
M. Introduction to MATLAB†

MATLAB is a powerful high-level programming language for scientific com-
putations. It is very easy to learn and use in solving numerically complex
engineering problems. The exercises in this book have been written assuming
you are not proficient in MATLAB. However, some basic concepts of MAT-
LAB are included here for a quick review to facilitate your understanding of
the programs and for performing the exercises.

MATLAB consists of functions that are either built into the interpreter or
available as M-files, with each containing a sequence of program statements
that execute a certain algorithm. A completely new algorithm can be written
as a program containing only a few of these functions and can be saved as
another M-file.

MATLAB works with three types of windows on your computer screen.
These are the Command window, the Figure window and the Editor window.
The Command window has the heading Command, the Figure window has the
heading Figure No. 1, and the Editor window has the heading showing the
name of an opened existing M-file or Untitled if it is a new M-file under
construction. The Command window also shows the prompt >> indicating it
is ready to execute MATLAB commands. Results of most printing commands
are displayed in the Command window. This window can also be used to
run small programs and saved M-files. All plots generated by the plotting
commands appear in a Figure window. Either new M-files or old M-files are
run from the Command window. Existing M-files can also be run from the
Command window by typing the name of the file.

In the remaining part of this appendix we illustrate the use of some of
the most commonly used functions and review some fundamental concepts
associated with MATLAB.

M1 Number and Data Representation

MATLAB uses conventional decimal notations to represent numbers with a
leading minus sign for negative numbers. The approximate range of numbers
that can be represented is from 10−308 to 10308. Very large or very small

†Reproduced from Digital Signal Processing Laboratory Using MATLABr, Sanjit K.
Mitra, c©1999, McGraw-Hill by permission of the author and the publisher.

1



numbers can be represented using exponents. Typical examples of valid
number representations are as follows:

1234.56789 123456.789E-2 1.23456789e3 -1234.56789

There should be no blank space before the exponent.
The data in MATLAB are represented in the form of a rectangular ma-

trix that does not require dimensioning. Its elements can be either real or
complex numbers. Thus, a one-dimensional discrete-time signal can be rep-
resented either as a row or a column vector. For example the row vector data
representation in

x = [3.5+4*j -2.1-7.4*j 1.05-0.8*j 0 9.2*j];

denotes a complex-valued signal x of length 5. Note the use of square brackets
to indicate that x is a rectangular matrix. Note also that the imaginary part
of a complex number is represented using the operator * and the letter j.
An alternate form of representation of the imaginary part uses the letter i

instead of the letter j. The real and imaginary parts of a complex number
should be entered without any blank spaces on either side of the + or −
sign as indicated above. The elements in the row of a matrix can also be
separated by commas as indicated below:

x = [3.5+4*j, -2.1 - 7.4*j, 1.05-0.8*j, 0, 9.2*j];

The semicolon ; at the end of the square brackets ensures that the data are
not printed in the command window after they have been entered. If the
above data were entered without the semicolon, MATLAB would print in
the Command window

x =

Columns 1 through 4

3.5000 + 4.0000i -2.1000 - 7.4000i 1.0500 - 0.8000i 0

Column 5

0 + 9.2000i

Alternately, if needed, the actual value of x can be printed by typing x

in the Command window.
The elements of a matrix can be entered in two different ways. The rows

can be typed on a single line separated with semicolons or on different lines.

2



For example, the 3×4 matrix A

A =




1 3 5 7

2 4 6 8

9 11 13 15




can be entered either as

A = [1 3 5 7; 2 4 6 8; 9 11 13 15];

or as

A = [1 3 5 7

2 4 6 8

9 11 13 15];

The indexing of vectors and matrices in MATLAB begins with 1. For ex-
ample, x(1) in the above vector x is 3.5000 + 4.0000i, x(2) is -2.1000 -

7.4000i, and so on. Similarly, the first element in the first row of a matrix
A is given by A(1,1), the second element in the first row is given by A(1,2),
and so on. The index cannot be less than 1 or greater than the dimension of
the vector or matrix under consideration.

The size of an array in the workspace of MATLAB can be determined
by using the function size. For example, by typing size(x) we obtain the
result

ans =

1 5

The length of a vector can also be found by using the function length.
For example, typing length(x) yields the result

ans =

5

The array transpose operation is implemented using the operator .′. Thus
the transpose of X is given by the expression X.′. If X is a matrix with
complex-valued elements, X′ is the complex conjugate transpose of X, whereas
if X is a matrix with real-valued elements, X′ is the transpose of X.

