
C1

Peripheral
Programming for
Digital Signal
Processors

Appendix C

This appendix introduces the details involved in interfacing the peripherals
described in Chapter 3 with DSP processors. We discuss some important issues in
the interfacing of peripherals, which include peripheral configuration, address con-
nections of peripheral devices with DSP processors, and steps and coding involved
to initialize peripheral devices. In this appendix, we use the Texas Instruments
TMS320C5402 DSK as an example in explaining the interface between the DSP
processor and peripheral devices.

In the block diagram of the C5402 DSK, shown in Fig. C.1, the C5402 DSP is
interfaced to the following peripheral devices:

1. Microphones/loudspeakers via TLC320AD50 analog interface circuits (AICs)
2. A host personal computer via a parallel port
3. An XDS-510 emulator via a JTAG port
4. External memories and universal asynchronous receiver/transmitter (UART)

via an EMIF

The C5402 DSP processor offers 16K words of on-chip memory, up to 100 MIPS,
two McBSPs, one enhanced 8-bit HPI, and EMIFs to 64K static RAM, 256K flash, a

KuoAppCv3.qxd 2/16/04 3:18 PM Page 1

C2 Appendix C Peripheral Programming for Digital Signal Processors

UART/
RS-232Terminal

EMIF

5402

CPLD

TLC320
AD50
AIC

Parallel
Port

JTAG
XDS-510
Emulator

PC

TLC320
AD50
AIC

D
A
A

64 K � 16
1ws SRAM

256 K � 16
7ws Flash Daughter-board

Expansion
Bus

CCS

Figure C.1 Block diagram of the TMS320C5402 DSK (reprinted with permission from [1])

UART, and daughter boards. The following sections provide details regarding the
CODEC and HPI interfacing on the C5402 DSK.

C.1 INTERFACING WITH THE ANALOG INTERFACE CIRCUIT

OR CODER–DECODER VIA DIRECT MEMORY ACCESS

As explained in Chapter 3, DMA and McBSP peripherals provide the mechanism
for transferring data in and out of the DSP processor without the intervention of the
processor. DMA allows movement of data to and from internal memory, internal
peripherals, or external devices in the background of CPU operation. A general
explanation of DMA/McBSP was given in Section 3.6.3, and more details are pro-
vided in this section.

C.1.1 Initializing a Multichannel Buffered Serial Port

As shown in Fig. C.2, the McBSP provides a full-duplex direct interface to the AIC,
the CODEC, and other serial devices. It supports a bit rate of up to half of the CPU
clock rate, and it is able to support 8-, 12-, 16-, 20-, 24-, and 32-bit wordlengths. The
two McBSPs used in the C5402 processor support up to 128 channels and have
internal A-law and companding circuits. The McBSP also includes indepen-
dent framing and clocking for receiving and transmitting. Note that the McBSP has
double-buffered transmit data registers (XSR and DXR) and triple-buffered
receive data registers (RSR, RBR, and DRR).

As shown in Fig. C.2, the McBSP provides several interfacing pins for a group of
clocking and frame-synchronization signals: (1) receive serial data (DR), (2) transmit
serial data (DX), (3) transmit clock (CLKX), (4) receive clock (CLKR), (5) trans-
mit frame synchronization (FSX), (6) receive frame synchronization (FSR), and
(7) external clock (CLKS).

m-law

KuoAppCv3.qxd 2/16/04 3:18 PM Page 2

Section C.1 Interfacing with the Analog Interface Circuit C3

RSR RBR Expand

Compress

McBSP
Compand

XSR

DRR

DXR

SPCR

RCR

XCR

SRGR

PCR

MCR

RCER

XCER

Multichannel
selection

Clock and
frame-sync
generation
and control

DR

DX

CLKX
CLKR

FSX
FSR

CLKS

RINT
XINT

REVT
XEVT

REVTA
XEVTA

16-bit
peripheral
bus

Interrupts to CPU

Synchronization
events to DMA

Figure C.2 Block diagram of a McBSP and its interfacing pins (reprinted with permis-
sion from [2])

A group of signals in the McBSP is used to provide receive and transmit inter-
rupts (RINT and XINT) to the CPU. Another group that provides event synchro-
nization to the DMA contains (1) receive synchronization event (REVT), (2) transmit
synchronization event (XEVT), (3) receive synchronization event A (REVTA), and
(4) transmit synchronization event A (XEVTA).

As illustrated in Fig. C.2, serial data from external devices such as a
CODEC are received at the DR pin of the McBSP and are shifted into the
receive shift register (RSR) before being copied to the receive buffer register
(RBR). The data in RBR is then moved to the data receive register (DRR) for
a read by either the processor or the DMA controller. Data to be transmitted to
an external device is written to the data transmit register (DXR), copied to the
transmit shift register (XSR), and shifted out to the DX pin from XSR. Note
that there are two sets of these registers, and the second set of registers (RSR2,
RBR2, DRR2, DXR2, and XSR2) is not used if the transmit- or receive-data
wordlength is 8, 12, or 16 bits.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 3

C4 Appendix C Peripheral Programming for Digital Signal Processors

TABLE C.1 Description of the Pin Control Register (PCR) (reprinted with permission from [2])

Bit Name Function

15–14 Reserved Reserved

13 XIOEN Transmit general purpose I/O mode only when in SPCR

DX, FSX and CLKX are configured as serial port pins
and do not function as general-purpose I/Os.

DX pin is a general purpose output. FSX and CLKX
are general purpose I/Os. These serial port pins do
not perform serial port operation.

12 RIOEN Receive general purpose I/O mode only when in SPCR

DR, FSR, CLKR and CLKS are configured as serial
port pins and do not function as general-purpose I/Os.

DR and CLKS pins are general purpose inputs: FSR
and CLKR are general purpose I/Os. These serial
port pins do not perform serial port operation. The
CLKS pin is affected by a combination of and
RIOEN signals of the receiver.

11 FSXM Transmit Frame-Synchronization Mode

Frame-synchronization signal derived from an external
source

Frame synchronization is determined by the sample
rate generator frame-synchronization mode bit
FSGM in SRGR2.

10 FSRM Receive Frame-Synchronization Mode

Frame-synchronization pulses generated by an
external device. FSR is an input pin

Frame synchronization generated internally by sample
rate generator. FSR is an output pin except when

in SRGR.

9 CLKXM Transmitter Clock Mode

Transmitter clock is driven by an external clock with
CLKX as an input pin.

CLKX is an output pin and is driven by the internal
sample rate generator.

During SPI mode (when CLKSTP is a non-zero value):

McBSP is a slave and clock (CLKX) is driven by the
SPI master in the system CLKR is internally driven
by CLKX.

McBSP is a master and generates the clock (CLKX) to
drive its receive clock (CLKR) and the shift clock of
the SPI-compliant slaves in the system.

CLKXM = 1

CLKXM = 0

CLKXM = 1

CLKXM = 0

GSYNC = 1

FSRM = 1

FSRM = 0

FSXM = 1

FSXM = 0

RRST

RIOEN = 1

RIOEN = 0

RRST = 0

XIOEN = 1

XIOEN = 0

XRST = 0

(Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 4

Bit Name Function

8 CLKRM Receiver Clock Mode

Case 1: Digital loop back mode not set in SPCR1

Receive clock (CLKR) is an input driven by an
external clock.

CLKR is an output pin and is driven by the internal
sample rate generator.

Case 2: Digital loop back mode set in SPCR1

Receive clock (not the CLKR pin) is driven by
transmit clock (CLKX) which is based on the
CLKXM bit in the PCR. CLKR pin is in
high-impedance.

CLKR is an output pin and is driven by the transmit
clock. The transmit clock is derived based on the
CLKXM bit in the the PCR.

7 rsvd Reseved

6 CLKS_STAT CLKS pin status. Reflects value on CLKS pin when selected as a general
purpose input.

5 DX_STAT DX pin status. Reflects value driven on to DX pin when selected as a
general purpose output.

4 DR_STAT DR pin status. Reflects value on DR pin when selected as a general
purpose input.

3 FSXP Transmit Frame-Synchronization Polarity

Frame-synchronization pulse FSX is active high

Frame-synchronization pulse FSX is active low

2 FSRP Receive Frame-Synchronization Polarity

Frame-synchronization pulse FSR is active high

Frame-synchronization pulse FSR is active low

1 CLKXP Transmit Clock Polarity

Transmit data sampled on rising edge of CLKX

Transmit data sampled on falling edge of CLKX

0 CLKRP Receive Clock Polarity

Receive data sampled on falling edge of CLKR

Receive data sampled on rising edge of CLKRCLKRP = 1

CLKRP = 0

CLKXP = 1

CLKXP = 0

FSRP = 1

FSRP = 0

FSXP = 1

FSXP = 0

CLKRM = 1

CLKRM = 0

1DLB = 12

CLKRM = 1

CLKRM = 0

1DLB = 02

Section C.1 Interfacing with the Analog Interface Circuit C5

TABLE C.1 (Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 5

C6 Appendix C Peripheral Programming for Digital Signal Processors

In addition to the data registers, there are 15 control registers that configure
the operating modes of the McBSP. The McBSP can be configured during the reset
state. Detailed definitions and usages of McBSP control registers can be found in
[2]. In this section, we briefly describe the functionalities of the following registers:

• McBSP pin control registers
• Serial port control registers
• Transmit control registers and receive control registers
• Multichannel control registers
• Receive channel enable registers and transmit channel enable registers
• Sample rate generator registers

The pin control register (PCR) controls the following modes: (1) configure
DX, FSX, and CLKX as general-purpose or serial-port pins; (2) configure DR, FSR,
CLKR and CLKS as general-purpose or serial-port pins; (3) transmit frame syn-
chronization derived from an external source or a sample rate generator; (4) receive
frame synchronization generated by an external device or a sample rate genera-
tor; (5) transmit clock by external clock with CLKX as the input pin or by a sam-
ple rate generator with CLKX as the output pin; (6) receive clock by external
clock with CLKR as the input pin or by a sample rate generator with CLKR as the
output pin; (7) transmit frame-sync (active high or low) and clock polarity (rising
edge or falling edge of CLKX); and (8) receive frame-sync and clock polarity (ris-
ing edge or falling edge of CLKR). Detailed definitions of the PCR are summa-
rized in Table C.1.

