Appendix B

Additional Hands-On
Experiments and
Applications

This appendix introduces several hands-on experiments for specific applications related
to the FIR filtering discussed in Chapter 6, IIR filtering discussed in Chapter 7, FFT
discussed in Chapter 8, and adaptive filtering discussed in Chapter 9.

B.1 3-D AUDIO-SOUND LOCALIZER USING FINITE-IMPULSE
RESPONSE FILTERS

This experiment implements a 3-D audio-sound localizer, which plays two sound
files at specific locations around the listener’s head using a headset. This experiment
is designed to allow the user to achieve the following objectives:

1. Understand the principle of 3-D audio-signal processing and its application in
headset listening. A detailed description of 3-D audio processing can be found
in[1,2].

2. Evaluate the effects of a fixed-point implementation of 3-D audio using the
fixed-point tools in MATLAB.

3. Implement 3-D audio on C5000 processors using a mixed C-and-assembly
program, where the C5000 assembly functions are available in the DSPLIB.
Benchmark the cycle count, MIPS used, and data- and program-memory
requirements.
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B2 Appendix B Additional Hands-On Experiments and Applications

Note that if a headset with gain control is used for the experiment, the gain should
be set to a comfortable listening level, and the same gain should be used during
testing.

B.1.1 Introduction

Unlike stereo sound, which allows only lateral listening, 3-D sound allows the listen-
er to listen to the sound around the listener’s head in every direction using only two
loudspeakers. This effect is achieved by using a set of FIR filters, commonly known
as head-related transfer functions (HRTF). A monosound source at the fixed loca-
tion can be perceived at any position in 3-D space by convolving the original signal
with the impulse response of two HRTF filters (left and right) corresponding to that
position.

In this experiment, two independent sound sources are convolved with a set of
HRTTF filters at 0° elevation, 150° clockwise and anticlockwise from the front of the
listener. The HRTF filters are measured in [1] and are available for download from
the Web. The outputs from the left HRTF filters are summed to form the left chan-
nel signal for playback over the headset. Similarly, the right HRTF filters’ outputs
are added to form the right channel signal. In most 3-D sound applications, the
HRTF is realized by an FIR filter; thus, the impulse response of an HRTF is repre-
sented by the coefficients of the filter.

B.1.2 Lab Experiment Using MATLAB/Simulink

Open the Simulink file ex6_i.mdl (or the MATLAB file ex6_i.m) and examine the
function of each block. Use the following data files for this experiment [1]:
female_footsteps2.wav as sound #1, door-open2.wav as sound #2, and the HRTF
file hrtf.mat, which contains HRTF data for left_150, right_ 150, left_210,
right_210. Complete the following exercises, answer the related questions, and
benchmark the results:

1. Plot the magnitude responses of four HRTF filters using MATLAB, and com-
ment on the differences.

2. Play back the output files (out_left.mat and out_right.mat) using MAT-
LAB and listen to the sound. Can you perceive the two signal sources at two
different locations? Make sure to use the correct sampling frequency for
playback.

3. Compare the spectra of the input and output signals, and comment on the
differences.

4. Adjust the gains of the HRTF filters, and observe the differences in performance.

5. Convert the double-precision, floating-point Simulink blocks to fixed-point
Q.15 format using Fixed-Point Blockset. Examine the effects of using a fixed-
point implementation in comparison with a double-precision, floating-point
simulation.

6. Finish converting to the fixed-point implementation, and then listen to the
processed signals, and observe the perceptual differences in comparison with
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Section B.2 Graphic Equalizer Using Finite-Impulse Response Filters B3

the floating-point results. In addition, truncate the length of the HRTF filters
to 64, and observe the perception differences.

7. Reduce the wordlength from 16 bits to 8 bits using Q.7 format, and evaluate
the performance.

B.1.3 Lab Experiment Using the C5000 Code Composer Studio

Use the C5000 DSPLIB to write a C program that calls the library functions to
implement HRTF filters. Create, build, and run the project in CCS. Remember to
add the relevant files into the project before building the executable code. Complete
the following exercises, and benchmark the results:

1. Access the input signals via FILE I/O. Implement the C5000 version of the 3-D
audio localizer using FIR filters. Save the results in data files, and listen to the
results. Since there is a memory limit on C5000 processors, we may store only
partial output samples in the file when processing a long data file. Observe the
differences between the MATLAB and CCS results.

2. Profile the code of the 3-D audio localizer, and benchmark the cycle count,
MIPS used, and data- and program-memory requirements.

3. Use different optimization levels in CCS, and observe the differences in the
benchmark.

B.1.4 Additional Exercises

1. Download other HRTF files from the website [1], and use more channels for
3-D audio processing.

2. Insert a simple reverberation algorithm [2] after the HRTF filter to enhance
out-of-head listening.

3. Determine if loudspeaker listening is required. If it is, the user needs a cross-
talk canceller that cancels crosstalk signals from the loudspeakers to the ears.
Refer to [2] for details on cross-talk cancellers. Comment on the differences
between 3-D audio listening using headphones and loudspeakers.

B.2 GRAPHIC EQUALIZER USING FINITE-IMPULSE
RESPONSE FILTERS

An L-band graphic equalizer can be implemented using L FIR filters connected in
parallel [3]. The most important objectives of this experiment are as follows:

1. Understand the principle of the graphic equalizer. An important considera-
tion in designing a graphic equalizer is the frequency specification for each
filter, which includes passband and stopband frequencies, ripples, and the fil-
ter order N.

2. Study the gain control at the output of each filter. The gain allows the user to
amplify or attenuate the signal at each band in order to enhance the quality of
the signal.
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B4 Appendix B Additional Hands-On Experiments and Applications

3. Ensure that no overflow occurs when adding the outputs from L filters in a
fixed-point implementation. Signal scaling is required to ensure proper opera-
tion of the fixed-point graphic equalizer.

4. Implement the designed graphic equalizer on C5000 processors using a mixed
C-and-assembly program. Benchmark the cycle count, MIPS used, and data-
and program-memory requirements.

B.2.1 Introduction

A graphic equalizer amplifies or attenuates the specific frequency contents of an
audio signal to compensate for signal components that are distorted by recording
devices, boosts some frequency contents of the signal to make it sound better, or
removes undesired bandlimited noise. The block diagram of an L-band graphic
equalizer is shown in Fig. B.1. The input signal, x(n), may be added directly to the
output in applications that allow the original signal to pass through when all of the
gains at the outputs of bandpass filters are set to 0. In other applications, such as the
removal of bandlimited noise, only bandpass filter outputs with attenuation are
added to form the overall output, y(n).

In this experiment, we investigate the design and implementation of an
octave-band graphic equalizer that covers the frequency range from 22 Hz to
22,500 Hz. The sampling rate is 44,100 Hz. The frequency specifications for the 10-
band, octave graphic equalizer are summarized in Table B.1.

It is important to note that when designing a bandpass filter at a low frequency
with a high sampling rate, a very high order FIR filter is required. One way to over-
come this problem is to use the multirate filter-design technique to obtain a lower-
order filter. Another way is to trade the frequency selection for a reduced
computational load. For example, in this experiment we group four low-frequency
bands (bands #1 to #4) into a single lowpass filter with a cutoff frequency of 353 Hz.

Optional
___________________________ >
Gain #1
BPF #1 /j
Gain #2
Input x(n) BPF 2 4 5 Output y(n)
1
1
1
1
1
1
Gain #L
BPF #L /j

Figure B.1 Block diagram of an L-band graphic equalizer
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Section B.2 Graphic Equalizer Using Finite-Impulse Response Filters B5

TABLE B.1 Frequency Specifications for a 10-Band, Octave
Graphic Equalizer

Band number Center frequency Passband (Hz)
#1 31.5 22-44
#2 63 44-88
#3 125 88-176
#4 250 176-353
#5 500 353-707
#6 1,000 707-1,414
#7 2,000 1,414-2,825
#3 4,000 2,825-5,650
#9 8,000 5,650-11,300

#10 16,000 11,300-22,500

Other filters remain unchanged (and they remain as listed in Table B.1). The pass-
band and stopband ripples are chosen as 1 dB and 60 dB, respectively. The gain of
the i-th bandpass filter, Gain(i), is set to +10 dB. A default gain, Gaingegy (i) =
1/Gain(i), is applied to the output of the i-th filter so that the default gain is refer-
enced at 0 dB. Any increase or decrease is considered an amplification or attenua-
tion from this reference. In this experiment, we precompute the gain that
corresponds to +£3 dB, +6 dB, and +9 dB, and the user can simply apply these gains
to the output of each band.