The data vectors and matrices in MATLAB can be labeled by a collec-
tion of characters including the numbers, such as x, x1, X, X1, XY, and so on.

3



It should be noted that MATLAB normally differentiates between lowercase
and uppercase letters.

Example M.1
Let X denote the 3×4 real-valued matrix entered by typing

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then typing X in the Command window results in the display of
ans =

1 2 3 4

5 6 7 8

9 10 11 12

and typing X′ we get

ans =

1 5 9

2 6 10

3 7 11

4 8 12

Consider next a 2×3 complex-valued matrix Y entered as

Y = [1+2*i, 3-4*i, 5+6*i; 7-8*i, 9+10*i, 11-12*i];

Typing of Y yields

Y =

1.0000 + 2.0000i 3.0000 - 4.0000i 5.0000 + 6.0000i

7.0000 - 8.0000i 9.0000 + 10.0000i 11.0000 - 12.0000i

whereas typing Y′ we get

ans =

1.0000 - 2.0000i 7.0000 + 8.0000i

3.0000 + 4.0000i 9.0000 - 10.0000i

5.0000 - 6.0000i 11.0000 + 12.0000i

4



To obtain the transpose of Y we type Y.′ resulting in

ans =

1.0000 + 2.0000i 7.0000 - 8.0000i

3.0000 - 4.0000i 9.0000 + 10.0000i

5.0000 + 6.0000i 11.0000 - 12.0000i

M2 Arithmetic Operations

Two different types of arithmetic operations are available in MATLAB for
the manipulation of stored data, as indicated below where X and Y denote
two different matrices. If X and Y are of the same dimensions, the addition
of X and Y is implemented by the expression X + Y. The addition operation
+ can also be used to add a scalar to a matrix. Likewise, the subtraction of
Y from X is implemented by the expression X - Y. The subtraction operation
− can also be used to subtract a scalar from a matrix.

If the number of columns of X is the same as the number of rows of Y,
the matrix multiplication X*Y yields the linear algebraic product of X and Y.
The multiplication operation * can also be used to multiply a matrix by a
scalar. If X and Y have the same dimensions, X.*Y is an array multiplication
forming the element-by-element product of X and Y.

If Y is a square matrix and X is a matrix with the same number of columns
as that of Y, then the matrix right division X/Y is equivalent to (Y’\X’)’
where \ denotes the matrix left division. The right division operation X/Y

can also be carried out if one of them is a scalar. If Y is a square matrix and
X is a matrix with the same number of rows as that of Y, then the matrix
left division W=Y\X is equivalent to solving YW=X by Gaussian elimination. If
X and Y are of the same dimension, the array right division is implemented
using the expression X./Y, resulting in a matrix whose (r,s)-th element is
given by X(r,s)/Y(r,s).

If multiple operations are employed in a statement, the usual precedence
rules are followed in evaluating the expression. However, parentheses can be
used to change the precedence of operations.

Arithmetic operations on matrices are illustrated in the following exam-
ple.

5



Example M.2

Let X = [1 2 3; 4 5 6] and Y = [12 11 10; 9 8 7]. Then X+Y yields

ans =

13 13 13

13 13 13

and X-Y yields

ans =

-11 -9 -7

-5 -3 -1

The result of the operation X+3 is given by

ans =

4 5 6

7 8 9

whereas the result of the operation X*3 yields

ans =

3 6 9

12 15 18

The statement X.*Y develops the answer

ans =

12 22 30

36 40 42

Typing X*Y′ we obtain the result

ans =

64 46

163 118

6



and typing X′*Y we arrive at

ans =

48 43 38

69 62 55

90 81 72

Consider the two matrices X = [1 2 3; 4 5 6; 7 8 9] and Y = [1 1 2;

2 2 3; 1 3 4].

Then X/Y yields
ans =

0.5000 0 0.5000

-2.5000 3.0000 0.5000

-5.5000 6.0000 0.5000

and Y\X results in
ans =

0 0 0

5 4 3

-2 -1 0

M3 Relational Operators

The relational operators in MATLAB <, <=, >, >=, ==, and =, represent
the comparison operations less than, less than or equal to (≤), greater than,
greater than or equal to (≥), equal to, and not equal to (6=), respectively.
Element-by-element comparisons between two matrices of the same size are
carried out using these operators with the result appearing as a matrix of
the same size whose elements are set to 1 when the relation is TRUE and
set to 0 when the relation is FALSE. In the case of complex-valued matrices,
the operators <, <=, >, and >= are applied to compare only the real parts of
each element of the matrices, whereas the operators == and = are applied
to compare both real and imaginary parts.

