-level template file for the project) contains these methods.

For TestBencher, class-level class methods can be called from the same scoping level as the variable that instantiates
the class. These methods are a part of the class definition and are stored in the respective class library. The methods
are generated in the class source code definition.

The Class Methods dialog is used to create and edit user-defined methods. Class methods are defined in three different
sections of the dialog: name, parameters, and source code. Selecting a different class method name changes the con-
tents of the other sections of the dialog. The parameters represent data that is passed into the method. The source code
is the actual code that will be placed in the generated method definition. This code is written in the generation language.
Class Methods can be specified for every licensed language, allowing diagrams, class definitions, and even the Com-
ponent Model to be language independent. To define a new class method:

- Open the Class Methods dialog from the object that you want to define the class method for:

- For diagram-level methods, click the Class Methods button located in the Diagram window.

- For class-level methods, click the Class Methods button located Classes and Variables dialog for the se-
lected class.

- For project-level methods, right click on the Component Model folder in the Project window and choose
Class Methods from the context menu.

- Create a new class method.

Select the Language that the method is to be defiend for from the Language drop-list.

- Click the New Method button to create a new method with default values.

- Double-click on the cell for any property that needs to be edited. A class method’s properties are:

 78 Chapter 8: Classes and Variables

- Method Name: the
name of the meth-
od.

- Method Type: Test-
Bencher supports
two types of
methods. Tasks
perform an opera-
tion on the param-
eters that they are
passed, but do not
specifically re-
turn any value.
Functions perform an operation on the parameters that they are passed and return a value.

- Return Type: the data type of the value that is returned by a function. This can be any of the language
independent types defined for the language, or any of the user-defined classes. Section 8.5: Lan-
guage Independent Types provides more information about the language independent types and their
conversion to the native languages.

- Bitsize: the size in bits of the value that is returned by a function. This value is only editable if the Re-
turn Type is a bit type.

- Add parameters to the class
method:

- Select the class method in
the Functions and
Tasks list. This will
cause the class methods
parameters and source
code to be displayed in
the rest of the dialog.

- Click the New Parameter button to create a new parameter with default properties.

- Double-click on the column for any property that needs to be edited. A parameter’s properties are:

- Name: the name of the parameter.

- Type: the data type of the parameter. This can be any of the Syncad types defined for the generation
language or any of the classes in the project (Section 8.2: Classes).

- Bitsize: the size in bits of the parameter. This value is only editable if the Type is a bit type.

Chapter 8: Classes and Variables 79

- Add the class method source code:

- Select the class method in the Functions and
Tasks list. This will cause the class meth-
ods parameters and source code to be dis-
played in the rest of the dialog.

- Type your source code into the Source Code
edit box.

8.8 Constrained Random Number Gen-
eration

Random values can be generated for variables. When
randomization is used, constraints are usually needed to
specify the valid ranges of the random numbers gener-
ated. Constrained random number generation is sup-
ported in TestBuilder.

To use constrained random number generation, you
must first define a variable or the fields of a class to
have a random property. Simple variables that have a
native data type can be set to random by checking one
of the random properties when you define the variables (Section 8.3 Variables). Complex variables that have a user-
defined class as the data type can also be randomly generated, but the randomization properties are set during the def-
inition of the class. Individual fields of the class that have a native data type can be set to be random (Section 8.2 Class-
es). Next the Constraints dialog is used to define the limits of the random number generation. And finally, during
simulation you will call the randomize functions of your generation language to generate the random numbers.

Constraints have the form of ConstraintName = term1 && term2 && term3 ... Where each term consists of a Boolean
expression. Constraints are entered using the different sections of the Constraint dialog. By entering the information
in this manner the Constraints are somewhat language independent. The individual expressions are language depen-
dent, so they may have to be modified slightly if moving to a different language. The Constraint dialog image shows
a complex expression for term2 = (FIELD0 < 256) && (FIELD0 >= 100).

 80 Chapter 8: Classes and Variables

There are four basic steps required for adding a constraint:

1) First, open the Constraints dialog for a random variable or class with random fields by:

- Open the Classes and Variables dialog and select the Class Definitions tab or the Variables tab depending
on what you are editing (Section 8.3: Variables or Section 8.2: Classes).

- If you working with a class, select the library and class that you want to constrain.

- Click the Constraints button in to open the Constraints dialog. The title bar of the dialog will indicate which
constraints you are editing, either a specific class or the list of variables.

2) Create new constraint and enable it:

- Double-click in the empty constraint cell to open a edit box and
type the name of the new constraint.

- Constraints with a green checkmark are enabled and will af-
fect the random number generation for the project. Click on

this column to toggle to the Disable State. A red X indi-
cates that a constraint is temporarily disabled.

3) Create a new term for the constraint.

- Select the constraint for which you want to create a new term.

- Double-click in the empty term in the Terms section to open an edit box
and type in the name of a new term. By default, each term that you add
will be anded together with the other terms for the constraint and dis-
played the Constraint Expression edit box.

- Edit the Constraint Expression directly by adding parentheses, && and ||
operators between the terms.

4) Define expressions and compound expressions for each term in the constraint:

- Select the term that will contain this expression.

- Double-click in each of cells to build an expression. At least one complete expression needs to be entered
for each term in the constraint. The rules for building expressions are given below.

- Click OK to save the constraints and close the dialog.

Expressions in Constraints

Expressions are added using the expression grid in the Constraints dialog. The Expression columns can contain any
combination of variables and variable fields that share the same scoping level of that the constraint will be used at,
constants and mathematical operators like: +, -, and * operators. The rest of the columns can contain operators: == (is
equal to), !== (is not equal to), < (is less than), > (is greater than), <= (is less than or equal to), and >= (is greater than
or equal to).

Chapter 8: Classes and Variables 81

Some possible expressions for a class with three fields, FIELD0, FIELD1 and FIELD2, include:

FIELD0 < 10

FIELD0 + FIELD1 <= 15

FIELD1 * 3 == FIELD2 - 2

The Expressions section of
the Constraints dialog con-
tains the following columns:

- The first column con-
tains the Boolean op-
erator that will
precede the expression in the term. This box is grayed out for the first expression, because it is unnecessary.
The choices for this dropdown are && (Boolean AND) and || (Boolean OR). && is the default selection.

- The second column (headed by a !) indicates whether to apply a Boolean NOT to the expression. If the ! is in the
column, then the expression will be inverted.

- The third column (Expression1) contains the left-hand side of the expression.

- The fourth column (OP) contains the comparison operator that the expression will use to compare Expression1
and Expression2.

- The fifth column (Expression2) contains the right-hand side of the expression.

8.9 File Input and Ouput Variables

Variables with a structure type of File Output or File Input are used to write or read data to or from a file. In order to
create a file variable you must first define a class that represents the structure of the file and then define a variable with
the structure type set to a file type. There is an easier automated method to making the file variables. Instead you just
add the file to the project’s Test Vector List - File Input or Test Vector List - File Output folder and TestBencher will
automatically parse the file and create a Class definition with a field for each column of the file. TestBencher also in-
stantiates the class as a variable in the project. From anywhere in the Project or a transaction of the project you can
access the file variable. File Input and File Output files use the WaveFormer Pro spreadsheet file described in Section
8.10. To add a file and create file variables:

- Define a file with the header information described in Section 8.10.

- In the Project window, open the Test Vectors Lists folder.

- For file output variable, right click on the File Output folder and choose the Add Files to File Output folder
from the context menu.

- For file input variable, right click the File Input and choose the Add Files to File Input Folder from the context
menu. Note file input is not available in all languages.

- Choosing one the above menu options will open a file dialog that lets you choose the file that defines the data
structure.

- Click OK to close the dialog and generate the class definition and variable. Choose Project > Classes and Vari-
ables menu to view the new variable and class definition.

 82 Chapter 8: Classes and Variables

8.10 Importing Fields from a Template File

A Class Template File can be used to specify the name, MSB, LSB and radix for the fields of a class. The format of
the template file is a tab-separated file that can be generated using a spreadsheet program. Note: The format used for
the class template files is compatible with WaveFormer’s spreadsheet format. This format can be exported from and
imported to timing diagrams. This is also the file format used for File Input and File Output in TestBencher (Section
8.9: File Input and Output Variables).

To define a class the just the first two header lines of the file are used. Other lines are ignored. Section 8.2: Classes
describes how to use the file to define the fields of a class. The format of the class template file should be as follows:

[Vectors] Radix=defaultRadix

fieldName1[MSB:LSB](Radix) fieldName2 fieldName3

The Vectors statement is required so that TestBencher will recognize the file format. A default radix can be specified
for both file input and output. This specification is made with the Radix= assignment. The supported radices are hex
(hexidecimal), bin (binary), dec (decimal), or real. If no default radix is provided, a hex radix is assigned. The default
radix can be overridden for a specific column by placing the radix information for that column in the field name.

The second line of the file contains the field names and optionally the size and radix of a signal. Any other lines contain
data. For input files, a line of data will be read in from the file each time a file input variable needs more data. If you
are using the file to create a file output variable the data will be ignored. During simulation the specified output file
will be opened and the data overwritten.

The example below shows the formatting for a template that contains two columns. The first line contains the Vectors
statement and a default radix of hex. The second line defines the data columns. If a class is created using this file t will
have two fields named Addr[0] and Data[7:0].

[Vectors] Radix=hex

Addr Data[7:0](bin)

A4 10110011

8.11 Semaphores

Semaphores are a special variable type that is used to help secure a critical region. Semaphores do not have the same
properties as a normal variable - the only property that can be defined is the Initial Value. Semaphores are defined at
the project level and can be accessed by transactors in the project. Multiple transactors can access the same semaphore,
so that a critical region can be defined for diagrams that are running concurrently.

Creating New Semaphores

To add a new semaphore to the project:

- Select the Project > Classes and Variables menu item. This will launch the Classes and Variables dialog.

- Click the Semaphores tab. This will display the Semaphores that are available in the current project.

- Click the New Semaphore button to add a new Semaphore to the project. The Name and Initial Value can be
edited by double-clicking the values in the tree. New Semaphores can also be created from the Marker dialog
by using the name of a new semaphore when creating a Semaphore or Pipeline Boundary marker (see Section
7.7: Semaphore Markers or Section 7.8: Pipeline Boundary Markers for more information.

- The Delete Semaphore or <delete> key will delete the currently selected Semaphore.

Using Semaphores with a Marker

Semaphores can be used in a transactor that is part of a project using the Semaphore Marker or the Pipeline Bound-
ary marker type. These two marker types are described in more detail in Section 7.7: Semaphore Markers and Section
7.8: Pipeline Boundary Markers.

Chapter 8: Classes and Variables 83

 84 Chapter 8: Classes and Variables

Chapter 9: Project Component Template File 85

Chapter 9: Project Component and Transaction
Sequencer

When TestBencher creates a bus functional model from a project, it generates the Component Model from a user-spec-
ified template file. The Component Model is the top-level control file for the project. For top-level projects, this is the
place where the transactions are instantiated and if there is a MUT it is instantiated. The template file also maintains
the Sequencer Process, which holds the Transaction Sequencer logic for applying transactions to the MUT. For sub-
projects, this is the place where any initialization class methods are handled.

The template file is specified in the Project Wizard when the project is first created (Section 2.1: Creating, Opening,
and Saving Projects). The template file is a generation language source code file where both the user and TestBencher
insert source code. When the generation language for a project is changed, the template file must be changed using the
technique described in Section 9.6: Changing a Project Template File. TestBencher generates the bus-functional mod-
el code within the pairs of commented key words called macros. Each time the bus-functional model is generated the
code within the macro lines is overwritten. An example of a macro keyword pair is:

-- $ComponentInstantiationsForAllDiagrams

-- End $ComponentInstantiationsForAllDiagrams

The Sequencer Process is the area in the template file where you will construct the Transaction Sequencer that de-
fines how to apply transactions to the model under test. Transactions can be called directly using the Insert Diagram
Calls dialog (see Section 9.1: Transaction Calls), read from a file using the Transaction Manager queue (see Section
9.6: Transaction Mnaager and Test Reader), or randomly generated using the Transaction Generator (see Section 9.3:
Transaction Generator). The Transaction Monitor (see Section 9.5: Transaction Monitor) creates a coverage report
on the operation of the Transaction Generator. Structural calls like loops and conditional statements can be added to
control the test execution and generate data (see Section 9.2: Writing Code in the Template File). The sequencer pro-
cess is outside of any macro statements so the code will be preserved during code generation process. By default the
top-level template file contains one Sequencer Process, but you can add more sequencer processes if you have sets of
transactions that need to execute completely asynchronously.

9.1 Transaction Calls

The Insert Diagram Subroutine Calls dialog generates diagram apply calls so you do not need to memorize the func-
tion syntax. Each timing diagram generates three task calls: Apply, Apply-nowait, and Abort. Apply runs the transac-
tion in a blocking mode, and Apply-nowait runs the transaction concurrently with other transactions. The Master/Slave
Diagram Setting (see Section 3.8: Diagram Settings Dialog - General Tab) determines how many times a transaction
executes. Master Transactors run once and stop. Slave Transactors and Global Clocks run in a looping mode until an
Abort call is received.

In addition to these task calls, you can also place HDL code in the sequencer. One example where this would be useful
is if you wish to place conditions on whether or not a timing transaction is called, or on the parameter values that you
wish to have applied.

An alternative method to placing transaction calls in the sequencer process is to create a file external to the bus-func-
tional model with transaction calls and during simulation read the transaction calls from a file (Section 9.3: Transaction
Manager and Test Reader).

To edit the sequencer process:
- Double-click on the Component Model folder in the Project window to open the template file in an editor win-

dow. Appendix A: Editor Commands has information on the editor commands and using external editors.

 86 Chapter 9: Project Component Template File

- Scroll down in the template file until you find the Sequencer Process. You will see a comment in the code that
looks like:

Transaction Sequencer – After this comment, define how to

 apply transactions to the model under test using:

- Click in the template file just below this comment, then right click and select Insert Diagram Calls… from the
context menu to open the Insert Diagram Calls dialog. This dialog contains a list of available ‘Apply’ state-
ments, one for each diagram in the project. If you have not added any diagrams to your project the list will be
empty.

- Select a timing diagram name. The Run Mode radio buttons will default to Apply for Master transactions to run
them in a blocking mode. For Slaves the default is Apply-nowait to run the transaction concurrently with
subsequent apply calls.

- Either double click on the timing diagram name to accept the defaults OR choose a Run Mode radio button and
press the Insert button. Either of these actions will insert an apply call.

Note: The Apply statement was inserted at the same line as your cursor. The Insert Diagram Call dialog is a
modeless dialog it can remain open while you perform other actions. Inserting additional Apply state-
ments causes those statements to be added on successive lines.

- If any of the applied transactions contain variables, then edit the template code to provide values for variable
names (see Section 9.2: Writing Code in the Template File for more details). In the example Apply statement
below, a value of three is assigned to stateVar.

// Apply_verySimpleCyclic(stateVar);

Apply_verySimpleCyclic(3);

9.2 Writing Code in the Template File

Generation language source code can be added anywhere in the template file, except for inside a macro statement. The
macro statements are places in which TestBencher will place the generated code. The most common place to add
source code to a template file is in the sequencer process. This process is the area where diagram calls are placed in
the template file (see Section 9.1: Transaction Calls).

Chapter 9: Project Component Template File 87

You can write source code to place conditions on whether or not a diagram call is made based on information returned
from previous transactions. You can define variables, loops, and other control structures. This is also the place where
calls to the randomization functions are made.

The following is a Verilog example of a sequencer process that performs a sweep test on an SRAM. The variable delay
is defined to be a counter for a For loop. Each time the loop executes a different delay is passed into the Write and
Read cycles of the SRAM. This delay conditional controls a signal in the Write and Read transaction. Variables could
have been defined for the transactions, but we choose to pass in values. The transaction apply calls were written using
the Insert Diagram Calls dialog as described in Section 9: Transaction Calls. The user wrote all of the other code in
this example.

 // Sequencer Process

real delay0; // delay0 will serve as the index and the delay value

initial

begin

 for (delay0 = 32.0; delay0 > 5.0; delay0 = delay0 - 5.0)

 begin

 // Apply_Tbwrite(addr , data , $realtobits(delay0_min));

 Apply_Tbwrite('hF0 , 'hAE , $realtobits(delay0));

 // Apply_tbread(addr , data , $realtobits(delay0_min));

 Apply_tbread('hF0 , 'hAE , $realtobits(delay0));

 end

 Abort_tbglobal_clock;

$fclose(logfile);

end

9.3 Transaction Manager and Test Reader

In addition to sequentially executing transaction calls that are
placed in the template file, TestBencher can generate a transaction
manager module that maintains a queue of transactions to be exe-
cuted. Transactions can be generated randomly, posted to the
queue during simulation, or read in from a file using the Test
Reader component.

TestBencher automatically generates Transaction Manager and
Test Reader code from the transactions included in the project. At-
tempting to create and maintain this type of code manually is dif-
ficult because the code changes each time you add a new
transaction type or change the number and types of parameters for
a transaction.

During simulation, the Transaction Manager maintains a queue of
transactions to be executed. The manager can randomly generate
transactions to fill the queue based on a weighted function. Trans-
action Diagrams can dynamically post other transaction calls to
the queue based on responses from the model under test. And the
transaction manager technology also supports TestBencher's hier-
archical bus-functional model feature by allowing BFMs to post

 88 Chapter 9: Project Component Template File

transactions to sub-component BFM queues. In particular, a top-level BFM model can generate test sequences and post
them to the child BFM transaction managers. All calls to transactions can be specified either as relative or fixed path,
allowing any transaction to be referenced from anywhere in the project.