Serial port control register 1 (SPCR1) contains the McBSP receiver-status bits
and the main switch to enable or disable the receiver. This register also includes the
clock-stop mode bit and receiver-interrupt mode bits. Serial port control register 2
(SPCR2) contains the McBSP transmitter-status bits and the main switch to enable
or disable the transmitter. This register also includes the bits to reset the frame-sync
generator and the sample-rate generator. Functions of the SPCR1 and SPCR2 are
summarized in Tables C.2 and C.3, respectively.

Transmit control registers 1 and 2 (XCR1 and XCR2) configure various para-
meters of transmit operations, including (1) transmit frame length (from 1 to 128
words per frame), (2) transmit wordlength (for 8, 12, 16, 20, 24, or 32 bits), (3) trans-
mit frame (single or dual phase), (4) transmit companding (none, or A-law),
(5) transmit frame synchronization, and (6) transmit data delay (0-, 1-, or 2-bit data
delay). Tables C.4 and C.5 summarize the XCR1 and XCR2 bit-field descriptions,
respectively.

Receive control registers 1 and 2 (RCR1 and RCR2) configure various para-
meters of receive operations, including (1) receive frame length (from 1 to 128 words
per frame), (2) receive wordlength (for 8, 12, 16, 20, 24, or 32 bits), (3) receive frame
(single or dual phase), (4) receive companding (none, or A-law), (5) receive
frame synchronization, and (6) receive data delay (0-, 1-, or 2-bit data delay). Bit-
field descriptions similar to those shown in Tables C.4 and C.5 are also applied to
RCR1 and RCR2.

m-law,

m-law,

KuoAppCv3.qxd 2/16/04 3:18 PM Page 6

TABLE C.2 Description of Serial Port Control Register 1 (SPCR1) (reprinted with permission from [2])

(Continued)

Section C.1 Interfacing with the Analog Interface Circuit C7

Bit Name Function

15 DLB Digital Loop Back Mode

Digital loop back mode disabled

Digital loop back mode enabled

14–13 RJUST Receive Sign-Extension and Justification Mode.

Right-justify and zero-fill MSBs in DRR

Right-justify and sign-extend MSBs in DRR

Left-justify and zero-fill LSBs in DRR

Reserved

12–11 CLKSTP Clock Stop Mode
Clock stop mode disabled. Normal clocking for

non-SPI mode.

Various SPI modes when:

and Clock starts with rising edge without delay

and Clock starts with falling edge without delay

and Clock starts with rising edge with delay

and Clock starts with falling edge with delay

10–8 reserved Reserved

7 DXENA DX Enabler

DX enabler is off

DX enabler is on

6 ABIS ABIS Mode

A-bis mode is disabled

A-bis mode is enabled

5–4 RINTM Receive Interrupt Mode

RINT driven by RRDY (i.e., end of word) and
end of frame in A-bis mode.

RINT generated by end-of-block or
end-of-frame in multichannel operation

RINT generated by a new frame
synchronization

RINT generated by RSYNCERRRINTM = 11

RINTM = 10

RINTM = 01

RINTM = 00

ABIS = 1

ABIS = 0

DXENA = 1

DXENA = 0

CLKXP = 1
CLKSTP = 11

CLKXP = 0
CLKSTP = 11

CLKXP = 1
CLKSTP = 10

CLKXP = 0
CLKSTP = 10

CLKSTP = 0X

RJUST = 11

RJUST = 10

RJUST = 01

RJUST = 00

DLB = 1

DLB = 0

KuoAppCv3.qxd 2/16/04 3:18 PM Page 7

Bit Name Function

15–10 rsvd Reserved

9 FREE Free Running Mode

Free running mode is disabled

Free running mode is enabled

8 SOFT Soft Bit

SOFT mode is disabled

SOFT mode is enabled

7 Frame-Sync Generator Reset

Frame-synchronization logic is reset. Frame-sync signal
FSG is not generated by the sample-rate generator.

Frame-sync signal FSG is generated after
number of CLKG clocks; i.e., all frame counters are
loaded with their programmed values.

6 Sample-Rate Generator Reset

Sample rate generator is resetGRST = 0

GRST

1FPER + 12FRST = 1

FRST = 0

FRST

SOFT = 1

SOFT = 0

FREE = 1

FREE = 0

Bit Name Function

3 RSYNCERR Receive Synchronization Error

No synchronization error

Synchronization error detected by McBSP.

2 RFULL Receive Shift Register (RSR) Full

RBR is not in overrun condition

DRR is not read, RBR is full and
RSR is also full with new word

1 RRDY Receiver Ready

Receiver is not ready.

Receiver is ready with data to be read from
DRR.

0 Receiver reset. This resets and enables the receiver.

The serial port receiver is disabled and in
reset state.

The serial port receiver is enabled.RRST = 1

RRST = 0

RRST

RRDY = 1

RRDY = 0

RFULL = 1

RFULL = 0

RSYNCERR = 1

RSYNCERR = 0

C8 Appendix C Peripheral Programming for Digital Signal Processors

TABLE C.3 Description of Serial Port Control Register 2 (SPCR2) (reprinted with permission from [2])

TABLE C.2 (Continued)

(Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 8

Section C.1 Interfacing with the Analog Interface Circuit C9

Multichannel registers 1 and 2 (MCR1 and MCR2) independently select the
channels to be used.These registers select the following options: (1) receive and trans-
mit partition A block (each mode selects all-odd blocks of 16 channels), (2) receive
and transmit partition B block (each mode selects all-even blocks of 16 channels),
(3) receive and transmit current block (each mode selects 1 of the 8 possible
blocks), and (4) receive and transmit multichannel selection enable (selects either all
128 channels or select 1 of the 8 blocks, which is enabled by receive partition block
registers). Table C.6 shows MCR1 configured as the receiver, while Table C.7 shows
MCR2 configured as the transmitter.

Receive channel enable register partition A (RCERA) and B (RCERB) are
used to enable any of 32 channels for receive. Out of the 32 channels, 16 channels
belong to a block in partition A, and the other 16 belong to a block in partition B.
The 16-bit RCERA enables or disables each channel in an even-numbered block

TABLE C.3 (Continued)

Bit Name Function

Sample rate generator is pulled out of reset.
CLKG is driven as per programmed value
in sample rate generator registers (SRGR).

5–4 XINTM Transmit Interrupt Mode

XINT driven by XRDY (i.e., end of word)
and end of frame in A-bis mode.

XINT generated by end-of-block or
end-of-frame in multichannel operation

XINT generated by a new frame
synchronization

XINT generated by XSYNCERR

3 XSYNCERR Transmit Synchronization Error

No synchronization error

Synchronization error detected by McBSP.

2 Transmit Shift Register (XSR) Empty

XSR is empty

XSR is not empty

1 XRDY Transmitter Ready

Transmitter is not ready.

Transmitter is ready for new data in
DXR.

0 Transmitter Reset This resets and enables the transmitter.

The serial port transmitter is disabled and in
reset state.

The serial port transmitter is enabled.XRST = 1

XRST = 0

XRST

XRDY = 1

XRDY = 0

XEMPTY = 1

XEMPTY = 0

XEMPTY

XSYNCERR = 1

XSYNCERR = 0

XINTM = 11

XINTM = 10

XINTM = 01

XINTM = 00

GRST = 1

KuoAppCv3.qxd 2/16/04 3:18 PM Page 9

C10 Appendix C Peripheral Programming for Digital Signal Processors

TABLE C.5 Bit-Field Description of Transmit Control Register 2 (XCR2) (reprinted with permission
from [2])

Bit Name Function

15 XPHASE Transmit Phases

Single-phase frame

Dual-phase frame

14–8 XFRLEN2 Transmit Frame Length 2

1 word per frame

2 words per frame

128 words per frame

7–5 XWDLEN2 Transmit Word Length 2

8 bits

12 bits

16 bitsXWDLEN2 = 010

XWDLEN2 = 001

XWDLEN2 = 000

XFRLEN1 = 111 1111

ƒ
ƒ

XFRLEN2 = 000 0001

XFRLEN2 = 000 0000

XPHASE = 1

XPHASE = 0

TABLE C.4 Partial Bit-Field Description of Transmit Control Register 1 (XCR1)
(reprinted with permission from [2])

Bit Name Function

15 rsvd Reserved

14–8 XFRLEN1 Transmit Frame Length 1

1 word per frame

2 words per frame

128 words per frame

7–5 XWDLEN1 Transmit Word Length 1

8 bits

12 bits

16 bits

20 bits

24 bits

32 bits

Reserved

4–0 rsvd Reserved

XWDLEN1 = 11X

XWDLEN1 = 101

XWDLEN1 = 100

XWDLEN1 = 011

XWDLEN1 = 010

XWDLEN1 = 001

XWDLEN1 = 000

RFRLEN1 = 111 1111

ƒ
ƒ

XFRLEN1 = 000 0001

XFRLEN1 = 000 0000

(Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 10

Bit Name Function

20 bits

24 bits

32 bits

Reserved

4–3 XCOMPAND Transmit companding mode. Modes other than 00b are only
enabled when the appropriate XWDLEN is 000b, indicating
8-bit data.