We illustrate the use of these operators in the following example.

Example M.3

7



Consider the two matrices C = [1 2 3; 4 5 6] and D = [1 7 2; 6 5

1]. Then the results of applying the above relational operators on C and D

are indicated below:

C < D = 0 1 0

1 0 0

C > D = 0 0 1

0 0 1

C <= D = 1 1 0

1 1 0

C >= D = 1 0 1

0 1 1

C == D = 1 0 0

0 1 0

C = D = 0 1 1

1 0 1

M4 Logical Operators

The three logical operators in MATLAB, &, |, and , perform the logical
AND, OR, and NOT operations. When applied to matrices, they operate
element-wise, with FALSE represented by a 0 and TRUE represented by a
1. We illustrate the use of these operators in the following example.

Example M.4
Consider the two matrices A = [1 1 0 1] and B = [0 1 0 0]. The re-

sults of applying the above logical operators on A and B are illustrated below:
A & B = 0 1 0 0

A | B = 1 1 0 1

A = 0 0 1 0

8



M5 Control Flow

The control flow commands of MATLAB are break, else, elseif, end,
error, for, if, return, and while. These commands permit the conditional
execution of certain program statements. The command for is used to repeat
a group of program statements a specific number of times. The command
if is used to execute a group of program statements conditionally, and the
command while can be used to repeat program statements an indefinite
number of times. The statements following the commands for, while, and
if must be terminated with the command end. The command break is used
to terminate the execution of a loop. The commands else and elseif are
used with the command if to provide conditional breaks inside a loop. The
command error is employed to display error message and abort functions.

The use of these commands is illustrated in the following examples.

Example M.5
Consider the generation of a length-N sequence x of integers beginning

with a specified first element x(1) and with each succeeding element in-
creasing linearly by a specified positive integer D. The MATLAB program
generating and displaying this sequence is given below:

N = 10;

D = 3;

x = [5 zeros(1,N-1)];

for k = 2:N

x(k) = x(k-1) + D;

end

disp(’The generated sequence is’);disp(x)

Example M.6
Now consider the generation of a length-N sequence x of integers begin-

ning with a specified first element x(1) and with each succeeding element
increasing linearly by a specified positive integer D until an element is equal to
R*D + x(1), where R is a positive integer, and then each succeeding element
decreasing linearly by an amount D until an element is equal to x(1), and
then repeating the process. A MATLAB program generating this sequence
is as follows:

N = 15; D = 3;

9



x = [5 zeros(1,N-1)];

for k = 2:N

x(k) = x(k-1) + D;

if x(k) == 3*D + x(1)

D = -abs(D);

elseif x(k) == x(1)

D = abs(D);

end

end

disp(’The generated sequence is’);disp(x)

Example M.7
The following program illustrates the use of the command break. The

program develops the sum of a series of numbers beginning with a specified
initial value y, with each succeeding number increasing by a fixed positive
increment D; stops the addition process when the total sum exceeds 100; and
then displays the total sum.

y = 5; D = 3;

while 1

y = y + D;

if y > 100, break, end

end

disp(’y is’);disp(y)

M6 Special Characters and Variables

MATLAB uses a number of special characters and words to denote certain
items exclusively. These characters and words should not be used for any
other purpose. For example, if the letter i or the letter j is used as a
variable, it cannot be used to represent the imaginary part of a complex
number. Hence, it is a good practice to restrict either the letter i or the
letter j exclusively for the representation of the imaginary part of complex
numbers.

There are several permanent variables that cannot be cleared by the user
and should not be used to denote any other quantities. The word pi is used
to denote π. Thus, sin(pi/4) yields 0.70710678118655, which is equal to
1/
√

2. The variable eps is equal to 2−52 and is a tolerance for determining

10



precision of certain computations such as the rank of a matrix. It can be
set to any other value by the user. NaN represents Not-a-Number, which is
obtained when computing mathematically undefined operations such as 0/0
and ∞−∞. inf represents +∞ and results from operations such as dividing
by zero, for example, 2/0, or from overflow, for example, e1000. The variable
ans stores the results of the most recent operation.

