Investigating
Exported Code

Appendixes

Part V

Very few novice (or even intermediate) programmers delve into the mysteries of export object
definitions. Occasions will arise, however, when it will be necessary to be able to export an
object, make a modification, and reimport the object.

Exporting Code

You export the code from within the Library painter by using either the pop-up menu on an
object or the PainterBar button. This prompts you for the destination filename, to which
PowerBuilder assigns a three-character file extension based on the object type:

Object Type File Extension
Window Srw
DataWindow .srd
Menu .srm
Structure SIS
Application .sra
Function rf
Project S
Pipeline Srp
Query .Srq
Proxy .SIX
User Object .Sru

The first eight characters of the filename are the first eight characters of the object’s name, so
be very careful when you are exporting objects that have similar names.

Modifications to Code

Two of the most common modifications that are made to an object when it has been exported
are replacing the global string and changing the ancestor object. First, you must understand
the syntax of the exported file and what it means for inherited objects.

Areas of the File

I'll illustrate the areas of the exported object using the exported code of a window with nine
controls. The exported window file (see Listing F.1) provides a good basis to start with; a num-
ber of the other object types share a similar structure.

NOTE

Some of the listings in this appendix contain line numbers to provide reference points
to the text and are not created or generated as part of the export process.

Investigating Exported Code

Appendix F

Listing F.1. An export of a window with nine controls.

1: $PBExportHeader$w_error.srw

2: forward

3: global type w_error from Window

4: end type

5: type sle_error_number from singlelineedit within w_error
6: end type

7: type cb_print_report from u_cb within w_error
8: end type

9: type cb_quit from u_cb within w_error

10: end type

11: type sle_object_event from singlelineedit within w_error
12: end type

13: type sle_object_name from singlelineedit within w_error
14: end type

15: type st_12 from statictext within w_error

16: end type

17: type st_11 from statictext within w_error

18: end type

19: type mle_error from multilineedit within w_error
20: end type

21: end forward

22:

23: global type w_error from Window

24: int X=595

25: int Y=485

26: int Width=2460

27: int Height=1425

28: boolean TitleBar=true

29: string Title="Application Error"

30: long BackColor=12632256

31: WindowType WindowType=response!

32: ToolBarAlignment ToolBarAlignment=AlignAtLeft!
33: event playsound pbm_custom01

34: event type integer operation (integer a_nparmi, string a_szparmi)
35: sle_error_number sle_error_number

36: cb_print_report cb_print_report

37: cb_quit cb_quit

38: sle_object_event sle_object_event

39: sle_object_name sle_object_name

40: st_12 st_12

41: st_11 st_11

42: mle_error mle_error

43: end type

44: global w_error w_error

45:

46: type ws_error from structure

47: String szError

48: Integer nError

49: end type

50:

51: shared variables

52: Integer sh_nCount

53: end variables

54:

55: type variables

56: Integer i_nCount

57: end variables

continues

Appendixes

Part V

Listing F.1. continued

58:

59: type prototypes

60: Function uInt FindWindow(string szClass, string SZName) Library
"user.exe"

61: end prototypes

62:

63: forward prototypes

64: public subroutine wf_notify ()

65: end prototypes

66:

67: public subroutine wf_notify ();MailSession PBmailSession

68: // Code removed for brevity

69: end subroutine

70:

71: event open;g_App.uf_CentreWindow(this)

72: // Code removed for brevity

73: end event

74:

75: on playsound;If FileExists("error.wav") Then

76: g_App.Externals.uf_PlaySound("error.wav", 0)

77: End If

78: end on

79:

80: on w_error.create

81: this.sle_error_number=create sle_error_number

82: this.cb_print_report=create cb_print_report

83: this.cb_quit=create cb_quit

84: this.sle_object_event=create sle_object_event

85: this.sle_object_name=create sle_object_name

86: this.st_12=create st_12

87: this.st_11=create st_11

88: this.mle_error=create mle_error

89: this.Control[]={ this.sle_error_number,&

90: this.cb_print_report,&

91: this.cb_quit,&

92: this.sle_object_event,&

93: this.sle_object_name,&

94: this.st_12,&

95: this.st_11,&

96: this.mle_error}

97: end on

98:

