//==========================================================================; // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY // KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR // PURPOSE. // // Copyright (c) 1992 - 1997 Microsoft Corporation. All Rights Reserved. // //--------------------------------------------------------------------------; // Video related definitions and interfaces for ActiveMovie #ifndef __AMVIDEO__ #define __AMVIDEO__ #ifdef __cplusplus extern "C" { #endif // __cplusplus #include // This is an interface on the video renderer that provides information about // DirectDraw with respect to its use by the renderer. For example it allows // an application to get details of the surface and any hardware capabilities // that are available. It also allows someone to adjust the surfaces that the // renderer should use and furthermore even set the DirectDraw instance. We // allow someone to set the DirectDraw instance because DirectDraw can only // be opened once per process so it helps resolve conflicts. There is some // duplication in this interface as the hardware/emulated/FOURCCs available // can all be found through the IDirectDraw interface, this interface allows // simple access to that information without calling the DirectDraw provider // itself. The AMDDS prefix is ActiveMovie DirectDraw Switches abbreviated. #define AMDDS_NONE 0x00 // No use for DCI/DirectDraw #define AMDDS_DCIPS 0x01 // Use DCI primary surface #define AMDDS_PS 0x02 // Use DirectDraw primary #define AMDDS_RGBOVR 0x04 // RGB overlay surfaces #define AMDDS_YUVOVR 0x08 // YUV overlay surfaces #define AMDDS_RGBOFF 0x10 // RGB offscreen surfaces #define AMDDS_YUVOFF 0x20 // YUV offscreen surfaces #define AMDDS_RGBFLP 0x40 // RGB flipping surfaces #define AMDDS_YUVFLP 0x80 // YUV flipping surfaces #define AMDDS_ALL 0xFF // ALL the previous flags #define AMDDS_DEFAULT AMDDS_ALL // Use all available surfaces #define AMDDS_YUV (AMDDS_YUVOFF | AMDDS_YUVOVR | AMDDS_YUVFLP) #define AMDDS_RGB (AMDDS_RGBOFF | AMDDS_RGBOVR | AMDDS_RGBFLP) #define AMDDS_PRIMARY (AMDDS_DCIPS | AMDDS_PS) // be nice to our friends in C #undef INTERFACE #define INTERFACE IDirectDrawVideo DECLARE_INTERFACE_(IDirectDrawVideo, IUnknown) { // IUnknown methods STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID *ppvObj) PURE; STDMETHOD_(ULONG,AddRef)(THIS) PURE; STDMETHOD_(ULONG,Release)(THIS) PURE; // IDirectDrawVideo methods STDMETHOD(GetSwitches)(THIS_ DWORD *pSwitches) PURE; STDMETHOD(SetSwitches)(THIS_ DWORD Switches) PURE; STDMETHOD(GetCaps)(THIS_ DDCAPS *pCaps) PURE; STDMETHOD(GetEmulatedCaps)(THIS_ DDCAPS *pCaps) PURE; STDMETHOD(GetSurfaceDesc)(THIS_ DDSURFACEDESC *pSurfaceDesc) PURE; STDMETHOD(GetFourCCCodes)(THIS_ DWORD *pCount,DWORD *pCodes) PURE; STDMETHOD(SetDirectDraw)(THIS_ LPDIRECTDRAW pDirectDraw) PURE; STDMETHOD(GetDirectDraw)(THIS_ LPDIRECTDRAW *ppDirectDraw) PURE; STDMETHOD(GetSurfaceType)(THIS_ DWORD *pSurfaceType) PURE; STDMETHOD(SetDefault)(THIS) PURE; STDMETHOD(UseScanLine)(THIS_ long UseScanLine) PURE; STDMETHOD(CanUseScanLine)(THIS_ long *UseScanLine) PURE; STDMETHOD(UseOverlayStretch)(THIS_ long UseOverlayStretch) PURE; STDMETHOD(CanUseOverlayStretch)(THIS_ long *UseOverlayStretch) PURE; STDMETHOD(UseWhenFullScreen)(THIS_ long UseWhenFullScreen) PURE; STDMETHOD(WillUseFullScreen)(THIS_ long *UseWhenFullScreen) PURE; }; // be nice to our friends in C #undef INTERFACE #define INTERFACE IQualProp DECLARE_INTERFACE_(IQualProp, IUnknown) { // IUnknown methods STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID *ppvObj) PURE; STDMETHOD_(ULONG,AddRef)(THIS) PURE; STDMETHOD_(ULONG,Release)(THIS) PURE; // Compare these with the functions in class CGargle in gargle.h STDMETHOD(get_FramesDroppedInRenderer)(THIS_ int *pcFrames) PURE; // Out STDMETHOD(get_FramesDrawn)(THIS_ int *pcFramesDrawn) PURE; // Out STDMETHOD(get_AvgFrameRate)(THIS_ int *piAvgFrameRate) PURE; // Out STDMETHOD(get_Jitter)(THIS_ int *iJitter) PURE; // Out STDMETHOD(get_AvgSyncOffset)(THIS_ int *piAvg) PURE; // Out STDMETHOD(get_DevSyncOffset)(THIS_ int *piDev) PURE; // Out }; // This interface allows an application or plug in distributor to control a // full screen renderer. The Modex renderer supports this interface. When // connected a renderer should load the display modes it has available // The number of modes available can be obtained through CountModes. Then // information on each individual mode is available by calling GetModeInfo // and IsModeAvailable. An application may enable and disable any modes // by calling the SetEnabled flag with OATRUE or OAFALSE (not C/C++ TRUE // and FALSE values) - the current value may be queried by IsModeEnabled // A more generic way of setting the modes enabled that is easier to use // when writing applications is the clip loss factor. This defines the // amount of video that can be lost when deciding which display mode to // use. Assuming the decoder cannot compress the video then playing an // MPEG file (say 352x288) into a 320x200 display will lose about 25% of // the image. The clip loss factor specifies the upper range permissible. // To allow typical MPEG video to be played in 320x200 it defaults to 25% // be nice to our friends in C #undef INTERFACE #define INTERFACE IFullScreenVideo DECLARE_INTERFACE_(IFullScreenVideo, IUnknown) { // IUnknown methods STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID *ppvObj) PURE; STDMETHOD_(ULONG,AddRef)(THIS) PURE; STDMETHOD_(ULONG,Release)(THIS) PURE; // IFullScreenVideo methods STDMETHOD(CountModes)(THIS_ long *pModes) PURE; STDMETHOD(GetModeInfo)(THIS_ long Mode,long *pWidth,long *pHeight,long *pDepth) PURE; STDMETHOD(GetCurrentMode)(THIS_ long *pMode) PURE; STDMETHOD(IsModeAvailable)(THIS_ long Mode) PURE; STDMETHOD(IsModeEnabled)(THIS_ long Mode) PURE; STDMETHOD(SetEnabled)(THIS_ long Mode,long bEnabled) PURE; STDMETHOD(GetClipFactor)(THIS_ long *pClipFactor) PURE; STDMETHOD(SetClipFactor)(THIS_ long ClipFactor) PURE; STDMETHOD(SetMessageDrain)(THIS_ HWND hwnd) PURE; STDMETHOD(GetMessageDrain)(THIS_ HWND *hwnd) PURE; STDMETHOD(SetMonitor)(THIS_ long Monitor) PURE; STDMETHOD(GetMonitor)(THIS_ long *Monitor) PURE; STDMETHOD(HideOnDeactivate)(THIS_ long Hide) PURE; STDMETHOD(IsHideOnDeactivate)(THIS) PURE; STDMETHOD(SetCaption)(THIS_ BSTR strCaption) PURE; STDMETHOD(GetCaption)(THIS_ BSTR *pstrCaption) PURE; STDMETHOD(SetDefault)(THIS) PURE; }; // This adds the accelerator table capabilities in fullscreen. This is being // added between the original runtime release and the full SDK release. We // cannot just add the method to IFullScreenVideo as we don't want to force // applications to have to ship the ActiveMovie support DLLs - this is very // important to applications that plan on being downloaded over the Internet // be nice to our friends in C #undef INTERFACE #define INTERFACE IFullScreenVideoEx DECLARE_INTERFACE_(IFullScreenVideoEx, IFullScreenVideo) { // IUnknown methods STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID *ppvObj) PURE; STDMETHOD_(ULONG,AddRef)(THIS) PURE; STDMETHOD_(ULONG,Release)(THIS) PURE; // IFullScreenVideo methods STDMETHOD(CountModes)(THIS_ long *pModes) PURE; STDMETHOD(GetModeInfo)(THIS_ long Mode,long *pWidth,long *pHeight,long *pDepth) PURE; STDMETHOD(GetCurrentMode)(THIS_ long *pMode) PURE; STDMETHOD(IsModeAvailable)(THIS_ long Mode) PURE; STDMETHOD(IsModeEnabled)(THIS_ long Mode) PURE; STDMETHOD(SetEnabled)(THIS_ long Mode,long bEnabled) PURE; STDMETHOD(GetClipFactor)(THIS_ long *pClipFactor) PURE; STDMETHOD(SetClipFactor)(THIS_ long ClipFactor) PURE; STDMETHOD(SetMessageDrain)(THIS_ HWND hwnd) PURE; STDMETHOD(GetMessageDrain)(THIS_ HWND *hwnd) PURE; STDMETHOD(SetMonitor)(THIS_ long Monitor) PURE; STDMETHOD(GetMonitor)(THIS_ long *Monitor) PURE; STDMETHOD(HideOnDeactivate)(THIS_ long Hide) PURE; STDMETHOD(IsHideOnDeactivate)(THIS) PURE; STDMETHOD(SetCaption)(THIS_ BSTR strCaption) PURE; STDMETHOD(GetCaption)(THIS_ BSTR *pstrCaption) PURE; STDMETHOD(SetDefault)(THIS) PURE; // IFullScreenVideoEx STDMETHOD(SetAcceleratorTable)(THIS_ HWND hwnd,HACCEL hAccel) PURE; STDMETHOD(GetAcceleratorTable)(THIS_ HWND *phwnd,HACCEL *phAccel) PURE; STDMETHOD(KeepPixelAspectRatio)(THIS_ long KeepAspect) PURE; STDMETHOD(IsKeepPixelAspectRatio)(THIS_ long *pKeepAspect) PURE; }; // The SDK base classes contain a base video mixer class. Video mixing in a // software environment is tricky because we typically have multiple streams // each sending data at unpredictable times. To work with this we defined a // pin that is the lead pin, when data arrives on this pin we do a mix. As // an alternative we may not want to have a lead pin but output samples at // predefined spaces, like one every 1/15 of a second, this interfaces also // supports that mode of operations (there is a working video mixer sample) // be nice to our friends in C #undef INTERFACE #define INTERFACE IBaseVideoMixer DECLARE_INTERFACE_(IBaseVideoMixer, IUnknown) { STDMETHOD(SetLeadPin)(THIS_ int iPin) PURE; STDMETHOD(GetLeadPin)(THIS_ int *piPin) PURE; STDMETHOD(GetInputPinCount)(THIS_ int *piPinCount) PURE; STDMETHOD(IsUsingClock)(THIS_ int *pbValue) PURE; STDMETHOD(SetUsingClock)(THIS_ int bValue) PURE; STDMETHOD(GetClockPeriod)(THIS_ int *pbValue) PURE; STDMETHOD(SetClockPeriod)(THIS_ int bValue) PURE; }; #define iPALETTE_COLORS 256 // Maximum colours in palette #define iEGA_COLORS 16 // Number colours in EGA palette #define iMASK_COLORS 3 // Maximum three components #define iTRUECOLOR 16 // Minimum true colour device #define iRED 0 // Index position for RED mask #define iGREEN 1 // Index position for GREEN mask #define iBLUE 2 // Index position for BLUE mask #define iPALETTE 8 // Maximum colour depth using a palette #define iMAXBITS 8 // Maximum bits per colour component // Used for true colour images that also have a palette typedef struct tag_TRUECOLORINFO { DWORD dwBitMasks[iMASK_COLORS]; RGBQUAD bmiColors[iPALETTE_COLORS]; } TRUECOLORINFO; // The BITMAPINFOHEADER contains all the details about the video stream such // as the actual image dimensions and their pixel depth. A source filter may // also request that the sink take only a section of the video by providing a // clipping rectangle in rcSource. In the worst case where the sink filter // forgets to check this on connection it will simply render the whole thing // which isn't a disaster. Ideally a sink filter will check the rcSource and // if it doesn't support image extraction and the rectangle is not empty then // it will reject the connection. A filter should