

FIGURE P7-28

Problems 7-72 to 7-73 An aircraft overhead bin mechanism - dimensions in inches

- 7-72 Find the angular accelerations of links 3 and 4, and the linear acceleration of point P in the XY coordinate system for the linkage in Figure P7-28 (p. 374) in the position shown. Assume that $\theta_2 = -88.72^\circ$ in the XY coordinate system, $\omega_2 = 1$ rad/sec, and $\omega_2 = 10$ rad/sec². The position of the coupler point P on link 3 with respect to point P is: P = 15.00, $\delta_3 = 0^\circ$.
 - a. Using a graphical method.
 - †b. Using an analytical method.
- †7-73 For the linkage in Figure P7-28 (p. 374), write a computer program or use an equation solver such as *Mathcad*, *Matlab*, or *TKSolver* to calculate and plot the angular velocity and acceleration of links 2 and 4, and the magnitude and direction of the velocity and acceleration of point *P* as a function of θ_2 through its possible range of motion starting at the position shown. The position of the coupler point *P* on link 3 with respect to point *A* is: p = 15.00, $\delta_3 = 0^\circ$. Assume that, @ t = 0, $\theta_2 = -88.72^\circ$ in the *XY* coordinate system, $\omega_2 = 0$, and $\alpha_2 = 10$ rad/sec², constant.

[†] These problems are suited to solution using *Mathcad*, *Matlab*, or *TKSolver* equation solver programs. In most cases, your solution can be checked with program FOURBAR.