99: on w_error.destroy

100: destroy(this.sle_error_number)

101: destroy(this.cb_print_report)

102: destroy(this.cb_quit)

103: destroy(this.sle_object_event)

104: destroy(this.sle_object_name)

105: destroy(this.st_12)

106: destroy(this.st_11)

107: destroy(this.mle_error)

108: end on

109:

110: type sle_error_number from singlelineedit within w_error

111: int X=449

112: int Y=493

Investigating Exported Code

Appendix F
113: int wWidth=311
114: int Height=89
115: boolean Border=false
116: boolean AutoHScroll=false
117: boolean HideSelection=false
118: boolean DisplayOnly=true
119: string Text="<Unknown>"
120: long TextColor=255
121: long BackColor=12632256
122: int TextSize=-8
123: int Weight=400
124: string FaceName="Arial"
125: FontFamily FontFamily=Swiss!
126: FontPitch FontPitch=Variable!
127: end type
128:
129: type cb_quit from u_cb within w_error
130: int X=1797
131: int Y=225
132: int Width=572
133: int TabOrder=10
134: string Text="&Quit the Application"
135: end type
136:
137: on clicked;call u_cb::clicked;If FileExists("rusure.wav") Then
138: g_App.Externals.uf_PlaySound("rusure.wav", 0)
139: End If
140:
141: If MessageBox("Caution", "Are you sure you wish to quit?", &
StopSign!, YesNo!) = 1 Then
142: Halt Close
143: End If
144: end on

Lines 1 through 21 contain the export header declaration. There is no need to ever touch line
1. The remaining lines are declarations of all the controls used in the window. Line 3 is the
type declaration for the actual window; in this listing, it is of type window. Note that the win-
dow is a global type declaration. This is used at runtime to direct PowerBuilder to declare a
global variable to point at this window. The remaining controls are declared from either
PowerBuilder standard control types (singlelineedit, statictext, and multilineedit) Or from
user objects (in this case, just u_cb).

Lines 23 through 44 are the declarations of the window’s attributes; only those attributes that
have been assigned values will be listed. Notice that user events and window controls are listed
as attributes of the window. Also new to PowerBuilder 5.0 are lines 32 and 34. Line 32 defines
the new toolbar attribute available for windows. Line 34 shows the declaration of a user-
defined parameterized event that takes two parameters.

Lines 46 through 57 show window structures and shared and instance variables that have been
defined for the window.

-
New =9
PowerBuilder

Appendixes

Part V

Lines 59 through 69 are the prototypes for window-level functions, and local external func-
tions are declared next. The actual code for the functions appears after these prototypes.

Lines 71 through 78 detail window events that have script associated with them (at this level
and not at the ancestor level). They can take one of two forms. User-defined events that use the
pbm_custom message identifier take the following form:

on EventName;

Event PowerScript

end on

Normal object events, parameterized events, and events that you specify without parameters
or a message 1D follow this format:

Event EventName;

Event PowerScript

End Event

Lines 80 through 108 show that in the window’s event section are two very important events:
on create and on destroy. The first event is where each object is instantiated when the win-
dow is created at runtime. Notice that the objects are instantiated into the variables defined in
lines 23 through 44 and are added into the control array attribute. During the window de-
struction, all the controls are destroyed as well.

Lines 110 through 144 of an export file contain the definitions, attributes, and event code for
each control. This has been shortened because the other objects repeat the same kind of infor-
mation.

The layout of the export file varies between the different types of objects, as you will soon see.
User objects are the exception and are identical to windows, except in the global-type defini-
tion, where they are naturally inherited from userobject rather than window. Of course, this
doesn’t apply if they are inherited, as you will see later in the section “Object Inheritance,”
which uses a window as an example.

Application Objects

Application objects (see Listing F.2) naturally contain the definitions of global variables and
the global variable data types (such as message and Error).

Listing F.2. An export of an application object.

