

FIGURE P7-1

Configuration and terminology for Problems 7-3, 7-4 and 7-11

- *7-3 The link lengths, coupler point location, and the values of θ_2 , ω_2 , and α_2 for the same fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are redefined in Table P7-1, which is the same as Table P6-1. The general linkage configuration and terminology are shown in Figure P7-1. *For the row(s) assigned*, draw the linkage to scale and graphically find the accelerations of points *A* and *B*. Then calculate α_3 and α_4 and the acceleration of point *P*.
- *†7-4 Repeat problem 7-3 except solve by the analytical vector loop method of Section 7.3 (p. 334).
- [†]7-11 For the row(s) assigned in Table P7-1, find the angular jerk of links 3 and 4 and the linear jerk of the pin joint between links 3 and 4 (point *B*). Assume an angular jerk of zero on link 2. The linkage configuration and terminology are shown in Figure P7-1.

IABLE P/	-I DO	Data for Problems 7-3 and 7-4								
Row	Link 1	Link 2	Link 3	Link 4	θ_2	ω2	α2	R pa	δვ	
а	6	2	7	9	30	10	0	6	30	
b	7	9	3	8	85	- 12	5	9	25	
С	3	10	6	8	45	- 15	- 10	10	80	
d	8	5	7	6	25	24	- 4	5	45	
е	8	5	8	6	75	- 50	10	9	300	
f	5	8	8	9	15	- 45	50	10	120	
g	6	8	8	9	25	100	18	4	300	
h	20	10	10	10	50	- 65	25	6	20	
i	4	5	2	5	80	25	- 25	9	80	
j	20	10	5	10	33	25	- 40	1	0	
k	4	6	10	7	88	- 80	30	10	330	
1	9	7	10	7	60	- 90	20	5	180	
т	9	7	11	8	50	75	- 5	10	90	
n	9	7	11	6	120	15	- 65	15	60	

TABLE P7-1 Data for Problems 7-3 and 7-4

* Answers in Appendix F.

[†] These problems are suited to solution using *Mathcad*, *Matlab*, or *TKSolver* equation solver programs. In most cases, your solution can be checked with program FOURBAR.