B.2.2 Lab Experiment Using MATLAB/Simulink

Complete the following exercises, answer the related questions, and benchmark the
results:

1. Open the Simulink file ex6_ii.mdl and use FDATool to design seven octave
filters (the lower four bands are combined into a single filter). Use the equirip-
ple and window methods to design these FIR filters, and write down the re-
quired order for each band. Which design method results in a lower filter
order? Refer to the M-file geq.m for the MATLARB version of the program.

2. Examine the magnitude responses of the designed bandpass filters to verify
the frequency specifications given in Table B.1.

3. Amplify the low-frequency bands and attenuate the high-frequency bands
using the graphic equalizer. Apply the audio signal in the file drums .wav [18] to
the equalizer, and save the equalized signal as drums_eq.wav. Examine the dif-
ferences between the input and output signals in terms of their spectra and
perception.

4. Modify the Simulink file to implement the fixed-point (Q.15 format) version of
the seven-band graphic equalizer using the Fixed-Point Blockset. Examine the
effects of a fixed-point implementation in comparison with a double-precision,
floating-point simulation.
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B6 Appendix B Additional Hands-On Experiments and Applications

B.2.3 Lab Experiment Using the C5000 Code Composer Studio

Use the C5000 DSPLIB to write a C program that calls the library functions to
implement the designed seven-band graphic equalizer. Create, build, and run the
project in CCS. Use the same gain setting as the one used in the Simulink code.
Complete the following exercises, and benchmark the results:

1. Access the input signal drums.dat via FILE I/O. Save the output in a data file,
and listen to the result. Observe the differences between the MATLAB and
CCS results.

2. Profile the seven-band octave graphic-equalizer code, and benchmark the
cycle count, MIPS used, and data- and program-memory requirements.

3. Use different optimization levels in CCS, and observe the differences in the
benchmark.

B.2.4 Additional Exercises

1. Extend the octave graphic equalizer to a 1/3-octave graphic equalizer. The 1/3-
octave band is commonly used in applications that require the filter band-
width to be matched to the human auditory system. The lowest and highest
frequencies are 22 Hz and 22,500 Hz, respectively. Starting from f,; = 22 Hz,
the passband frequencies from f,; to f,, can be computed as

f =200, (B2.1)

How many bands can fit into the frequency range from 22 to 22,500 Hz?

2. Use the 1/3-octave graphic equalizer to reduce the bandlimited noise in the
corrupted audio signal noisy drums.wav. (Hint: The user can determine the
contents of the bandlimited noise during the silent periods of the signal and
use this information to adjust the gains of the graphic equalizer to attenuate
the undesired bandlimited noise.)

3. Combine L FIR filters into a single FIR filter if the gain of each filter is fixed
and is included in the filter coefficients. This task can be done by expressing
the impulse response of each FIR filter in polynomial and adding the corre-
sponding terms to form a single impulse response. By predetermining the gain
at each band, we can implement the graphic equalizer using a single FIR filter.
This method reduces computational complexity at the expense of gain-control
flexibility.

B.3 PERFECT-RECONSTRUCTION FILTERBANK

A time-domain signal can be decomposed into separate frequency components using
a transform such as the FFT introduced in Chapter 8 or using a filterbank such as the
quadrature-mirror filterbank. Frequency decomposition using a filterbank allows
time-domain signal-processing techniques to be used at different frequency channels.
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Section B.3 Perfect-Reconstruction Filterbank B7

In this experiment, we use a simple two-channel quadrature-mirror filterbank that
consists of a lowpass filter (0 to 7/2) and a highpass filter (/2 to 7) to split the signal
into two bands. The analysis filter outputs are downsampled by a factor of two.
Assuming there is no distortion or aliasing, we are able to reconstruct the signal by
upsampling with a factor of two and then performing synthesis filtering. The most
important objectives of this experiment are as follows:

1. Understand the principle of a perfect-reconstruction filterbank. An important
consideration in designing analysis and synthesis filters is to ensure that the re-
constructed signal is same as the original signal. Detailed information is avail-
able in [5, 6].

2. Evaluate the fixed-point implementation of a perfect-reconstruction filter
using fixed-point tools in MATLAB and Simulink.

3. Implement the filterbank on C5000 processors using a mixed C-and-assembly
program. Benchmark the cycle count, MIPS used, and data- and program-
memory requirements.

B.3.1 Introduction

The block diagram of a perfect-reconstruction filterbank is illustrated in Fig. B.2,
where A;,(z) and A,,(z) are the analysis lowpass and highpass filters, and S;,(z)
and S;,(z) are the corresponding synthesis lowpass and highpass filters. The
analysis filter outputs are downsampled by a factor of two, which can be easily
implemented by ignoring every other sample of the filter outputs. In the synthe-
sis end, a factor-of-two upsample is achieved by inserting a zero sample between
two consecutive samples and then performing synthesis filtering. The outputs
from the synthesis filters are added to form the reconstructed signal, y(n). Effi-
cient techniques for using polyphase filters in implementing analysis and synthe-
sis filters with associated downsampling and upsampling are introduced in
Section 6.5.

I I
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! P l
| | |
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x(m) | | ! | ! <+> y(n)
! P l
! (- I
l b !
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Analysis filter Synthesis filter

Figure B.2 Block diagram of a perfect-reconstruction filterbank
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B8 Appendix B Additional Hands-On Experiments and Applications

The z-transform of the input and output signals shown in Fig. B.2 can be
expressed as

Y (z) = 05X (2)[A1p(2)S1p(2) + App(2)Snp(2)]
+ O‘SX(_Z)[AZP(_Z)SIP(Z> + Ahp(_Z)Shp(Z)]s (B31)

where the first term on the right-hand side represents the desired output, and the
second term is due to aliasing from downsampling. Ideally, aliasing can be canceled
completely if the second term equals zero. That is,

Ap(—2)Sip(2) + App(—2)Shp(z) = 0. (B3.2)
This aliasing cancellation requires that

Alp(_z) _ Shp(z)
A=)~ Sp2)’ (833)

where
Sip(z) = =C(2)A1p(=2), Snp(z) = C(2)App(—2) (B3.4)

and where C(z) is an arbitrary rational function.
If there is no distortion, the first term in Eq. (B.3.1) can be expressed as

Ap(2)S1p(2) + App(2)Spp(z) = 2277, (B3.5)

where N is the overall delay of the FIR filterbank, and the output signal y(n) =
x(n — N) is the delayed version of the input. Therefore, a perfect-reconstruction fil-
terbank can be derived by satisfying the conditions given in Egs. (B.3.2) and (B.3.5).

The analysis filter A;,(z) is first designed with a cutoff frequency of /2. This
filter satisfies the power-symmetric condition

Ap(2)Ap(z) + Ap(—2)Ap(—21) = 1. (B.3.6)

To achieve perfect reconstruction, the remaining filters, A;,(z), S;,(z), and Sj,,(z),
can be derived from the prototype filter A,,(z) as follows:

App(2) = 27NAL (=27, (B.3.7a)

Sip(z) = 227N Ap(z7), (B3.7b)
and

Sip(z) = 227NA,, (7). (B.3.7¢)

Perfect reconstruction can be verified by substituting Eq. (B.3.7) into Egs. (B.3.2)
and (B.3.5). Therefore, by designing the prototype lowpass filter A,,(z), we can
obtain the rest of the filters, A,,(z), S;,(z), and Sj,(z), using Eq. (B.3.7). Note

©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

For exclusive distribution with the book Digital Signal Processors: Architectures, Implementations, and
Applications by Sen M. Kuo and Woon-Seng Gan, ISBN 0-13-035214-4



Section B.3 Perfect-Reconstruction Filterbank B9

that A;,(z) and A,,(z) are mirror images about /2, and S;,(z) and S,,(z) are
also mirror images. Therefore, these filter pairs are called quadrature-mirror fil-
ters (QMFs).