The transaction manager can also fill the queue by reading the transaction test sequences from a file. Different test
sequence files can be applied to a test bench without having to recompile the test bench. Transaction test sequence data
files are also easier to create and maintain because they are smaller and contain less repetitive information.

With TestBencher's transaction manager and test reader feature, the user simply defines the inputs and outputs for each
transaction type as part of his normal test bench creation process and the test reader code is automatically created. The
user inserts Post Diagram calls into the template file or into HDL code segments in a transaction. These Post Diagram
calls place the transaction apply calls in the transaction manager’s queue. The user can also make Apply File calls to
hand an entire file to the Transaction Manager.

To enable the Transaction Manager generation:

- In the Project window, right click on the Component Model folder and choose Project Generation Properties
from the context menu. This opens the Project Generation Properties dialog.

- Check the Enable Tranasction Manager checkbox click OK to close the dialog.

- During the next code generation TestBencher will generate a transaction manager module. Section 10.1:Gener-
ate the Bus-functional Model describes how to force a code generation.

- Next add apply file calls and post diagram calls to the template file and code segments in the timing diagram.

Chapter 12: Language Specific Details discusses the syntax for apply calls and post diagram calls.

Format of the Transaction Manager Test Sequence Files

An input file can be created to specify the test sequence used by the Transaction Manager module. This input file con-
tains a row for each transaction to be called. Below is an example of test sequence file.

CLK_generator 1

arbiter 1

slave0.write 1

slave0.read 1

slave0.disconnect 1

reset 0

master0.write 0 f0000000 f 10

master0.read 0 f0000000 f 10

slave0.write 2

slave0.read 2

slave0.disconnect 2

arbiter 2

CLK_generator 2

Each row has the following information in the following order:

- Instance Transaction Name - the name of the transaction and the relative path from the top-level module to the
project that contains the transaction manager. Some options are transactionName, subProjectInstance-
Name.transactionName, projectName.transactionName, and projectName.subProjectInstance-
Name.transactionName.

Chapter 9: Project Component Template File 89

- Transaction Mode - an integer to specify how the transaction should be executed. The different types of modes
are shown below.

0 => Apply - will block the transaction manager from executing any more transactions until completed.
1 => Apply_nowait - will trigger the transaction and immediately execute the next apply call in the queue.
2 => Abort - aborts the specified transaction.

- Parameters - there can be any number of parameters depending on the transaction that is specified in the trans-
action path. TestBencher will read in the appropriate parameters based on the transaction type.

Once the file is created it can be applied by calling the ApplyFile or ApplyFile_nowait method for the transaction man-
ager. This varies slightly depending on which language you use (see Chapter 12: Language Specific Details for more
information). When ApplyFile is called, it will immediately close the current file that is being used by the transaction
manager (if there was one specified earlier) and open the new file that is specified. The transaction manager will then
read one line at a time from the file whenever the apply call queue becomes empty. ApplyFile will not return control
to the calling process until all transactions have been read from the file. ApplyFile_nowait will return as soon as the
file is opened. So, if ApplyFile_nowait is called twice on the same transaction manager without any delay between the
calls, the first call will be overridden by the second call since only one file can be opened at a time by one transaction
manager.

Transaction Manager Modes

The Transaction Manager can also be run in different modes by calling a SetApplyCallMode function (see Chapter
12: Language Specific Details) . By default the mode it is set to looping so that transactions are executed when they
are available in the queue. There are three modes:

TB_LOOPING - run the next transaction from the queue whenever there are apply calls in the queue.

TB_ONCE - only run the next transaction from queue when ApplyNextTransaction is called.

TB_SUSPEND - finish running the current transaction and stop reading apply calls from the queue until the apply
call mode is changed.

9.4 Transaction Generator

The Transaction Generator creates random master transaction calls and feeds them to the Transaction Manager during
simulation. A weightings table defines the state machine and probability of executing transactions one after another.
Calls to RunRandomTransaction apply transactions to the Transaction Manager. Each time a random transaction is
applied the arguments for the transaction are randomly generated using the constraint definitions of the variables. The
Transaction Generator is supported in Verilog with TestBuilder, VHDL with TestBuilder, and pure VHDL.

When the Transaction Manager is enabled the code for the Transaction Generator is automatically made available
(Section 9.4). The weightings table and function calls SetTransactorWeightings and RunRandomTransaction will
also be generated. You will use these table and function calls to control how the Transaction Generator works.

The weightings table is a state matrix where the rows define the most recent master transactor to be applied and the
columns define the next transaction to execute. The first row/column is reserved for the reset or starting state of the
BFM. The order of the master transactions is the same as they appear in the Project Window. A zero in the weightings
table indicates that a specific transaction will never follow another. The higher the number the more likely a transaction
will follow. You must copy and paste this table from the generation macro to the code section below the Insert Dia-
gram Calls comment, because the original table within the macro is rewritten each time the test bench is generated.

 90 Chapter 9: Project Component Template File

Below is an example of some TestBuilder code for the sequencer process. The first call starts the clock. Next the
weightings table has been edited so that it is 5 times more likely that diagram write will run after a reset than diagram
read. The SetTransactorWeightings call registers the table. The for loop calls RunRandomTransaction 10 times and
randomly applies read and write transactions. The data and address arguments for the transactions are automatically
randomly generated using the constraint settings for the variables.

//***

// Transaction Sequencer – After this comment, define how to

// apply transactions to the model under test using:

//

// - Transaction calls (Insert Diagram Calls in right-click menu)

// - Transaction Manager to read transactions from a file

// - Transaction Generator’s RunRandomTransactor() randomizes calls

// - Source code in C++ and TestBuilder

//**

Tvm.Apply_clk_generator.spawn();

 // to | |

 // reset | write | read

int weightings[3][3] = { { 0, 5, 1 }, // from reset

 { 0, 1, 1 }, // from write

 { 0, 1, 1 } }; // from read

SetTransactorWeightings(weightings);

or (int i=0; i < 10; i++)

 {

 RunRandomTransactor();

 }

To use the Transaction Generator:

- Make sure that the transaction manager generation is enabled, by right clicking on the Component Model in the
project node, and choosing Project Generation Properties menu and then confirm that the Enable Trans-
action Manager is checked.

- Press the Make TB button, <button image>, to generate the test bench.

- In the Project window, double click on the Component Model node to open the project component template file
in an Editor window.

- Scroll down to the Sequencer Process and read through the code until you find the weightings table. TestBencher
automatically generates a table of 1’s that means that there is an equal chance of each transaction being ran-
domly generated.

- Copy and paste the weightings table and the SetTransactorWeightings function to the area below the Insert
Diagram Calls comment.

- Edit the weightings table to indicate that the chance of a transaction being generated after another one occurs.
The larger the number the higher the chance of being generated.

- Use the Insert Diagram Calls dialog to add the calls to start the slave diagrams like the clock generator (Section
9.1: Transaction Calls).

Chapter 9: Project Component Template File 91

- Then make calls to the RunRandomTransactor() function to apply transactions to the model under test.

9.5 Transaction Monitor

The Transaction Monitor works with the Transaction Generator to ensure that the randomly generated transactions ad-
equately cover the test space. The transaction monitor will monitor the generated transactions and create a coverage
log. During simulation, the monitor will use a series of test criteria change the Generator’s weightings table to force
certain cases to execute. The Transaction Monitor is supported in Verilog with TestBuilder, VHDL with TestBuilder,
and pure VHDL.

To use the Transaction Monitor:

- Setup the Transaction Generator as described in Section 9.5: Transaction Monitor.

- Edit the Transaction Monitor test strategy

- After a simulation the coverage log is displayed in the Report Window

9.6 Changing a Project’s Template File

A top-level template file is automatically created for a project when the project is created. Sometimes it is necessary
to change the template file for a project, such as when the language of the project is changed (see Section 2.5: Com-
ponent and Component Instance Generation Properties for information on changing the project language). The Copy
TestBench Template dialog is used to copy a new template file into a project. The Set TestBench Template dialog is
used to switch between different template files.

Some generation languages or language combinations require multiple template files. In these cases, the template file
that contains the Component Model and Sequencer Process is the template file that is named in the Copy and Set Test-
Bench Template dialogs. Any secondary template files are copied automatically when the primary template file is cop-
ied. The secondary template files are displayed under the Component Model folder of the Project window.

To copy a new template file and use it in a project:

- Before you change the template file for a project, it is recommended that you copy the Project directory to an-
other place. For multiple languages, the template files are not language independent. Create separate projects
with the language dependent template files in different directories, and include the same transactions and class
libraries.

- Choose Project > Copy
TestBencher Tem-
plate File menu op-
tion to open a dialog
with the same name.

- Check the Add to
Project checkbox so
that the template will
be included in the
project.

- Use Original Template
box to choose a tem-
plate file that matches the language that you are working or use the Browse (...) button to find one on the hard
drive. If the project language is a language dialect combination, such as TestBuilder/Verilog, then the selected
template should be for the primary language - TestBuilder in this case. The following is a list of the template
files shipped with TestBencher:

- TestBuilder uses tbuidOnlyTBench.cpp as the primary and tbuildOnlyTBench.h will be included as a sec-
ondary template file.

 92 Chapter 9: Project Component Template File

- Verilog usse tbench.v or isotbench.v as the primary file. The isotbench template file dumps just the top-
level signals of the MUT to the waveform window, while the tbench template file also dumps all of the
transaction status signals. The tbench is the default test bench template file because it provides more in-
formation and the file is simpler.

- Verilog with TestBuilder Integration uses tbuildTBench.cpp as the primary, with TbuildTBench.h, tbuild-
Main.cpp, and tbench.v included as secondary template files.

- VHDL uses either tbench.vhd or isotbench.vhd as the primary file. The isotbench template file dumps just
the top-level signals of the MUT to the waveform window, while the tbench template file also dumps all
of the transaction status signals. The tbench is the default test bench template file because it provides
more information and the file is simpler.

- VHDL with TestBuilder Integration uses tbuildTBench.cpp as the primary, with TbuildTBench.h, tbuild-
Main.cpp, and tbench.vhd included as secondary template files.

- In New Template edit box, enter a file name for your new template file (this file will become your test bench).

- Click OK to copy the template and add it to the Project window. Notice that the template file appears in the
project window.

To switch in a different template file:

- Choose Project > Set New Component Template menu option to open a file dialog.

- Choose a template file that you created earlier using the Copy TestBench Template dialog.

- Click OK to close the dialog and switch in the new template file.

Chapter 10: Generation and Simulation 93

Chapter 10: Generation and Simulation

This chapter discusses how to generate the top-level test bench from the template file, errors during test bench gener-
ation and simulation of the test bench. TestBencher can control external simulators, compilers, and HVL tools to build,
link and simulate a design.

10.1 Generate the Bus Functional Model

The last thing that you do in TestBencher before simulating the model is to generate the test bench. TestBencher ver-
ifies that the source code files for each of the timing diagrams in the project is up-to-date. The diagram transaction files
are updated each time the timing diagrams are saved. All class libraries are regenerated. And the macro statements in
the project’s template files are expanded.

Any errors and warnings that may occur during test bench generation will be reported in the test bench log file, wave-
perl.log in the Report window. Some possible errors include marker loops don’t match, invalid marker attributes, un-
able to find input and output files, and invalid file formats. TestBencher will also warn you of potential problems, such
as two distinct signals within the same timing diagram using identical names but different directions (this may not al-
ways be a problem, but if the signal is being used as an output of the diagram, it may cause confusion). The log file
will also list of the total number of warnings and errors that have occurred. If there are no errors in code generation
then you are ready to simulate.

To generate the bus-functional model:

- Click the Generate Test Bench button on the Simulation button bar.

- In the Report window, click the waveperl.log tab and check for errors. If you can’t see the Report window, select
the Window > Report menu to bring the window to the top of the screen.

- If there are errors, fix them and regenerate the test bench.

- If there are no errors, then you are ready to simulate.

10.2 Simulator and Compiler Settings Dialog

The external simulator and compiler paths are set using the Simulator / Compiler Settings dialog. These settings are
saved in the syncad.ini file. Before you simulate, you will also need to set which tool to use for a particular project by
using the Project Simulation Properties dialog covered in Section 10.3: Project Simulation Properties Dialog. To
change the path information for external tools:

- Choose the Options > Simulator / Compiler Settings menu option to open the Simulator/Compiler Settings
dialog.

- In the Tools drop-down choose your simulator or compiler. Ths will enable options based on the selected Tool.

- The Compile Syncad Libraries button allows you to compile libraries needed by external simulators and com-
pilers for SynaptiCAD projects.

- In the Simulator Path edit box either type in the path name or use the browse button to search for the path.

- The PLI/VPI Library setting is for the full path to the PLI or VPI library that the selected tool will use.

 94 Chapter 10: Generation and Simulation

- Continue to setup the paths for each tool that you are interested in using. When you are done click the OK button
to close the dialog.

10.3 Project Simulation Properties Dialog

The Project Simulation Properties dialog determines the simulator run time options and which simulator to use for
projects and diagrams. This information is stored inside the project HPJ file and the INI file. To open the Project Sim-
ulation Properties dialog:

- Select the Project > Project Simulation Properties menu option to open the dialog.

The top half of the dialog determines if you are editing the default settings that affect new projects, the settings for
simulating diagrams, or the settings for the current project.

- If the Settings Template radio button is selected, then you are editing the default settings that are used by new
projects. These are stored in the INI file each time the program is closed. The Restore Default Templates
button at the bottom of is used to reset the INI file to the factory default settings for this dialog.

- If the Global Diagram Settings radio button is selected, then you are editing the options for how transactions
are simulated (simulated signals in a Diagram window). These are stored in the INI file.

- If the Current Project Settings radio button is selected, then you are editing the project settings for the current
project. These settings are stored in the Project HPJ file when you save the project.

Chapter 10: Generation and Simulation 95

- By default the Settings Template and the Current Project Settings use the Debug Configuration. If you are mov-
ing projects to different machines or if you want to have different settings for debugging and releasing a
project you may want to create a new configuration to store the different settings. If you need to define a new
configuration:

- Press the Add button to open the Add New Configuration dialog, that lets you specify a name and the default
configuration to copy the settings from.

- Rename button lets you change the name of the current configuration.

- Delete removes the current configuration.

- Use the Configurations drop-down to choose which configuration you will be editing.

The General tab contains simulation options that are standard across all of the simulators.

- The Grab Top Level Signals
check box turns on the au-
tomatic monitoring of ports
or internal signals in the
top-level module.

- The Capture and Show
Watched Signals check
box enables the display of
waveform results from a
simulation run.

- The Dump Watched Signals
check box will generate a
dump file for any watched
signals in the diagram. The
generated file will have the
same name as the .btim file,
only with an extension of
.VCD.

- The Break at Time Zero
check box is the equivalent
of setting a breakpoint at
time zero. This starts the
simulator and allows you to
enter commands into the console window that will be executed during simulation.

- The Clear Log File Before Compile checkbox clears the simulation log just prior to a new compilation being
performed. This log maintains compilation notes, as well as some simulation notes. Note that in this dialog
you can also change the name of this log (see Logfile below).

- When the Auto Parse Project on Load box is checked, user source files are automatically parsed and built when
the project is loaded. The top-level module is the first module that is not included by another for Verilog; it
is the first entity/architecture pair parsed for VHDL. This is mainly used by Actel Libero customers with
WaveFormer Lite.

- The Generate Test Bench on Build Project automatically updates the test bench for changes to timing dia-
grams. Turn this off if you want to temporarily change some of the generated source code manually or to
avoid updating the test bench on diagram changes.

- The Log File specifies the name of the log file that receives all the simulation results and information. By default
TestBencher uses simulation.log.

 96 Chapter 10: Generation and Simulation

The Verilog tab specifies the simulator and simulation options used for Verilog projects.

- The Simulator Type drop-down determines the simulator.

- The Simulator Settings button opens the Simulator / Compiler Settings dialog where you can edit the simulator
paths.

- Include Directories edit box specifies the directories where TestBencher searches for included files. The fol-
lowing is a Windows example (Unix users should use / slashes):

C:\design\project;c:\design\library

- The Library Directories edit box lists the path and directories where the program searches for library files. Test-
Bencher will try to match any undefined modules with the names of the files that have one of the file exten-
sions listed in the Lib Extensions edit box. The simulator does not look inside a file unless the undefined
module name exactly matches a file name. The simulator does not look at any files unless there are file ex-
tensions listed in the Lib Extensions edit box. The following is a Windows example (Unix users should use
the / slashes):

C:\design\project;c:\design\library

- The Lib Extensions edit box
specifies the file name ex-
tension used when search-
ing for library files in the
library directory. Each li-
brary extension should be-
gin with the period
character followed by the
extension name. Use a
semicolon to separate mul-
tiple file extensions.

.v;.vo

- The Delay Settings radio but-
tons determines which de-
lay value is used in
min:typ:max expressions.
These settings are output as
either the +maxdelays,
+mindelays, or +typde-
lays command line simula-
tor option.

- Compile, Elaborator, and
Simulator option edit box-
es allow you to write additional command line options that will be passed to the tool when it is run. Most
simulators do not support all three phases of command line options.

- When the Generate Command File button is pushed, the text contained in the Simulator Options edit box along
with the list of Verilog files specified in the Project window are written to a Command File. This file can then
be used with the Command Line version of your simulator to run a simulation without the TestBencher GUI.

- The Make Parameters Watchable determines whether or not parameters will be included with the automatic
monitoring of ports and internal signals in the top-level module.