No companding, data
transfer starts with MSB
first.

No companding, 8-bit data,
transfer starts with LSB
first.

Compand using
for transmit data.

Compand using A-law
for transmit data.

2 XFIG Transmit Frame Ignore

Transmit frame-
synchronization pulses
after the first restarts the
transfer.

Transmit frame-
synchronization pulses
after the first are ignored.

1–0 XDATDLY Transmit Data Delay

0-bit data delay

1-bit data delay

2-bit data delay

ReservedXDATDLY = 11

XDATDLY = 10

XDATDLY = 01

XDATDLY = 00

XFIG = 1

XFIG = 0

XCOMPAND = 11

m-lawXCOMPAND = 10

XCOMPAND = 01

XCOMPAND = 00

XWDLEN2 = 11X

XWDLEN2 = 101

XWDLEN2 = 100

XWDLEN2 = 011

TABLE C.5 (Continued)

Section C.1 Interfacing with the Analog Interface Circuit C11

in partition A, while RCERB enables or disables each channel in an odd-num-
bered block in partition B. Table C.8 describes the RCERA and RCERB registers.

Transmit channel enable register partition A (XCERA) and B (XCERB)
operate similarly to the receive channel enable registers, except that they are used
to enable any of the 32 channels for transmission. The XCERA and XCERB regis-
ters use the same bit descriptions as those shown in Table C.8.

The sample rate generator (SRGR) is composed of a clock divider that gener-
ates a programmable data clock (CLKG) and a framing signal (FSG), as shown in
Fig. C.3.These internal signals are then used to drive the receive and transmit clocks

KuoAppCv3.qxd 2/16/04 3:18 PM Page 11

C12 Appendix C Peripheral Programming for Digital Signal Processors

Bit Name Function

15–9 rsvd Reserved

8–7 RPBBLK Receive Partition B Block

Block 1. Channel 16 to channel 31

Block 3. Channel 48 to channel 63

Block 5. Channel 80 to channel 95

Block 7. Channel 112 to channel 127

6–5 RPABLK Receive Partition A Block

Block 0. Channel 0 to channel 15

Block 2. Channel 32 to channel 47

Block 4. Channel 64 to channel 79

Block 6. Channel 96 to channel 111

4–2 RCBLK Receive Current Block

Block 0. Channel 0 to channel 15

Block 1. Channel 16 to channel 31

Block 2. Channel 32 to channel 47

Block 3. Channel 48 to channel 63

Block 4. Channel 64 to channel 79

Block 5. Channel 80 to channel 95

Block 6. Channel 96 to channel 111

Block 7. Channel 112 to channel 127

1 rsvd Reserved

0 RMCM Receive Multichannel Selection Enable

All 128 channels enabled.

All channels disabled by default.
Required channels are selected by

enabling RP(A/B)BLK and
RCER(A/B) appropriately.

RMCM = 1

RMCM = 0

RCBLK = 111

RCBLK = 110

RCBLK = 101

RCBLK = 100

RCBLK = 011

RCBLK = 010

RCBLK = 001

RCBLK = 000

RPABLK = 11

RPABLK = 10

RPABLK = 01

RPABLK = 00

RPBBLK = 11

RPBBLK = 10

RPBBLK = 01

RPBBLK = 00

TABLE C.6 Multichannel Control Register 1 (MCR1) (reprinted with permission from [2])

(CLKR/CLKX) and the receive/transmit framing signal (FSR/FSX). The sample
rate generator can be programmed to divide either an internal-clock source or an
internal clock derived from an external-clock source.

The sample rate generator registers SRGR1 and SRGR2 control the opera-
tions of the sample rate generator, including (1) frame width (FWID), which
determines the width of the frame-sync pulse (1 to 256 CLKG periods); (2) sample
rate generator clock divider (CLKGDV), which generates the required sample
rate generator clock frequency (and); (3) samplemaximum = 255default = 1

KuoAppCv3.qxd 2/16/04 3:18 PM Page 12

Section C.1 Interfacing with the Analog Interface Circuit C13

TABLE C.7 Multichannel Control Register 2 (MCR2) (reprinted with permission from [2])

Bit Name Function

15–9 rsvd Reserved

8–7 XPABLK Transmit Partition A Block

Block 0. Channel 0 to channel 15

Block 2. Channel 32 to channel 47

Block 4. Channel 64 to channel 79

Block 6. Channel 96 to channel 111

6–5 XPBBLK Transmit Partition B Block

Block 1. Channel 16 to channel 31

Block 3. Channel 48 to channel 63

Block 5. Channel 80 to channel 95

Block 7. Channel 112 to channel 127

4–2 XCBLK Transmit Current Block

Block 0. Channel 0 to channel 15

Block 1. Channel 16 to channel 31

Block 2. Channel 32 to channel 47

Block 3. Channel 48 to channel 63

Block 4. Channel 64 to channel 79

Block 5. Channel 80 to channel 95

Block 6. Channel 96 to channel 111

Block 7. Channel 112 to channel 127

1–0 XMCM Transmit Multichannel Selection Enable

All channels enabled without masking (DX
is always driven during transmission of data).

All channels disabled and therefore masked
by default. Required channels are selected
by enabling XP(A/B)BLK and XCER(A/B)
appropriately. Also, these selected channels
are not masked and therefore DX is always
driven.

All channels enabled, but masked. Selected
channels enabled via XP(A/B)BLK and
XCER(A/B) are unmasked.

All channels disabled and therefore masked
by default. Required channels are selected
by enabling RP(A/B)BLK and RCER(A/B)
appropriately. Selected channels can be
unmasked by RP(A/B)BLK and
XCER(A/B).This mode is used for
symmetric transmit and receive operation.

XMCM = 11

XMCM = 10

XMCM = 01

†
XMCM = 00

XCBLK = 111

XCBLK = 110

XCBLK = 101

XCBLK = 100

XCBLK = 011

XCBLK = 010

XCBLK = 001

XCBLK = 000

XPBBLK = 11

XPBBLK = 10

XPBBLK = 01

XPBBLK = 00

XPABLK = 11

XPABLK = 10

XPABLK = 01

XPABLK = 00

KuoAppCv3.qxd 2/16/04 3:18 PM Page 13

C14 Appendix C Peripheral Programming for Digital Signal Processors

Bit Name Function

15–0 RCEA(0.15) Receive Channel Enable-

RCEA Disables reception of nth channel in an
even-numbered block in partition A

RCEA Enables reception of nth channel in an
even-numbered block in partition A

Bit Name Function

15–0 RCEB(0.15) Receive Channel Enable-

RCEB Disables reception of nth channel in an
even-numbered block in partition B

RCEB Enables reception of nth channel in an
even-numbered block in partition B

n = 1

n = 0

n = 1

n = 0

TABLE C.8 Receive Channel Enable Register Partitions A and B (RCERA) and (RCERB)
(reprinted with permission from [2])

‘54xx

� Framing
FSR
FSX

CLKR
CLKX

Sample Rate Generator (SRGR)

CLKOUT

CLKS

CLKSM

CLKGDV

FSG

CLKG

Figure C.3 Internal blocks of the sample rate generator (reprinted with permission from [3])

rate generator clock synchronization (GSYNC); (4) CLKS polarity clock edge
select (CLKSP); (5) McBSP sample rate generator clock (CLKSM); (6) sample
rate generator transmit frame-synchronization (FSGM); and (7) frame period
(FRER), which can be set from 1 to 4,096 CLKG periods. Tables C.9 and C.10
summarize the functions of the SRGR1 and SRGR2 registers, respectively.

Having introduced the McBSP registers, we now examine how to configure
clocking and framing signals using these registers. Figure C.4 shows the typical oper-
ations of the internal McBSP clock and frame-sync signals, as well as the data bits.
The polarities (active high or low) of FSR, FSX, CLKX, and CLKR can be selected
by the PCR register.

Figure C.5 shows an example of a dual-phase frame consisting of 2 words and
3 words in phases 1 and 2, respectively. The wordlength in phase 1 is 12 bits and in
phase 2 is 8 bits. Using Tables C.4 and C.5, we can specify the preceding dual-phase

KuoAppCv3.qxd 2/16/04 3:18 PM Page 14

TABLE C.10 Sample Rate Control Register 2 (SRGR2) (reprinted with permission from [2])

Section C.1 Interfacing with the Analog Interface Circuit C15

TABLE C.9 Sample Rate Control Register 1 (SRGR1) (reprinted with permission from [2])

Bit Name Function

15–8 FWID Frame Width. This field plus 1 determines the width of the
frame-syncpulse, FSG, during its active period.

Range: up to 2; 1 to 256 CLKG periods.

7–0 CLKGDV Sample Rate Generator Clock Divider

This value is used as the divide-down number to generate the
required sample rate generator clock frequency. Default
value is 1.

Bit Name Function

15 GSYNC Sample Rate Generator Clock Synchronization
Only used when the external clock (CLKS) drives the sample rate

generator clock
The sample rate generator clock (CLKG) is free running.
The sample rate generator clock (CLKG) is running. But

CLKG is resynchronized and frame-sync signal (FSG)
is generated only after detecting the receive
frame-synchronization signal (FSR). Also, frame period,
FPER, is a don’t care because the period is dictated by
the external frame-sync pulse.

14 CLKSP CLKS Polarity Clock Edge Select
Only used when the external clock CLKS drives the sample rate

generator clock
Rising edge of CLKS generates CLKG and FSG.
Falling edge of CLKS generates CLKG and FSG.