The square brackets [] are used to enter matrices and vectors. The el-
ements of a matrix can be separated by spaces or commas. A semicolon ;

indicates the end of a row in a matrix. It is also used to suppress printing.
The precedence in arithmetic expressions can be indicated using the paren-
theses (). The parentheses are also employed to enclose the indices of an
array and arguments of functions. The operator notation for transpose of
an array is ’. However, two such symbols can be used to denote a quote.
For example, ’dsp program’ is a vector containing the ASCII codes of the
characters inside the quotation marks. Any text following a percent symbol
% denotes a comment and is not treated as a program statement.

The colon symbol : has many different applications in MATLAB. It is
used to generate vectors, subscript matrices, and perform iterations of a block
of commands. For example, x = M:N generates the vector

x = [M M+1 M+2 . . . N],
if M < N. However x = M:N is an empty matrix, denoted by [], if M > N.

The command x = M:k:N generates the vector
x = [M M+k M+2k . . . N],

where k can be a positive or a negative integer. Note that x = M:k:N

generates the empty matrix [] if k > 0 and M > N or if k < 0 and M < N.
The colon can also be employed to select specific rows, columns, and

elements of a matrix or a vector. For example, Y(:,N) represents the Nth
column of Y. Likewise, the Mth row of Y is represented by Y(M,:). Y(:,M:N)
is equivalent to Y(:,M), Y(:,M+1), . . . , Y(:,N). Finally, Y(:) is equiva-
lent to a column vector formed by concatenating the columns of Y.

M7 Output Data Format

All arithmetic operations in MATLAB are performed in double precision.1

However, different formats can be used to display the result of such operations

1MATLAB 7 has added single-precision and integer arithmetic.

11



in the Command window. If all results are exact integers, they are displayed
as such without any decimal points. If one or more data elements are not
integers, the results can be displayed with various precision. format short

displays five significant decimal digits and is the default format. format

short e displays five significant decimal digits with two positive or negative
decimal exponents. format long shows results in 15 significant decimal dig-
its, while format long e adds two positive or negative decimal exponents
to 15 significant decimal digits. There are three other formats for displaying
results. However, these are not that useful in signal processing applications.

M8 Graphics

MATLAB includes high-level graphics capability for displaying the results
of a computation. In most situations, we shall be concerned with two-
dimensional (2-D) graphics and will use three-dimensional (3-D) graphics
in some special cases. For 2-D graphics, plotting can be done in various
forms with either linear or logarithmic scales for one or both axes of the
plots. Grid lines can be added to the plots along with labels for the two axes
and a title on top of the plot. Text can be placed anywhere on the graph
using a mouse or specifying the starting position through commands in the
program. Moreover, by including appropriate symbols in the argument of
the plotting command, specific line styles, plot symbols, and colors can be
displayed in the graph.

For 3-D data, plotting can also be done in various forms with either
linear or logarithmic scales for one or two or all three axes of the plots. For
example, lines and points can be plotted in three dimensions. Contour plots,
3-D perspective plots, surface plots, pseudocolor plots, and so forth can also
be generated.

The M-file in the following section illustrates the use of several graphics
commands.

M9 M-Files: Scripts and Functions

An M-file is a sequence of MATLAB statements developed using a word
processor or a text editor and saved with a name that must be in the form
filename.m. The names of M-files must begin with a letter followed by at

12



most 18 letters and/or digits (or underscores). However certain characters,
such as hyphen - and decimal point ., are not allowed in the names. Also,
do not use the names of existing M-files. An M-file can include references to
other existing M-files.

Each statement of a new program is typed in the Editor window line by
line as ASCII text files and can be edited using the text editor or the word
processor of your computer. The complete program can then be saved as an
M-file.

There are two types of M-files: scripts and functions. A function file
must contain the word function in the first line of all program statements.
Arguments in a function file may be passed from another M-file, and all
variables used inside the function file are local.

The script file makes use of workspace data globally. The first line of a
function file contains the word function and does not make use of workspace
data globally. The variables defined inside a function file are manipulated
locally, and the arguments of the file may be passed. When a function is
completed, all local variables are lost. Only values specifically passed out are
retained.

A simple example of a function file runsum is given below.

function y = runsum(x)

% Computes the mean of a vector x

L = length(x);

y = sum(x)/L;

A simple example of a script file lowpass.m follows.