The VHDL tab contains the simulation options and simulator used for VHDL projects.

- The Simulator Type drop-down determines the simulator.

Chapter 10: Generation and Simulation 97

- The Simulator Settings button opens the Simulator / Compiler Settings dialog where you can edit the simulator
paths.

- The VHDL 93 checkbox spec-
ifies that the project dialect
for the generated files is
VHDL 93.

- The Compile, Elaborator,
and Simulator options edit
box allow you to write ad-
ditional command line op-
tions that will be passed to
the tool when it is run.
Most simulators do not
support all three phases of
command line options.

The TestBuilder tab contains the
compiler options and compiler used
for C++ projects.

- The Compiler Type drop-down determines the C++ compiler.

- The Compiler Settings button opens the Simulator / Compiler Settings dialog where you can review and edit
the compiler paths.

- The Compile, Linker, and Run Time options edit box allow you to write additional command line options that
will be passed to the tool when it is run.

10.4 Simulating the Bus Functional Model

The test bench that you have created can now be simulated by taking all of the files produced by TestBencher Pro and
placing them into a simulator.

 98 Chapter 10: Generation and Simulation

TestBencher can also remotely control VHDL and Verilog simulators and C++ compilers. The settings for Synapti-
CAD’s simulators are controlled through the Project Simulation Properties dialog described in Section 10.3. The set-
tings for external simulators and tools are controlled using Simulator/Compiler Settings Dialog dialog described in
Section 10.2.

During simulation, if the simulator resides on the same computer as TestBencher, the External Program Integration
feature will use the project directory for the simulated TestBencher project as the working directory for the simulator.
If the simulator is on a different computer, the External Program Integration feature will use the directory specified in
the Remote Path edit box as the working directory for the simulator.

Both the External programs and the internal SynaptiCAD simulators are controlled through the simulation button bar.

To build and simulate a bus-functional model:

- Follow the normal steps to generate the bus-functional model (Section 10.1).

- Follow the steps in Section 10.3: Project Simulation Properties Dialog and Section 10.2: Simulator and Com-
piler Settings Dialog to set up the simulator settings.

- Click the yellow Compile the Active Project button. This builds (parses) the project using the tools spec-

ified in the Project Simulation Properties and Simulator/Compiler Settings Dialog dialogs. For mixed lan-
guage projects like TestBuilder several tools will be needed to compile different parts of the project. For
example, TestBuilder project will require a C++ compiler and an HDL simulator.

- In the Report window, look at the Errors tab for any compile errors. If there are errors then fix them, regenerate
the test bench, and recompile. If there are no errors continue on with the project.

- Run the Simulation. There are three ways to run the simulation within TestBencher:

- Click the Run button on the simulation button bar.

- Select the Simulate > Run menu option, OR

- Click the <F5> key.

- During Simulation the status of the simulation is displayed in the bottom right hand
corner of the TestBencher Pro main window. When the simulation is complete
Simulation Good will be displayed.

- When the simulation is complete the following information will be displayed:

- The simulation waveforms will be displayed in the Stimulus and Results diagram window.

- The simulation log file is shown in the Report window. Any notes, warnings and errors reported by the sim-
ulator will appear in this log.

- In the Project window, the Simulated Model folder contains the compiled MUT and the Stimulus & Results
diagram. If there are any archived stimulus/results files, they will be in the Stimulus & Results Archive
folder. If any extra files are necessary for TestBencher to build the project, they will be automatically
added to the project, and contained in the Compiled Library Files folder.

ModelSim Details

Once the design is loaded into ModelSim, three windows will be opened automatically - the Structure, Signals, and
Wave windows. Additionally, all of the top-level signals from the component entity will be placed in the Wave win-
dow. These signals will allow you to monitor the MUT and the transactions during simulation.

Chapter 10: Generation and Simulation 99

- To restart the simulation with ModelSim, click the black restart button on TestBencher’s simulation button

bar.

10.5 Generating Command Files for Third Party Simulators

A command file for Verilog simulators can be generated for a project that will be simulated using a third party simu-
lator. This file can be used when the third party simulator is invoked from the command line. TestBencher can also
control the simulators graphically using the techniques described in Section 10.4: Simulating the Bus Functional Mod-
el and Section 10.2: Simulator and Compiler Settings Dialog.

To generate the command file:

- Select the Project > Project Simulation Properties... menu option to open the Project Simulation Properties
dialog.

- Click the Generate Command File button.

- Enter the filename for the command file in the Filename edit box. (The file extension will be “.vc” by default.)

- Click the Save button to save the file.

To use this file with a third party simulator, you then use the ‘-f’ switch followed by a space and then the filename
entered above to simulate the project.

For example, consider a project named test. If the generated command file is named ‘test.vc’ this file would be used
with VeriLogger’s command line simulator using:

vlogcmd –f test.vc

10.6 TestBencher Simulation Modes

TestBencher supports two methods for generating test benches: system level BFM generation and unit-level testing.
The unit-level testing features are used to create quick stimulus based test benches for smaller designs and models.
These features are covered in the VeriLogger Pro on-line help. The system-level features are covered in this manual.

To support these methods of test bench generation, TestBencher has two simulation settings, Auto Run and Debug
Run, that determine how the internal simulator reacts when diagrams are modified. If Auto Run is active then changes
in the diagram are automatically re-simulated, and if Debug Run is active then simulations are run only when specified
by the user. The simulation settings are important if you are using simulated signals to construct the Transaction Dia-
grams. TestBencher should be set to Debug Run when you are developing new timing diagrams.

Set your simulation mode to Debug Run:

- If the mode button is set to Auto Run, click the button to toggle the mode to Debug Run. The mode button is
located on the simulation toolbar, below the main menu in TestBencher.

 100 Chapter 10: Generation and Simulation

Chapter 11: Test Bench Techniques 101

Chapter 11: Test Bench Techniques

TestBencher can generate bus-functional models that represent many different bus transactions and functions. Here we
have gathered some of the techniques that we use to model different types of functionality.

11.1 Master and Slave Transactions

Many bus specifications are described using the terms Master and Slave transactions. Master transactions are usually
applied to the MUT, perform a function and then stop executing. And slave transactions run in a continuous looping
mode. A slave waits for a certain set of conditions to become true so it can perform a function, and then return to the
waiting mode.

For TestBencher, any timing diagram can be a Master or a Slave transaction based on the Execution setting in the
Diagram Settings dialog (see Section 3.8: Diagram Settings Dialog - General Tab for more information about the Di-
agram Execution settings). TestBencher generates appropriate transaction calls for each timing diagram. The following
table describes the typical settings available for master and slave transactions:

Section 9.1: Transaction Calls has more information about the Insert Diagram Subroutine Call dialog. The PCI ex-
ample in the Examples directory has both the master and slave diagrams drawn for the specification. You can load the
project for your particular language and experiment with the transactions.

11.2 Waiting for Signal Transitions

You can use either samples or markers to make a transaction wait for an event or series of events before continuing to
execute. Below is a chart of the different methods of waiting and the recommended usage for each method. Chapter
6: Transaction Samples and Chapter 7: Transaction Markers have more information about Samples and Markers.

Master Run Once Apply

Master in Pipeline Apply-nowait

Stop Master Abort

Slave and Clock Processes Apply-nowait

Stop Slave and Clock Processes Abort

Wait On How Long Construct Used Settings

One or more conditions

(e.g., signal states)

Block until all conditions

are true

Wait Until Marker

One event or condition Block until time out Sample with Multiplier min == max

multiplier > 1

check Blocking

uncheck Full Expect

One event or condition Block until time out Sample with window min != max

multiplier == 1

check Blocking

uncheck Full Expect

One event Block indefinitely or until

diagram times out

Sensitive Edge

 102 Chapter 11: Test Bench Techniques

Below is an example of timing diagram that demonstrates these techniques for waiting.

- The Marker called Marker_WaitForGrantAndFrame is a Wait Until Marker type with the condition of
(Grant===0 && Frame ===0) {the condition code is in the generated language, in this example Verilog}.
This marker will block the transaction until the condition becomes true.

- The rising edge on Frame is sensitive. This will cause the diagram to wait for that edge to occur.

- The Sample called Sample0 is setup as blocking and non-full expect with a multiplier of 3. The Multiplier is the
sample's time out. Checking the blocking box causes the sample to block the triggering clocked sequence until
it times out or until the condition becomes true. Disabling the Full Expect box means that the sample will not
expect the drawn condition to be true during the entire window. Instead it will continue sampling as long as
the condition is NOT true and the time out has not been reached.

- This sample also has a conditional delay, SAMPLE0_THEN_Delay, so that when it passes it will cause the val-
ue passed into $$addr to be written out to the Address signal. If Sample0 times out then the Address signal
never gets driven.

- The samples Sample1 and Sample1_THEN check for Grant and Frame to be true over successive clock cycles.
They are defined using the same settings as Sample0 in the previous example except the multiplier is set to 1.

Note: If a Sample has a multiplier of 1 and no window defined at simulation then the blocking check box has no effect
on the behavior of the Sample. The Sample will execute and then immediately pass or fail depending on the condition.

11.3 Burst Mode Transactions

Burst Mode Transactions usually process 1 or several cycles depending on information received at simulation time.
TestBencher can model burst mode transactions using a combination of marker loops, parameter variables, and sam-
ples. The PCI example projects that are shipped with TestBencher have examples of both master and slave burst mode
read transactions. The basic design for a burst mode transaction is as follows:

1) Draw a timing diagram that represents the smallest possible transaction.

Several events or condi-

tions across several clock

cycles

Each sample may block

with time out

Several samples chained

together (first samples

will block subsequent

samples

check Blocking

uncheck Full Expect

Wait On How Long Construct Used Settings

Chapter 11: Test Bench Techniques 103

2) Use a marker loop to define the beginning and ending of the repetitive section.

3) If it is a master transaction, use an input variable to pass in the number of cycles to process. This variable will
be used in the condition statement of the Marker loop.

4) If it is a slave transaction, you will use one or more samples chained together to determine if the burst transac-
tion should continue.

Below is an example of a simple burst mode master read cycle.

- The marker, WaitUntilBusAcquisition, will cause the transaction to wait until the condition (GNTn === 0 &&
FRAMEn === 1 && IRDYn === 1) is true (Section 7.4: Wait Until Markers).

- The sample, CheckForDevsel, checks the DEVSELn signal and if it is active low then the transaction proceeds
normally. If it fails the transaction aborts (Chapter 6: Transaction Samples).

- A diagram variable called dataCycles is defined as a transaction input with a type of integer. When the transac-
tion is called, dataCycles will carry the number of cycles that the master read will execute (Section 8.3: Vari-
ables). The For Loop uses the dataCycles variable to determine how many read cycles to perform (Section
7.5: Loop Markers).

- Two state variables, address and be, are also transaction inputs (Section 4.3: Driving Waveform States with Vari-
ables).

11.4 Conditionally Moving Signal Edges (Sweep Tests)

Sometimes it is desirable to move an input signal edge each time it is applied to the MUT. This allows testing the MUT
under different timing conditions. Sweep tests can also be performed that move the edge until a setup failure is gener-
ated.

 104 Chapter 11: Test Bench Techniques

Delays are used to move and conditionally trigger signal edges. The min and max values of a delay specify either a
fixed time or the number of clocking signal edges between two signal transitions. These values can be defined as vari-
ables that can be passed into the delay each time it executes. Chapter 5: Transaction Delays, Setups, and Holds has
information on adding and editing delays. There are two types of variables that can be used to drive the min and max
value: parameter variables and diagram-level variables.

- If the delay value is to be passed into the transaction, check the Is Apply Subroutine Input checkbox in the
Delay Properties dialog. This will create two variables named delayName_min and delayName_max.
These variables will be inputs to the transaction and will automatically drive the value of the delays (Section
5.2: Delays).

- If the delay value is to be calculated within the transaction, create a diagram-level variable using the Variables
button in the diagram (Section 3.3: Transaction Level Variables and Section 8.3: Variables). Type the name
of the variable into the min or max value of the delay.

For sweep tests you will want to monitor the reaction of the MUT using either a setup, a continuous setup signal, or a
sample, depending on exactly what you want to check:

- Graphical setups monitor the distance between two specific edges in a transaction. (Section 5.3: Setups and
Holds).

- Continuous setups monitor all of the edge transitions between any two signals in a timing diagram. A continuous
setup or hold is created using the Advanced Register and Latch Controls in the Signal Properties dialog as
described in Section 5.5: Creating Continuous Setups and Holds.

- A windowed, full-expect sample can be used monitor the MUT response. This type of sample checks to make
sure that the MUT signals transition within the correct time period (Chapter 6: Transaction Samples).

11.5 Reading and Writing Serial Data

To read and write serial data you will use diagram-level variables and manipulate the data coming in or going out of
the transaction. The UART (Universal Asynchronous Receiver/Transmitter) project in the Examples directory is an
excellent example of manipulating serial data.

Chapter 11: Test Bench Techniques 105

The segment of the UART write timing diagram shown above takes a byte it receives from the top-level project and
serializes the data to the MUT. In this diagram we have:

- Defined a diagram-level variable data that is an input to the transaction that will hold the byte data to serialize.
Also a parameter variable called speed that determines the number of clock cycles needed to write out a bit
of data.

- On each clock cycle (or number of clock cycles) a new data bit is driven to the MUT. The min values of the
delaysare defined using equations with the variable speed that controls how many clock cycles that they
should delay.

Below is a section of the UART read timing diagram converts a serial bit stream from the MUT into bytes that are
passed out of the transaction. In this diagram we have:

- Defined two diagram-level variables: an output variable called data to hold the data coming back from the MUT,
an input variable called expectedData to compare against the actual data. Also a parameter variable called
speed that determines the number of clock cycles needed to read a bit of data.

- On each clock cycle (or number of clock cycles) a new piece of data is read in. The speed variable is used to
define the sampling window for each full-expect, blocking sample. At the end of the sample widow, each sam-
ple compares the actual data with the expected data and logs any errors. The samples also store the actual data
into the correct bit of the data variable. This is done using the Store Sample Value to Variable section of the
sample's HDL Code Generation dialog (Section 6.2: Storing Sample Values in User Defined Variables).

- Since data is an output to the transaction it is passed out of the transaction to the top-level project.

11.6 Testing a Counter Model

Testing a counter with a reactive test bench is a lot easier than it is with traditional stimulus based test benches. The
test bench can be designed with just a small two cycle timing diagram with a loop. Below is an image of a diagram
that tests a 32-bit counter.

Discussion of the Counter Test Bench:

- Initialize the counter: the first cycle in the diagram is used to initialize the starting value of the counter.

- Counter Loop: two loop markers surround the second cycle. The first marker starts the For-Loop and initializes
an index variable called expectedCount. Each time through the loop expectedCount will be incremented. The
For-loop is defined in the Marker dialog of the first marker.

 106 Chapter 11: Test Bench Techniques

- Expected Counter Output: The signal counter is blue to indicate that it is the output of the model under test
and an input to the test bench. Each time the counter is incremented we expect the counter model to increment
and to be equal to the index of the For-Loop. The SAMPLE0 compares the actual simulation output with the
value generated by the test bench. The bus state of the counter signal contains code that defines how the model
output should change with each loop. It is language dependent:

VHDL: The image shows a VHDL test bench that converts integer expectedCount to a 32-bit standard logic
vector. The CONV_STD_LOGIC_VECTOR is necessary because VHDL does not automatically con-
vert integers to standard logic vectors.

Verilog: The code would just be expectedCount, because the language is able to automatically do the con-
version.

11.7 External Model Support

TestBencher’s BFMs can be used with external models from any of the languages supported by TestBencher, with oth-
er TestBencher BFMs, and with TestBencher Reference Models. TestBencher automates the process of hooking up
the project BFM to other models that exist in your system by using information contained in the different folders of
the project.

VHDL and Verilog Models

External VHDL or Verilog models are first added to the User Source Files folder and then the Extract MUT Ports
function extracts the model information and makes it available to TestBencher. This is discussed in Chapter 1: Step 2
Add the MUT to the Project and Step 3: Extract Port Information.

Other TestBencher BFMs

Other TestBencher BFMs are first added to the Project Library folder and then instantiated using the context menu
functions. This is Section 2.3: Sub-Projects and Section 2.4: Component Instances of Sub-Projects. The BFMs should
be of the same generation language as the main TestBencher project, so in this case they should all be TestBencher
BFMs.

TestBencher Reference Models

TestBencher can generate golden reference models that run in parallel with a VHDL or Verilog RTL model. Golden
reference models are high-level behavioral descriptions of a design and are used to compare to the results of an RTL-
level model during simulation. When this feature is turned on, TestBencher handles all of the code generation and
hook-up of the model. This is covered in Section 2.7: Golden Reference Models.

Chapter 12: Language Specific Details 107

Chapter 12: Language Specific Details

TestBencher generates test benches from language independent timing diagrams. Even though the timing diagrams
look the same, the implementation may be significantly different from language to language. This is why we have re-
frained from discussing implementation earlier in the manual. The template file code is dependent on the language.
This chapter discusses how the transactions execute, the generated files needed for simulating the model, and the trans-
action manager post and apply file calls.

12.1 Verilog

This section lists the files generated for pure Verilog models. Combination projects using Verilog and the C++ Test-
Builder library are covered in the TestBuilder section. Some advanced features like Transaction Manger generation,
random constrained data generation, and advanced data structures are supported using the combined TestBuilder and
Verilog languages.

Files needed for simulation:

projectName.v – contains top-level module for project. This is the Component Model file (the expanded template
file).