B.3.2 Lab Experiment Using MATLAB/Simulink

We show the design of a two-channel QMF step by step in the MATLAB file
design_gmf.m. The analysis lowpass filter is designed with the following specifications:

e Sampling frequency f; = 8,000 Hz

Passband frequency fpass = 1,000 Hz (or 0.257)
Stopband frequency fstop = 3,000 Hz (or 0.757)
Passband ripple 6, = 0.01

Stopband ripple §, = 0.01

We first design the lowpass filter using the MATLAB function remez, as shown in
design_gmf.m. We then derive the rest of the filters based on Eq. (B.3.7) using MAT-
LAB. Note that highpass analysis and synthesis filters have the same specifications
as lowpass analysis filters.

Complete the following exercises, and benchmark the results:

1. Compute the magnitude responses of these designed filters, and determine the
aliasing error in dB.

2. Open the Simulink file ex6_iii.mdl and use the designed analysis and synthe-
sis filters. Use the speech file timitl.wav to examine whether the reconstructed
signal reconstruct.wav is similar to the original signal.

3. Modify the Simulink file to implement two-channel QMF in fixed-point
Q.15 format using Fixed-Point Blockset. Examine the effects of a fixed-
point implementation in comparison with a double-precision, floating-point
simulation.

B.3.3 Lab Experiment Using the C5000 Code Composer Studio

Write a C program that calls the library functions in the C5000 DSPLIB to imple-
ment the two-channel QMF. Create, build, and run the project in CCS. Complete the
following exercises, and benchmark the results:

Step 1. Access the input signal from timitl.asc via FILE I/O. Save the out-
put in a data file, and listen to the result. Compare the differences be-
tween the MATLAB and CCS outputs.

Step 2. Profile the code that implements the two-channel QMF, and record
the cycle count, MIPS usage, and data- and program-memory
requirements.

Step 3. Use different optimization levels in CCS, and observe the differences
in the benchmark.
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B.3.4 Additional Exercises

1.

Note that the two-channel QMF can be extended to a three-channel QMF [5]
by further dividing the low-frequency band signal into second-level lowpass
(0 to 7/4) and highpass (/4 to m/2) filters. The outputs from these filters are
downsampled by a factor of two. There is no need to redesign the second-level
lowpass and highpass filters since the previous lowpass and highpass filters are
designed with symmetrical characteristics and thus can be applied to different
sampling frequencies. Similarly, the synthesis portion of the three-channel
QMF consists of upsampling and lowpass filtering. This structure is commonly
called a tree-structured filterbank, or octave-band QMF. Plot the magnitude
responses of the three-channel QMF. Examine the increase in computation
and memory usage over the two-channel QMF.

. Repeat the preceding exercise for the four-channel tree-structured QMF. Plot

the magnitude responses of the four-channel QMF. Observe the increase in
computation and memory usage over the three-channel QMF.

. Note that the N-channel QMF is commonly used to split a signal into different

frequency bands in speech and audio-coding applications. We then encode only
the most important frequency bands and use fewer bits to encode other bands,
thus achieving an overall bit-rate reduction. We normally ignore high-frequency
bands since the signal energy concentrates in lower-frequency bands.

. Note that other applications that use a filterbank include acoustic echo cancel-

lation and noise reduction in speech signals that have been corrupted by noise.
The user can set the threshold to limit the amount of the signal that passes
through at each frequency band. The proper threshold can be set based on the
signal-to-noise ratio at that band. Derive a set of thresholds to reduce noise in
the noisy signal timit_noise.wav.

B.4 DIGITAL-SIGNAL GENERATORS USING INFINITE-IMPULSE
RESPONSE FILTERS

As discussed in Section 7.6, we can generate a sinusoidal signal by driving a second-
order IIR filter into oscillation. This simple oscillator can be extended to generate
any periodic waveform using Fourier series analysis. A detailed explanation of sig-
nal generation and its implementation is given in [7]. The most important objectives
of this experiment are as follows:

1.

2.

Understand the concept of signal generation using IIR filters, and introduce
some important design considerations in generating digital signals.

Ensure that the poles of the filter are inside the unit circle when implementing
the IIR filter on fixed-point processors. Signal scaling is required to ensure
proper operation of the fixed-point implementation.

. Implement the digital-signal generator on C5000 processors using a mixed C-

and-assembly program. Benchmark the cycle count, MIPS used, and data- and
program-memory requirements.
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B.4.1 Introduction

A square wave with an amplitude of £1 and a 50% duty cycle can be expressed as

ik sin[2mnfy(2k + 1)/fy]
7~ (2k + 1) ’

(B4.1)

where f; is the frequency of the square wave, and the upper limit k1 < int[(f; —
2f0)/4fy]- Similarly, the triangular wave can be expressed as

B ikl cos[2mnfy(2k + 1)/f]
=25 e (B4.2)

The sawtooth wave can be expressed as

k2 (—1)k~Lsin(2mnfokl/f,)

x(n) = 2};1 X ,

(B.4.3)

where k2 < int(f;/2f;). Finally, the full-wave sine rectifier with an amplitude
between 0 and 1 can be expressed as

2 418 cos[2mnfy(2k)If]
xX(n) =~ e (2k + 1) (2k + 3

(B.4.4)

where k3 < int(f,/4f,).

Similar to the DTMF signal generator described in Section 7.6.1, the trans-
fer functions of IIR filters for implementing both sine and cosine waves are
expressed as

B sin(27fy/f,)z !
Hinl2) = 1 — 2cos(2mfylfy)zt + 772 (B4-5)

and

- 1 — cos(2mfylfy)z
Heul2) =775 cos2mfylf)z ! + 2% (B4.6)

These IIR filters are connected in parallel for implementing these periodic waveforms.

B.4.2 Lab Experiments Using MATLAB/Simulink

Complete the following exercises, and benchmark the results:

1. Use a frequency f; = 100 Hz and a sampling frequency f; = 10,000 Hz to
generate the square, triangular, sawtooth, and sine-rectifier waveforms in
MATLAB. Verity the generated signals in terms of amplitude and period by
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plotting the signals in MATLAB. Determine the number of sine generators
required for each case to give a good approximation of the desired waveform.
An example of the triangular-wave generator is given in gen_triangular.m.

. Use a five-tap smoothing filter to smooth the square and sawtooth waves.

Observe the improvement over the original waveform.

. Examine the pole-zero plot for each sine generator using FDATool. Determine

whether the poles lie exactly on or inside the unit circle for both the double-
precision, floating-point and Q.15 fixed-point formats.

. Set the initial state of the IIR filter such that it starts the oscillation without

injecting an impulse signal as input. Modify the MATLAB program to imple-
ment the signal generator without injecting the impulse signal.

. Generate the signals in Simulink using both the double-precision, floating-

point and fixed-point Q.15 formats. Examine the effects of a fixed-point im-
plementation in comparison with a double-precision simulation.

B.4.3 Lab Experiment Using the C5000 Code Composer Studio

Use the C5000 DSPLIB to write a C program that calls the library functions to
implement the signal generators. Create, build, and run the project in CCS. Com-
plete the following exercises, and benchmark the results:

1.

2.

Save the generated signal in memory, and display it using the graphic window.
Compare the differences between the MATLAB and CCS results.

Profile the code and benchmark the cycle count, MIPS used, and data- and
program-memory requirements.

. Use different optimization levels in CCS, and compare the differences in the

benchmark.

. Perform the benchmark for both the sample processing and block processing,

and determine a good frame size for block processing. State the advantages
and disadvantages of using block processing in terms of the MIPS usage, sys-
tem setup, system latency, and memory requirement for buffering.

B.4.4 Additional Exercises

1.