13 CLKSM McBSP Sample Rate Generator Clock Mode
Sample rate generator clock derived from the CLKS pin.
Sample rate generator clock derived from CPU clock.

12 FSGM Sample Rate Generator Transmit Frame-Synchronization Mode Used
when in the PCR.

Transmit frame-sync signal (FSX) due to DXR
[1,2]-to-XSR[1,2] copy. When , FPR and
FWID are ignored.

Transmit frame-sync signal driven by the sample rate
generator frame-sync signal, FSG.

11–0 FPER Frame Period. This field plus 1 determines when the next frame-sync
signal becomes active.

Range: 1 to 4096 CLKG periods.

FSGM = 1

FSGM = 0
FSGM = 0

FSXM = 1

CLKSM = 1
CLKSM = 0

CLKSP = 1
CLKSP = 0

1CLKSM = 02.

GSYNC = 1
GSYNC = 0

1CLKSM = 02.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 15

C16 Appendix C Peripheral Programming for Digital Signal Processors

D(R/X)

Internal
CLK(R/X)

Internal
FS(R/X)

A1 A0 B7 B6 B5 B4 B3 B2 B1 B0

Figure C.4 Typical operations of clock, frame-sync, and data signals (reprinted with permission
from [2])

12-bit

Phase 1 word 1

CLK(R/X)

FS(R/X)

D(R/X)

Phase 1 word 2

12-bit 8-bit 8-bit 8-bit

Phase 2
word 1

Phase 2
word 2

Phase 2
word 3

Figure C.5 Dual-phase example with 12 bits per word and 2 words per phase in phase 1 and with 8
bits per word and 3 words per phase in phase 2 (reprinted with permission from [2])

frame in the following registers:

• dual-phase frame
• 2 words for phase 1
• 3 words for phase 2
• 12 bits per word for phase 1
• 8 bits per word for phase 2

The maximum number of words per frame is 128 for a single-phase frame and
256 for a dual-phase frame. Altogether, the maximum number of bits per frame is

for a single-phase frame and 8,192 for a dual-phase frame,
assuming there are no gaps between words and frames. The frame frequency is
determined by the period between frame-sync signals. Therefore, the maximum
frame frequency is the bit-clock frequency divided by the number of bits per frame.

In addition, there are five serial-port events that may result in system error.
They are summarized as follows:

1. A receive overrun error occurs when DRR has not been read since the last
data move from RBR to DRR.

2. An unexpected receiver frame sync error happens when reset frame ignore
and when an unexpected frame sync pulse occurs during reception.

3. A transmit data overwrite error occurs when the user overwrites data in DXR
before it has been copied to XSR.

1RFIG2 = 0

128 * 32 = 4,096

X/RWDLEN2 = 000,
X/RWDLEN1 = 001,
X/RFRLEN2 = 000 0010,
X/RFRLEN1 = 000 0001,
X/RPHASE = 1,

KuoAppCv3.qxd 2/16/04 3:18 PM Page 16

Section C.1 Interfacing with the Analog Interface Circuit C17

4. A transmit empty error occurs when a new frame sync signal arrives before
the new data is loaded into the DXR. In this case, the old data in DXR is sent
again.

5. An unexpected transmit frame sync error occurs when transmit frame ig-
nore and when an unexpected frame sync pulse occurs during
transmission.

In general, the following steps show how to transmit and receive data using the
McBSP:

Step 1: Reset the McBSP using either the device reset or indepen-
dently reset serial-port transmit and/or receiver reset

Step 2: Wait until the device reset is complete then initialize the
serial port using the following steps:

a. Set in
the SPCR1 and SPCR2 registers, which disables both the transmit-
ter and the receiver and puts them in reset state.

b. Program the McBSP configuration registers, including SPCR1,
SPCR2, RCR1, RCR2, XCR1, XCR2, SPGR1, SPGR2, MCR1,
MCR2, RCERA, RCERB, XCERA, XCERB, and PCR.

c. Wait for a 2-bit clock period to ensure proper internal synchronization.
d. Set up data acquisition such as writing to DXR.
e. Enable the serial port by setting in the

SPCR1 and SPCR2 registers.
f. Set if an internal generated frame sync is required.
g. Wait for a 2-bit clock period to ensure the receiver and transmitter

become active.

Step 3: Ensure the serial port has been initialized, and then determine
whether the McBSP is ready by polling the receiver ready (RRDY)
and transmitter ready (XRDY) signals, the DMA events (REVT and
XEVT in normal mode), or the interrupts to CPU (RINT and
XINT). In the case of the receiver, the condition indi-
cates that the data in the RBR register have been copied to the DRR
register, which implies that data can be read by the CPU or DMA.
Once the data has been read, In the case of the transmit-
ter, indicates that the DXR register contents have been
copied to the XSR register. DXR is now ready to be loaded with a
new data word. Once data is loaded,

C.1.2 Initializing Direct Memory Access

The DMA controller is used to transfer data between the McBSP and the internal
memory of the processor without CPU intervention. For example, DMA can transfer

XRDY = 1.

XRDY = 1
RRDY = 0.

RRDY = 1

FRST = 1

XRST = RRST = 1

XRST = RRST = frame-sync generator reset 1FRST2 = 0

1RS = 12,
1RRST2 = 0.

1XRST2 = 0
RS = 0,

1XFIG2 = 0

KuoAppCv3.qxd 2/16/04 3:18 PM Page 17

C18 Appendix C Peripheral Programming for Digital Signal Processors

Data
from serial
device

Data
to serial
device

RSR1 DRR1

XSR1 DXR1

CH2

CH3

CH5

DMAMcBSP

CH0

CH1

CH4

Internal memory

Input sample

Processed
sample

CPU

Figure C.6 DMA reading/writing data from/to a serial device to/from internal memory

data from an external device to internal memory while the CPU is processing data
located at another memory section, as shown in Fig. C.6. At the same time, a data
sample from the processor can be sent out to an external device via another DMA
channel. Six programmable DMA channels are available on the C54x processor.
These channels allow six different DMA operations with programmable priorities. In
addition to moving data between external peripherals and internal memory through
the McBSP, DMA also allows data transfer between internal memory, internal
peripherals, and HPI peripherals. The HPI interface is discussed in Section C.2.

There are several transfer operations in DMA:

1. A read transfer occurs when the DMA reads a data element from a source lo-
cated in memory or from a peripheral device.

2. A write transfer occurs when the DMA writes a data element during the pre-
ceding read transfer to the destination located in memory or to a peripheral
device.

3. An element transfer combines the preceding read and write transfers for a
single data element.

4. A frame transfer allows each of the six DMA channels in a C54x processor to
program the number of elements per frame independently.A frame transfer is
completed when the DMA moves all of the elements in a single frame.

5. A block transfer allows each of the six DMA channels in a C54x processor to
program the number of frames per block independently. A block transfer is
completed when the DMA moves all of the frames defined in the block.

Similar to other peripherals, DMA must be configured before operation. The
DMA controller has a group of memory-mapped registers that use a subaddressing
scheme. Register subaddressing is a technique used in multiplexing a set of registers
to a single location in the memory map. Therefore, a large set of registers can be
mapped into a small memory space, as shown in Fig. C.7. It shows a subbank address

KuoAppCv3.qxd 2/16/04 3:18 PM Page 18

Section C.1 Interfacing with the Analog Interface Circuit C19

DMSDI

DMSDN

DMSA

Subaddressed
registers

Figure C.7 Register
subaddressing in DMA
(reprinted with permis-
sion from [2])

register (DMSA), which directs the multiplexer to connect the subbank access reg-
isters (DMSDI and DMSDN) to the actual subaddressed registers. The difference
between DMSDI and DMSDN is that DMSDI is incremented automatically after
each access, while DMSDN is used for single-register access without modifying the
subaddress.

Table C.11 lists the addresses, subaddresses, and functions of DMA regis-
ters. Only the first four registers listed in Table C.11 are directly addressed, while
the rest of the registers are subaddressed. For example, to program DMA chan-
nel 0 registers, the value 0x00 (subaddress) is written to the DMSA register. The
first value written to the DMSDI register is directed to the DMSCR0 register, the
second value written to DMSDI is automatically directed to the DMDST0 regis-
ter, and so on. However, if the value is written to the DMSDN register, the sub-
address is not autoincremented, and only the particular register (specified in the
DMSA register) is modified. A detailed description of the DMA register can be
found in [2].

The DMA channel priority and enable control register (DMPREC) (located at
address 54h) selects the DMA channels, controls the multiplexed interrupts, and con-
trols the channel priorities. Because the DMA controller resets each enable bit after
a block transfer, DMPREC can also be polled to determine whether the block trans-
fer for a given channel has been completed. Each DMA channel can be assigned with
only two priorities (low or high), where the high-priority channel is serviced before
the low-priority channel. When multiple channels with high priority are selected,
these channels are serviced in a round-robin fashion from low to high channel num-
ber. Detailed bit-field descriptions of the DMPREC are given in Table C.12.