One timing transaction file for each timing diagram in the project:

projectName_diagramName.v – contains transaction module.

All of the MUT files listed in the User Source Files folder in the Project window.

syncad.v - contains base constants that are used throughout the generated code.

wavelib.v - (optional) contains register and latch module definitions that are used by timing diagrams with clocked
“Simulated” signals. If there are no clocked simulated signals in the entire test bench then this file is not need-
ed.

Library files - When a new project is created a lib/verilog directory is created in the project directory that contains
various modules that may or may not be used by the project. Currently, these libraries consist of different
clock models that are used based on the types of output clocks used in the timing diagrams.

projectName_emulator.v - (optional) If using a reference model (see Section 2.7: Golden Reference Models) then
a file named projectName_emulator_skeleton.v is generated and placed in the Associated Files folder for the
Component Model. This file should be copied to another file named projectName_emulator.v, placed into the
User HDL Files folder and modified to represent the reference model.

tb_projectName_tasks.v - (optional) If using File I/O then this file will be generated and added to the Associated
Files folder for the Component Model.

tb_libraryName_user_classes.v - (optional) one file is generated for each imported (Non-default) library in the
project hierarchy. All of these library packages are placed in the Associated Files folder for the Component
Model of the top level project during test bench generation.

Accessing Project Level Variables from a Diagram in Verilog

In Verilog, only variables that are instances of user defined classes are accessible from the diagram. In these cases, the
variable is just referenced by its name. An upward search through the scopes will be done to find the variable instance.
For example, if you had an ATMCell class definition and an instance named cell either at the project-level or the di-
agram-level, then you could access the HEC field of cell by using cell.HEC syntax.

Data Packing in Verilog

When packing is enabled for at least one field of a class definition, that class will have an additional field that is an
array of bytes which is used during packing operations. This array is called packed_array. The pack task will pack
the fields to packed_array. The unpack task will fill the data fields of the class with data from packed_array. For ex-

 108 Chapter 12: Language Specific Details

ample, if you had a variable named VAR0 that was an instance of a class definition with fields that had packing en-
abled, you would call VAR0.pack to pack those fields into VAR0.packed_array. This byte array could then be
accessed by an index to drive a signal. If you were reading data from a bus you would use Sample(s) to store the data
one byte at a time into the packed_array. Then once you were done reading, you would call VAR0.unpack to convert
the data to its class form.

12.2 VHDL

This section lists the files generated for pure VHDL models. Combination projects using VHDL and the C++ Test-
Builder library are covered in the TestBuilder section. Some advanced features like random constrained data genera-
tion, and advanced data structures are supported using the combined TestBuilder and VHDL languages. Also several
files are generated for top-level projects that are not generated for sub-projects. These files are marked as top-level
project only.

Files needed for simulation:

projectName.vhd - contains top-level module for project. This is the Component Model file (the expanded tem-
plate file).

One timing transaction file for each timing diagram in the project:

 projectName_diagramName.vhd – contains transaction module.

All of the MUT files listed in the User Source Files folder in the Project window.

syncad.vhd - (top-level project only) contains package declaration and body that has various types, functions, and
procedures defined that are used throughout the generated test bench code.

wavelib.vhd - (top-level project only) contains register and latch module definitions that are used by timing dia-
grams with clocked “Simulated” signals. If there are no clocked simulated signals in the entire test bench then
this file is not needed. The files in the User HDL Files folder.

tb_control_types.vhd - (top-level project only) contains signal and variable declarations that are used by the ap-
ply call procedures throughout the test bench.

tb_diagram_types.vhd - (top-level project only) contains package that defines enumerated type for diagram
types. Each diagram in project hierarchy is given a different value.

tb_transaction_manager.vhd - (top-level project only) contains entity/architecture for transaction manager (if
enabled anywhere within project hierarchy). This transaction manager is instantiated once in each project that
has a transaction manager enabled.

Associated Library files that are used by TestBencher. When a new project is created a lib/verilog directory is cre-
ated in the project directory that contains various modules that may or may not be used by the project. Cur-
rently, these libraries consist of different clock models that are used based on the types of output clocks used
in the timing diagrams.

tb_projectName_tasks.vhd - (optional) If using File I/O then this file will be generated and added to the Associ-
ated Files folder for the Component Model.

tb_projectName_parameters.vhd - (optional) contains package that encapsulates the parameters that are passed
into each diagram. This package is used by the apply calls to communicate data to/from diagrams.

tb_projectName_user_classes.vhd - (optional) this file contains record type declarations for user defined classes
that exist in the project. This file is added to the Associated Files folder for the Component Model during test
bench generation.

tb_libraryName_user_classes.vhd - (optional) one file is generated for each imported (Non-default) library in
the project hierarchy. All of these library packages are placed in the Associated Files folder for the Compo-
nent Model of the top-level project during test bench generation.

Chapter 12: Language Specific Details 109

TestBencher assumes that your VHDL compiler includes pre-written libraries for packages std_logic_1164,
std_logic_textio, and std_logic_arith. If you do not have these library files, you will need to acquire them.
(SynaptiCAD can provide these files – contact our sales department.) Analyze (compile) these files and run
your simulator.

Procedures for Apply Calls, Transaction Manager, and File I/O

The procedures generated for diagram Apply Calls and Transaction Manager calls have similar syntax and parameters.
These procedures can be used in the project template file. In VHDL there are two parameters, tb_control and instan-
cePath, that are used to control the transactions. If you type in the diagram calls by hand you must pass in values for
these parameters.

Diagram Apply Calls

The diagram apply calls are defined in the tb_projectName_tasks package. These are usually added to the template
file using the Insert Diagram Calls dialog (Section 9.1: Transaction Calls). However you may type in the apply calls
by hand. To apply a diagram that is not in the current project, specify the package path when calling the apply call (i.e.
work.tb_projectName_tasks.Apply_diagramName(…)). An alternate method is to add a use clause statement at the
top of the component model that brings in the task package for the project that contains the diagram. If you use the
Insert Diagram Calls dialog this is handled for you. Each timing diagram generates several apply call procedures:

Master Transaction Apply Calls:

Apply_ diagramName (signal tb_Control : inout tb_Control_Type;

 instancePath : in string;

 <parameters>);

Apply_ diagramName_nowait (signal tb_Control : inout tb_Control_Type;

 instancePath : in string;

 <parameters>);

Abort_ diagramName (signal tb_Control : inout tb_Control_Type;

 instancePath : in string);

Slave Transaction Apply Calls:

Apply_ diagramName_looping (signal tb_Control : inout tb_Control_Type;

 instancePath : in string;

 <parameters>);

Apply_ diagramName_looping_nowait (signal tb_Control : inout tb_Control_Type;

 instancePath : in string;

 <parameters>);

Abort_ diagramName (signal tb_Control : inout tb_Control_Type;

 instancePath : in string);

Transaction Manager Procedures

When the transaction manager is enabled for a project there are additional procedures defined in the
tb_projectName_tasks and the tb_control_types packages (Section 9.3: Transaction Manager and Test Reader).
These procedures allow you to post the apply calls to any transaction manager in the project using an interface that is
very similar to the normal apply calls. Basically, you just need to specify which transaction manager you want to post
to. There are also procedures that allow you to apply a file that contains a list of transactions to post to the transaction
manager. Listed below are the transaction manager procedures.

 110 Chapter 12: Language Specific Details

Procedures for posting transactions individually to the transaction manager (defined in
tb_projectName_tasks.vhd):

Master Transaction Manager Apply Calls:

Post_ diagramName (signal tb_Control : inout tb_Control_Type;

 TransactionManagerPath : in string;

 InstancePath : in string;

 <parameters>);

Post_ diagramName_nowait (signal tb_Control : inout tb_Control_Type;

 TransactionManagerPath : in string;

 InstancePath : in string;

 <parameters>);

Post_Abort_ diagramName (signal tb_Control : inout tb_Control_Type;

 transactionManagerPath : in string;

 instancePath : in string);

Slave Transaction Manager Apply Calls:

Post_ diagramName_looping (signal tb_Control : inout tb_Control_Type;

 TransactionManagerPath : in string;

 InstancePath : in string;

 <parameters>);

Post_ diagramName_looping_nowait (signal tb_Control : inout tb_Control_Type;

 transactionManagerPath : in string;

 instancePath : in string;

 <parameters>);

Post_Abort_ diagramName (signal tb_Control : inout tb_Control_Type;

 transactionManagerPath : in string;

 instancePath : in string);

Procedures for posting transactions from files (defined in tb_control_types.vhd)

ApplyFile (signal tb_Control : inout tb_Control_Type;

 fileName : string;

 transactionManagerPath : in string)

This procedure applies all of the transactions listed in the file. It will not return to the calling process until
all transactions have been read from the file and placed into the transaction manager’s queue. If the
file contains all concurrent (nowait) transactions then this function will return in zero simulation
time since the transaction manager will start all of the transactions without blocking the next one.

ApplyFile_nowait (signal tb_Control : inout tb_Control_Type;

 fileName : string;

 transactionManagerPath : in string)

This procedure will perform the same actions as ApplyFile except that it returns to the calling process
immediately regardless of the type of apply calls listed in the file.

Chapter 12: Language Specific Details 111

Procedures used to handle transaction manager mode (defined in tb_control_types.vhd). Note: At the printing of this
manual the following procedures were not supported. Check the on-line documentation for actual implementation.

SetApplyCallMode (transactionManagerPath : in string; mode : in TStatus)

Sets the mode of the transaction manager. By default it is set to looping so that transactions are executed
when they are available in the queue. The mode can be any of the following:

TB_ONCE - only run the next transaction from queue when ApplyNextTransaction is called.

TB_LOOPING - run the next transaction from the queue whenever there are apply calls in the queue.

TB_SUSPEND - finish running the current transaction and stop reading apply calls from the queue
until the apply call mode is changed.

ApplyNextTransaction (transactionManagerPath : in string)

Applies the next transaction from the queue if the apply call mode is set to TB_ONCE. Otherwise, calling
this function has no effect on the transaction manager.

Parameters for Apply Calls and Transaction Manager Procedures

tb_Control – is a global record that contains control signals needed to trigger transactions. Pass this record into
the apply or post calls.

instancePath – the hierarchical path to the project which contains the transaction you wish to apply. You can type
in the full instance path or use the generic tb_InstancePath that contains the project instance path for trans-
actions relative to the current entity.

transactionManagerPath - path to project that contains the transaction manager that you want to post the apply
call to. Typically, this will be tb_InstancePath which is a generic available in all project components and
diagrams that specifies the full instance path to the current scope. So, tb_InstancePath would be used if you
want to post the apply call to the transaction manager that is owned by the project in which you're calling the
Post method from.

fileName – the name of the file on disk that contains the list of apply call data.

<parameters> - there will be additional parameters to the apply calls based on the type of parameters that exist
for your diagram. Note that the “nowait” apply call procedures will NOT contain any parameters that are out-
puts from the transaction since the apply call will return immediately to the calling process once the diagram
starts.

Examples of Apply Calls and Transaction Manager Procedures

Example 1. Apply diagram contained in local project

Apply_write(tb_Control, tb_InstancePath, x"AB", x"EF");

- writes data EF to address AB

Example 2. Apply diagram in another project by specifying relative instance path to current project

work.tb_master_tasks.Apply_write(tb_Control, tb_InstancePath&"master0",

 x"AB", x"EF");

Example 3. Apply diagram in another project by specifying full instance path from root

Work.tb_master_tasks.Apply_write(tb_Control, "PCI.master0", x"AB", x"EF");

Transaction Generator

If the Transaction Manager is enabled then the following functions and weighting table will be generated for the
project. These are covered in Section 9.5: Transaction Monitor.

 112 Chapter 12: Language Specific Details

- The weightings table is a matrix of the master transactions. The order of the transactions is the order in which
they appear in the Project window. Copy this out of the generation macro to the code section of the Sequencer
process before editing. An example table might look like:

good := SetTransactorWeightings(tb_InstancePath, ((0, 5, 1),

 (0, 1, 1),

 (0, 1, 1)));

- The SetTransactorWeightings function registers the weightings matrix. You can change the weightings at any
time during the simulation.

- The RunRandomTransactor function randomly creates a transaction call and hands it to the Transaction Man-
ager to put on the transaction queue. Each time a transaction is created with this function the transaction ar-
guments are randomly generated using the constraint settings for the variables. Usually this function is used
inside of a loop for example:

for i in 0 to 9 loop

 transactor := GetRandomTransactor(tb_InstancePath, transactor);

 PostRandomTransaction(tb_Control, tb_InstancePath,

 T<projectName>MasterTransactor'image(transactor));

end loop;

Accessing Project Level Variables from a Diagram in VHDL

In VHDL, from a diagram, you have access to any variable that is defined in the owning project. To get access to a
project level variable, use the following syntax:

work.tb_ projectName_parameters.tb_ProjectVariables(tb_ProjectID). variableName

Note: tb_ProjectID is an integer variable that is defined in the project. Each project in the hierarchy receives a unique
project id during initialization of the simulation.

For example, if you had a project named master and a project level variable named address, you enter something like
the following:

work.tb_master_parameters.tb_ProjectVariables(tb_ProjectID).address

Data Packing in VHDL

The following two functions are generated in the user class package when packing is enabled for a class:

function pack(dataStructure : className) return std_logic_vector;

function unpack(packed_data : std_logic_vector(packed_size downto 0))

 return className;

className - a variable that is an instance of a user defined class.

packed_size - the sum of all the packed field bit sizes.

When using the packing options in VHDL, you typically will want to create a variable of type std_logic_vector that
has a size that matches the total number of bits in all of the packed fields. This variable is then used when packing and
unpacking.

12.3 TestBuilder

This section lists the files generated for pure TestBuilder models. For combination TestBuilder and VHDL or Verilog
projects, the top-level files and transaction calls will be the same as the pure TestBuilder projects, but the transaction-
level files will be in the native VHDL and Verilog languages.

Chapter 12: Language Specific Details 113

Files needed for simulation:

projectName.cpp/h – contains top-level module for the project. This is the component model file (the expanded
template file).

For pure TestBuilder projects: one timing transaction file and header file for each timing diagram in the project:

projectName_transactionName.cpp/h– contains transaction module.

All of the MUT files listed in the User Source Files folder in the Project window.

syncad_tb.cpp/h – contains base classes and enumerated types that are used through out the generated code.

tbvMain.cpp - (top level project only) contains tbvMain function which is the entry point for TestBuilder. The
tbvTvmTypes array is also defined in this file.

projectName_library.cpp/h – contains the user defined classes defined in the project library.

libraryName_library.cpp/h – one file is generated for each imported library in the project hierarchy. All of these
library packages are placed in the Associated Files folder for the Component Model of the top-level project
during test bench generation.

tb_syncad_classes.cpp/h – contains common operators used by user defined classes and variables throughout the
project hierarchy.

projectName_emulator.cpp/h – If using a reference model (see Section 2.7: Golden Reference Models) then a
file named projectName_emulator_skeleton.cpp is generated and placed in the Associated Files folder for the
Component Model. This file should be copied to another file named projectName_emulator.cpp, placed into
the User HDL Files folder and modified to represent the reference model.

Transaction Parameters for Apply Calls

With TestBuilder, the parameters for a transaction apply call are placed into an arguments class of type
TProjectName_diagramName_Args. Each apply call has an instance of the arguments class named DefaultArgs
that can be used to pass information to the apply call. You can also define other instances and pass them into the run
method of the apply call. This is useful when using randomization routines.

For example, consider a project with a timing diagram called write that has parameters data and addr. To call the
transaction and pass in a data value of 0xAE, and an address value of 0xF0 you would use the following calls:

Tvm.Apply_write.DefaultArgs.addr = 0xF0;

Tvm.Apply_write.DefaultArgs.data = 0xAE;

Tvm.Apply_write.run();

Generating Random Values Using TestBuilder

TestBuilder provides the capability of generating random values for variables, class instances, and apply call parame-
ters. Generation of these values is performed in the Sequencer Process of the Component Model in the TestBuilder
template file. The values that are generated when the randomize method is called will conform to the constraints that
are defined for the data members being randomized. See Section 8.8: Constrained Random Number Generation for
more information on constraints.

To randomize a variable or class instance:

- Double-click on the Component Model in the Project window to open the template file.

- Scroll down to the Sequencer Process.

- Add a call to randomize on the parameter that you wish to randomize. Note: this method can be called on the
entire instance of any class or on specific fields of a class instance.

Example. Write random data to a random address.

Tvm.Apply_write.DefaultArgs.randomize();

 114 Chapter 12: Language Specific Details

Tvm.Apply_write.run();

TestBuilder Methods for use with Transaction Manager

The following methods are available for the TestBuilder Transaction Manager. The post diagram calls insert the trans-
action into the Transaction Manager’s queue. The apply file calls hand an entire file to the transaction manager.

Diagram Method Calls: For each diagram there are three transaction classes (once, looping, and abort). For each
of the transaction classes there are two diagram methods are defined: Post and Post_nowait. The post diagram
calls insert the transaction into the Transaction Manager’s queue. To call one of these methods from the tem-
plate file use either the relative diagram name or the instance name of the subproject (ie.
tvm.Apply_diagramName_looping.Post(…) or tvm.projectInstance-
Name.Apply_diagramName_once.Post(…) .

Post (TransactionManager, <parameters>);

Post_nowait (TransactionManager, <parameters>);

TransactionManager - For each project with a transaction manager enabled, there will be a model called
TransactionManager that is instantiated in the component model. If you are posting to the manager in
the current project use TransactionManager for this parameter. If you are posting to a subprojects man-
ager use subprojectInstanceName.TransactionManager.