Extend the preceding exercises to generate a chirp signal with frequency
swept linearly from 100 Hz to 1,000 Hz in 1 second. The sampling frequency is
10,000 Hz.

. Note that another method of generating periodic signals is to use an IIR filter,

in which the feedforward coefficients b; contain all samples within one period
of the signal. For example, to generate a triangular wave with a period of 10
samples, the feedforward coefficients are 0.2,0.4,0.6,0.8,1,0.8,0.6,0.4,0.2, and
0. The feedback coefficients are 0, except the last coefficient a9 = 1. The input
to the IIR filter is an impulse signal, which generates one period of triangular
waveform from the feedforward coefficients. The impulse signal rotates back
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from the feedback section to the feedforward section at the end of every period
in generating the next period of signal samples. Implement this type of digital
signal generator in MATLAB and CCS.

B.5 DIGITAL REVERBERATION USING INFINITE-IMPULSE
RESPONSE FILTERS

Room reverberation can be simulated using a set of IIR filters. The reverberation
algorithm simulates the sound reflections in an enclosed environment such as
rooms, concert halls, etc. A detailed explanation of the reverberation algorithm and
its implementation is given in [8, 9]. The most important objectives of this experi-
ment are as follows:

1. Understand the concept of generating artificial reverberation. The most im-
portant design consideration involves tuning the parameters of IIR filters to
simulate the reverberation in different environments.

2. Ensure that the poles of the filter are inside the unit circle when implementing
the IIR filter. Signal scaling is required to ensure proper operation for the
fixed-point implementation.

3. Implement the digital reverberation algorithm on C5000 processors using a
mixed C-and-assembly program. Benchmark the cycle count, MIPS used, and
data- and program-memory requirements.

B.5.1 Introduction

Reverberation consists of three components: direct sound, early reflections, and
late reflections (or reverberation). Direct sound takes a direct (shortest) path
from the sound source to the receiver (or listener). Early reflections, which arrive
within 10 to 100 msec after the direct sound, are caused by sound waves reflected
once before reaching the listener. A digital reverberation algorithm can be devel-
oped based on the characteristics of the room. As shown in Fig. B.3, this algorithm
simulates room reverberation by using four comb filters, Ci(z), C5(z), C5(z), and
C4(z), connected in parallel, followed by two cascaded allpass filters, As(z) and
A6(Z).
The transfer function of the comb filter is expressed as

Ci(z) = !

— i=1,2,3,4, (B.5.1)
1 - a;zg

—Di’

which is the IIR filter with Di poles equally spaced (27/Di) on the unit circle. The
coefficient a; determines the decay rate of the impulse response for each comb fil-
ter. The comb filter increases the echo density and gives the impression of the
acoustics environment and room size. However, it also causes distinct coloration to
the incoming signal. Allpass filters prevent such coloration and emulate more natural
sound characteristics in a real room. The transfer function of the allpass filter is
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Figure B.3 Block diagram of a digital reverberation algorithm

expressed as

—a; + Z_Di

A,—(Z) = -Di’

= i=25,6. (B.5.2)
1 - a;z

By cascading the allpass filters with comb filters, the impulse response of the overall

system becomes more diffuse.

B.5.2 Lab Experiment Using MATLAB /Simulink

Complete the following exercises, answer the related questions, and benchmark the
results:

1. Open the Simulink file ex7_ii.md1, and use the DSP Blockset to realize the
reverberation algorithm. Enter the delays, Di, for the comb filters as 29, 37, 44,
and 50, and enter the delays for the allpass filters as 27 and 31. Set all feedback
coefficients, a;,i = 1, ..., 4, of the comb filters as 0.75. What are these delays
in msec if the sampling frequency is 8,000 Hz? Run the simulation using the
wave file drums.wav as input, and play back the processed signal
reverb_out.wav. Do you perceive any reverberation effect?

2. Examine the impulse and magnitude responses of the comb filters and allpass fil-
ters. Compare the differences of using a longer delay, Di, and a larger coefficient.
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3. Use an impulse signal as input to the reverberation algorithm shown in Fig. B.3,
and save the impulse response. Examine the impulse and magnitude responses.
The reverberation time f4, is defined as the time needed for the impulse
response to decay by 60 dB. Compute the reverberation time, #4,, based on the
given parameters in the Simulink file.

4. Modify the Simulink file to implement the fixed-point reverberation genera-
tor in Q.15 format using Fixed-Point Blockset. Examine the effects of a fixed-
point implementation in comparison with a double-precision, floating-point
simulation.

B.5.3 Lab Experiment Using the C5000 Code Composer Studio

Use the C5000 DSPLIB to write a C program that calls the library functions to
implement the reverberation generator. Create, build, and run the project in CCS.
Complete the following exercises, and benchmark the results:

1. Create an impulse signal and access it via FILE I/O. Save the output im-
pulse response in a data file and plot it. Compare the differences between
the MATLAB and CCS results. In addition, use a speech file as input for the
experiment.

2. Profile the code of the reverberation generator, and record the results of the
cycle count, MIPS used, and data- and program-memory requirements.

3. Use different optimization levels in CCS to compare the differences in the
benchmarks.

4. Perform the benchmark for both the sample processing and block processing,
and determine a good frame size for block processing. State the advantages
and disadvantages of using block processing in terms of the MIPS usage, sys-
tem setup, system latency, and memory requirement for buffering.

B.5.4 Additional Exercises

1. Note that a variation of the preceding Schroeder’s method is to include a low-
pass filter in place of the feedback coefficient a; of the comb filter. The func-
tion of the lowpass filter is to spread out the echoes, resulting in a more diffuse
reverberation. The lowpass filter also reduces the metallic sound effects of the
comb filter and creates a more realistic room reverberation. Design and im-
plement a suitable low-order IIR filter to replace the comb-filter coefficient.
Examine the impulse and magnitude responses of this modified reverberation
algorithm, and compare it with the original one.

2. Extend the reverberation algorithm using longer delays of 40, 44, 48, and 52
msec for the comb filters and delays of 7 and 8 msec for the allpass filters.
Determine the delay-buffer lengths for implementing these delays when sam-
pling at 8,000 Hz. Can these delay buffers be stored in the internal memory of
C5000 processors?

3. Implement the modified reverberation algorithm on C5000 processors.
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B.6 PARAMETRIC EQUALIZER USING INFINITE-IMPULSE
RESPONSE FILTERS

A group of second-order IIR filters can be designed to implement the parametric
equalizer. The parametric equalizer allows the user to specify its center frequency,
bandwidth, filter type, and gain, while the graphic equalizer only allows the user to
control its gain. A more detailed explanation is given in [10, 11]. The most important
objectives of this experiment are as follows:

1. Understand the principle of designing a parametric equalizer. An important
design consideration involves mapping an analog IIR filter to its digital equiv-
alent using bilinear transformation.

2. Ensure that the poles of the IIR filter are inside the unit circle. Prevent over-
flow of the parametric equalizer by scaling the signal when the IIR filter is
implemented on fixed-point processors.

3. Implement the parametric equalizer on C5000 processors using a mixed C-
and-assembly program. Benchmark the cycle count, MIPS used, and data- and
program-memory requirements.

B.6.1 Introduction

A direct-form I, second-order IIR filter (biquad) with five coefficients is used in this
application to adjust the bandwidth, center frequency, and gain of the parametric
equalizer. An analog prototype filter is used in specifying the frequency response,
and it is converted to a digital filter using the bilinear transform. The coefficients of
the analog filter are first determined by satisfying the set of frequency-response
equations given in [11]. As explained in Section 7.2.1, the desired digital frequencies
(center and bandedge frequencies) need to be prewarped using Eq. (7.2.16).
The digital IIR filter and its coefficients [11] are expressed as

by bz bz

H(z) w0t + e (B.6.1)
where

by = ﬂ, (B.6.2a)

1+ y/\/]?

by — —2cos(), ’
1+y/VK (B.6.2b)

p = LZVVE
1+ y/VK (B.6.2¢)

1 - ‘y/\/g
T e VK (B.6.2d)
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ay = 1, and a; = b;. Note that the constant
K = 109% (B.6.3a)

is the gain of the filter at a digital-center frequency of w. (or an analog frequency of
Q.),and G is the gain expressed in dB. The variable vy is given as

y=VK tan<BZW), (B.6.3b)

where BW is the bandwidth (3 dB) of the filter.