$PBExportHeader$oe_010.sra

forward

global u_n_transaction sqlca

global dynamicdescriptionarea sqlda
global dynamicstagingarea sqglsa
global error error

global message message

end forward

Investigating Exported Code

Appendix F

global variables

u_n_application g_App

Boolean g_bOrderWriter, g_bOrderWriterSupervisor, g_bOfficeService
Boolean g_bServiceRep, g_bDeveloper

Boolean g_blLabeling, g bSaveStatus

// CONSTANTS

Constant HOLD_STATUS "H"
Constant OPEN_STATUS "o"
Constant CLOSED_STATUS = "C"
end variables

shared variables
end variables

global type oe_010 from application
end type
global oe_010 oe_010

type prototypes
end prototypes

on open;//Code removed for brevity
end on

on systemerror;open(w_error)
end on

on oe_010.create
appname = "oe_010"

sqlca = create u_n_transaction

sqlda = create dynamicdescriptionarea
sqlsa = create dynamicstagingarea
error = create error

message = create message
end on

on oe_010.destroy
destroy(sqlca)
destroy(sqlda)
destroy(sqglsa)
destroy(error)
destroy(message)
end on

(
(
(
(

Note that PowerBuilder creates and destroys the default global variable data types for you.

Functions

Functions are very easy to understand, but you will rarely export one because you have access
to everything about the object in the Function painter. As you can see, the example in Listing
F.3 follows very much the same structure as a window, except (of course) it does not contain
any controls or the code to declare, create, and destroy them.

Appendixes

Part V

Listing F.3. An export of a function.

$PBExportHeader$f_boolean_to_number.srf
global type f_boolean_to_number from function_object
end type

forward prototypes
global function integer f_boolean_to_number (boolean bvalue)
end prototypes

global function integer f_boolean_to_number (boolean bvalue);Integer nReturn
// Code removed for brevity
end function

Structures

Structures (see Listing F.4) are even simpler than functions. Again, you will only modify the
structure object from within the Structure painter.

Listing F.4. An export of a structure.

$PBExportHeader$s_outline.srs

global type s_outline from structure
string szentrytext

int nlevel

int nchildren

int nparentindex

string szexpanded

end type

Menus

Menus are a little more involved, but they are still similar to windows. As you can see from
Listing F.5, when a menu is created at runtime, each individual menu item is also created; this
causes the performance degradation hinted at in areas of this book. This should be obvious
from the number of create and pestroy events in the export in Listing F.5.

Listing F.5. An export of a menu.

$PBExportHeader$m_frame.srm

forward

global type m_frame from menu

end type

type m_file from menucascade within m_frame
end type

type m_newmfgorder from menu within m_file
end type

type m_2 from menu within m_file

Investigating Exported Code

Appendix F

end type

type m_exit from menu within m_file

end type

type m_file from menucascade within m_frame
m_newmfgorder m_newmfgorder

m2m2

m_exit m_exit

end type

type m_help from menucascade within m_frame
end type

type m_about from menu within m_help

end type

type m_help from menucascade within m_frame
m_about m_about

end type

end forward

global type m_frame from menu
m_file m_file

m_help m_help

end type

global m_frame m_frame

type variables

Integer i_nWindowListPosition = 6
String i_szMRU1, i_szMRU2, i_szMRU3
end variables

forward prototypes

public subroutine mf_setmaintenancepermissions ()

public subroutine mf_openmru (string a_szorderno, integer a_nposition)
end prototypes

public subroutine mf_setmaintenancepermissions ();
//Code removed for brevity
end subroutine

public subroutine mf_openmru (string a_szorderno, integer a_nposition);
//Code removed for brevity
end subroutine

on m_frame.create
m_frame=this
this.m_file=create m_file
this.m_help=create m_help
this.Item[]={this.m_file, &
this.m_help}

end on

on m_frame.destroy
destroy(this.m_file)
destroy(this.m_help)
end on

type m_file from menucascade within m_frame
m_newmfgorder m_newmfgorder
m_2 m_2
m_exit m_exit
end type
continues