<parameters> - there will be additional parameters to the apply calls based on the type of parameters that
exist for your diagram. Note that the “nowait” apply call procedures will NOT contain any parameters
that are outputs from the transaction since the apply call will return immediately to the calling process
once the diagram starts.

For example, consider a project with a timing diagram called write that has parameters data and addr. To
post a write transaction to run once you would use the following calls:

Tvm.Apply_write.DefaultArgs.addr = 0xF0;

Tvm.Apply_write.DefaultArgs.data = 0xAE;

Tvm.Apply_write.Post(TransactionManager);

Transaction Manager Methods

ApplyFile (const char* filename)

This method sets the file name for which the transaction manager will pull apply calls from. This method
is blocking. This method will not return until the last apply call in the file has been placed on the
transaction manager’s queue.

ApplyFile_nowait (const char* filename)

This method performs the same actions as ApplyFile except that it is spawned off in another process and
returns control to the calling method immediately.

SetApplyCallMode (TApplyCallMode mode)

Sets the mode of the transaction manager. By default it is set to looping so that transactions are executed
when they are available in the queue. TApplyCallMode can be any of the following:

TB_ONCE – If this is set then ApplyNextTransaction() controls when apply calls are taken off of
the transaction manager's queue and applied.

TB_LOOPING - run the next transaction from the queue whenever there are apply calls in the queue.

TB_SUSPEND - finish running the current transaction and stop reading apply calls from the queue
until the apply call mode is changed or ApplyNextTransaction is called.

ApplyNextTransaction ()

If the apply call mode is set to TB_ONCE then this will cause the next apply call on the queue to be pulled
off and run.

Chapter 12: Language Specific Details 115

Post_ApplyCall (tbvTaskT* const taskP)

This method is not normally used directly by user written code. It is used within the diagram port methods
to post apply calls to the transaction manager. This method could be used directly if you create the
tbvTaskT object manually. Each transaction has three corresponding classes defined that derives
from tbvTaskT and are named TApply_projectName_diagramName,
TApply_projectName_diagramName_looping, TAbort_projectName_diagramName.

Transaction Generator

If the Transaction Manager is enabled then the following functions and weighting table will be generated for the
project. These are covered in Section 9.5.

- The weightings table is a matrix of the master transactions. The order of the transactions is the order in which
they appear in the Project window. Copy this out of the generation macro to the code section of the Sequencer
process before editing. An example table might look like:

 // to | |

 // reset | write | read

int weightings [3][3] = { { 0, 5, 1 }, // from reset

 { 0, 1, 1 }, // from write

 { 0, 1, 1 } }; // from read

- The SetTransactorWeightings function registers the weightings matrix. You can change the weightings at any
time during the simulation.

SetTransactorWeightings (weightings);

- The RunRandomTransactor function randomly creates a transaction call and hands it to the Transaction Man-
ager to put on the transaction queue. Each time a transaction is created with this function the transaction ar-
guments are randomly generated using the constraint settings for the variables. Usually this function is used
inside of a loop for example:

for (int i=0; i < 10; i++)

 {

 RunRandomTransactor ();

 }

 116 Chapter 12: Language Specific Details

Appendix A: Editor Commands 117

Appendix A: Editor Commands

TestBencher supports complete editing and debugging integration with the popular XEmacs text editor.

Enabling XEmacs Integration

To enable VeriLogger's XEmacs Integration feature:

- Install XEmacs onto the computer that is running VeriLogger.

Note: XEmacs Integration requires version 21.2 or later of XEmacs.

- Select the Editor > Editor/Report Preferences menu option to open the Editor/Report Preferences dialog.

- Check the Use XEmacs Editor checkbox.

- Enter the path to the XEmacs editor in the XEmacs Path edit box, or click the Browse (...) button to locate the
XEmacs files.

- Click the OK button to enable XEmacs integration and close the Editor/Report Preferences dialog.

For information on XEmacs, including installation information, see the official XEmacs website at http://www.xe-
macs.org/. All the files needed to install XEmacs are available by anonymous FTP from ftp.xemacs.org/.

Windows users will only need to install the basic XEmacs package. Unix users will also need to install two libraries,
annotations and derived, available from ftp.xemacs.org/. Unix users will also need to make sure that global support
for the XPM image format is installed before attempting to configure XEmacs. The most recent version of the global
XPM support library can be obtained from ftp.x.org/contrib/libraries/. Consult your system administrator if you have
any questions.

Information about using breakpoints with TestBencher's Verilog simulator can be found in Section 4.5 of the VeriLog-
ger Pro manual.

TestBencher Editor Commands

Listed below are the keyboard and mouse commands supported by the editor window.

Key Purpose

Left/right arrow Moves the cursor one space left or right

Up/down arrow Moves the cursor one line up or down

Page Up Moves the cursor one page up

Page Down Moves the cursor one page down

Home Move to the beginning of the current line

End Move to the end of the current line

Backspace Deletes the character to the left of the cursor

OR deletes the selected text

Delete Deletes the character to the right of the cursor

OR deletes the selected text

 118 Appendix A: Editor Commands

Shift+Leftt Selects text one character at a time to the left

Shift+Right Selects text one character at a time to the right

Shift+Down Selects one line of text down

Shift+Up Selects one line of text up

Shift+End Selects text to the end of the line

Shift+Home Selects text to the beginning of the line

Shift+Page Down Selects text down one window

OR, cancels the selection if the next window is already selected

Shift+Page Up Selects text up one window

OR, cancels the selection if the previous window is already selected

Ctrl+Shift+Left Selects text to the previous word

Ctrl+Shift+Right Selects text to the next word

Ctrl+Shift+Up Selects text to the beginning of the paragraph

Ctrl+Shift+Down Selects text to the end of the paragraph

Ctrl+Shift+End Selects text to the end of the document

Ctrl+Shift+Home Selects text to the beginning of the document

Ctrl+A Selects all of the text in the document

F1 Opens this help file

F4 Print from window

Shift+F4 Print options

Tab Inserts Tab

Ctrl+F Search and/or Replace Dialog

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+F Search

Ctrl+G Jump to line#

Appendix A: Editor Commands 119

In addition to the Editor windows, TestBencher’s Report window displays are full-featured editor windows.

 120 Appendix A: Editor Commands

Appendix B: Supported Simulators 121

Appendix B: Supported Simulators

TestBencher supports a number of different simulators, depending on whether TestBencher is running under Windows
or UNIX. For more information on this feature, see Section 10.2 Simulator/Compiler Settings Dialog.

The following simulators and languages are supported under Windows:

Verilog-XL: Verilog and TestBuilder/Verilog.

VeriLogger command line: Verilog and TestBuilder/Verilog.

ModelSim command line: Verilog, VHDL, and TestBuilder/Verilog. (TestBencher cannot display simulation E
is used.)

ModelSim GUI: Verilog, VHDL, and TestBuilder/Verilog.

NC Verilog: Verilog and TestBuilder/Verilog.

NC VHDL: VHDL

Active-HDL: Verilog, VHDL, TestBuilder/Verilog and TestBuilder/VHDL.

The following simulators and languages are supported under UNIX:

Verilog-XL: Verilog and TestBuilder/Verilog.

VeriLogger command line: Verilog and TestBuilder/Verilog.

ModelSim command line: Verilog, VHDL, and TestBuilder/Verilog.

ModelSim GUI: Verilog, VHDL and TestBuilder/Verilog.

VCS: Verilog and TestBuilder/Verilog.

NC Verilog: Verilog and TestBuilder/Verilog.

NC VHDL: VHDL.

If TestBencher is running under Windows, VCS must be run on a different computer (running UNIX); Verilog-XL,
NC Verilog, and NC VHDL can be run on the same computer as TestBencher or on a different computer (running
UNIX). ModelSim (both versions) and the command-line version of VeriLogger can only be run on the computer run-
ning TestBencher.

If TestBencher is running under UNIX, all integrated simulators must be run on the computer that is running Test-
Bencher.

 122 Appendix B: Supported Simulators

Appendix D: Language Independent Operators 123

Appendix C: Language Independent Operators

SynaptiCAD uses a standard Boolean equation format. These equations can be use in a Signal’s Boolean Equation edit
box and a waveform state’s Virtual state value.

The table below lists the operators that are supported by TestBencher. The operators are grouped and separated by gray
rows. Each group contains the operators that are of equal precedence. The groups are listed in order of precedence from
highest to lowest. The Syncad column depicts language independent operator representations that can be used for any
generation language for which TestBencher can generate an appropriate expression. Where the Syncad column dis-
plays (any), any operator that is valid for a generation language can be used.

Operator Name Equations States Autogen Syncad Example Definition

Parentheses yes yes yes () (a + b) Groups expressions

Bit Concatenation yes yes yes { } {a,b,...,z} Concatenates operands

sequentially

Bit Replication yes yes yes {{ }} {n{a}} Concatenates a n times

Selection yes yes yes [] a[i] Selects a piece of the operand

Hierarchy yes yes yes . a.b Hierarchially accesses scope

List Slice no yes no .. a[0..5] See e Language Reference

manual

List Concatenation no yes no { ; } {a;b;c} See e Language Reference

manual

Bit Slice yes yes yes :

to

downto

a[3:0] Used with selection operator to

select a rang of bits

Class no yes no @ @class1 Specifies that the name follow-

ing @ is an instance of a user

defined classa

State Variable no yes no $$ $$addr Specified that the name fol-

lowing $$ is a State Variableb

Macro Definition no yes no ‘ ’base_address Refers to a defined macro

Logical Negation yes yes yes not !a Converts a nonzero operand

into 0 and a zero operand into

1

Bitwise Negation yes yes yes not ~a Performs bit-wise negation of

operand

 124 Appendix D: Language Independent Operators

Absolute Value yes yes yes abs() abs(a) Negates operand if it is nega-

tive, otherwise operand is not

changed

Exponentiation yes yes yes ** a**2 See VHDL Language Refer-

ence manual

Identity yes yes yes + +a Leaves operand unchanged

Negation yes yes yes - -a Negates operand

Multiply yes yes yes * a * b Multiplies left and right oper-

ands

Divide yes yes yes / a / b Divides left and right operands

Modulo yes yes yes mod a mod b See VHDL Language Refer-

ence manual

Remainder yes yes yes rem a % b Performs division operation

and returns remainder

Addition yes yes yes + a + b Adds left and right operands

Subtraction yes yes yes - a - b Subtracts right operand from

left operand

Shift Left Logical yes yes yes <<

(any)

a << 5 Performs left shift of left oper-

and by the number of bit posi-

tions specified by right

operand

Shift Right Logical yes yes yes >>

(any)

a >> 5 Performs right shift of left

operand by the number of bit

positions specified by right

operand

Shift Left Arithmetic yes yes yes sla a sla 5 See VHDL Language Refer-

ence manual

Shift Right Arithmetic yes yes yes sra a sra 5 See VHDL Language Refer-

ence manual

Rotate Left yes yes yes rol a rol 5 See VHDL Language Refer-

ence manual

Rotate Right yes yes yes ror a ror 5 See VHDL Language Refer-

ence manual

Operator Name Equations States Autogen Syncad Example Definition

Appendix D: Language Independent Operators 125

Less Than yes yes yes < a < b Returns TRUE if the first

expression is smaller than the

second expression

Less Than or Equal yes yes yes <= a <= b Returns TRUE if the second

expression is not smaller than

the first expression

Greater Than yes yes yes > a > b Returns TRUE if the second

expression is greater than the

first expression

Greater Than or Equal yes yes yes >= a >= b Returns TRUE is the first

expression is not smaller than

the second expression

Positive Subtype

Identification

no yes no is a a is a b See e Language Reference

manual

Negative Subtype

Identification

no yes no is not a a is not a b See e Language Reference

manual

Equality yes yes yes == a == b Results 1 if operands are the

same, otherwise 0c

Inequality yes yes yes !=

(any)

a != b Results in 1 if operands are dif-

ference, otherwise 0c

Case Equality yes yes yes ===

(any)

a === b Results in 1 if operands are

same, otherwise 0c

Case Inequality yes yes yes !==

(any)

a !== b Results in 1 if operands are dif-

ferent, otherwise 0c

Wild Equality no yes yes =?= a =?= b Results in 1 if operands are

same, otherwise 0 (x and y are

wildcards)c

Wild Inequality no yes yes !?= a !?= b Results in 1 if operands are dif-

ferent, otherwise 0 (x and y are

wildcards)c

In Range List no yes no in a in b See e Language Reference

manual

Positive String

Matching

no yes no ~ a ~ b See e Language Reference

manual

Negative String

Matching

no yes no !~ a !~ b See e Language Reference

manual

Operator Name Equations States Autogen Syncad Example Definition

 126 Appendix D: Language Independent Operators

Bitwise AND yes yes yes & a & b Performs bit-wise AND of two

operands

Reduction AND yes yes yes & &a Performs bit-wise AND of one

operand and results in a single

bit

Reduction NAND yes yes yes ~& ~&a Performs bit-wise NAND of

one operand and results in a

single bit

Bitwise XOR yes yes yes ^ a ^ b Performs XOR of two

oeprands

Reduction XOR yes yes yes ^ ^a Performs bit-wise XOR of one

operand and results in a single

bit

Bitwise XNOR yes yes yes ^~or~^ a ^~ b Performs bit-wse XNOR of

two operands

Reduction XNOR yes yes yes ^~or~^ ^~a Performs bit-wise XNOR of

one operand and results in a

single bit

Bitwise OR yes yes yes | a | b Performs bit-wise OR of two

operands

Reduction OR yes yes yes | |a Performs bit-wise OR of one

operand and results in a single

bit

Bitwise NOR yes yes yes nor

(any)

a |~b Performs bit-wise NOR of two

operands

Reduction NOR yes yes yes ~| ~|a Performs bit-wise NOR of one

operand and results in a single

bit

Bitwise NAND yes yes yes nand a nand b Performs bit-wise NAND of

two operands

VHDL Bitwise

XNOR

yes yes yes xnor a xnor b Performs bit-wise XNOR of

two operandsd

VHDL Bitwise XOR yes yes yes xor a xor b Performs bit-wise XOR of two

operandsd

VHDL Bitwise OR yes yes yes or a or b Performs bit-wise OR of two

operandsd

Operator Name Equations States Autogen Syncad Example Definition

Appendix D: Language Independent Operators 127

Language Specific Operators

The operators used in building these equations can use either be the standard operators that are provided in the gener-
ation language, or they can use the language independent operators. In some cases, languages do not have an operator
to represent the operation described. TestBencher generates an expression that will replicate operations not represented
by the generation language when possible. The table below lists the operator representations for each language, as well
as the language independent operators (shown in the Syncad column). In the language specific columns in the table
below, cells the have generates: represent occurences of TestBencher generating an appropriate expression for the giv-
en operator.

VHDL Bitwise AND yes yes yes and a and b Performs bit-wise AND of two

operandsd

Logical AND yes yes yes && a && b If both operands are non-zero

then result is 1, otherwise

result is 0

Logical OR yes yes yes || a || b If either operand is non-zero

then result is 1, otherwise

result is 0

Boolean Implication yes yes yes => a => b If both operands are true or

first operand is false, then

result is 1, otherwise result is 0

Boolean Event Check no yes no now @ now @sys.a See e Language Reference

manual.

Ternary yes yes yes any (condition)?a:b If condition is TRUE then

result is a, otherwise result is b

Delay yes no no delay SIG0 delay 5 Delays left operand by time

specified by right operand

a.See Chapter 8: Classes and Variables for more information on User Defined Classes.

b.See Section 3.3: Transaction Variables for more information on State Variables.

c.Treatment of a and y values depend on language. Refer to the appropriate language reference manual for

details.

d.These operators are to be used when the VHDL precedence is needed.

Operator Name Syncad Verilog VHDL e OpenVera TestBuilder

Parentheses () () () () () ()

Bit Concatenation { } { } & %{ } { } n/a

Operator Name Equations States Autogen Syncad Example Definition

 128 Appendix D: Language Independent Operators

Bit Replication {{ }} {{ }} n/a n/a n/a n/a

Selection [] [] [] [] [] ()

Hierarchy . . n/a .

~//

. .

List Slice .. n/a n/a .. n/a n/a

List Concatenation { ; } n/a n/a { ; } n/a n/a

Bit Slice :

to

downto

: to

downto

: : ,

Class @ n/a n/a n/a n/a n/a

State Variable $$ n/a n/a n/a n/a n/a

Macro Definition ‘ ‘ n/a ‘ n/a n/a

Logical Negation !

(any)

! not ! ! !