The Q (quality) factor defines the bandwidth (or sharpness) of the filter. The
relationship between the Q factor, the center frequency, f,, and the bandwidth, BW,
of the filter is expressed as

_ e VAR
0= BW  f— (B.6.4)

where f| and f, are the bandedge frequencies. The filter type can be low- and high-
frequency shelving filters, peak filters, and lowpass and highpass filters.

In this experiment, we investigate the design and implementation of an octave-
band parametric equalizer that covers the frequency range from 22 Hz to 22,500 Hz at
a sampling frequency of 44,100 Hz. The frequency specifications for the 10-band octave
equalizer are given in Table B.1. In octave spacing, f, = 2f;; thus, the Q factor is \/2,
as defined in Eq. (B.6.4). The filter type selected for this application is the peak filter,
which allows the user to boost or attenuate the signal. The center frequencies are stat-
ed in Table B.1. The parametric equalizer provides more flexibility in controlling its
gain and frequency parameters (e.g., center frequency, bandwidth, and rolloff) as com-
pared with the graphic equalizer. In order to implement the 10-band parametric equal-
izer with octave spacing, we can simply cascade 10 second-order IIR peak filters with
the coefficients calculated based on Eq. (B.6.2). The coefficients need to be recomput-
ed on the fly with a change of gain at each band. A better alternative is to use a look-up
table that stores the coefficients for different gains, center frequencies, and bandwidth
settings.

B.6.2 Lab Experiment Using MATLAB/Simulink

Complete the following exercises, and benchmark the results:

1. Open the Simulink file ex7_iii.md1l, and use FDATool to design 10 octave fil-
ters using the cascade-biquad structure. Enter the coefficients (derived from
the MATLAB file equalizer.m from [11] and octave.m) for each filter block.
Examine the impulse response, pole-zero plot, stability, magnitude and phase
responses, and group delay of all of the bandpass filters.

2. Apply the audio-signal file drums.wav to the equalizer, and examine the out-
put signal drums_peq.wav in terms of its magnitude response and its perceived
differences from the original signal.
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3. Modify the Simulink file to implement the fixed-point (Q.15 format) version
of the 10-band octave parametric equalizer using the Fixed-Point Blockset.
Examine the effects of a fixed-point implementation in comparison with a
double-precision, floating-point simulation.

B.6.3 Lab Experiment Using the C5000 Code Composer Studio

Use the C5000 DSPLIB to write a C program that calls the library functions to
implement the 10-band octave equalizer using the cascade-biquad structure. Create,
build, and run the project in CCS. Complete the following exercises, and benchmark
the results:

1. Access the input signal drums.dat via FILE I/O. Save the output in a data file,
and listen to the result. Compare the differences between the MATLAB and
CCS results.

2. Profile the code of the parametric equalizer, and benchmark the cycle count,
MIPS used, and data- and program-memory requirements. Also, list the addi-
tional time required to alter the gain of the filters. Compare this data with the

TABLE B.2 Twenty-Five Critical Bands in the Human Hearing Range

Critical Lower cutoff Center frequency Upper cutoff
band (Hz) (Hz) (Hz) Q-factor
1 0 50 100 0.50
2 100 150 200 1.50
3 200 250 300 2.50
4 300 350 400 3.50
5 400 450 510 4.50
6 510 570 630 4.75
7 630 700 770 5.00
8 770 840 920 5.60
9 920 1,000 1,080 6.25
10 1,080 1,170 1,270 6.15
11 1,270 1,370 1,480 6.52
12 1,480 1,600 1,720 6.66
13 1,720 1,850 2,000 6.60
14 2,000 2,150 2,320 6.72
15 2,320 2,500 2,700 6.58
16 2,700 2,900 3,150 6.44
17 3,150 3,400 3,700 6.18
18 3,700 4,000 4,400 57
19 4,400 4,800 5,300 5.33
20 5,300 5,800 6,400 5.27
21 6,400 7,000 7,700 5.38
22 7,700 8,500 9,500 4.72
23 9,500 10,500 12,000 4.20
24 12,000 13,500 15,500 3.86
25 15,500 19,500 22,050 2.98
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benchmark obtained for the FIR-filter-based graphic equalizer in the previous
experiment.

3. Use different optimization levels in CCS to compare the differences in the
benchmarks.

4. Perform the benchmark for both the sample processing and block processing,
and determine a good frame size for the block processing. State the advan-
tages and disadvantages of using block processing in terms of the MIPS usage,
system setup, system latency, and memory requirement for buffering.

B.6.4 Additional Exercises

1. Extend the octave-band parametric equalizer to implement a system that
mimics the critical band of the human auditory system. The critical band (listed
in Table B.2) is commonly used in perceptual audio coding that relates how
the ear discriminates between energy inside and outside the band.

2. Use the preceding critical-band parametric equalizer to reduce the bandlimited
noise in the audio-signal file noisy drums.wav. What are the advantages of
using the parametric equalizer over the graphic equalizer when controlling the
noise level?

B.7 FAST-CONVOLUTION METHODS

The overlap-save and overlap-add techniques were introduced in Section 8.7.1.
These signal-segmentation and signal-combination techniques allow a long signal
sequence to be convolved continuously with a vector such as a filter coefficient vec-
tor. The most important objectives of this experiment are as follows:

1. Understand the differences in the signal-segmentation and signal-combination
techniques used in the overlap-save and overlap-add methods.

2. Examine the effects of different segment lengths used in fast convolution.

3. Implement the fast-convolution techniques (overlap-add and overlap-save) on
C5000 processors using a mixed C-and-assembly program. Benchmark the
cycle count, MIPS used, and data- and program-memory requirements.

The reader can refer to Section 8.7.1 for a detailed introduction to the overlap-add
and overlap-save techniques.

B.7.1 Lab Experiment Using MATLAB/Simulink

Complete the following exercises, and benchmark the results:

1. Open the MATLAB file overlap_save.m, and examine the steps used to com-
plete the overlap-save method. Replace the fast-convolution code with the
segmented time-domain convolution program. Compare the time needed to
execute the fast convolution and the time-domain convolution using the
etime.m function in MATLAB.
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2. Repeat the preceding exercise for the MATLAB file overlap_add.m.

3. Compare the differences in terms of memory usage and computational load of
the overlap-add and over-save techniques.

4. Examine the Simulink (DSP Blockset) blocks Overlap-Add FFT Filter and
Overlap-Save FFT Filter. Compare the differences in these processing blocks,
and examine the results obtained from these blocks.

5. Modify the preceding Simulink blocks to implement the fixed-point (Q.15 for-
mat) version of fast convolution using the Fixed-Point Blockset. Examine the
effects of a fixed-point implementation in comparison with a double-precision,
floating-point simulation.

B.7.2 Lab Experiment Using the C5000 Code Composer Studio

Write a C program that calls the library functions in the C5000 DSPLIB to imple-
ment the fast-convolution algorithm. Create, build, and run the project in CCS.
Complete the following exercises, and benchmark the results:

1. Save the results in data files, and observe the magnitude responses. Compare
the differences between the MATLAB and CCS results.

2. Profile the code of the fast-convolution algorithm, and record the cycle count,
MIPS used, and data- and program-memory requirements. Compare the
benchmark results obtained from the time-domain convolution and the fast
convolution.

3. Use different optimization levels in CCS to compare the differences in the
benchmarks.

4. Perform the benchmark for both the sample processing and block processing,
and determine a suitable frame size for the block processing. State the advan-
tages and disadvantages of using block processing in terms of the MIPS usage,
system setup, system latency, and memory requirement for buffering.

B.7.3 Additional Exercises

1. Examine the C5000 DSPLIB function fir and check whether the overlap-add
or overlap-save method is being used in block-processing mode.