In addition, the DMPREC register controls how DMA interrupts are assigned
in the interrupt vector and IMR (interrupt mask register)/IMF (interrupt mask flag)
registers. Due to the limited number of interrupts available in the C54x memory
map, some DMA interrupts are multiplexed with other peripheral interrupts.There-
fore, the interrupt multiplex control bits (INTOSEL) field in the DMPREC register
provides a means of selecting the desired DMA channel interrupt. An example for
the C5402 processor is displayed in Table C.13, which shows the bit value of the
INTOSEL to select the DMA interrupt for channels 1 to 3.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 19

C20 Appendix C Peripheral Programming for Digital Signal Processors

TABLE C.11 DMA Registers (reprinted with permission from [2])

Address SubAddress Name Function

54h — DMPREC Channel Priority and Enable Control Register

55h — DMSA Subbank Address Register

56h — DMSDI Subbank Access Register With Autoincrement

57h — DMSDN Subbank Access Register Without Autoincrement

— 00h DMSRC0 Channel 0 Source Address Register

— 01h DMDST0 Channel 0 Destination Address Register

— 02h DMCTR0 Channel 0 Element Count Register

— 03h DMSFC0 Channel 0 Sync Select and Frame Count Register

— 04h DMMCR0 Channel 0 Transfer Mode Control Register

— 05h DMSRC1 Channel 1 Source Address Register

— 06h DMDST1 Channel 1 Destination Address Register

— 07h DMCTR1 Channel 1 Element Count Register

— 08h DMSFC1 Channel 1 Sync Select and Frame Count Register

— 09h DMMCR1 Channel 1 Transfer Mode Control Register

— 0Ah DMSRC2 Channel 2 Source Address Register

— 0Bh DMDST2 Channel 2 Destination Address Register

— 0Ch DMCTR2 Channel 2 Element Count Register

— 0Dh DMSFC2 Channel 2 Sync Select and Frame Count Register

— 0Eh DMMCR2 Channel 2 Transfer Mode Control Register

— 0Fh DMSRC3 Channel 3 Source Address Register

— 10h DMDST3 Channel 3 Destination Address Register

— 11h DMCTR3 Channel 3 Element Count Register

— 12h DMSFC3 Channel 3 Sync Select and Frame Count Register

— 13h DMMCR3 Channel 3 Transfer Mode Control Register

— 14h DMSRC4 Channel 4 Source Address Register

— 15h DMDST4 Channel 4 Destination Address Register

— 16h DMCTR4 Channel 4 Element Count Register

— 17h DMSFC4 Channel 4 Sync Select and Frame Count Register

— 18h DMMCR4 Channel 4 Transfer Mode Control Register

— 19h DMSRC5 Channel 5 Source Address Register

— 1Ah DMDST5 Channel 5 Destination Address Register

— 1Bh DMCTR5 Channel 5 Element Count Register

— 1Ch DMSFC5 Channel 5 Sync Select and Frame Count Register

(Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 20

Address SubAddress Name Function

— 1Dh DMMCR5 Channel 5 Transfer Mode Control Register

— 1Eh DMSRCP Source Program Page Address (all channels)

— 1Fh DMDSTP Destination Program Page Address (all channels)

— 20h DMIDX0 Element Address Index Register 0

— 21h DMIDX1 Element Address Index Register 1

— 22h DMFRI0 Frame Address Index Register 0

— 23h DMFRI1 Frame Address Index Register 1

— 24h DMGSA Global Source Address Reload Register

— 25h DMGDA Global Destination Address Reload Register

— 26h DMGCR Global Element Count Reload Register

— 27h DMGFR Global Frame Count Reload Register

Reset
Bit Name Value Function

15 FREE 0 This bit controls the behavior of the DMA controller during
emulation. When DMA transfers are suspended
when the emulator stops. When DMA transfers
continue even during emulation stop.

14 RSVD 0 Reserved. Values written to this field have no effect.

13 DPRC[5] 0 DMA channel 5 priority control bit.

High priority

Low priority

12 DPRC[4] 0 DMA channel 4 priority control bit.

High priority

Low priority

11 DPRC[3] 0 DMA channel 3 priority control bit.

High priority

Low priority

10 DPRC[2] 0 DMA channel 2 priority control bit.

High priority

Low priorityDPRC[2] = 0

DPRC[2] = 1

DPRC[3] = 0

DPRC[3] = 1

DPRC[4] = 0

DPRC[4] = 1

DPRC[5] = 0

DPRC[5] = 1

FREE = 1,
FREE = 0,

TABLE C.11 (Continued)

Section C.1 Interfacing with the Analog Interface Circuit C21

TABLE C.12 DMA Channel Priority and Enable Control Register (DMPREC) (reprinted with permission
from [2])

(Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 21

Reset
Bit Name Value Function

9 DPRC[1] 0 DMA channel 1 priority control bit.

High priority

Low priority

8 DPRC[0] 0 DMA channel 0 priority control bit.

High priority

Low priority

7–6 INTOSEL 0 Interrupt multiplex control bits. The INTOSEL bits control
how the DMA interrupts will be assigned in the interrupt
vector table and IMR/IMF registers. The effects of this field
on the operation are device-specific

5 DE[5] 0 DMA channel 5 enable bit.

Enables DMA channel 5

Disables DMA channel 5

4 DE[4] 0 DMA channel 4 enable bit.

Enables DMA channel 4

Disables DMA channel 4

3 DE[3] 0 DMA Channel 3 enable bit.

Enables DMA channel 3

Disables DMA channel 3

2 DE[2] 0 DMA Channel 2 enable bit.

Enables DMA channel 2

Disables DMA channel 2

1 DE[1] 0 DMA channel 1 enable bit.

Enables DMA channel 1

Disables DMA channel 1

0 DE[0] 0 DMA channel 0 enable bit.

Enables DMA channel 0

Disables DMA channel 0DE[0] = 0

DE[0] = 1

DE[1] = 0

DE[1] = 1

DE[2] = 0

DE[2] = 1

DE[3] = 0

DE[3] = 1

DE[4] = 0

DE[4] = 1

DE[5] = 0

DE[5] = 1

DPRC[0] = 0

DPRC[0] = 1

DPRC[1] = 0

DPRC[1] = 1

TABLE C.12 (Continued)

C22 Appendix C Peripheral Programming for Digital Signal Processors

The other three direct-addressed registers are DMSA (located at 55h),
DMSDI (located at 56h), and DMSDN (located at 57h). The rest of the DMA reg-
isters are subaddressed and are grouped under (1) channel-context registers and
(2) DMA system registers.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 22

Section C.1 Interfacing with the Analog Interface Circuit C23

TABLE C.13 Multiplex Interrupt Assignments for the C5402 Processor (reprinted with permission
from [2])

Interrupt
Number INTOSEL [1:0]
(IMR/IFR#) 00b Value 01b 10b 11b

7 Timer 1 interrupt Timer 1 interrupt DMA Channel Reserved
1 Interrupt

10 McBSP 1 RINT DMA Channel DMA Channel Reserved
2 Interrupt 2 Interrupt

11 McBSP 1 XINT DMA Channel DMA Channel Reserved
3 Interrupt 3 Interrupt

As shown in Table C.11, each DMA channel has a set of five channel-context
registers, which configure the source address, destination address, element count,
sync event/frame count, and transfer-mode control. These issues are discussed as
follows:

1. The source address in registers (DMSRCn) (to 5) defines the address
of the data being read, while the destination address in DMDSTn registers de-
fines the address of the data being written.

2. Channel element count registers (DMCTRn) keep track of the number of
DMA element transfers. The number of elements to be initialized in this reg-
ister is one less than the desired number of element transfers (e.g., initialize to
9 for 10 elements to be transferred), and it is initialized as a 16-bit unsigned
number. This counter autodecrements with every transfer and reloads with
the original count value after the last element in each frame is reached.

3. The DMA sync event and frame count registers (DMSFCn) are used to deter-
mine (1) the sync event to trigger DMA transfers (e.g., McBSP receive and
transmit events, timer interrupt, or external interrupt), (2) the transfer
wordlength (16 or 32 bits), and (3) the number of frames to be transferred
(initialized as one less than the desired number of frames). The maximum
number of frames supported is 256. Table C.14 shows the bit-field descriptions
of the DMSFCn registers.A detailed listing of the DMA sync event for differ-
ent processors can be found in [2].

4. The transfer mode control register (DMMCRn) controls the transfer mode of
the channel. Transfer modes include (1) DMA autoinitialization (on/off), (2)
DMA interrupt generation mask bit, (3) DMA interrupt generation mode bit,
(4) DMA transfer counter mode control bit, (5) DMA source address transfer
index mode bit, which determines postincrement or postdecrement of the
DMA source address by a certain offset index, (6) DMA source address space
select bit (program, data, or I/O space), (7) DMA destination address transfer
index mode bit (on how destination address modification after transfer), and
(8) DMA destination address space select bit (program, data, or I/O space).
Table C.15 shows a detailed listing of the DMMCRn register.

n = 0

KuoAppCv3.qxd 2/16/04 3:18 PM Page 23

C24 Appendix C Peripheral Programming for Digital Signal Processors

TABLE C.15 DMA Transfer Mode Control Register (DMMCRn) (reprinted with permission from [2])

(Continued)

Reset
Bit Name Value Function

15 AUTOINIT 0 DMA autoinitialization mode bit.
Autoinitialization is disabled
Autoinitialization is enabled

14 DINM 0 DMA interrupt generation mask bit.

No interrupt generated

Interrupts generated based on IMOD bit

13 IMOD 0 DMA interrupt generation mode bit.

In ABU mode

Interrupt at buffer full only

Interrupt at half buffer full and buffer full

In multiframe mode

Interrupt at completion of block transfer

Interrupt at end of frame and end of block

12 CTMOD 0 DMA Transfer Counter Mode Control Bit.
Multiframe mode
ABU mode

11 Reserved 0 Reserved. Values written to this field have no effect

CTMOD = 1
CTMOD = 0

IMOD = 1

IMOD = 0

1CTMOD = 02:
IMOD = 1

IMOD = 0

1CTMOD = 12:

DINM = 1

DINM = 0

AUTOINIT = 1
AUTOINIT = 0

Reset
Bit Name Value Function

15–12 DSYN[3:0] 0 DMA sync event. Specifies which sync event is used to
initiate DMA transfers for the corresponding DMA
channel.