Bitwise Negation ~

(any)

~ not ~ ~ ~

Absolute Value abs() n/a abs() n/a n/a abs()

Exponentiation ** n/a ** n/a n/a n/a

Identity + + + + + +

Negation - - - - - -

Multiply * * * * * *

Divide / / / / / /

Modulo mod n/a mod n/a n/a n/a

Remainder %

(any)

% rem % % %

Addition + + + + + +

Subtraction - - - - - -

Operator Name Syncad Verilog VHDL e OpenVera TestBuilder

Appendix D: Language Independent Operators 129

Shift Left Logical <<

(any)

<< sll << << <<

Shift Right Logical >>

(any)

>> srl >> >> >>

Shift Left Arithmetic sla n/a sla n/a n/a n/a

Shift Right Arithmetic sra n/a sra n/a n/a n/a

Rotate Left rol n/a rol n/a n/a n/a

Rotate Right ror n/a ror n/a n/a n/a

Less Than < < < < < <

Less Than or Equal <= <= <= <= <= <=

Greater Than > > > > > >

Greater Than or Equal >= >= >= >= >= >=

Positive Subtype Identification is a n/a n/a is a n/a n/a

Negative Subtype Identifica-

tion

is not a n/a n/a is not a n/a n/a

Equality == == = == == ==

Inequality !=

(any)

!= /= != != !=

Case Equality === === n/a === === n/a

Case Inequality !== !== n/a !== !== n/a

Wild Equality =?= n/a n/a n/a =?= n/a

Wild Inequality !?= n/a n/a n/a !?= n/a

In Range List in n/a n/a in n/a n/a

Positive String Matching ~ n/a n/a ~ n/a n/a

Negative String Matching !~ n/a n/a !~ n/a n/a

Bitwise AND & & n/a & & &

Reduction AND & & n/a n/a & .reductionAnd()

Operator Name Syncad Verilog VHDL e OpenVera TestBuilder

 130 Appendix D: Language Independent Operators

Reduction NAND ~& ~& n/a n/a ~& .reductionNand()

Bitwise XOR ^ ^ n/a ^ ^ ^

Reduction XOR ^ ^ n/a n/a ^ .reductionXor()

Bitwise XNOR ^~or~^ ^~or~^ n/a generates:

~(x^y)

^~or~^ generates:

~(x ^ y)

Reduction XNOR ^~or~^ ^~or~^ n/a n/a ^~or~^ .reductionXnor()

Bitwise OR | | n/a | | |

Reduction OR | | n/a n/a | .reductionOr()

Bitwise NOR nor

(any)

generates:

~(x | y)

nor generates:

~(x | y)

|~ generates:

~(x | y)

Reduction NOR ~| ~| n/a n/a ~| .reductionNor()

Bitwise NAND nand generates:

~(x & y)

nand generates:

~(x & y)

&~ generates:

~(x & y)

VHDL Bitwise XNOR xnor generates:

x ~^ y

xnor n/a n/a n/a

VHDL Bitwise XOR xor generates:

x ^ y

xor n/a n/a n/a

VHDL Bitwise OR or generates:

x | y

or n/a n/a n/a

VHDL Bitwise AND and generates:

x & y

and n/a n/a n/a

Logical AND && && n/a && && &&

Logical OR || || n/a || || ||

Boolean Implication => generates:

(!x) || y

generates:

(not x) or y

=> generates:

(!x) || y

generates:

(!x) || y

Boolean Event Check now @ n/a n/a now@ n/a n/a

Ternary ? :

(any)

? : when else ? : ? : ? :

Operator Name Syncad Verilog VHDL e OpenVera TestBuilder

Appendix D: Language Independent Operators 131

Delay delay # transport

after

n/a n/a n/a

Operator Name Syncad Verilog VHDL e OpenVera TestBuilder

 132 Appendix D: Language Independent Operators

Appendix D: License Agreement 133

Appendix D: License Agreement

SynaptiCAD

TestBencher Pro - DataSheet Pro - WaveFormer Pro - WaveFormer Lite -

Timing Diagrammer Pro - VeriLogger Pro - BugHunter Pro - GigaWave Viewer

Software License Agreement

- Read Before Use -

Please read and understand this license.

Note: Throughout this agreement, the word Software refers to the software product that you have licensed from Syn-
aptiCAD.

You have purchased a license to use one of the following products: TestBencher Pro, DataSheet Pro, WaveFormer
Pro, WaveFormer Lite, VeriLogger Pro, BugHunter Pro, GigaWave Viewer, or Timing Diagrammer Pro soft-
ware. The software is owned and remains the property of SynaptiCAD, is protected by international copyrights, and is
transferred to the original purchaser and any subsequent owner of the Software media for their use only on the license
terms set forth below. Opening the packaging for TestBencher Pro, DataSheet Pro, WaveFormer Pro, WaveForm-
er Lite, VeriLogger Pro, BugHunter Pro, GigaWave Viewer or Timing Diagrammer Pro and/or using either Test-
Bencher Pro, DataSheet Pro, WaveFormer Pro, WaveFormer Lite, VeriLogger Pro, BugHunter Pro,
GigaWave Viewer or Timing Diagrammer Pro indicates your acceptance of these terms. If you do not agree to all
of the terms and conditions, return the unopened Software and manuals immediately for a full refund.

Use of the Software

• SynaptiCAD grants the original purchaser ("Licensee") the limited rights to possess and use the Software and
User’s Manual ("Software") for its intended purpose. Licensee agrees that the Software will be used solely
for Licensee’s internal purposes and that the Software will be installed on a single computer only. If the Soft-
ware is installed on a networked system, or on a computer connected to a file server or other system that phys-
ically allows shared access to the Software, Licensee agrees to provide technical or procedural methods to
prevent use of the Software by more than one user.

• One machine-readable copy of the Software may be made for BACKUP PURPOSES ONLY, and the copy shall
display all proprietary notices, and be labeled externally to show that the backup copy is the property of Syn-
aptiCAD, and that use is subject to this License.

• Use of the Software by any department, agency or other entity of the U.S. Federal Government is limited by the
terms of the below "Rider for Governmental Entity Users."

• Licensee may transfer its rights under this License, provided that the party to whom such rights are transferred
agrees to the terms and conditions of this License, and written notice is provided to SynaptiCAD. Upon such
transfer, Licensee must transfer or destroy all copies of the Software.

• Except as expressly provided in this License, Licensee may not modify, reverse engineer, decompile, disassem-
ble, distribute, sub-license, sell, rent, lease, give or in any other way transfer, by any means or in any medium,
including telecommunications, the Software. Licensee will use its best efforts and take all reasonable steps to
protect the Software from unauthorized use, copying or dissemination, and will maintain all proprietary no-
tices intact.

LIMITED WARRANTY SynaptiCAD warrants the Software media to be free of defects in workmanship for a
period of ninety days from the purchase. During this period, SynaptiCAD will replace at no cost any such
media returned to SynaptiCAD, postage prepaid. This service is SynaptiCAD’s sole liability under this war-
ranty.

DISCLAIMER LICENSE FEES FOR THE SOFTWARE DO NOT INCLUDE ANY CONSIDERATION FOR
ASSUMPTION OF RISK BY SYNAPTICAD, AND SYNAPTICAD DISCLAIMS ANY AND ALL LIA-
BILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OP-

 134 Appendix D: License Agreement

ERATION OR INABILITY TO USE THE SOFTWARE, EVEN IF ANY OF THESE PARTIES HAVE
BEEN ADVISED OF THE POSSIBILITIES OF SUCH DAMAGES. FURTHERMORE, LICENSEE IN-
DEMNIFIES AND AGREES TO HOLD SYNAPTICAD HARMLESS FROM SUCH CLAIMS. THE EN-
TIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE
LICENSEE. THE WARRANTIES EXPRESSED IN THIS LICENSE ARE THE ONLY WARRANTIES
MADE BY SYNAPTICAD AND ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
AND OF FITNESS FOR A PARTICULAR PURPOSE. THIS WARRANTY GIVES YOU SPECIFIED LE-
GAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION
TO JURISDICTION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF WARRANTIES, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Term

• This license is effective as of the time Licensee receives the Software, and shall continue in effect until Licensee
ceases all use of the Software and returns or destroys all copies thereof, or until automatically terminated upon
failure of Licensee to comply with any of the terms of this License.

General

• This License is the complete and exclusive statement of the parties’ agreement. Should any provision of this li-
cense be held to be invalid by any court of competent jurisdiction, that provision will be enforced to the extent
permissible, and the remainder of the License shall nonetheless remain in full force and effect. This License
shall be controlled by the laws of the State of Virginia, and the United States of America.

Rider For U.S. Governmental Entity Users

This is a rider to TestBencher Pro/ DataSheet Pro/VeriLogger Pro/ WaveFormer Pro/ WaveFormer Lite/ Bu-
gHunter Pro/ GigaWave Viewer/ Timing Diagrammer Pro SOFTWARE LICENSE AGREEMENT ("License")
and shall take precedence over the License where a conflict occurs.

1. The Software was: developed at private expense (no portion was developed with government funds) and is a
trade secret of SynaptiCAD and its licensor for all purposes of the Freedom of Information Act; is "commer-
cial computer software" subject to limited utilization as provided in any contract between the vendor and the
government entity; and in all respects is proprietary data belonging solely to SynaptiCAD and its licensor.

2. For units of the DoD, the Software is sold only with "Restricted Rights" as that term is defined in the DoD Sup-
plement to DFAR 252.227-7013 (b)(3)(ii), and use, duplication or disclosure is subject to restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013.
Manufacturer: SynaptiCAD, PO Box 10608, Blacksburg, Va 24062-0608 USA.

3. If the Software was acquired under a GSA Schedule, the Government has agreed to refrain from changing or
removing any insignia or lettering from the Software or Documentation or from producing copies of manuals
or disks (except for backup purposes) and: (1) Title to and ownership of the Software and Documentation and
any reproductions thereof shall remain with SynaptiCAD and its licensor; (2) use of the Software shall be lim-
ited to the facility for which it is acquired; and (3) if the use of the Software is discontinued at the original
installation location and the Government wishes to use it at another location, it may do so by giving prior writ-
ten notice to SynaptiCAD, specifying the new location site and class of computer.

4. Government personnel using the Software, other than under the DoD contract or GSA Schedule, are hereby on no-
tice that use of the Software is subject to restrictions that are the same or similar to those specified above.

TestBencher Pro: Basic Tutorial 135

TestBencher Pro: Basic Tutorial

In less then 30 minutes you will create a reusable test bench that can apply different stimulus and verify the results of
a clocked SRAM. Below is a schematic of the different components that you will construct. First you will create the
Project file that controls the generation of the interface model (test bench). Next you will draw the different transaction
diagrams that are needed to communicate with the SRAM. And then you will edit the sequencer process to apply the
transactions to the model under test. Finally you will simulate the design and verify the operation of the SRAM model.

Preparation

Before we begin there are few things to setup and understand:

1. This tutorial requires a full version license or an evaluation license. If you are evaluating then you can obtain a
license by completing the form under Help > Request License menu item and contacting our sales depart-
ment. To check that you have a good license, verify that you can save a timing diagram.

2. This tutorial assumes that you are familiar with the SynaptiCAD timing diagram editing environment. If you
would like more information on the drawing environment then work through the short Help > Tutorial > Ba-
sic Drawing and Timing Analysis tutorial.

3. This tutorial can be use to generate VHDL, Verilog, TestBuilder, OpenVera and e code. Sometimes a file name
will be written as filename.<language extension>. This means that the file extension will be different depend-
ing on the language used: Verilog *.v, VHDL *.vhd, TestBuilder *.cpp, OpenVera *.vr, and e code *.e.

1) Create a Project

TestBencher Pro uses a project file to represent and to control the generation of a bus-functional model (BFM) com-
ponent. The information in the project file is displayed in the Project window and context sensitive menus provide a
list of actions that can be performed for the elements in the project tree. In this section the project will be created, the
Model Under Test (MUT) file will be added to the project, and the template diagram will be constructed.

1.1 Use the New Project Wizard to Create a Project

Projects are created using New Project Wizard dialog. This dialog helps setup the project directory, the generated lan-
guage, and the clocking signal for the project.

To create a new project:

1. Select the Project > New Project menu option to launch the New Project Wizard dialog.

2. Enter sramtest in the Project Name edit box. The actual project directory will be a subdirectory below the dis-
played path in the Project Directory edit box. This subdirectory will have the same name as the project.

TestBencher Pro: Basic Tutorial 136

Unix users: Make sure that you have read/write access to the directory specified in the Project Directory edit
box.

3. From the Project Language dropdown, select the code generation language.

4. Check the Transaction-based Test Bench Generation checkbox.

5. Click the Next button to move to the second page of the New Project Wizard.

6. Note that the name of the New Template is sramtest (the name of the project). TestBencher will use this file to
generate the top-level module of the test bench. The Original Template, named tbench, is copied into the New
Template file.

7. Type CLK into the Default Clock dropdown, and choose neg from the Edge dropdown box. Selecting a default
clock causes the test bench to be cycle-based; if no clock is specified, the test bench will be event-based.

8. Check the Create Default Clock Generator box. This will cause TestBencher to create a slave timing diagram
called Clk_generator.btim that will drive the CLK signal.

9. Click the Finish button to close the New Project Wizard, create the project, and populate the Project window.

1.2 Add the MUT to the Project

Next we will add the clocked SRAM model file to the project. TestBencher uses the model under test files to extract
the signal and port information for use in the transaction diagrams. TestBencher also uses the MUT file information
to instantiate it in the component model (template file).

Note for Remote Simulators: If your simulator or HVL tools are running on a different computer then TestBencher
Pro, then the external simulator integration feature requires that all files used for the project be in the project directory,
or a subdirectory thereof. If you are working a remote simulator, copy the appropriate MUT file (clksram.v or clk-
sram.vhd) from the SynaptiCAD > Examples > TestBencherBasicTutorial directory into the project directory prior
to adding the MUT to the project.

To add the MUT to the project:

1. Right-click the User Source Files folder in the Project window and select the Add File(s) to User Source File
Folder... from the context menu option. This will open the Add Files... dialog.

2. Select the file to use as the MUT from the SynaptiCAD > Examples > TutorialFiles > TestBencherBasicT-
utorial directory (or from the project directory if your simulator is on a remote machine):

Verilog model file is clksram.v.

VHDL model file is clksram.vhd.

3. Click the Open button to close the dialog and add the file to the User Source Files folder in the Project window.

1.3 Extract Port Information from the MUT into the Template Diagram

When TestBencher created the project it also generated a template diagram. New transaction diagrams that are created
for this project will contain the same signals, waveforms, parameters, and properties as the template diagram. Currently
the CLK signal is the only signal in this diagram and we are going to add the port signals for the clocked SRAM.

To extract the ports from the SRAM into the template diagram:

1. In the Project window, under the Template Diagram folder, double click on sramtest_templateDiagram.btim
to open the template diagram window.

2. Click the Extract Ports from MUT button. This will build the MUT and insert the signals for the MUT

ports into the template diagram.

TestBencher Pro: Basic Tutorial 137

3. Notice that <clksram> is now present in the Project
window under the Simulated Model folder. The sin-
gle angle brackets indicate that clksram is the Model
Under Test. Expanding this tree will display signal,
port, and component information of the MUT.

Note: If <clksram> was not generated as the MUT, then
change the simulation preferences by choosing the Options >
Diagram Simulation Preferences menu. Check the Auto-create test bench and tree check box. Press the Extract
Ports from MUT button to rebuild the MUT.

1.4 Modify the Template Diagram

The transaction diagrams use an End Diagram Marker to indicate the exact time that the transaction ends. So we will
add an end diagram marker to the template diagram, so all new transactions will get the marker.

To add an end diagram marker:

1. Click on the Marker button on the diagram button bar.

2. Click on the fourth falling edge of the CLK signal (at 350 ns) to select it. Then right-click to draw a marker that
is attached to the edge.

3. Double-click on the marker to open the Edit Time Marker dialog.

4. Select a Marker Type of End Diagram from the drop down list box.
This end diagram marker will force the transaction to end at the
fourth falling edge of the CLK signal.

5. Select Type from the Display Label list box. This will cause the marker to display its type rather then its name.

6. Click OK to close the Edit Time Marker dialog.

7. Use the File > Save All Files menu option to save the project and the template diagram.

The template diagram should look like the following:

Figure 2: Completed Template Diagram

2) Create the Write Cycle Transaction Diagram

TestBencher Pro uses timing diagrams that represent reusable bus transactions to generate the test bench. This tutorial
will use two timing diagrams, tbread.btim and tbwrite.btim, to represent the read and write cycles used in testing the
memory module. First, the write cycle diagram will be created. Then this diagram will be used as a basis for creating
the read cycle diagram. Variables will be used in the diagrams so that values can be passed into the address and data
buses.

2.1 Draw the Timing Diagram for the Write Cycle

This section explains how to create the timing diagram that represents the write cycle transaction.

TestBencher Pro: Basic Tutorial 138

1. In the Project window, right click the Transaction Diagrams folder and select Create a new Master Transac-
tor from the context menu. This will cause the Save As dialog to open.

2. Name the file tbwrite and press the Save button. This will copy the template diagram to the new file, list the
file in the Transaction Diagram folder, and open the new diagram.

3. Draw the following waveforms (the state values will be added in the next section):

Figure 3: Completed Write Cycle Diagram

Note: If you have trouble drawing the waveforms, then refer to the Basic Drawing and Timing Analysis tutorial.

2.2 Add Parameterized State Values for Write Cycle

The next step is to add state variables to the timing diagram so that values for the address and data buses may be passed
into the test bench transaction. Parameterized state values, called state variables, are passed into the transaction call
in the top-level template file, and are used to provide state or comparison values during transaction execution. The
write cycle diagram will have a state variable for the value on the address bus, and a state variable for the value on the
data bus. When the top-level template file is modified, values will be passed into the state variables.

To add the address and data state variables to the diagram:

1. Double click on the valid segment in the center of ABUS to open the Edit Bus State dialog.

2. Type $$addr into the Virtual edit box. The
"$$" in front of the variable name indicates
that this is a state variable. If the "$$" is
missing, TestBencher Pro will assume that
this is the value of the address rather than a
variable that will accept a value at a later
time.