2. Note that crosscorrelation between two vectors can be computed by simply
time-reversing elements in one of the vectors before computing the crosscor-
relation using convolution operations. Verify the results using the MATLAB
crosscorrelation function xcorr.m.

B.8 IMPLEMENTATION OF A SLIDING FAST FOURIER TRANSFORM

As discussed in Chapter 8, the DFT or FFT is a block-processing algorithm that
processes a block of input samples {x(n),n = 0,1, ..., N — 1} into its frequency-
domain outputs { X (k),k = 0,1, ..., N — 1}. Due to the superposition and time-
shifting properties of the FFT, a series of FFT computations can be processed in a
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sample-processing mode. This computational technique is called the sliding FFT. A
more detailed explanation of this algorithm is given in [13]. The most important
objectives of this experiment are as follows:

1. Understand the principle of sliding FFT and its differences from conventional
block FFT processing.

2. Ensure that the processing is stable in a fixed-point implementation. Use
proper signal scaling to ensure the correct operation in the fixed-point imple-
mentation of the sliding FFT algorithm.

3. Implement the sliding FFT on C5000 processors using a mixed C-and-assem-
bly program. Benchmark the cycle count, MIPS used, and data- and program-
memory requirements.

B.8.1 Introduction

The linear property of the FFT implies that it is possible to compute an N-point FFT
by summation of the results of N separate transforms, where each transform has
only one sample in its original signal vector. This concept can be expressed as

x(n) x(n) 0
rer| YD ppn O s e P
x(n — N + 1) 0 0
0
v .prr|Y
.x(n - N+1)

= x(n) + x(n — 1)e #™N

+ -+ x(n— N+ 1)e?™WN-DIN — (B81)

Another property used in the sliding FFT algorithm is the circular-shifting property
introduced in Section 8.3.2, which states that the transform of a time-delayed
sequence is a phase-rotated version of the transform of the original sequence,
expressed as

FFT[x(n — m)] = X(k)e 2mkm/N (B.8.2)

where x(n — m) is the input vector that is delayed by m samples.

The sliding FFT algorithm computes the first N-point FFT at time » to obtain
X, (k) and uses a sliding window (shift one sample) to compute the FFT for the next
signal vector (within the sliding window) at time n + 1 to obtain X, (k). To pre-
vent the repeat computation of the FFT for every sample shift, we use the proper-
ties of shifting given in Eq. (B.8.2) and the linearity given in Eq. (B.8.1) to update
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the new FFT recursively as
X, 1(k) = X, (k)e N + x(n + 1) — x(n — N), (B.8.3)

where x(n + 1) is the new sample in the new window at time n + 1, and x(n — N)
is the oldest sample of the previous window at time n.

Therefore, the new FFT is computed from the previous FFT that is phase-
shifted by e 7™XN_ The updating samples x(n + 1) and x(n — N) are added to and
subtracted from, respectively, at all frequency bins. This results in N complex multi-
plications and 2N complex additions to obtain X, {(k), as opposed to (Nlog,N)/2
complex multiplications and (Nlog,N) complex additions in a conventional FFT
algorithm. In addition, the sliding FFT can compute only the frequency bins of interest,
since each frequency bin is calculated separately as in the DFT computation.

B.8.2 Lab Experiment Using MATLAB/Simulink

Complete the following exercises, and benchmark the results:

1. Write a MATLAB program to verify that the sliding FFT algorithm produces
the same results as the block FFT function £ft.m. Use an 8-point FFT for the
signal sequence [123456787 65432 1] as an example. Compare the time
taken (use the MATLAB function etime.m) to complete the FFT of the whole
sequence using these two different methods. Refer to the MATLAB file
slidingfft.m.

2. Implement the sliding FFT algorithm using Simulink.

3. Modify the Simulink file to implement the fixed-point (Q.15 format) version
of the sliding FFT algorithm using the Fixed-Point Blockset. Examine the ef-
fects of a fixed-point implementation in comparison with a double-precision,
floating-point simulation.

It is important to note that multiplication by the twiddle factor in finite precision
may result in instability. The phase-rotating coefficients e />™* must be less than
unity (e.g., 0.9999). However, scaling these twiddle factors by 0.9999 causes the
value at each frequency bin to be multiplied by 0.9999". Therefore, the N-th oldest
sample x(n — N) needs to be scaled by 0.9999" before subtraction occurs.

B.8.3 Lab Experiment Using C5000 CCS

Complete the following exercises, and benchmark the results:

1. Write a C program that calls the library functions in the C5000 DSPLIB to im-
plement the sliding FFT algorithm. Create, build, and run the project in CCS.

2. Save the results in data files and observe the magnitude-spectrum plots. Com-
pare the differences between the MATLAB and CCS results.

3. Profile the program for the sliding FFT algorithm, and record the cycle count,
MIPS used, data- and program-memory requirements. Compare the benchmarks
obtained using the conventional FFT and the sliding FFT.
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4. Use different optimization levels in CCS to compare the differences in
benchmarks.

5. Perform the benchmark for both sample processing and block processing, and
determine a good frame size for block processing. State the advantages and
disadvantages of using block processing in terms of the MIPS usage, system
setup, system latency, and memory requirement for buffering.

B.8.4 Additional Exercises

1. Compute the spectrogram of the speech signal in the file timitl.asc using the
sliding FFT technique. Use the MATLAB functions imagesc.mand colorbar.mto
plot the spectrogram of the speech signal computed by the sliding FFT method.

2. Plot the spectrogram using the specgram.m function, and compare the result
with the sliding FFT implementation.

B.9 IMPLEMENTATION OF THE ZOOM FAST FOURIER TRANSFORM

A zoom FFT can be used to reduce the computational load of a large-order FFT in
achieving a very fine frequency resolution at a specific frequency range without
computing the entire spectrum. The zoom-FFT technique is particularly useful in
applications such as radar, sonar, radio frequency (RF) communications, and vibra-
tion analysis, where the desired signal components may occupy only a very narrow
frequency band. This technique can extract the narrowband spectrum on an
expanded (zoom-in) frequency scale efficiently. The zoom-FFT technique is
explained in [14]. The most important objectives of this experiment are as follows:

1. Understand the principles of the zoom-FFT technique and its differences from
conventional FFT for spectral analysis.

2. Ensure proper fixed-point implementation of the zoom-FFT algorithm by
using signal scaling.

3. Implement the zoom-FFT on C5000 processors using a mixed C-and-assembly
program. Benchmark the cycle count, MIPS used, and data- and program-
memory requirements.

B.9.1 Introduction

When a signal is sampled at a high sampling frequency, f;, a large number of samples
are needed to span a given time to achieve a fine resolution. This large-size FFT is
especially wasteful and is not even practical when only a narrow frequency band is
of interest. The zoom-FFT uses downsampling to cover a longer time with fewer
samples, thus reducing the computational load of the FFT used in computing a very
fine resolution. Downsampling zooms in the spectrum and allows the user to magnify
the spectrum of the narrowband signal. For example, two closely spaced signals at
2,000 Hz and 2,005 Hz (with a sampling rate of 48 kHz) can be viewed clearly using
a zoom-FFT with a reasonable order. However, the size of the FFT in the conven-
tional spectral analysis must be greater than 9,600 (48 kHz/5) in order to achieve the
resolution of 5 Hz.
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In order to implement the zoom-FFT, the signal is first sampled at a high sam-
pling frequency, f,, and filtered by a bandpass filter to focus on the frequency band of
interest. In the preceding example, a bandpass filter with a passband of 1,800 Hz to
2,200 Hz can be used. The filtered signal is then downsampled to f;/M, where M is a
downsampling integer. The frequency f,/M must be greater than twice the bandwidth
of the signal of interest in order to avoid aliasing. The process of downsampling was
explained in Section 6.5.2. These decimated samples are transformed using a lower-
order N-point FFT to compute the spectrum. The resulting frequency resolution is
equal to f/(MN), which is equivalent to using a higher-order L (=M N )-point FFT
without downsampling.

