

FIGURE P6-2

Configuration and terminology for Problems 6-6 to 6-7

- *6-6 The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Figure P6-2. The link lengths and the values of θ_2 and ω_2 are defined in Table P6-2. For the row(s) assigned, draw the linkage to scale and find the velocities of the pin joints A and B and the velocity of slip at the sliding joint using a graphical method.
- $*^{\dagger}$ 6-7 Repeat Problem 6-6 using an analytical method. Draw the linkage to scale and label it before setting up the equations.

TADIE DA	2 Data	for Drobler	ns 6-6 to 6-7

Row	Link 2	Link 3	Offset	θ_2	ω_2
а	1.4	4	1	45	10
b	2	6	-3	60	-12
C	3	8	2	-30	-15
d	3.5	10	1	120	24
е	5	20	-5	225	-50
f	3	13	0	100	-45
g	7	25	10	330	100

^{*} Answers in Appendix F.

[†] These problems are suited to solution using *Mathcad*, *Matlab*, or *TKSolver* equation solver programs. In most cases, your solution can be checked with program SLIDER.