3. Click on the valid segment in the center of
DBUS to move the focus of the Edit Bus
State dialog to the new segment.

4. Type $$data in the Virtual edit box.

5. Click OK to close the Edit Bus State dialog. The two edited segments will display the state variables.

6. Click the diskette icon on the main toolbar to save the timing diagram.

3) Create the Read Cycle Transaction Diagram

The read cycle will initiate a read with the clocked SRAM and monitor the data bus to verify the result of the read. For
the read cycle, the data bus will be an input signal (not driven like the write cycle), and the $$data variable will be used
for comparison with the actual value driven by the SRAM.

TestBencher Pro: Basic Tutorial 139

3.1 Create Read Cycle Diagram and Add it to the Project

Since the signals for the read diagram are so similar to the write diagram, a modified copy of tbwrite.btim can be used
to create the read diagram.

Create the read cycle timing diagram and add it to the project:

1. In the tbwrite diagram window, right-click in the Label window and select the Save As... menu option to open
the Save As dialog.

2. Name the file tbread, and press the Save button. This will create a new file, but you still will need to add the
file to the project.

3. Right-click in tbread's Label window, and select Add Master Diagram to Project from the context menu. This
will add tbread to the Transaction Diagrams folder in the Project window.

3.2 Edit the Waveforms for Read Cycle

The WRB and DBUS signals need to be changed for the Read cycle. The write control signal, WRB, should stay high
(inactive) for the duration of the read. And during the read the DBUS signal will be driven by the SRAM, so the data
segment of the signal needs to be set to input. Also since our SRAM is clocked the data comes out on the clock cycle
after the chip select signal, CSB, goes active.

To edit the waveforms:

1. Make the WRB signal high for the entire read cycle. Select the center segment and press the delete key to re-
move the low signal segment.

2. Shift the start of the DBUS data segment to 200ns. Hold down the <2> key (the number 2 key) on the keyboard,
while dragging the starting transition to 200ns. The <2> key causes transitions to the right of the selected edge
to move with the dragged edge.

3. Set the DBUS data segment to be a blue input segment. Double click on the data segment to open the Edit Bus
State dialog, uncheck Driven (Export to source code) checkbox.

Figure 4: Completed Read Cycle Diagram

3.3 Add a Sample to Verify Data

Next a Sample will be added to the timing diagram. Samples compare the actual state value of an input signal to the
expected state value, and conditionally react to the results of the comparison.

To add a Sample:

1. Click on the Sample button on the button bar.

2. Click on the third falling edge (250ns) of CLK to select the edge.

3. Right-click near the end of the blue valid segment on DBUS. This adds a Sample parameter named SAMPLE0
that lines up with the third neg edge of the CLK signal. Refer the image in the previous section.

TestBencher Pro: Basic Tutorial 140

The default behavior of the sample compares the run time value with the drawn value ($$data) and throws an Error if
they are different. This is the behavior that we need for the tutorial. The next few steps show you the HDL code gen-
eration dialog and how to control the generated code. You do not need to make any changes to the dialog defaults.

1. Double-click on the sample name SAMPLE0 in the drawing window to open the Sample Properties dialog.

2. Press the HDL Code button in the dialog to open the Code Generation Options dialog.

3. In the If Condition dropdown, select Sample state matches. This means that during simulation,
the test bench will compare the actual value on the data bus with the value passed into the timing diagram
($$data).

4. In the Then Action dropdown, select Do nothing. If the value on the data bus matches the value of $$data, then
the circuit is working properly and no action should be taken.

5. In the Else Action dropdown, select
Display Message. This means that
if the values don't match, a message
will be displayed during the simu-
lation.

6. Below the Else Action dropdown,
choose the Error radio button.
These radio buttons allow a severi-
ty level to be defined for the mes-
sage that is displayed.

7. Click OK to close the Code Genera-
tion Options dialog.

8. Click OK to close the Sample Prop-
erties dialog.

9. Save the timing diagram by selecting
File > Save Timing Diagram from
the main TestBencher menu.

4) Create the Initialize Transac-
tion Diagram

When drawing the waveforms for a transac-
tion diagram it is important to remember that
transactions do not automatically include an
event at time zero and that only the drawn
events are driven. This is a feature that al-
lows transactions to be reused any time dur-
ing simulation without implying any
initialization information. In our example
the clocked SRAM control signals, CSB and
WRB, need to be initialized before the read
and write cycles are applied to the model. We will draw a simple initialization diagram that will drive the control sig-
nals to high (inactive).

4.1 Draw the Initialization Waveforms

Create the Initialization diagram by first copying the template diagram, removing the extra signals, and drawing the
waveforms.

1. In the Project window, right click the Transaction Diagrams folder and select the Create a new Master Trans-
actor from the context menu. This will cause the Save As dialog to open.

TestBencher Pro: Basic Tutorial 141

2. Name the file tbinitialize and press the Save button. This will save the diagram, add it to the Transaction Di-
agram folder, and open the new diagram.

3. Remove the ABUS and DBUS signals, because the tri-state bus signals do not need to be initialized. Select the
ABUS and DBUS signals by clicking on them, and then press the <delete> key to delete the selected signals.

4. Draw the following waveforms:

Figure 5: Completed Initialization Diagram

4.2 Move the End Diagram Marker for Initialization Diagram

The initialization timing diagram will only need one clock cycle to initialize the control signals. Therefore, the End
Diagram marker can be moved to the 1st negative clock edge.

To move the End Diagram marker:

1. Double-click on the marker to open the Edit Time Marker dialog.

2. Select Attach to Edge from the radio buttons.

3. Click OK to close the Edit Time Marker dialog. This will put TestBencher into a special select mode.

4. Click on the first negative clock edge (at 50ns) to attach the marker to that edge.

5. Click the diskette icon on the main toolbar to save the timing diagram.

5) Modify the Sequencer Process

Inside the primary template file for the project is a Sequencer Process. The Sequencer Process is the place in the top-
level test bench that defines the order in which the timing transactions are applied to the model under test.

The Insert Diagram Subroutine Calls dialog generates diagram apply calls so you do not need to memorize the func-
tion syntax. Each timing diagram generates three task calls: Apply, Apply-nowait, and Abort. Apply runs the transac-
tion in a blocking mode, and Apply-nowait runs the transaction concurrently with other transactions. The Master/Slave
Diagram Setting determines how many times a transaction executes. Master Transactors, like the Read, Write, and Ini-
tialize diagrams run once and stop. Slave Transactors like the Global Clock Generator run in a looping mode until an
Abort call is received.

In addition to these task calls, you can also place HDL code in the sequencer. One example where this would be useful
is if you wish to place conditions on whether or not a timing transaction is called, or on the parameter values that you
wish to have applied.

An alternative method to placing transaction calls in the sequencer process is to create a file external to the bus-func-
tional model with transaction calls and during simulation read the transaction calls from a file (see Section 9.4: Trans-
action Manager and Test Reader in the online TestBencher Manual).

5.1 Adding Apply Calls to the Sequencer Process

Use the Insert Diagram Subroutine Calls dialog to add apply statements to the Sequencer. We will first start the clock,
initialize the control signals, write to the SRAM, the read from the SRAM twice, and then abort the clock.

TestBencher Pro: Basic Tutorial 142

To edit the sequencer process:

1. In the Project window, double click on the Component Model folder to open an editor window with the
sramtest template file.

2. Scroll down in the sramtest editor window near the end of the file until you find the comment block that
has this line:

Transaction Sequencer - After this comment, define how to apply transactions to

 the model under test using:

3. Click in the sramtest editor window below this comment so that the blinking cursor is in the place where the
apply statement should be added.

4. Right-click in the editor window and select Insert Diagram Calls to open the Insert Diagram Subroutine Call
dialog.

5. Arrange the windows so you can see the editor and the dialog at the same time.

Use the Insert Diagram Subroutine Calls dialog to add the apply calls. When you select a slave diagram, the dialog
will automatically default to Apply-nowait, because most of the time slave diagrams will run concurrently with other
diagrams. When you select a master diagram, the dialog will automatically default to Apply, because most of the time
master diagrams run in a blocking mode:

1. Double click on the CLK_generator entry in the Insert Diagram Subroutine Calls dialog. This adds an apply
call to the editor window.

2. Double click on the tbinitialize entry.

3. Double click on the tbwrite entry.

4. Double click on the tbread entry TWO times to insert the code to add two read calls.

5. Select CLK_generator entry, choose Abort radio button, and then press the Insert button to insert the code.
This will add the abort call to stop the clock generator.

6. The apply call should look similar to the following code block. Different languages may have extra parameters.

//***

// Transaction Sequencer - After this comment, define how to

// apply transactions to the model under test using:

TestBencher Pro: Basic Tutorial 143

//

// - Transaction calls (Insert Diagram Calls in right-click menu)

// - Source code in Verilog

//**

Apply_CLK_generator_looping_nowait;

Apply_tbinitialize;

// Apply_tbwrite(addr, data);

Apply_tbwrite(addr, data);

// Apply_tbread(addr, data);

Apply_tbread(addr, data);

// Apply_tbread(addr, data);

Apply_tbread(addr, data);

Abort_CLK_generator;

5.2 Providing Values for Variables in Timing Transactions

The tbwrite and tbread transactions have parameterized state values. These values are passed to the transaction in the
Apply statements.

To set the values of the state variables in the transaction apply calls:

1. Edit the write and read Apply code lines and replace the state variable names with actual variables that will be
passed into the timing diagrams. The comment lines are there to document the parameter variable names.
Note: The code to be entered is bold.

For Verilog type:

Apply_tbwrite('hF0 , 'hAE);

Apply_tbread('hF0 , 'hAE);

Apply_tbread('hF0 , 'hEE);

For VHDL type:

Apply_tbwrite(tb_Control, tb_InstancePath, x"F0" , x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0" , x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0" , x"EE");

For OpenVera type:

tb_tbwrite.ExecuteOnce('hF0 , 'hAE);

tb_tbread.ExecuteOnce('hF0 , 'hAE);

tb_tbread.ExecuteOnce('hF0 , 'hEE);

2. Save the top-level template file by right-clicking in the editor window and selecting Save.

Notice that the tbwrite apply statement writes the hex value AE to memory cell F0. The tbread diagram calls will then
read the value from the same memory cell. The data values provided in the tbread diagram calls will be used to com-
pare with the actual value. The first call to tbread will expect to find a value of hex AE in the address F0. The second
call to tbread will expect to find the hex value EE instead. This will cause the sample to report an error during the
second execution of tbread.

TestBencher Pro: Basic Tutorial 144

6) Generate Test Bench and Simulate

At this point all the timing diagrams have been created and you have edited the Sequencer process. Next we will gen-
erate the test bench and simulate the entire design.

6.1 Setup the Simulator

TestBencher can control external simulators and compilers or use its built-in Verilog to compile and simulate the de-
sign. If you are using the built-in simulator, skip ahead to next section. Section 10.3: External Program Integration in
the online manual has a complete list of instructions for working with remote simulators and for setting up a compiler
for TestBuilder.

To configure a third-party simulator:

1. Choose the Options > Simulator and Compiler Settings menu option. This will open the Simulator and Com-
piler Settings dialog.

2. From the Simulator and Compiler tools dropdown select the appropriate simulator.

3. Enter the directory that contains the simulator executable in the Simulator Path edit box.

4. Click OK to close the Simulator and Compiler Settings dialog.

Select the third-party simulator:

1. Select the Project > Project Settings menu option. This will open the Project Settings dialog.

2. Select the tab for the language you are working with.

3. Select the desired simulator from the Simulator Type dropdown.

4. Click OK to close the Project Settings dialog.

6.2 Generate the Test Bench and Simulate

Once the simulator is setup you are ready to generate the test bench and simulate the design.

To generate the test bench:

1. Click on the Make TB button on the main TestBencher toolbar. This will expand the macros in the tem-
plate file and pop up a dialog that says "Finished generating test bench. Please check waveperl.log for er-
rors." Close this dialog by clicking the OK button.

2. In the Report window, check the waveperl.log tab to see if TestBencher encountered any errors during the test
bench generation. If it did, fix the error and regenerate the test bench. (If you can not see the Report window,
choose the Window > Report menu to bring it to the front.)

To simulate the design:

1. Click the yellow Compile Model and Test Bench button. This builds (parses) the project using the tools

specified in the Project Settings and Simulator and Compiler Settings dialogs.

In the bottom right corner, a yellow Simulation Built status message indicates the build was successful and
that you are ready to simulate.

If the status indicates an error, the Report window Errors tab displays the compile errors. If there are errors
then fix them, regenerate the test bench, and recompile.

2. Click the green run button on the simulation button bar. This will simulate the design and display the results

in the StimulusAndResults diagram and the Report window simulation.log tab.

In the bottom right corner, a Simulation Good status message indicates that the simulation has reached a successful
end.

TestBencher Pro: Basic Tutorial 145

6.3 Examine Report Window Results

The Report window simulation.log tab displays the default log file for the simulator. TestBencher automatically
writes a message to the log file each time a transaction starts and stops. The clocked SRAM contains code to display
a message each time it performs a read or write. We also added a sample parameter to the Read Cycle, and set it to
generate an error message when the data from the SRAM does not match the expected value.

Examine the log file:

1. In the Report window, open the simulation.log tab and display the following results:

Running...

TB> Note: In "sramtest_CLK_generator" at 0.000ns: Executing LOOPING

TB> Note: In "sramtest_tbinitialize" at 0.000ns: Executing ONCE

TB> Note: In "sramtest_tbinitialize" at 50.000ns: Execution DONE

TB> Note: In "sramtest_tbwrite" at 50.000ns: Executing ONCE

In clksram at 150.000ns: Writing ae to address f0

TB> Note: In "sramtest_tbwrite" at 350.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 350.000ns: Executing ONCE

In clksram at 450.000ns: Reading ae to address f0

TB> Note: In "sramtest_tbread" at 650.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 650.000ns: Executing ONCE

In clksram at 750.000ns: Reading ae to address f0

TB> Error: In "sramtest_tbread" at 850.000ns: Sample SAMPLE0_process sampled

 signal: DBUS expected: ee ; detected: ae

TB> Note: In "sramtest_tbread" at 950.000ns: Execution DONE

TB> Note: In "sramtest_CLK_generator" at 950.000ns: Execution DONE

0 Errors, 0 Warnings

Compile time = 0.01000, Load time = 0.02000, Execution time = 0.05000

Normal exit

2. Notice that the clock generator starts at time zero and continues until the end of the simulation when the abort
call is issued.

3. The initialization diagram also starts executing at time zero and blocks the next transaction until it is complete.

4. The write diagram starts next and writes a value to the SRAM. The SRAM acknowledges that is writing the
value to the specified address.

5. The first read diagram executes successfully.

6. The second read diagram throws a warning because the expected value did not match the value from the MUT.
We purposely passed in a bad expected data value so we could see how the sample throws the error.

7. Next the abort call to the clock stops the clock transaction and ends the simulation.

6.4 Examine the Stimulus and Results Diagram

After simulation the Stimulus and Results diagram will contain all of the top level signals of the project, the driver
signals, and status and trigger signals for each transaction.

TestBencher Pro: Basic Tutorial 146

1. Hide some of the signals in the Stimulus and Results diagram by selecting the signal names and choosing View
> Hide Selected Signals until the diagram looks like this:

2. A status signal of <1> indicates the transaction is running. You can see that the initialization diagram runs fol-
lowed by the write cycle and two read cycles.

3. During the write cycle, the data AE is written to address F0. When comparing the simulated write cycle to the
drawn transaction, remember that this is a negative clock edge diagram.