Appendixes

Part V

Listing F.5. continued

on clicked;//Code removed for brevity
end on

on m_file.create

this.Text="&File"
this.m_newmfgorder=create m_newmfgorder
this.m_2=create m_2

this.m_exit=create m_exit
this.Item[]={this.m_newmfgorder, &

this.m_2, &
this.m_exit}
end on

on m_file.destroy
destroy(this.m_newmfgorder)
destroy(this.m_2)
destroy(this.m_exit)

end on

type m_newmfgorder from menu within m_file
end type

on clicked;//Code removed for brevity
end on

on m_newmfgorder.create

this.Text="&New Mfg. Order~tCtrl+N"
this.ToolBarItemName="q:\projects\oe\oe _010\mfgsheet.bmp"
this.ToolBarItemText="New Mfg. Sheet"

this.Enabled=false

this.Shortcut=334

end on

type m_2 from menu within m_file
end type

on m_2.create
this.Text="-"
end on

type m_exit from menu within m_file
end type

on clicked;//Code removed for brevity
end on

on m_exit.create
this.Text="E&xit~tCtrl+X"
this.Microhelp="Leave application"
this.Shortcut=344

end on

type m_help from menucascade within m_frame
m_about m_about
end type

Investigating Exported Code

Appendix F

on m_help.create
this.Text="&Help"
this.m_about=create m_about
this.Item[]={this.m_about}
end on

on m_help.destroy
destroy(this.m_about)
end on

type m_about from menu within m_help
end type

on clicked;open(w_about)
end on

on m_about.create
this.Text="&About..."
this.Microhelp="About the application"
end on

The export has changed in a very subtle way for menus in PowerBuilder 5.0. Menu titles are
now declared of type menucascade instead of type menu as they were before and as all menu
items still are.

DataWindows

DataWindows (see Listing F.6) are very different in their exported format from any of the objects
discussed to this point. You might expect this from the range of special commands used with
them within your PowerScript.

Listing F.6. An export of a DataWindow.

1: $PBExportHeader$d_order_types.srd

2: release 5;

3: datawindow(units=0 timer_interval=0 color=12632256 processing=0

4: print.documentname="" print.orientation = @ print.margin.left = 110
5: print.margin.right = 110 print.margin.top = 97

6: print.margin.bottom = 97 print.paper.source = 0 print.paper.size = 0
7: print.prompt=no)

8: header (height=93 color="536870912")

9: summary (height=1 color="536870912")

10: footer(height=1 color="536870912")

11: detail(height=105 color="536870912")

12: table(column=(type=char(2) update=yes key=yes name=type

13: dbname="order_type.type")

14: column=(type=char(3) update=yes key=yes name=plant_no

15: dbname="order_type.plant_no")

16: column=(type=char(35) update=yes name=description

17: dbname="order_type.description")

18: column=(type=number update=yes name=range_begin

continues

Appendixes

Part V

Listing F.6. continued

19: dbname="order_type.range_begin")
20: column=(type=number update=yes name=range_end
21: dbname="order_type.range_end")
22: column=(type=number update=yes name=sequence
23: dbname="order_type.sequence")
24: column=(type=timestamp name=timestamp dbname="order_type.timestamp")
25: retrieve="PBSELECT(VERSION(400) TABLE(NAME=~"order_type~")
26: COLUMN (NAME=~"order_type.type~") COLUMN(NAME=~"order_type.plant_no~")
27: COLUMN (NAME=~"order_type.description~")
28: COLUMN (NAME=~"order_type.range_begin~")
COLUMN (NAME=~"order_type.range_end~")
29: COLUMN (NAME=~"order_type.sequence~")
COLUMN (NAME=~"order_type.timestamp~")) "
30: update="order_type" updatewhere=1 updatekeyinplace=yes)
31: column(band=detail id=3 alignment="0" tabsequence=30 border="5" color="0"
32: x="439" y="16" height="69"
33: width="805" name=description font.face="Arial" font.height="-8"
34: font.weight="400" font.family="2"
35: font.pitch="2" font.charset="0" background.mode="2"
36: background.color="12632256")
37: column(band=detail id=4 alignment="0" tabsequence=40 border="5" color="0"
38: x="1317" y="16" height="69"
39: width="316" name=range_begin font.face="Arial" font.height="-8"
40: font.weight="400" font.family="2"
41: font.pitch="2" font.charset="0" background.mode="2"
42: background.color="12632256")
43: /1
44: // Repeated for each column
45: /1
46: text (band=header alignment="0" text="Type"border="0" color="33554432"
47: x="69" y="16" height="57"
48: width="110" name=stock_no_t font.face="Arial" font.height="-8"
49: font.weight="400" font.family="2"
50: font.pitch="2" font.charset="0" background.mode="1"
51: background.color="536870912")
52: text (band=header alignment="0" text="Plant No"border="0" color="33554432"
53: x="225" y="16" height="57"
54: width="179" name=additional_description_t font.face="Arial"
55: font.height="-8" font.weight="400"
56: font.family="2" font.pitch="2" font.charset="0" background.mode="1"
57: background.color="536870912")
58: /1
59: // Repeated for each text object, and other drawing objects within the
DataWindow
60: /1

