

Because of the symmetrical butterfly configuration, Ŀ

$$_{24}\mathbf{I}_{23} = \mathbf{I}_{24}\mathbf{I}_{14}$$

Hence,

 $I_{12}I_{24}+I_{24}I_{23} = I_{12}I_{24}+I_{24}I_{14} = L_1$

This equation states that the sum of the distances from I_{24} to the pivots I_{12} and I_{23} is constant. Therefore we can see that the locus of I_{24} is an ellipse with foci at I_{12} and I_{13} .

To an observer fixed on link 2 ($I_{12}I_{23}$), the locus of I_{24} will be an ellipse with foci I_{23} and I_{12} . To an observer fixed on link 4 ($I_{14}I_{34}$), the locus of I_{24} will be an ellipse with foci I_{34} and I₁₄. In other words, the centrode of link 4 is an ellipse congruent with that of link 2. If teeth are cut into the ellipses in order to avoid slippage at the contact point, we have the case of elliptical gears.

For information on ellipse geometry, click here.