11 DBLW 0 Double-word mode.

Single-word mode. Each element is 16 bits.

Double-word mode. Each element is 32 bits.

10–8 rsvd 0 Reserved Values written to this field have no effect.

7–0 Frame 0 Frame count. Specifies the total number of frames to be
Count transferred.

DBLW = 1

DBLW = 0

TABLE C.14 DMA Sync Event and Frame Count Registers (DMSFCn) (reprinted with permission from [2])

KuoAppCv3.qxd 2/16/04 3:18 PM Page 24

Reset
Bit Name Value Function

10–8 SIND 0 DMA source address transfer index mode bit.

No modification

Postincrement

Post-decrement

Postincrement with index offset (DMIDX0)

Postincrement with index offset (DMIDX1)

Postincrement with index offset (DMIDX0
and DMFRI0)

Postincrement with index offset (DMIDX1
and DMFRI1)

Reserved

7–6 DMS 0 DMA source address space select bit.

Program space

Data space

I/O space

Reserved

5 Reserved 0 Reserved. Values written to this field have no effect.

4–2 DIND 0 DMA destination address transfer index mode bit.

No modification

Postincrement

Post-decrement

Postincrement with index offset
(DMIDX0)

Postincrement with index offset
(DMIDX1)

Postincrement with index offset (DMIDX0
and DMFRI0)

Postincrement with index offset (DMIDX1
and DMFRI1)

Reserved

1–0 DMD 0 DMA Destination Address Space Select Bit.

Program space

Data space

I/O space

ReservedDMD = 11

DMD = 10

DMD = 01

DMD = 00

DIND = 111

DIND = 110

DIND = 101

DIND = 100

DIND = 011

DIND = 010

DIND = 001

DIND = 000

DMS = 11

DMS = 10

DMS = 01

DMS = 00

SIND = 111

SIND = 110

SIND = 101

SIND = 100

SIND = 011

SIND = 010

SIND = 001

SIND = 000

Section C.1 Interfacing with the Analog Interface Circuit C25

TABLE C.15 (Continued)

KuoAppCv3.qxd 2/16/04 3:18 PM Page 25

C26 Appendix C Peripheral Programming for Digital Signal Processors

As shown in Table C.15, the DMA transfer counter mode control bit
(CTMOD) in the DMMCRn register can be configured in either multiframe mode
or autobuffering (ABU) mode:

1. Multiframe mode is commonly used in a frame- or block-
formatted data transfer. Element and frame indexes are used to modify the
source and destination addresses after every element/frame transfer. The
element counter register (DMCTRn) is automatically decremented after
each DMA transfer until the last element in each frame is reached.The element
is then reloaded with the original content of DMCTRn, which is a 16-bit
integer. Therefore, the number of elements to be transmitted per frame is
between 1 and 65,536. The frame count in the DMSFCn register is an un-
signed 8-bit integer that limits the number of frames to be transferred per
block from 1 to 256. The total number of elements to be transmitted is called
the block size, which is defined as the frame count multiplied by the element
count.

Indexing to the source and destination addresses is determined by the
DMA source address transfer index mode bit (SIND) and DMA destination
address transfer index mode bit (DIND) options in Table C.15. The common
post-increment or post-decrement operation increases or decreases the
address by 1 (or 2) for each word (or double word) transfer. In addition to
these options, post-increment by a different element index can be specified in
the element address index registers 1 and 2 (DMIDX0 and DMIDX1), which
contain a 16-bit signed number for the source, destination, or both. In addition,
the frame address index registers (DMFRI0 and DMFRI1) are used to index
the source and destination addresses after the completion of blocks or frames
of data transfers. This feature is useful in sorting data by address modification,
as illustrated in [2].

When the DMA autoinitialization mode bit (AUTOINIT) of the DMM-
CRn register is enabled (as shown in Table C.15), it reinitializes the channel-
context registers after the block transfer has completed.The following registers
are modified after the completion of the block transfer:
(global source address), destination address register
(global destination address), (global element count),
and (global frame count). Note that autoinitialization is
only available in multiframe mode.

2. ABU mode is used for autobuffering functions, such as a cir-
cular buffer. The element counter DMCTRn represents the buffer size and is
not modified during transmission. The frame count register does not function
in ABU mode. When the address reaches the end of the buffer, it wraps back
to the beginning automatically. The working operation in ABU mode is to
configure either the source or destination in ABU mode, while the other loca-
tion is left unmodified, as shown in Table C.16.

The element count register (DMCTRn) contains a 16-bit unsigned inte-
ger that represents a valid buffer size from 2 (0002h) to 65,535 (FFFFh). The
buffer size is the difference between the base address and the maximum

1CTMOD = 12

DMSFCn = DMGFR
DMCTRn = DMGCR

1DMDSTn2 = DMGDA
DMSRCn = DMGSA

1CTMOD = 02

KuoAppCv3.qxd 2/16/04 3:18 PM Page 26

Section C.1 Interfacing with the Analog Interface Circuit C27

SIND Address Index Mode DIND Address Index Mode

001 Postincrement

010 Postdecrement

000 No modification 011 Postincrement with index
offset (DMIDX0)

100 Postincrement with index
offset (DMIDX1)

001 Postincrement

010 Postdecrement

011 Postincrement with 000 No modification
index offset (DMIDX0)

100 Postincrement with
index offset (DMIDX1)

TABLE C.16 ABU Address Index Modes (reprinted with permission from [2])

TABLE C.17 DMA Block Transfer Interrupt Generation Modes (reprinted with permission from [2])

MODE CTMOD DINM IMOD Interrupt Generation

ABU 1 1 0 At buffer full only

ABU 1 1 1 At half buffer full and buffer full

Multiframe 0 1 0 At block transfer complete

Multiframe 0 1 1 At end of frame and end of block

Either X 0 X No interrupt generated

address. Note that the base address of the buffer must be based on a power of
two. For example, if a buffer size of 2,048 is required, the buffer base address
must be aligned with 4,096-word boundaries such as 0000h, 1000h, 2000h,
3000h, etc.

There are four DMA block transfer interrupt generation modes. These modes
can be selected by specifying CTMOD, DIND, and interrupt generation mode bit
(IMOD) of the DMMCRn registers, as shown in Table C.17. It is noted that in the
ABU mode, interrupts can be generated either when the entire buffer has been
transferred or when the buffer has been half-transferred. In multiframe mode, inter-
rupts are only generated either at the end of the frame or at the end of the block.

The remaining registers shown in Table C.11 are DMA system registers. They
consist of (1) source/destination program page address registers (DMSRCP and
DMDSTP), (2) element address index registers (DMIDX0 and DMIDX1), which

KuoAppCv3.qxd 2/16/04 3:18 PM Page 27

C28 Appendix C Peripheral Programming for Digital Signal Processors

ADC

DAC

AIC McBSP1

DRR1

DMAC2

C5402

REVT1

DMAC3XEVT1

DXR1

1

2

3

In_Buf

1

2

Out_Buf

C
op

y

Figure C.8 Data transfer from the ADC/DAC to/from the McBSP and to/from on-chip memory via
DMA channels 2 and 3 (reprinted with permission from [1])

contain the index offset value to add to the current address after every transfer,
(3) frame address index registers (DMFRI0 and DMFRI1), which are used to modify
the current address if the current element is the last element of the frame, (4) global
source/destination address reload registers (DMGSA and DMGDA), and (5) global
element and frame count reload registers (DMGCR and DMGFR). These registers
configure index options for the entire DMA system.

An important performance benchmark in a DMA transfer is its latency. A
16-bit DMA transfer is always composed of a read followed by a write. DMA latency
depends on the source and destination locations and on whether these locations are
internal or external. For external locations, there is a need to consider interface con-
ditions such as wait states and bank-switching cycles. For the C5402 processor, only
internal-to-internal transfers (e.g., from a memory-mapped register to on-chip
DARAM) are supported, and they take four CPU clock cycles (two for read and
two for write). If the C5402 processor is operating at a clock rate of 100 MHz, the
maximum transfer rate is words per second or 12.5M double words
per second. If more than one DMA channel is selected with high priority, the data
transfer rate is reduced by the number of high-priority channels. For example, if
three DMA channels are assigned as high priority, the data transfer rate is

words per second. Low-priority channels share the transfer rate
only after the completion of high-priority channels.

We illustrate setting the DMA controller for interface to the audio CODEC in
the following section.

C.1.3 An Example

We investigate a simple digital loop-back example in Fig. C.8 using AD50 AIC,
where the analog signal from the sound card is first passed to the ADC inside the
AIC. The serial output from the ADC is then sent to the DRR1 register of the
McBSP1 and transferred to the internal memory (DARAM) of the C5402 processor

25M/3 = 8.33M

100M/4 = 25M

KuoAppCv3.qxd 2/16/04 3:18 PM Page 28

Section C.1 Interfacing with the Analog Interface Circuit C29

via channel 2 of the DMA. A triple buffer is used in the In_Buf buffer in DARAM.
This data is then copied to the Out_Buf buffer organized as a double buffer in
DARAM and is output to the DXR1 register of the McBSP1 via channel 3 of the
DMA. The DXR1 is then output to the DAC inside the AIC. The analog output is
sent to the loudspeaker for playback. In this digital loop-back process, interrupt
(REVT1) from the McBSP1 is used to trigger the DMA when complete data are
received.

In order to start the digital loop-back process, a C program is written to initial-
ize the DMA and the AIC and to wait for the interrupt from the McBSP. An ISR is
activated once the interrupt is detected. In the case of digital loop back, the ISR
contains a sequence of code that stores data in multiple buffers. Since the ISR con-
tains the most time-critical code, such as signal-processing algorithms and memory
management, it is normally written in assembly.