Lines 1 through 7 define the specifications for printing the Datawindow, from the margins to
the paper orientation.

Lines 8 through 11 state the height of the different bands and the colors for each band.

Each database column and database computed value is listed in lines 12 through 24 with its
data type, update information, DataWindow name, and database name. Any database com-

Investigating Exported Code

Appendix F

puted values will show up as compute_eee and higher if you did not name them. That is why it
is advisable to name all your database computed fields.

Lines 25 through 29 show the actual retrieval statement for the DataWindow (if it has one). As
you can see, it is stored in PowerBuilder’s own internal format, which makes it transportable
between different databases.

Additional update information is stated in line 30. The columns to include in the update are
specified in lines 12 through 24.

Lines 31 through 45 list each column placed on the DataWindow along with the settings of all
of its attributes (which are accessible at runtime using the bescribe () and modify () functions).

Each static text object, along with other drawing objects, is listed with each of its settings in
lines 46 through 60.

If you export a query object, you will get a file that contains lines similar to lines 25 to 29.

Projects

Exporting a project yields the same information that is available through the Object | Brows-
ing menu item in the Project painter, because all the objects for the libraries of a project are
listed. Listing F.7 shows a shortened list of objects.

Listing F.7. An export of a project.

$PBExportHeader$order_entry.srj
EXE:q:\projects\oe\oe_010\oe_010.exe,q:\projects\oe\oe_010\oe_010.pbr,,0,1
Cvwp:0,0,0,2,1,0

PBD:q:\projects\shared\sh_uobj.pbl,,h1
PBD:q:\projects\shared\sh_func.pbl,q:\shared\shared.pbr,1
PBD:q:\projects\shared\sh_wind.pbl,,1
PBD:q:\projects\oe\oe_010\oe_010.pbl,,0
PBD:q:\projects\oe\oe_010\oe_main.pbl,,1
PBD:q:\projects\oe\oe_010\oe_mfg.pbl,,1
PBD:q:\projects\oe\oe_010\oe_mnt.pbl,,1
PBD:q:\projects\oe\oe_010\oe_rept.pbl,,1
PBD:q:\projects\oe\oe_010\oe_stock.pbl,,h1

OBJ:q:\projects\oe\oe 010\oe_main.pbl,f_transfer_line_to_line,f
OBJ:q:\projects\shared\sh_func.pbl,f_close_all mdi_children,f
OBJ:q:\projects\oe\oe _010\oe_mfg.pbl,d_converting_spec_entry,d
OBJ:q:\projects\oe\oe _010\oe_main.pbl,f_convert_decimal_to_fraction,f
OBJ:q:\projects\shared\sh_func.pbl,f_print_multi_lines,f
OBJ:q:\projects\shared\sh_wind.pbl,w_change_password,w
OBJ:q:\projects\oe\oe_010\oe_main.pbl,d_line_items_entry,d
OBJ:q:\projects\shared\sh_func.pbl,f_boolean_to_string,f
OBJ:q:\projects\oe\oe_010\oe_mnt.pbl,w _maintenance,w
OBJ:q:\projects\shared\sh_uobj.pbl,u_n_externals_win32,u

Appendixes

Part V

The EXE line states the filename and path of the executable that will be created, the resource
file (if any), whether the Project painter should prompt for overwrite (e = FALSE, 1 = TRUE),
and whether the libraries in the search path should be regenerated (o = FALSE, 1 = TRUE).

