$ \begin{array}{c} & Y \\ & B \\ & y \\ & A \\ & 2 \\ & 0 \\ & 0 \\ & & X \\ & 0 \\ & & 0 \\ & & & x \end{array} $	$ \begin{array}{c} $
x ₂ Y	Y O_4
$D = 5 C O_2 O_2$ $M_1 O_6 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	$x y_1$ 3
<i>У2 В</i>	ω_2 A 5 B 6 X
(c) $4 \\ x_1$	$a_2 (a) (a) (a)$

FIGURE P7-6

Problems 7-16 to 7-19

- [†]7-16 The linkage in Figure P7-6a has $O_2A = 5.6$, AB = 9.5, $O_4C = 9.5$, $L_1 = 38.8$ mm. θ_2 is 135° in the *xy* coordinate system. Write the vector loop equations; differentiate them, and do a complete position, velocity, and acceleration analysis of the linkage. Assume $\omega_2 = 10$ rad/sec and $\alpha_2 = 20$ rad/sec².
- [†]7-17 Repeat Problem 7-16 for the linkage shown in Figure P7-6b which has the dimensions: $L_1 = 61.9, L_2 = 15, L_3 = 45.8, L_4 = 18.1, L_5 = 23.1 \text{ mm}. \theta_2 \text{ is } 68.3^\circ \text{ in the } xy \text{ coordinate system, which is at } -23.3^\circ \text{ in the } XY \text{ coordinate system. The } X \text{ component of } O_2C \text{ is } 59.2 \text{ mm.}$
- [†]7-18 Repeat Problem 7-16 for the linkage shown in Figure P7-6c which has the dimensions: $O_2A = 11.7, O_2C = 20, L_3 = 25, L_5 = 25.9$ mm. Point *B* is offset 3.7 mm from the x_1 axis and point *D* is offset 24.7 mm from the x_2 axis. θ_2 is at 13.3° in the x_2y_2 coordinate system.
- [†]7-19 Repeat Problem 7-16 for the linkage shown in Figure P7-6d which has the dimensions: $L_2 = 15, L_3 = 40.9, L_5 = 44.7$ mm. θ_2 is 24.2° in the XY coordinate system.

* Answers in Appendix F.

[†] These problems are suited to solution using *Mathcad*, *Matlab*, or *TKSolver* equation solver programs. In most cases, your solution can be checked with program FOURBAR, SLIDER, or SIXBAR.