Using the same example, if we select a downsample factor of M = 10, the
order of the FFT can be reduced to N = 1,024 (>960). This size is manageable in
terms of computation and memory requirements when computing the FFT. However,
it must be noted that both the zoom-FFT and conventional FFT techniques must
acquire the same amount of samples (0.2 second) in order to achieve a frequency
resolution of 5 Hz. Note that the use of zero-padding alone cannot improve the fre-
quency resolution, as explained in Chapter 8.

B.9.2 Lab Experiment Using MATLAB/Simulink

Complete the following exercises, answer the related questions, and benchmark the
results:

1. Use the zoom-FFT algorithm to extract the spectral information of the signal
in the data file input.dat, which is sampled at 48 kHz. It is known that the sig-
nal of interest lies in the frequency range from 1,000 to 2,200 Hz. Use a suit-
able downsampling factor to zoom in on the spectrum, and select a proper
order of FFT for achieving a frequency resolution of less than 5 Hz. Plot the
spectrum obtained by the zoom-FFT algorithm. Compare the result with the
conventional FFT-based spectrum. What is the minimum order of the conven-
tional FFT required to achieve a frequency resolution of 5 Hz? Refer to
zoomfft.m.

2. Determine what happens if the input sequence has only 5,000 samples. Can we
still analyze the spectrum accurately?

3. Implement the zoom-FFT algorithm using Simulink to process the same signal
in the file input.dat.

4. Modify the Simulink file to implement the fixed-point (Q.15 format) version of
the zoom-FFT algorithm using the Fixed-Point Blockset. Examine the effects of
a fixed-point implementation in comparison with a double-precision, floating-
point simulation.
B.9.3 Lab Experiment Using the C5000 Code Composer Studio

Complete the following exercises, and benchmark the results:

1. Write a C program that calls the library functions in the C5000 DSPLIB to im-
plement the zoom-FFT algorithm. Create, build, and run the project in CCS.
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2. Save the results in data files and observe the magnitude-spectrum plots. Com-
pare the differences between the MATLAB and CCS results.

3. Profile the program of a zoom-FFT algorithm, and record the cycle count,
MIPS used, and data- and program-memory requirements. Compare the
benchmarks obtained by the conventional FFT and the zoom-FFT techniques.

4. Use different optimization levels in CCS to compare the differences in the
benchmark.

5. Perform the benchmark for both sample processing and block processing, and
determine a good frame size for block processing. State the advantages and
disadvantages of using block processing in terms of the MIPS usage, system
setup, system latency, and memory requirement for buffering.

B.9.4 Additional Exercises

1. Note that another method of extracting useful information is to demodulate
the signal instead of the bandpass filter. This demodulation can be done by
multiplying the signal with a complex exponential to translate the frequency
band of interest to the baseband, and extract the baseband information using a
lowpass filter. The filtered baseband signal is then decimated by a factor of M
and transformed using a suitable order N of the FFT. For example, an ultra-
sonic signal centered at 40 kHz is used to amplitude-modulate two audio sig-
nals at 2,000 Hz and 2,010 Hz, and the amplitude-modulated signal is saved in
the file commsignal.dat. In this case, the audio signal is confined within a
bandwidth of 3,000 Hz. Perform proper demodulation to extract the audible
signal, and then perform the FFT algorithm.

2. Note that, instead of demodulating the signal to its baseband and using a sam-
pling frequency f; > 2 X 40 kHz, we can use the technique of undersampling
to recover the audible signal with a bandwidth of 3,000 Hz. In this method, a
proper undersampling frequency must be selected to recover the baseband
version of the original signal. Apply the downsampling technique on
commsignal.dat, and use a suitable length FFT to observe its zoom-in spec-
trum. There is no need to perform further downsampling, as the process of un-
dersampling has taken into account the downsampling.

B.10 ACOUSTIC ECHO CANCELLATION

The hands-free phone (or speakerphone) provides the convenience of a phone conver-
sation and thus is used widely in cars and conference rooms. As illustrated in Fig. B.4,
the far-end speech is broadcast through one or more loudspeakers in the room. The
acoustic echo consists of direct coupling and reflections that are picked up by the
microphone and transmitted back to the far end. The most effective technique for elim-
inating the acoustic echo is adaptive echo cancellation. A detailed introduction of
adaptive echo cancellation can be founded in [16]. The objectives of this experiment
are as follows:
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Teleconferencing room
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1. Understand the principle of adaptive echo cancellation and its application in
reducing acoustic echoes.

2. Implement the acoustic echo canceller on C5000 processors using a mixed
C-and-assembly program. Benchmark the cycle count, MIPS used, and data-
and program-memory requirements.

B.10.1 Introduction

A block diagram of an acoustic echo canceller is illustrated in Fig. B.5. The acoustic
echo canceller consists of a loudspeaker, a microphone, and an adaptive filter updat-
ed by the LMS algorithm. The generation of acoustic echoes between the loud-
speaker and the microphone can be modeled as an acoustic echo path, P(z), which
includes the DAC, the smoothing lowpass filter, the power amplifier, the loudspeaker,
the microphone, the preamplifier, the anti-aliasing lowpass filter, the ADC, and the
acoustic-transfer function of the room from the loudspeaker to the microphone. The
adaptive filter, W(z), uses the far-end speech, x(n), to model the acoustic echo path,

dn)  + /Q\ e(n)
(J) )
y(n)
Acoustic
echo path
P(2) ~

\‘% \l_ LMS

% x(n)

Figure B.5 Block diagram of an acoustic echo canceller
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P(z), and generate the echo replica, y(n), which is used to cancel undesired acoustic
echoes in the microphone signal, d(n).

The acoustic echo canceller removes acoustic echoes by generating the replica
of an echo expressed as

y(n) = lzjowl(n)x(n 0, (B.10.1)

where w;(n) are the coefficients of the W(z) at time n. This echo replica is subtract-
ed from the microphone signal, d(n), expressed as

e(n) = d(n) — y(n). (B.10.2)

The coefficients of W(z) are updated by the most commonly used LMS algo-
rithm expressed as

wy(n +1) =w(n) + pe(n)x(n—-1, =01,....,L -1, (B.10.3)

where u is the step size. This adaptation must be stopped if the near-end talker is
speaking.

B.10.2 Lab Experiment Using C Programs

Open the C program aec.c and study the functionality of the program. This pro-
gram reads x(n) and d(n) from the data files. Use the data file gmos.dat as the far-
end speech and the file bmjs.dat as the near-end speech. Complete the following
exercises, and benchmark the results:

1. Generate the microphone signal, d(n), using the C program echogen.c, and
save the signal in the file microphoneIn.dat. This microphone signal consists
of the near-end speech and the acoustic echo.

2. Plot the waveforms of gmos.dat, bmjs.dat, and microphoneIn.dat. Identify
four different cases: (1) receive mode with only the far-end speech, (2) trans-
mit mode with only the near-end speech, (3) double-talk mode with both the
far-end and near-end speeches, and (4) idle mode without speech.

3. Compile the C program using a C compiler (e.g., Visual C/C++ 6.0 on a per-
sonal computer), execute the program, and save the output, e(n), in the file
lineOut.dat.

4. Play back the output file 1ineout.dat. Compare it with other data files, and
evaluate the performance of the acoustic echo cancellation.

5. Adjust the parameters (e.g., filter length and step size) in the C program
aec.c, and observe the differences in performance.

6. Convert the floating-point C program to a fixed-point C program that can be
executed on a personal computer using the techniques introduced in Chapters
6 and 9. Examine the effects of using a fixed-point implementation in compar-
ison with a floating-point simulation.

7. Plot and listen to the floating-point and fixed-point results.
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B.10.3 Lab Experiment Using the C5000 Code Composer Studio

Complete the following exercises, and benchmark the results:

1. Write a C program that calls the library functions (e.g., FIR filtering and the
LMS update) in the C5000 DSPLIB to implement the acoustic echo canceller.
Create, build, and run the project in CCS.

2. Save the results in data files and evaluate the waveforms. Compare the differ-
ences between the computer and CCS results.