Both the AIC and the McBSP/DMA need to be configured and initialized
before the digital loop-back operation can be performed.

Setting up the Analog Interface Circuit

The C54x on-board peripheral library provides high-level support for DSP applica-
tions running on the C54x DSK. This library enables the user to develop applica-
tions that can control and operate the peripherals of the DSK platform. Some of the
supports include on-board peripheral initialization, power down (reset), register
access, and data movement.

The AD50 application programming interfaces (APIs) configure the on-board
AIC, including its input and output gains, sampling frequency, settings for the inter-
nal registers of the AIC, and digital or analog loop back capability. In addition, the
API provides functions to open, close, and reset the AIC, read from and write to the
AIC, etc. A detailed listing of the AD50 API can be found in the TMS320C5402
DSK online help [1]. For example, to set up AD50 AIC parameters on the C5402
DSK, we can apply the below C code. A detailed listing of CODEC driver routines
can be found in codec.h [1].

hHandset = codec_open(HANDSET_CODEC); /* Open handset CODEC */

/* Set codec parameters */
codec_dac_mode(hHandset, CODEC_DAC_15BIT); /* DAC in 15-bit mode */
codec_adc_mode(hHandset, CODEC_ADC_15BIT); /* ADC in 15-bit mode */
codec_ain_gain(hHandset, CODEC_AIN_6dB); /* 6 dB gain on analog

input to ADC */
codec_aout_gain(hHandset, CODEC_AOUT_MINUS_6dB); /* -6 dB gain on

analog output from DAC */
codec_sample_rate(hHandset,SR_16000); /* 16 kHz sampling rate */

In this case, the 15-bit mode of the ADC and DAC is being used. It represents
15 bits of data plus 1 bit to indicate whether the register data comes from the master
or slave device if the read bit is set. In the preceding program, the input to the ADC
is being amplified by 6 dB, while the DAC output is being attenuated by 6 dB. The
sampling frequency of the ADC/DAC is set to 16 kHz.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 29

C30 Appendix C Peripheral Programming for Digital Signal Processors

Initializing the Direct Memory Access/Multichannel Buffered Serial Port

The initialization program for the DMA/McBSP that follows is used to configure
DMA channel 2. The variables and functions listed in this code can be found in the
header file dma54xx.h for the C5402 processor [1].

/* Clear IFR */
INTR_CLR_FLAG(DMAC2);

/* Reset all DMA channels */
dma_reset_all();

/* Initialize DMA channel 2 */
dmsefc = ((DSYNC_REVT1 <<12)); /* DSYNC_REVT1 = 0101b */
dmmcr = ((AUTOINIT_ENABLE << 15) | (DINM_ENABLE << 14) |
(IMOD_HALFBLOCK <<13) | (CTMOD_DEC <<12) | (INDEXMODE_NOMOD << 8) |
(SPACE_DATA << 6) | (INDEXMODE_INC << 2) | (SPACE_DATA));
dmctr = 0xFF;
src_addr = DRR1_ADDR(HANDSET_CODEC);
dst_addr = (unsigned int) &buffer; /* &buffer is the start

address of input buffer */
dma_init(DMA_CH2, dmsefc, dmmcr, dmctr, SPACE_DATA, src_addr,
SPACE_DATA, dst_addr);

/* Set number of frames for channel 2 */
DMA_FRAMECOUNT(DMA_CH2, 2);

/* Initialize DMA channel 3 */
dmsefc = ((DSYNC_REVT1 <<12)); /* DSYNC_REVT1 = 0101b */
dmmcr = ((AUTOINIT_DISABLE << 15) | (DINM_ENABLE << 14) |
(IMOD_HALFBLOCK <<13) | (CTMOD_DEC <<12) | (INDEXMODE_INC << 8) |
(SPACE_DATA << 6) | (INDEXMODE_NOMOD << 2) | (SPACE_DATA));
dmctr = 0xFF;
dst_addr = DXR1_ADDR(HANDSET_CODEC);
src_addr = (unsigned int) &buffer_out; /* &buffer is the start

address of input buffer */
dma_init(DMA_CH3, dmsefc, dmmcr, dmctr, SPACE_DATA, src_addr,
SPACE_DATA, dst_addr);

/* Set number of frames for channel 3 */
DMA_FRAMECOUNT(DMA_CH3, 1);

/* Set up global autoinit registers for DMA CH2 input */
dmgsa = src_addr;
dmgda = dst_addr;
dmgcr = 0xFF;
dmgfr = 2;

/* Set up global priority and enable control register for CH2 */
dmprec = ((HIGH_PRIORITY << 10) | (INTSEL_01 << 6));
dmsrcp = SPACE_DATA;
dmdstp = SPACE_DATA;
dmidx0 = 0;

KuoAppCv3.qxd 2/16/04 3:18 PM Page 30

Section C.1 Interfacing with the Analog Interface Circuit C31

dmidx1 = 0;
dmfri0 = 0;
dmfri1 = 0;

dma_global_init(dmprec, dmsrcp, dmdstp, dmidx0, dmidx1, dmfri0,
dmfri1, dmgsa, dmgda, dmgcr, dmgfr);

/* Enable channel 2 and 3 */
DMA_ENABLE(DMA_CH2);
DMA_ENABLE(DMA_CH3);

/* prime the serial port to begin input buffer stream */
temp = *(volatile u16*)DRR1_ADDR(HANDSET_CODEC);

/* Enable DMAC2 interrupt */
INTR_ENABLE(DMAC2);

/* Enable global interrupts */
INTR_GLOBAL_ENABLE;

/* Endless loop waiting for DMAC2 interrupt */
for(;;);

The global interrupt is first disabled by clearing the IFR register, and all DMA
channels are reset before initialization. Two initialization steps are involved in the
DMA channel: (1) local initialization of the individual DMA channel and (2) global
initialization and prioritization of the DMA channel.

The local initialization is set up by defining the DMA synchronization (sync)
event in the DMSFCn register, as described in Table C.14. The DMA sync mode
(DSYN) selected in the example is based on the McBSP 1 receive
event (REVT1) of the C5402 processor. The double-word mode (DBLW) is set to
the reset value of single word (16 bits), and the frame count is set to
three frames by using the DMA_FRAMECOUNT (DMA_CH2, 2) API, which is
initialized to one less than the actual frame count. Using the DMA transfer mode
control register (DMMCRn) in Table C.15, we can interpret the initialization as fol-
lows: (1) DMA autoinitialization is enabled; (2) the DMA interrupt is generated
based on the CTMOD which is a multiframe mode, and DMA interrupts
are at end of the frame/block (3) the DMA source address transfer
index is not modified; (4) the DMA source address used is data space; (5) the DMA
destination address transfer index is post-increment; and (6) the DMA destination
address used is data space. The next three local registers to be set up are the DMA
channel 2 source address (DMSRC2), destination address (DMDST2), and element
count register (DMCTR2). DMSRC2 is set to the DRR1 address of the McBSP1,
while DMDST2 is set to the start address of the buffer (&buffer). DMCTR2 is set to
256 elements (specified as 0xFF).

Similarly, we can also set up local registers for channel 3 of the DMA. Howev-
er, there are some differences in configuring channel 3 (transmit) and channel 2
(receive). DMA autoinitialization is disabled in channel 3 since its source address
needs to be updated in the ISR. In channel 3, the source address transfer index is
post-incremented, while the destination address transfer index is not modified after

1IMOD = 12;
bit = 0,

1DBLW = 02

1DSYN = 01012

KuoAppCv3.qxd 2/16/04 3:18 PM Page 31

C32 Appendix C Peripheral Programming for Digital Signal Processors

every data transfer. The element count register still remains at 256, and the frame
count is now set to 2, as shown in Fig. C.8.

In the preceding program, the global autoinit registers for all DMA channels
are set as follows: (1) address (0x41) of the McBSP; (2)

address of the buffer; (3) DMA (4)
(5) DMPREC selects channel 2 as high priority, while all other

channels are of low priority, and DMA channel 2 interrupt is assigned to the inter-
rupt vector as interrupt number IMR/IFR #10; (6)
space address; and (7) all of the DMA element and frame address index registers
(DMIDX0, DMIDX1, DMFRI0, and DMFRI1) are set to an index offset value of 0
since the element and frame are automatically post-incremented by 1.

After the DMA/McBSP and AIC have been initialized, the selected DMA
channels, interrupts, and global interrupts can all be enabled. In the digital loop-
back process, the processor can go into an endless loop while waiting for the DMA
channel 2 interrupt. Once interrupted, the ISR activates, and the processor stores
the incoming data from the ADC to the In_Buf buffer and arranges the data in a
triple-buffer fashion, as shown in Fig. C.8. Once the input buffer is filled up, it is
copied to one of the available output buffers (Out_Buf) and transmitted to the
DXR11 (0x43) of the McBSP via channel 3 of the DMA before being passed to the
DAC for analog playback. The DMPREC register can be polled to determine when
a block transfer on DMA channel 3 is completed.

More examples on interfacing different CODECs to C5402 DSP processors
are given in [4, 5]. Readers can refer to these application notes for more detailed
information on and code for the interface.

C.2 INTERFACE WITH THE HOST PROCESSOR VIA THE HOST

PORT INTERFACE

As introduced in Chapter 3, HPI is a dedicated parallel interface for host-to-DSP
processor communications. Unlike the parallel bus that is dedicated to memory
accesses, the HPI functions as a slave to the host processor, which can be a micro-
controller or another DSP processor. In the latest C54x processor family, the HPI is
referred to as the enhanced HPI, which comes in either an 8-bit or 16-bit interface.
The HPI-8 is the 8-bit version that transfers 8 bits of data between the host and
DSP, while the HPI-16 allows a 16-bit word to be transferred. In a 100 MHz proces-
sor, the HPI-8 and HPI-16 have a throughput of 21 Mbit/sec and 33 Mbit/sec, respec-
tively.These throughput values are accurate only if no other DMA channel is active.

