

FIGURE P7-5

Problems 7-13 to 7-15

- 7-13 The linkage in Figure P7-5a has $O_2A = 0.8$, AB = 1.93, AC = 1.33, and offset = 0.38 in. The crank angle in the position shown is 34.3° and angle $BAC = 38.6^\circ$. Find α_3 , A_A , A_B , and A_C for the position shown for $\omega_2 = 15$ rad/sec and $\alpha_2 = 10$ rad/sec² in directions shown,
 - a. Using the acceleration difference graphical method.
 - [†]b. Using an analytical method.
- 7-14 The linkage in Figure P7-5b has $I_{12}A = 0.75$, AB = 1.5, and AC = 1.2 in. The effective crank angle in the position shown is 77° and angle BAC = 30°. Find α_3 , A_A , A_B , and A_C for the position shown for $\omega_2 = 15$ rad/sec and $\alpha_2 = 10$ rad/sec² in the directions shown,
 - a. Using the acceleration difference graphical method.
 - [†]b. Using an analytical method. (Hint: Create an effective linkage for the position shown and analyze it as a pin-jointed fourbar.)
- 7-15 The linkage in Figure P7-5c has AB = 1.8 and AC = 1.44 in. The angle of AB in the position shown is 128° and angle BAC = 49°. The slider at *B* is at an angle of 59°. Find $\alpha_{3,} A_{B,}$ and A_{C} for the position shown for $V_{A} = 10$ in/sec and $A_{A} = 15$ in/sec² in the directions shown.
 - a. Using the acceleration difference graphical method.
 - [†]b. Using an analytical method.