3. Profile the acoustic echo-cancellation program, and record the cycle count,
MIPS used, and data- and program-memory requirements. Compare the
benchmark obtained using an adaptive filter with different lengths.

4. Use different optimization levels in CCS to compare the differences in the
benchmarks.

5. Perform the benchmark for both the sample processing and block processing,
and determine a good frame size for block processing. State the advantages
and disadvantages of using block processing in terms of the MIPS usage, sys-
tem setup, system latency, and memory requirement for buffering.

B.10.4 Additional Exercises

1. Use the data file gmos.dat as the near-end speech and the file bmjs.dat as the
far-end speech. Compare the performance differences with the preceding ex-
ercises that use different files.

2. Change the characteristics of the acoustic echo path by modifying the parame-
ters used in echogen . c. Evaluate the performance differences of the echo can-
cellation. Identify the factors that affect the performance of acoustic echo
cancellation.

3. Evaluate the performance of the double-talk detector implemented in aec.c.
Change its parameters, and observe the degradation of the echo canceller per-
formance. Improve the performance of the double-talk detector.

4. Use the different adaptive algorithms introduced in Section 9.2.2 to modify
aec.c, and compare the performance and computational complexity.

5. Replace the FIR filter used in aec.c by the filterbank introduced in Section
B.3. In addition, use the decimation and interpolation techniques discussed in
Section 6.5 such that the adaptive filtering and coefficient update are per-
formed at a lower sampling rate to save computation requirements.

B.11 ACTIVE NOISE CONTROL

Active noise control (ANC) involves an electroacoustic or electromechanical system
that cancels the primary (unwanted) noise based on the principle of superposition.
Specifically, an antinoise of equal amplitude and opposite phase is generated and
combined with the primary noise, thus resulting in the cancellation of both noises.
The ANC system efficiently attenuates low-frequency noise where passive methods
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are either ineffective or tend to be very expensive or bulky. ANC is developing rapidly
because it permits improvements in noise control, often with potential benefits in
size, weight, volume, and cost. Detailed information on ANC is given in [16, 17].

B.11.1 Introduction

A single-channel acoustic ANC system in a duct is illustrated in Fig. B.6. A reference
microphone close to the noise source senses the undesired noise produced by the
noise source before it passes a loudspeaker downstream in the duct. The ANC sys-
tem uses this reference signal, x(n), to generate the output signal, y(rn), that drives
the secondary (or canceling) loudspeaker in the duct. The secondary noise produced
by the loudspeaker has the same amplitude, but it is 180° out of phase and thus is
able to cancel the undesired noise. The error microphone measures the residual
noise, e(n), which is minimized by adapting the coefficients of the adaptive filter in
the ANC system.

The block diagram of the single-channel broadband feedforward ANC system
is illustrated in Fig. B.7. The signal x(n) is the input signal sensed by the reference
microphone, e(n) is the residual-error signal measured by the error microphone, and

Reference Secondary Error
Noise microphone loudspeaker microphone
source o) o
x(n) y(n) e(n)
ANC

Figure B.6 Single-channel broadband-acoustic ANC system in a duct

x(n) PG) d(n) + @ e(n)

/!
y(n)

W(z) S(z)

.§(z)

| x'(n)

LMS

Figure B.7 Block diagram of an ANC system using the filtered-X LMS algorithm
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d(n) is the primary noise to be reduced. The transfer function, P(z), represents the
primary path from the reference microphone to the error microphone, and S(z) is
the secondary-path transfer function between the output of the adaptive filter,
W(z), and the output of the error microphone. The secondary path includes the
DAUC, reconstruction filter, power amplifier, loudspeaker, acoustic path from the
loudspeaker to the error microphone, error microphone, preamplifier, anti-aliasing
filter, and ADC.

As illustrated in Fig. B.7, the secondary signal, y(n), is generated by filtering
the signal x(n) by the adaptive FIR filter, W(z), expressed as

y(n) = wl(n)x(n), (B.11.1)

where T denotes the transpose of the vector, w(n) = [wy(n) w;(n)...w,_1(n)]"
and x(n) = [x(n) x(n — 1)...x(n — L + 1)]” are the coefficient and signal vec-
tors of W(z), respectively, and L is the filter order.

To ensure the convergence of the LMS algorithm, it is necessary to compen-
sate S(z) from y(n) to e(n). There are many methods for compensating the effect of
S(z). The most effective technique is to place an estimation of the secondary path in
the reference-signal path to the LMS algorithm, which is called the filtered-X LMS
algorithm. In this algorithm, the reference signal is filtered by the secondary-path
estimation filter, S(z), expressed as

x'(n) = s(n)*x(n), (B.11.2)

where §(n) is the impulse response of S (z), and * denotes linear convolution. The
adaptive filter minimizes the instantaneous squared error using the filtered-X LMS
algorithm expressed as

w(n + 1) = w(n) + px'(n)e(n), (B.11.3)

where u > 0 is the step size (or convergence factor).

B.11.2 Lab Experiment Using MATLAB

Complete the following exercises, and benchmark the results:

1. Open the MATLAB program fxlms.m, and study the functionality of the pro-
gram. This program reads x(n) from the data file xn.dat, the coefficients of
P(z) (modeled as an IIR function) from the file p_z.asc (numerator) and
p_p.asc (denominator), and the coefficients of S(z) from the file s_z.asc (nu-
merator) and s_p.asc (denominator). The models of P(z) and S(z) are ob-
tained from [16].

2. Modify the MATLAB program to save the error signal, e(n), in the data file
en.dat. Plot both the primary noise xn.dat and the residual noise en.dat, and
evaluate the performance of the ANC system. Compare the spectra of these
two signals, and identify the noise reduction in dB.
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3. Write a C program that implements the filtered-X LMS algorithm based on
fx1ms.m. Verify the C program by comparing its error output with en.dat gen-
erated by fxlms.m.

4. Convert the floating-point C program to a fixed-point C program that can be
executed on a personal computer using the techniques introduced in Chapter
9. Examine the effects of using a fixed-point implementation in comparison
with a floating-point simulation.

B.11.3 Lab Experiment Using the C5000 Code Composer Studio

Complete the following exercises and benchmark the results:

1. Write a C program that calls the library functions (e.g., FIR filtering and the
LMS update) in the C5000 DSPLIB to implement the ANC. Create, build, and
run the project in CCS.

2. Save the results in data files, and observe the waveforms. Compare the differ-
ences between the results obtained in the previous section and the CCS
results.

3. Profile the ANC program, and record the cycle count, MIPS used, and data-
and program-memory requirements. Compare the benchmark obtained using
an adaptive filter with different lengths.

4. Use different optimization levels in CCS to compare the differences in the
benchmarks.

5. Perform the benchmark for both sample processing and block processing, and
determine a good frame size for block processing. State the advantages and
disadvantages of using block processing in terms of the MIPS usage, system
setup, system latency, and memory requirement for buffering.

B.11.4 Additional Exercises

1. Use MATLAB to generate multiple sinewaves corrupted by white noise, and
save the result in a data file. Perform the preceding ANC exercise, and com-
pare the results.

2. Change the parameters such as the order of W(z) and the step size, and repeat
the preceding exercises. Compare the performance differences with different
parameters.

3. The ANC algorithm shown in Fig. B.7 is called the broadband ANC system,
which uses the reference sensor. Assuming that the primary noise consists of
multiple sinewaves and that the frequencies of these narrowband components
are known, it is possible to synthesize the reference signal x(n) that consists of
multiple sinewaves with the same frequencies. The detailed narrowband ANC
algorithm is given in [16]. Implement the narrowband ANC algorithm in
MATLAB and C for experiments.

4. The ANC algorithm shown in Fig. B.7 is called the feedforward ANC system,
which uses both the reference and error sensors. It is possible to estimate the
reference signal, x(n), using the antinoise, y(n), and the residual error, e(n).
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The detailed algorithm is given in [16]. Implement this adaptive feedback
ANC algorithm in both MATLAB and CCS for experiments, and evaluate its
performance.

5. Use Simulink to simulate the ANC implemented in the MATLAB script

fxlms.m.
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