The C5402 processor has one HPI-8. Data is exchanged between the C54x
processor and the host processor through the C54x processor’s on-chip memory,
which is accessible to both the host and C54x processors. For a 16-bit data exchange,
two 8-bit reads/writes from/to the memory must be performed.

The HPI-8 uses the DMA bus to gain access to on-chip memory in the proces-
sor. As shown in Fig. C.9, the HPI has a dedicated port on the DMA controller and
makes a request to use the DMA bus. The DMA controller completes the current
DMA transfer in progress before granting the HPI-8 access to the DMA bus, and all

DMSRCP = DMDSTP = data

DMGFR = 3 frames;
DMGCR = 256 elements;DMGDA = start

DMGSA = DRR11

KuoAppCv3.qxd 2/16/04 3:18 PM Page 32

Section C.2 Interface with the Host Processor via the Host Port Interface C33

Host Device

Data

Address

Read/write

Data strobe

Address latch
(if used)

READY
Interrupt

'54x

HD0-HD7

HCNTL0/1 (address)
HBIL 1st/2nd
HR/W

HDS1
HDS2
HCS

HRDY

HAS

HINT

8

2

Internal strobe (controls transfer)

Sampled by internal
strobe or HAS

(Samples address and signals, if used)

Figure C.9 Block diagram of linking the host processor to the C54x (reprinted with permis-
sion from [2])

TABLE C.18 HPI-8 Input-Control Signals and Functions (reprinted with permission from [2])

HCNTL1 HCNTL0 Description

0 0 Host can read from or write to the HPI control register, HPIC.

0 1 Host can read from or write to the HPI data latches. HPIA is
automatically postincremented each time a read is performed,
and preincremented each time a write is performed.

1 0 Host can read from or write to the address register, HPIA.
This register points to the ’54x on-chip RAM.

1 1 Host can read from or write to the HPI data latches. HPIA is not
affected.

pending DMA channel transfers are halted.The DMA channel only resumes its activ-
ities after the completion of HPI-8 access. Therefore, the HPI-8 can be considered as
the seventh DMA channel with the highest priority over all six DMA channels.

As shown in Fig. C.9, the HD0-7 is the data bus of the HPI-8.Two control inputs
(HCNTL0/1) are used to select internal HPI-8 registers with different options: HPI
control register (HPIC), HPI address register (HPIA), or the HPI data register
(HPID). Table C.18 shows the HPI-8 input-control signals and their functions.

The HPIC contains the control and status bits for HPI-8 operations and can be
accessed directly by both the host and C54x processors.The HPIA serves as a point-
er to C54x on-chip memory. The HPIA can also be configured in autoincrement
mode (and) for consecutive transfers. The HPID con-
tains the data to be transferred to/from the address specified in the HPIA. Since the
HPI is a slave interface, only the host has direct access to the HPIA and HPID.

HCNTL0 = 0HCNTL1 = 1

KuoAppCv3.qxd 2/16/04 3:18 PM Page 33

C34 Appendix C Peripheral Programming for Digital Signal Processors

In addition, the host byte identification input line (HBIL) indicates whether
the first or second byte is transferred, while the HR/W strobe signal indicates the
read or write access. Two host data strobe signals (HDS1 and HDS2) are used to
control the transfer of data across the interface. The HCS is the host chip select line
that enables the HPI-8.The host address strobe (HAS) is used only when communi-
cating with host devices that have a multiplexed bus for address and data. The HPI
ready (HRDY) pin provides a means to let the host know if the HPI-8 is ready for a
new transaction. Finally, the HPI-8 includes an interrupt (HINT) pin to interrupt
the host. This HINT pin can be set and cleared by writing to the HINT bit in the
HPIC register.

In this section, we briefly highlight the sequence on how HPI-8 access can be
carried out. The host must first initialize the HPIC register by specifying the byte
order bit (BOB) in the HPIC. If the first byte of a transfer is least signif-
icant; otherwise, the first byte is most significant. The host can then write to the
HPIA register with the correct byte alignment. On-chip memory is automatically
read, and the contents at the given address are transferred to the two 8-bit data
latches, which are the first and second bytes of the HPID register. The host then
must perform a read of the HPID to retrieve the data in the latches. In the case of
write access to the HPI, the first byte data latch is overwritten by the data coming
from the host, while the HBIL pin is low.The second byte data latch, in turn, is over-
written by the data coming from the host while the HBIL pin is high.After the write
access, the byte in the data latches is transferred as one 16-bit word to the on-chip
RAM at the address specified by the HPIA register. Note that when autoincrement
is enabled, data read causes a post-increment of the HPIA, and the data write caus-
es a pre-increment of the HPIA.

There are two types of interrupts between the host and the C54x processor: (1)
the host interrupts the C54x processor via DSPINT (DSP CPU interrupt), and (2)
the C54x processor interrupts the host using HINT. The host device writes a 1 to the
DSPINT bit in the HPIC register for interrupting the C54x processor. Continue
interrupts from the host can be generated without the need to write 0 to the DSPINT
bit.The C54x writes a 1 to the HINT bit in the HPIC register for interrupting the host
processor. When the HINT output is driven low. When the
output is driven high. The host can clear the interrupt by writing a 1 to the HINT bit.

Other topics regarding HPI transfer operations, resetting the HPI, and HPI
performance considerations can be found in [2].

C.3 FURTHER EXPLORATION

Several other important peripheral programming issues and internal DSP hardware
setups are necessary for implementing a complete system. The user can refer to the
application notes from Texas Instruments, which can be downloaded from the websites
listed in Appendix E. Several important implementation issues include the following:

1. Bootloading is used to transfer boot-up program code from external memory
into internal memory following powerup.This bootloading feature in the DSP

HINT = 0,HINT = 1,

BOB = 1,

KuoAppCv3.qxd 2/16/04 3:18 PM Page 34

Suggested Readings C35

processor eliminates the need for mask programming in the processor’s inter-
nal ROM. There are different ways to download code into the processor’s
memory. These boot modes include the parallel-port boot, serial-port boot,
I/O boot, HPI boot, etc. A detailed description can be found in [6].

2. The UART controller allows data to be transmitted without a clock signal to
the receiver. The UART performs a parallel-to-serial conversion on data
received from the DSP processor and performs a serial-to-parallel conversion
on data received from the external device. The data packet is preceded by a
start bit, which alerts the receiver that data is about to be sent. It is followed
immediately by data bits starting from the LSB to the MSB. The transmitter
may add a parity bit for simple error checking at the receiver. A stop bit ter-
minates the complete data packet. Refer to [7, 8] for more detailed informa-
tion on the UART implementation.

3. Interfacing a DSP processor to external memory can be carried out by using
external (address and data) buses and other control lines, as shown in [9, 10].

C.4 TRENDS IN PERIPHERAL PROGRAMMING

Texas Instruments supports a new chip support library [11], which is a collection of
functions, macros, and symbols used to configure and control on-chip peripherals.
The chip support library consists of a standard protocol (data type, macro, and func-
tion) for programming on-chip peripherals and provides a powerful GUI that gen-
erates peripheral register values and C files for peripheral initialization. In addition,
it provides a convenient platform for managing multiple peripheral resources and
peripherals with multiple channels.

Moreover, the DSP/BIOS driver development kit is available for simplifying
the development of device drivers for numerous DSP peripherals. The driver devel-
opment kit complements the chip support library by providing drivers for sophisti-
cated peripherals, such as a multimedia card, video port, CODEC, etc. Driver
development kit drivers also use the chip support library for peripheral initializa-
tion and control. For more detailed information, please refer to [12].

SUGGESTED READINGS

1 Texas Instruments. C5402 DSK One-Day Workshop. Version 2.11, 2001.
2 Texas Instruments. TMS320C54x DSP: Enhanced Peripherals. Volume 5, SPRU302, 1999.
3 Texas Instruments. TMS320C54x DSP Design Workshop. Version 4.21, 2001.
4 Texas Instruments. Interfacing AC97 Codec to TMS320C5402. SPRA777, 2001.
5 Texas Instruments. Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP.

SLAA109, 2000.
6 Texas Instruments. TMS320VC5402 and TMS320UC5402 Bootloader. SPRA618A, 2002.
7 Texas Instruments. Programming the C5404/5406/5407 UART Peripheral. SPRA023A,

2002.
8 Texas Instruments. Implementing a Software UART on the TMS320C54x with the McBSP

and DMA. SPRA 661A, 2000.

KuoAppCv3.qxd 2/16/04 3:18 PM Page 35

9 Texas Instruments. TMS320C54x Interface with SDRAM. SPRA531, 1999.
10 Texas Instruments. Connecting TMS320C54x DSP with Flash Memory. SPRA585, 1999.
11 Texas Instruments. TMS320C54x Chip Support Library API Reference Guide. SPRU420B,

2002.
12 http://www.ti.com/driverdevkit.

C36 Appendix C Peripheral Programming for Digital Signal Processors

KuoAppCv3.qxd 2/16/04 3:18 PM Page 36

	footer: ©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. For exclusive distribution with the book Digital Signal Processors: Architectures, Implementations, and Applications by Sen M. Kuo and Woon-Seng Gan, ISBN 0-13-035214-4These pages may not be reproduced, in any form or by any means, without permission in writing from the publisher.