% Script M-file lowpass.m

% Program to Perform Lowpass Filtering

% Using Three-Point Averaging of a Random Signal

% Program uses the function file runsum

z = zeros(1,11);data = randn(size(z));

u = [zeros(1,3) data];

N = 3; % N is the filter length

for k = 1:10;

w = u(k:k+N);

z(k) = runsum(w);

end

13



n = 0:10;

% Plot the noise in solid line and

% the smoothed version in dashed line

plot(n,data,’r-’,n,z,’b--’);grid

xlabel(’Time index n’);

ylabel(’Amplitude’);

gtext(’Noisy data’);gtext(’Smoothed data’);

The plot generated by executing the M-file lowpass.m is shown in Figure
M9.1

0 2 4 6 8 10
-2

-1

0

1

2

Time index n

A
m

pl
itu

de

Noisy data

Smoothed data

Figure M9.1: Signal smoothing example.

Note that the function file runsum uses the built-in function sum. Like-
wise, the script file lowpass.m uses the function file runsum.

M10 MAT-Files

Data generated by a MATLAB program can be saved as a binary file, called
a MAT-file, for later use. For example, the noisy data generated by execut-
ing the program lowpass.m of the previous section can be saved using the
command

save noise.mat data

Later it can be retrieved using the command
load noise

for use in another MATLAB session.

14



The data can also be saved in ASCII form. For example, after execution
of the program lowpass.m, we can generate a 2×11 matrix containing the
noisy data and the smoothed data using the command

result = [noise; z];

and then save the matrix result in ASCII form using the command
save tempo.dat result -ascii

The stored data can later be retrieved using the command
load tempo

M11 Printing

To develop a hardcopy version of the current Figure window, the command
print can be used. There are many versions of this command. See the
MATLAB Reference Guide for details. In a PC or a Mac environment, a
figure can also be copied to the clipboard and then inserted into a word
processing document. This approach permits generating a smaller size figure
and also pasting the figure on to a text.

M12 Diagnostics and Help Facility

MATLAB has very good diagnostic capabilities, making it easier to correct
any errors detected during execution. If any program statement has errors,
the execution of the program will stop with a self-evident error message ap-
pearing in the Command window. For example, entering the real number
1.23456789e3 with a space before the exponent will result in the error mes-
sage

??? 1.23456789 e3

|

Missing operator, comma, or semi-colon.

Entering the real number 1.23456789e3 with a colon in place of the
decimal point as 1:23456789e3 will cause the error message

??? Error using ==> colon

Maximum variable size allowed by the program is exceeded.

15



MATLAB provides online information for most topics through the com-
mand help. If help is typed in the Command window with no arguments,
a list of directories containing MATLAB files are displayed in the window.
For help on specific M-files or directories, the name of the file or the directory
should be used as an argument. For example typing help runsum results in

Computes the mean of a vector x

Likewise, typing help lowpass yields

A Script M-File to Perform Lowpass Filtering

Using Three-Point Averaging

Program uses the function file runsum

A list of variables in the workspace can be obtained by typing who. To
obtain information about the size of the variables, use the command whos.
Other useful commands are what, which, lookfor, echo, and pause.

The command what lists all files in the current directory, whereas the
command what dryname lists the files in the directory named dryname on
MATLAB’s search path. The command which is used to locate functions
and files on MATLAB’s search path. The command lookfor abc searches
through all help entries on MATLAB’s search path and looks for the string
abc in the first comment line. The command echo is useful for debugging
a new program and is used to list all M-files being invoked during the exe-
cution of a program. There are several versions of this command. See the
MATLAB Reference Guide to determine the appropriate ones for you to use.
The command pause stops program execution temporarily at the point it is
invoked; the execution can be restarted at that point by pressing any key
on the keyboard. This command is particularly useful when the program is
generating a large number of plots and each plot can be examined or copied
individually if the command pause is inserted after each plotting command.

M13 Remarks

Even though MATLAB uses double precision arithmetic, numerical approx-
imations used in the computations may generate errors in the results. Care
must be taken in such cases to interpret the results correctly. As an exam-
ple, the computation of the expression 1 - 0.1 - 0.3 - 0.2 - 0.2 - 0.1

- 0.1 yields 5.551115123125783e-17 in the output format long when the
result should have been ideally equal to 0. On the other hand, a slight

16



change in the expression to 1 - (0.1 + 0.3 + 0.2 + 0.2 + 0.1 + 0.1)

yields the correct result 0.

17