use SetRectEmpty to reset a // rectangle to all zeroes (and IsRectEmpty to later check the rectangle). // The rcTarget specifies the destination rectangle for the video, for most // source filters they will set this to all zeroes, a downstream filter may // request that the video be placed in a particular area of the buffers it // supplies in which case it will call QueryAccept with a non empty target typedef struct tagVIDEOINFOHEADER { RECT rcSource; // The bit we really want to use RECT rcTarget; // Where the video should go DWORD dwBitRate; // Approximate bit data rate DWORD dwBitErrorRate; // Bit error rate for this stream REFERENCE_TIME AvgTimePerFrame; // Average time per frame (100ns units) BITMAPINFOHEADER bmiHeader; } VIDEOINFOHEADER; // make sure the pbmi is initialized before using these macros #define TRUECOLOR(pbmi) ((TRUECOLORINFO *)(((LPBYTE)&((pbmi)->bmiHeader)) \ + (pbmi)->bmiHeader.biSize)) #define COLORS(pbmi) ((RGBQUAD *)(((LPBYTE)&((pbmi)->bmiHeader)) \ + (pbmi)->bmiHeader.biSize)) #define BITMASKS(pbmi) ((DWORD *)(((LPBYTE)&((pbmi)->bmiHeader)) \ + (pbmi)->bmiHeader.biSize)) // All the image based filters use this to communicate their media types. It's // centred principally around the BITMAPINFO. This structure always contains a // BITMAPINFOHEADER followed by a number of other fields depending on what the // BITMAPINFOHEADER contains. If it contains details of a palettised format it // will be followed by one or more RGBQUADs defining the palette. If it holds // details of a true colour format then it may be followed by a set of three // DWORD bit masks that specify where the RGB data can be found in the image // (For more information regarding BITMAPINFOs see the Win32 documentation) // The rcSource and rcTarget fields are not for use by filters supplying the // data. The destination (target) rectangle should be set to all zeroes. The // source may also be zero filled or set with the dimensions of the video. So // if the video is 352x288 pixels then set it to (0,0,352,288). These fields // are mainly used by downstream filters that want to ask the source filter // to place the image in a different position in an output buffer. So when // using for example the primary surface the video renderer may ask a filter // to place the video images in a destination position of (100,100,452,388) // on the display since that's where the window is positioned on the display // !!! WARNING !!! // DO NOT use this structure unless you are sure that the BITMAPINFOHEADER // has a normal biSize == sizeof(BITMAPINFOHEADER) ! // !!! WARNING !!! typedef struct tagVIDEOINFO { RECT rcSource; // The bit we really want to use RECT rcTarget; // Where the video should go DWORD dwBitRate; // Approximate bit data rate DWORD dwBitErrorRate; // Bit error rate for this stream REFERENCE_TIME AvgTimePerFrame; // Average time per frame (100ns units) BITMAPINFOHEADER bmiHeader; union { RGBQUAD bmiColors[iPALETTE_COLORS]; // Colour palette DWORD dwBitMasks[iMASK_COLORS]; // True colour masks TRUECOLORINFO TrueColorInfo; // Both of the above }; } VIDEOINFO; // These macros define some standard bitmap format sizes #define SIZE_EGA_PALETTE (iEGA_COLORS * sizeof(RGBQUAD)) #define SIZE_PALETTE (iPALETTE_COLORS * sizeof(RGBQUAD)) #define SIZE_MASKS (iMASK_COLORS * sizeof(DWORD)) #define SIZE_PREHEADER (FIELD_OFFSET(VIDEOINFOHEADER,bmiHeader)) #define SIZE_VIDEOHEADER (sizeof(BITMAPINFOHEADER) + SIZE_PREHEADER) // !!! for abnormal biSizes // #define SIZE_VIDEOHEADER(pbmi) ((pbmi)->bmiHeader.biSize + SIZE_PREHEADER) // DIBSIZE calculates the number of bytes required by an image #define WIDTHBYTES(bits) ((DWORD)(((bits)+31) & (~31)) / 8) #define DIBWIDTHBYTES(bi) (DWORD)WIDTHBYTES((DWORD)(bi).biWidth * (DWORD)(bi).biBitCount) #define _DIBSIZE(bi) (DIBWIDTHBYTES(bi) * (DWORD)(bi).biHeight) #define DIBSIZE(bi) ((bi).biHeight < 0 ? (-1)*(_DIBSIZE(bi)) : _DIBSIZE(bi)) // This compares the bit masks between two VIDEOINFOHEADERs #define BIT_MASKS_MATCH(pbmi1,pbmi2) \ (((pbmi1)->dwBitMasks[iRED] == (pbmi2)->dwBitMasks[iRED]) && \ ((pbmi1)->dwBitMasks[iGREEN] == (pbmi2)->dwBitMasks[iGREEN]) && \ ((pbmi1)->dwBitMasks[iBLUE] == (pbmi2)->dwBitMasks[iBLUE])) // These zero fill different parts of the VIDEOINFOHEADER structure // Only use these macros for pbmi's with a normal BITMAPINFOHEADER biSize #define RESET_MASKS(pbmi) (ZeroMemory((PVOID)(pbmi)->dwBitFields,SIZE_MASKS)) #define RESET_HEADER(pbmi) (ZeroMemory((PVOID)(pbmi),SIZE_VIDEOHEADER)) #define RESET_PALETTE(pbmi) (ZeroMemory((PVOID)(pbmi)->bmiColors,SIZE_PALETTE)); #if 0 // !!! This is the right way to do it, but may break existing code #define RESET_MASKS(pbmi) (ZeroMemory((PVOID)(((LPBYTE)(pbmi)->bmiHeader) + \ (pbmi)->bmiHeader.biSize,SIZE_MASKS))) #define RESET_HEADER(pbmi) (ZeroMemory((PVOID)(pbmi), SIZE_PREHEADER + \ sizeof(BITMAPINFOHEADER))) #define RESET_PALETTE(pbmi) (ZeroMemory((PVOID)(((LPBYTE)(pbmi)->bmiHeader) + \ (pbmi)->bmiHeader.biSize,SIZE_PALETTE)) #endif // Other (hopefully) useful bits and bobs #define PALETTISED(pbmi) ((pbmi)->bmiHeader.biBitCount <= iPALETTE) #define PALETTE_ENTRIES(pbmi) ((DWORD) 1 << (pbmi)->bmiHeader.biBitCount) // Returns the address of the BITMAPINFOHEADER from the VIDEOINFOHEADER #define HEADER(pVideoInfo) (&(((VIDEOINFOHEADER *) (pVideoInfo))->bmiHeader)) // MPEG variant - includes a DWORD length followed by the // video sequence header after the video header. // // The sequence header includes the sequence header start code and the // quantization matrices associated with the first sequence header in the // stream so is a maximum of 140 bytes long. typedef struct tagMPEG1VIDEOINFO { VIDEOINFOHEADER hdr; // Compatible with VIDEOINFO DWORD dwStartTimeCode; // 25-bit Group of pictures time code // at start of data DWORD cbSequenceHeader; // Length in bytes of bSequenceHeader BYTE bSequenceHeader[1]; // Sequence header including // quantization matrices if any } MPEG1VIDEOINFO; #define MAX_SIZE_MPEG1_SEQUENCE_INFO 140 #define SIZE_MPEG1VIDEOINFO(pv) (FIELD_OFFSET(MPEG1VIDEOINFO, bSequenceHeader[0]) + (pv)->cbSequenceHeader) #define MPEG1_SEQUENCE_INFO(pv) ((const BYTE *)(pv)->bSequenceHeader) // Analog video variant - Use this when the format is FORMAT_AnalogVideo // // rcSource defines the portion of the active video signal to use // rcTarget defines the destination rectangle // both of the above are relative to the dwActiveWidth and dwActiveHeight fields // dwActiveWidth is currently set to 720 for all formats (but could change for HDTV) // dwActiveHeight is 483 for NTSC and 575 for PAL/SECAM (but could change for HDTV) typedef struct tagAnalogVideoInfo { RECT rcSource; // Width max is 720, height varies w/ TransmissionStd RECT rcTarget; // Where the video should go DWORD dwActiveWidth; // Always 720 (CCIR-601 active samples per line) DWORD dwActiveHeight; // 483 for NTSC, 575 for PAL/SECAM REFERENCE_TIME AvgTimePerFrame; // Normal ActiveMovie units (100 nS) } ANALOGVIDEOINFO; #ifdef __cplusplus } #endif // __cplusplus #endif // __AMVIDEO__