The CMP line states the compilation options chosen, and has the following format:
CMP: MachineCode, LineInfo, TraceInfo, ExeFormat, Optimization, OpenServer

MachineCode iS @ for PowerBuilder native code, and 1 for machine code. LineInfo, TraceInfo,
and openserver are o for no and 1 for yes. exeFormat is @ for 16-bit, and 2 for 32-bit. optimi -
zation is o for Speed, 1 for Space, and 2 for no optimization.

The PBD lines state each of the libraries in the search path, the resource file (if any), and whether
the library should be made into a PBD file (e = FALSE, 1 = TRUE).

The OBJ lines list the objects that are used by the application, along with the library in which
they reside. The last character is the object type, which is used in the Object Browser accessible
in the Project painter.

Pipelines

The export of a pipeline object (shown in Listing F.8) shows the settings for the pipeline, a
definition of the source tables and columns, the ReTRIEVE Statement to get the data from those
tables and columns, and a definition of the destination table and columns.

Listing F.8. An export of a pipeline.

$PBExportHeader$p_emp_master_create.srp

$PBExportComments$Creates a copy of the employee table to emp_pipe_master
PIPELINE (source_connect=DemoDB -Revised C:,destination_connect=DemoDB -Revised
C:,type=replace,commit=100,errors=10,keyname="emp_pipe_master_x")

SOURCE (name="employee",COLUMN (type=long,name="emp_id",dbtype="integer",
key=yes,nulls_allowed=no)

COLUMN (type=char,name="emp_fname",dbtype="char(20)",nulls_allowed=no)
COLUMN (type=char,name="emp_lname",dbtype="char(20)",nulls_allowed=no)
COLUMN (type=long,name="dept_id",dbtype="integer",nulls_allowed=no)

COLUMN (type=char,name="bene_health_ins",dbtype="char(1)",nulls_allowed=yes)
COLUMN (type=char,name="bene_life_ins",dbtype="char(1)",nulls_allowed=yes)
COLUMN (type=char,name="bene_day_care",dbtype="char(1)",nulls_allowed=yes))
RETRIEVE (statement="PBSELECT (TABLE (NAME=~"employee~")

COLUMN (NAME=~"employee.emp_id~") COLUMN(NAME=~"employee.emp_fname~")

COLUMN (NAME=~"employee.emp_lname~")

COLUMN (NAME=~"employee.dept_id~") COLUMN(NAME=~"employee.bene_health_ins~")
COLUMN (NAME=~"employee.bene_life_ins~")

COLUMN (NAME=~"employee.bene_day_care~"))")

DESTINATION (name="emp_pipe_master",COLUMN(type=long,name="emp_id",
dbtype="integer",key=yes,nulls_

allowed=no,initial_value="0")

COLUMN (type=char,name="emp_fname",dbtype="char(20)",nulls_allowed=no,
initial_value="spaces")

COLUMN (type=char,name="emp_lname",dbtype="char(20)",nulls_allowed=no,
initial_value="spaces")

Investigating Exported Code

Appendix F

COLUMN (type=long,name="dept_id",dbtype="integer",nulls_allowed=no,
initial_value="0")

COLUMN (type=char,name="bene_health_ins",dbtype="char(1)",nulls_allowed=yes)
COLUMN (type=char,name="bene_life_ins",dbtype="char(1)",nulls_allowed=yes)
COLUMN (type=char,name="bene_day_care",dbtype="char(1)",nulls_allowed=yes))

Proxies

Proxy objects are used in distributed PowerBuilder and are created from within the User Ob-
ject painter. The exported code (see Listing F.9) resembles that of the user object that the proxy
objects are based on, with the exception of the actual code for the methods. The methods of
the proxy object are simply placeholders (also called stubs) for the remote objects methods.

Listing F.9. An export of a proxy object.