4. The read cycles read back the data from the memory.

147

Index

Symbols
$$ - see State Variables

@ - see Variables

Numerics
2_state 74
2_state_vector 74
4_state 74
4_state_vector 74

A
Absolute Samples 56
ActiveHDL 93
Add Timestamp to Each File 23
Advanced Register and Latch Controls 52
Applied 73
Apply Calls 43

adding to template file 12
constant data values 86
in TestBuilder 113
in VHDL 109
parameters 86
techniques 101

Arrays 73, 74
Associative Arrays 73, 74
Attach to Edge 63
Attach to Time 63
Auto Run 99

B
Bi-directional Signals 42
Big Endian (Packing) 76
Bit Slice

port mapping 24
Blocking Samples 58, 59
bool 74
Boolean Condition For Delay 51
Burst Mode Transactions 102
Buses - adding to diagram 44
byte 74

C
C++ 93
Class Instances - see Variables

Class Libraries 69, 70
creating 69, 70

Default 69
Class Methods

adding to class 72
calling 30
Component Model 22, 23
creating 77, 78
Diagram-Level 30
editing 77, 78
parameters 78
source code 79

Classes 23, 69
applied 73
Class Methods 77, 78
constraints 79, 80

expressions in 80
creating 71
defining fields 71, 82
editing 71
field properties 73
libraries

see Class Libraries

packing 73, 76
static fields 73
structure 74

Classes and Variables Dialog 29, 71, 72
Clocking Domain

default 34
Clocks

adding to diagram 44
default 18

Code Generation

controlling 11, 34, 56
Enable Abort Code 38
inserting HDL code 66, 67
samples 56

Code Generation Options Dialog 56, 61
Command File - Generating 99
Compile the Active Project 15
Compilers 93
Compiling source code 93
Component Instance

generation properties 21
port mapping 24
port mappings 21
signals and ports 21

Component Instances 20
editing name 21

148

port mappings 23
properties 21
Signals and Ports 23

Component Model

default port mapping 24
signals and ports 23

Component Models 19, 21
Class Methods 22, 23, 77
Sequencer Process 85

Components 19
Component Instances 20
Signals and Ports 20, 23
signals and ports 23

Conditional State Transitions 103, 104
Conditional State Values 43
Constrained Random Number Generation 79, 80

also see Constraints

Constraints

adding to class 72
Context Sensitive Help 7
Continuous Setups and Holds 52
Count Clock Edges 51
Create Default Clock Generator 18
Critical Regions 82

defining 67
Cycle Based Properties

default Clock 34
default Clock Edge 34

Cycle Based Settings

delay after clock edge 38

D
Data Packets - see Classes

Data Packing - see Packing

Data Structures - see Classes

Data Targets - see Variables

Debug Run 99
Default Class Library 69
Default Clock 18
Default Diagram Settings 18, 34
Default Port Mapping 24
Default Sample Action 37
Default Sample Condition 37
Delay After Clock Edge 38
Delay Settings - default for transaction 39
Delays 50

also see Parameters

attaching to samples 60
conditional 51, 60
creating 50
cycle-based 51
Enable HDL Code Generation 36
properties 49, 51
resolving multiple delays 51
specifying the order of 45
verbosity 37

Design Flow 9
Diagram Calls 85

inserting 85
Diagram Settings 34

default 18
general settings 36
language specific settings 38

Diagram Settings Dialog 34
Diagram-Level Variables 42
Diagrams

adding items 44
adding parameters 49
adding to project 27
Class Methods 77, 78
creating 11, 27, 44
cycle based properties 34
default clocking domain 34
diagram-level variables 72

also see Variables

drawing waveforms 42
Execution 36
extracting MUT ports into 28
including library files 34
inserting HDL code 66, 67
properties 33
settings 34
Template Diagram 11, 19
Transaction 19, 27
view generated source code 12

Display Applied Inputs 38
Documentation Markers 68
Driven Flags 42
Driving Events 41

E
Edge Properties

earliest transitions 51
latest transitions 51

149

multiple delay resolution 51
Edge Properties Dialog 46, 51
Edit Bus State Dialog 42, 43

variables 43
Elements 73, 74
Enable Abort Code 38
Enable Code Generation 36
Enable HDL Code Generation 50

for Samples 56
Enable Reference Model 22
Enable TestBuilder Integration 9, 17
Enable Transaction Manager 22
End Diagram Markers 64
event 74
Events 41
Exit Loop When 66
External Program Integration

settings 15
simulators 15

Extract Ports from MUT 11, 28

F
Falling Edge Sensitive 47
Fields

adding to a class 71
defining from a file 82
properties 73
static 73
structure types 73, 74

File Input 74, 81
File Output 74, 81
File Structure Types 74
fixed_len_string 74
For Loops 65, 66
Full Expect 58

samples 58

G
Generate Test Bench 13
Generated Code - see Code Generation

Generated Files

adding keywords 23
Generating Random Values

in TestBuilder 113
Generating the Test Bench 93

H
HDL Code Markers 66, 67

High Order (Packing) 76
Holds

also see Parameters

continuous 52
creating 52
properties 49
specifying the order of 45

I
If-Then-Else statements 56

creating 57
Include Delay Time 38, 41
Include Directories

project simulation properties 96
Including Library Files 34
Initialization Diagram 41
Initializing

ports 24
variables 73

Inout Signals 42, 44
Input Signals 44
Insert Diagram Calls 12
Insert Into Equation 61
Instance Count 37
Instance Settings 37
int 74
Internal Signals 44
Is Apply Subroutine Input 50, 56, 104

L
Language 17

changing 22
specific details per 107

Libraries

also see Class Libraries

including in diagrams 34
VHDL 25

Library Directories 96
Little Endian (Packing) 76
Loop End 66
Looping Markers 65
Low Order (Packing) 76

M
Make TB 13, 93
Markers

absolute 63
attach to edge 63

150

attach to time 63
creating 63
defined 63
Documentation 68
Enable HDL Code Generation 36
End Diagram 64
For Loop 66
HDL Code 66, 67
loops 65
Pause Simulation 64
relative 63
Semaphore 67
specifying the order of 45
Time Break 68
type 63
verbosity 37
Wait Until 65

Master Transactions 101, 103
Master Transactor 36
Microsoft C++ 93
Model Under Test - see MUT

ModelSim 93
Multiple Delay Resolution 51

earliest transitions 51
latest transition 51

Multiplier 58
MUT

adding to project 10, 28
extracting ports 11
extracting ports into diagrams 28

N
NC Verilog 93
NC VHDL 93
Network Packing 76
New Diagram Defaults 35
New Project Wizard 9, 17
Normal Order (Packing) 76

O
Ordering Parameters 45
Output Signals 44
Outward Arrows 52

P
Packing

big endian 76
bit normal 76

bit reverse 76
classes 73
high order 76
in Verilog 107
in VHDL 112
little endian 76
low order 76
network 76
normal order 76
reverse order 76

Parameter Properties Dialog 49
Parameter Variables

also see Variables

creating 30
using 30

Parameters

adding 49
defining temporal expressions 49
Delays 49, 50
Enable HDL Code Generation 50
for Class Methods 78
Holds 49
Is Apply Subroutine Input 50
markers 63
properties 49
samples 55
Setups 49
specifying the order of 45
Temporal Expressions 45

Pause Simulation (Verilog) 64
Piplining

instance count 37
Port Mapping 21

bit slice 24
component instance 24
component model 24
initializing ports 24

Post Semaphore Markers 67
Prefix Generated Files With 23
Project

adding diagrams 27
changing template files 91
Class Methods 77, 78
classes 23
Variables 23, 72

Project Components

generation properties 21

151

Project Generation Properties

add timestamp 23
prefix generated files with 23
Source Indent 23
transaction recording 23

Project Language

changing 22
Project Library 19, 20
Project Simulation Properties 94

include directories 96
Projects

adding files to 10
closing 17
Component Model 19
creating 17
opening 17
Project Components 19, 20
Project Window 18, 19, 20
saving 17
setting simulation run-time options 94
simulation properties 94
using the tree control 18

Q
Queues 73, 74

R
Random Transactions 89
Randomization 73

generating constrained values 79, 80
real 74
Reference Model 22
Relative Samples 56
Repeat Loop 66
Reset Defaults 35
Restricted Expect

samples 58, 59
Reverse Order (Packing) 76
Rising Edge Sensitive 47
Run Simulation 15
RunRandomTransaction 89

S
Sample Flags 60
Samples

absolute 55, 56
Actions 57
actions 57, 59

blocking 58, 59
code generation 56
conditions 57
creating 56
data targets 61
default Action 37
default Condition 37
defined 55
Enable HDL Code Generation 36, 56
expects 58
multiplier 58
non-blocking 58, 59
point 55
referencing sample variables 60
relative 56
self-testing code 56
specifying the order of 45
storing sampled values 58
Temporal Expressions 45
triggering delays 60
triggering other samples 60
verbosity 37
window 55, 56
with delayed state transitions 59

Save Defaults 36
Select Variable Dialog 61
Self-Testing Code

samples 56
Semaphore Markers 67
Semaphores 82
Sensitive Edges 47

Enable HDL Code Generation 36
Sequence Recognition

ordering events 46
verbosity 37

Sequencer Process 12, 85
Sequencing Transactions 87
Serial Data 104, 105
SetTransactorWeightings 89
Setups

also see Parameters

continuous 52
creating 52
properties 49
specifying the order of 45

Signal Button Bar 44
Signal Direction

152

default 36
Signal Direction - see Signals

Signal Properties 52
advanced register 53
sensitive edges 46

Signal Transitions

waiting for 101
Signals

adding to diagram 44
bi-directional 42
clocked 52
default Type 36
direction 42
driven 42
driving events on 41
inout 44
input 44
internal 44
output 44

Signals and Ports 23
Component 20
Component Model 19
of Component Instances 23
of Component Models 23
port mapping 21, 24

SignaScan

recording transactions for 23
signed_logic 74
Simple Expect

samples 58, 59
Simulated Model 19
Simulating 97

with ModelSim 93
with third party simulators 93, 99
with VCS 93

Simulation 15
project properties 94
test bench 93

Simulation Button Bar 98
Simulation Files

for Verilog 107
needed for TestBuilder 112, 113
needed for VHDL 108

Simulation Mode 99
Auto Run 99
Debug Run 99
setting 99

Simulator and Compiler Settings Dialog 93
Slave Transactions 101
SlaveTransactor 36
Source Code

adding 79
generated for diagrams 12

Source Indent 23
State Transitions

conditional 103, 104
State Values

conditional 43
reading from file 81
simple variables 43
writing to file 81

State Variables 42
also see Variables

assigning values 86
creating 29

Static Fields 73
std_logic 74
std_logic_vector 74
std_ulogic 74
std_ulogic_vector 74
Store Sampled Value As Subroutine Output 58
Structure Types 73, 74
Sub-projects 19, 20
Sweep Tests 103, 104

T
Template Diagram 11, 19, 27
Template Files

adding Apply calls 12
adding diagram calls 85
changing for project 91
modifying 12
Sequencer Process 85

Temporal Expressions 45, 55
expressing with Parameters 49

Test Bench

compiling 98
generation 13, 93
looping 65
sequencing transactions 85
simulation 93, 97

Test Bench Techniques 101
Test Reader 87, 88
Test Vector Files 19, 81

153

defining class fields from 82
format 82

TestBencher Diagram Properties Dialog 33
TestBencher Project

design flow 9
TestBuilder 91, 112, 113, 114

enabling integration 9, 17, 22
Generating Random Values 113
simulating 93

Third Party Simulators 93, 99
time 74
Time 0 (zero) 41
Time Break Markers 68
Timeout Settings 38
Timing Diagrams - see Diagrams

Top-level Template File 10
Transaction Diagrams 19, 27

overview 27
Transaction Generator 89
Transaction Level Variables 29
Transaction Logging

verbose 23
Transaction Manager 22, 87, 88, 89

file format 88
in TestBuilder 114
in VHDL 109
run modes 89
VHDL procedures 109

Transaction Recording 23
Transactions

applying 43
calling 43
Execution 36
sequencing 12

Triggered Delays 60
Delays

conditional 59
Triggered Samples 60

U
UART 104, 105
UDT - see Classes

unsigned_int 74
unsigned_logic 74
Update All Diagrams 35
Update Existing 34
Use Clauses (VHDL) 25

User Defined Types - see Classes

User Defined Variables 29
User Source Code

adding class methods to diagrams 30
in Class Methods 79

User Source File

adding to project 28
User Source Files 19

V
variable_len_string 74
Variables 23, 69

applied 73
assigning values 86

constrained random generation 79
constraints 80
creating 72
diagram 29
diagram-level 42, 72
direction 29
editing 72
export signal states to a file 61
file input 81
file output 81
initial value 73
packing 76
project

accessing in Verilog 107
accessing in VHDL 112

Project Level 72
project-level 72
properties 73
random 73
referencing in a diagram 29
simple state 42
storing sampled state values 61
storing sampled value in 58
structure 74
structure type 73

arrays 74
associative arrays 74
element 74
File Input 74
File Output 74
File Structure Types 74
queues 74

transaction level 29

154

usage 29
user defined 29

VCS 93
Verbose

Delays 37
Markers 37
Samples 37
Sensitive Edges 37
Transaction Logging 23

Verilog 107
enabling TestBuilder integration 9

Verilog-XL 93
VHDL 108, 109, 110, 112
VHDL Libraries 25
View Variables 29, 72

W
Wait Semaphore Markers 67
Wait Until Marker 65
Waiting for Signal Transitions 101
Waveforms 41

driving with variables 42
waveperl.log 13
Weightings Table 89
While Loops 65, 66

	Table of Contents
	Introduction
	Chapter 1: TestBencher Pro Design Flow
	Step 1: Create a New Project
	Step 2: Add the MUT to the Project
	Step 3: Extract Port Information
	Step 4: Create a Timing Transaction
	Step 5: Define Sequencer Process
	Step 6: Generate the Test Bench
	Step 7: Setting Up Simulators
	Step 8: Simulate Test Bench

	Chapter 2: Projects and Component Generation
	2.1 Creating, Opening and Saving Projects
	2.2 The Project Window
	2.3 Sub-Projects
	2.4 Component Instances of Sub-Projects
	2.5 Component and Component Instance Generation Properties
	2.6 Signals and Ports for Components
	2.7 Golden Reference Models
	2.8 Libraries and Use Clauses (VHDL only)

	Chapter 3: Transaction Overview
	3.1 Template Diagram and New Transactions
	3.2 Extracting MUT Ports into a Timing Diagram
	3.3 Transaction Level Variables
	Diagram Variables
	State Variables
	Parameter Variables

	3.4 Diagram-Level Class Methods
	3.5 Transaction Architecture
	Clock domains
	Signals
	Samples
	Delay Parameters
	Setups and Holds
	Markers
	Output Clocks (Clock generators)

	3.6 Diagram Properties
	Including HDL Code Library Files
	Cycle Based Properties

	3.7 Diagram Settings Dialog - Overview
	3.8 Diagram Settings Dialog - General Tab
	Project Simulation Properties
	Signal HDL
	Code Generation
	Diagram Execution
	Instance Settings
	Sample Parameter (General)
	Verbose Settings (General)

	3.9 Diagram Settings Dialog - Language Specific Tabs
	Cycle Based Settings
	Code Generation (VHDL Only)
	Time-out Settings (Language-Specific)
	A transaction timeout will aid in the prevention of an endless wait condition occurring in a timi...
	Delay Settings (Verilog & VHDL)

	Chapter 4: Transaction Waveforms and Signals
	4.1 Drawing Transactions for TestBencher
	4.2 Drawing Waveforms and Bi-Directional Signals
	4.3 Driving Waveform States with Variables
	4.4 Driving Conditional State Values
	4.5 Adding Signals
	4.6 Temporal Expressions for TestBencher
	4.7 Controlling the Triggering Order of Parameters
	Displaying the order of parameter and markers in the timing diagram

	4.8 Sensitive Edges

	Chapter 5: Transaction Delays, Setups, and Holds
	Delays
	Setups and Holds
	5.1 Adding and Editing Parameters
	5.2 Delays
	5.3 Resolving Multiple Delays
	5.4 Setups and Holds
	5.5 Creating Continuous Setups and Holds

	Chapter 6: Transaction Samples
	Monitoring Time
	Triggering Process
	Check for Condition and Trigger an Action
	Sample Variables and Files
	6.1 Adding a New Sample
	6.2 Sample Condition and Actions
	6.3 Interpreting Sample Conditions and Blocking Points
	Full Expect Samples
	Simple Expect and Restricted Expect Samples
	Blocking Sample

	6.4 Samples Triggering a Delayed Transition or Another Sample
	6.5 Using Sample Variables
	Example of using Sample Flag Conditions
	Example of using Sample Values in the Diagram

	6.6 Storing Sample Values in User Defined Variables

	Chapter 7: Transaction Markers
	7.1 Adding a Marker to a Diagram
	7.2 End Diagram Markers
	7.3 Pause Simulation Marker (Verilog Only)
	7.4 Wait Until Marker
	7.5 Loop Markers
	7.6 HDL Code Markers
	7.7 Semaphore Markers
	7.8 Pipeline Boundary Markers
	7.9 Documentation and Time Break Markers

	Chapter 8: Classes and Variables
	8.1 Class Libraries
	8.2 Classes
	8.3 Variables
	8.4 Variable and Class Field Properties
	8.5: Language Independent Types
	8.6 Data Packing
	8.7 Class Methods
	8.8 Constrained Random Number Generation
	8.9 File Input and Ouput Variables
	8.10 Importing Fields from a Template File
	8.11 Semaphores

	Chapter 9: Project Component and Transaction Sequencer
	9.1 Transaction Calls
	9.2 Writing Code in the Template File
	9.3 Transaction Manager and Test Reader
	Format of the Transaction Manager Test Sequence Files
	Transaction Manager Modes

	9.4 Transaction Generator
	9.5 Transaction Monitor
	9.6 Changing a Project’s Template File

	Chapter 10: Generation and Simulation
	10.1 Generate the Bus Functional Model
	10.2 Simulator and Compiler Settings Dialog
	10.3 Project Simulation Properties Dialog
	10.4 Simulating the Bus Functional Model
	10.5 Generating Command Files for Third Party Simulators
	10.6 TestBencher Simulation Modes

	Chapter 11: Test Bench Techniques
	11.1 Master and Slave Transactions
	11.2 Waiting for Signal Transitions
	11.3 Burst Mode Transactions
	11.4 Conditionally Moving Signal Edges (Sweep Tests)
	11.5 Reading and Writing Serial Data
	11.6 Testing a Counter Model
	11.7 External Model Support

	Chapter 12: Language Specific Details
	12.1 Verilog
	Accessing Project Level Variables from a Diagram in Verilog
	Data Packing in Verilog

	12.2 VHDL
	Procedures for Apply Calls, Transaction Manager, and File I/O
	Diagram Apply Calls
	Transaction Manager Procedures
	Transaction Generator
	Accessing Project Level Variables from a Diagram in VHDL
	Data Packing in VHDL

	12.3 TestBuilder
	Transaction Parameters for Apply Calls
	Generating Random Values Using TestBuilder
	TestBuilder Methods for use with Transaction Manager
	Transaction Generator

	Appendix A: Editor Commands
	Appendix B: Supported Simulators
	Appendix C: Language Independent Operators
	Language Specific Operators

	Appendix D: License Agreement
	TestBencher Pro: Basic Tutorial
	1) Create a Project
	2) Create the Write Cycle Transaction Diagram
	3) Create the Read Cycle Transaction Diagram
	4) Create the Initialize Transaction Diagram
	5) Modify the Sequencer Process
	6) Generate Test Bench and Simulate

	Index