$PBExportHeader$p_simpleserver.srx

$PBExportComments$Simple proxy object created by save of u_simpleserver
forward

global type p_simpleserver from remoteobject

end type

end forward

global type p_simpleserver from remoteobject
end type
global p_simpleserver p_simpleserver

type variables
end variables

forward prototypes

public function string classname ()

public function boolean postevent (string e)

public function boolean postevent (string e,long w,long 1)
public function boolean postevent (string e,long w,string 1)
public function int triggerevent (string e)

public function int triggerevent (string e,long w,long 1)
public function int triggerevent (string e,long w,string 1)
public function int uf_times2 (int argl)

public subroutine remote_beep ()

end prototypes

public function string classname ();

any _ aapbpm_ []

return invoke_method("classname@rsp0",0, aapbpm__)
end function

public function boolean postevent (string e);

any _ aapbpm__ [1]

__aapbpm__[1]=e

return invoke_method("postevent@rtpis",1,__aapbpm_)
end function

continues

Appendixes

Part V

Listing F.9. continued

public function boolean postevent (string e,long w,long 1);
any _ aapbpm__ [3]

__aapbpm__[1]=e

__aapbpm__[2]=w

__aapbpm__[3]=1

return invoke_method("postevent@rtp3sll",3,_ aapbpm_)

end function

public function boolean postevent (string e,long w,string 1);
any __ aapbpm__ [3]

__aapbpm__[1]=e

__aapbpm__[2]=w

__aapbpm__[3]=1

return invoke_method("postevent@rtp3sls",3,_ aapbpm_)

end function

public function int triggerevent (string e);

any _ aapbpm__ [1]

__aapbpm__[1]=e

return invoke_method("triggerevent@ripis",1,__aapbpm_)
end function

public function int triggerevent (string e,long w,long 1);
any _ aapbpm__[3]

__aapbpm__[1]=e

__aapbpm__[2]=w

__aapbpm__[3]=1

return invoke_method("triggerevent@rip3sll",3, aapbpm_)
end function

public function int triggerevent (string e,long w,string 1);
any __ aapbpm__ [3]

__aapbpm__[1]=e

__aapbpm__[2]=w

__aapbpm__[3]=1

return invoke_method("triggerevent@rip3sls",3, aapbpm_)
end function

public function int uf_times2 (int argtl);

any _ aapbpm__ [1]

__aapbpm__[1]=argl

return invoke_method("uf_times2@rip1i",1,__aapbpm__)
end function

public subroutine remote_beep ();

any _ aapbpm__[]
invoke_method("remote_beep@rvpd",0, aapbpm_)
end subroutine

on p_simpleserver.create
remoteobject::create_object("u_simpleserver")
end on

on p_simpleserver.destroy
remoteobject::destroy_object()
end on

Investigating Exported Code

Appendix F

Search and Replace

You can use the Search and Replace feature of any text editor to make global name—or even
code—changes. A word of warning: Be very careful replacing small words because you might
clobber other statements in a way you did not intend. Although the object might import cor-
rectly, you will either get strange runtime errors or a general protection fault when you try to
open it in a painter.

There should be little or no need to change any of the PowerBuilder object-specific code un-
less you are making inheritance changes (as you will see in the next section).

Object Inheritance

The other most common reason for exporting an object is to make a change to the inheritance
chain. By careful manipulation of the export code, you can reattach an object at any level of
the inheritance chain.

For a demonstration of this technique, look at a simple window called w_oe_error (see Listing
F.10), which is initially inherited from w_error. You will change the ancestor object to be
w_dialog_for_errors

Listing F.10. The initial export of w_oe_error.

$PBExportHeader$w_oe_error.srw
forward

global type w_oe_error from w_error
end type

end forward

global type w_oe_error from w_error
end type
global w_oe_error w_oe_error

on timer;call w_error::timer;Timer(0)

cb_recover.TriggerEvent(Clicked!)
end on

on open;call w_error::open;Timer(30, this)
end on

on w_oe_error.create
call w_error::create
end on

on w_oe_error.destroy
call w_error::destroy
end on

Appendixes

Part V

This is actually a simple case of text replacement fromw_error tow_dialog_for_errors, which
will cover all the simple code changes. However, you must be aware that some of the controls
that were inherited from the original ancestor might not be available in the new ancestor, and
you should remove all references to these. Otherwise, you will be unable to import the modi-
fied window into PowerBuilder.

Importing Code

You import the code back into PowerBuilder using the Library painter, either with the menu
option or the PainterBar button. This prompts you for the source filename and then displays
a list of the libraries in the current search path. When you select a library, the file is imported.
If any errors occur, they are displayed in a dialog box, and the object will not be created in the
destination library.

