gpsim

$Date:: 06/07/2010 $

Contents

1

gpsim - An Overview

1.1 Making the executable
1.1.1 Make Details - Jconfigureoptions

1.1.2 RPMS e
1.1.3 WIindows e

1.2 Runninb

1.3 Requirements

Command Line Interface

21 attach
..................................
23 cledr
2.4 disassemble
25 dump ... e
...................................
2.7 frequenay
28 help e

2.10 list . . . e
211 10a0 . . o
212 MACIOS . . . v v o e e e e e e e
213 module
2.14 node e e
2.15 processbr
2.16 quih
....................................
218 SWEP . i

\‘
o YN o o

CONTENTS 2
2.19 symb&l 21
2.20 stimulus 21
2.21 stoéwatch 22
222 ACE © o o o, 23
2.23 VEISION o ot 23
..................................... 23

3 Graphical User Interface 24
3.1 MaINWINAOW .« o v v e e e e e e 24

311 Menus. 24
3.1.2 Buttons 24
3.1.3 SIMUIAtion MO . .« v v e e 25
3.2 SOUICE BIOWSENS .« « o v v oot e e e 25
321 @SMBIOWSEN . . o v o oot e e 25
3.2.2 Opcode view - the .objBrowser 26
3.3 REQISEIVIEWS . « o o o o et e e 27
3.4 SYMBOIVIEW . o o o v v e e 28
3.5 Watchview 29
3.6 SACKVIEWET . . .\ o v o o 29
3.7 Breadboafd 30
3.8 TraCeVIEWET . . .« v v o o e e e e 30
3.9 Profileviewer 31
3.10 Stoéwatch 32
311 SCOPEWINAOW .« « « o o v oo e e 32

4 Scripting and Configuring| 33

4.1 Embedded COMMANdSs oo oo 33
411 SIMMACIO . o v v o oo e e 33
4.1.2 .commandMacroo 34
4.1.3 .aSSEItMACIO . .« v v v oo e e 34

4.2 SOCKEIS . . . 35

5 Assertions and Extended Breakpoints 36
5.1 Assertions and Embedded Simulation commands 37

6 Trace and Log: What has happen? 38

CONTENTS 3

7 Simulating the Real World: Stimuli 41
7.1 HOWTheyWOrk o oo 41
7.1.1 Contentionamongstimulio vo i 42
7.2 1IOPINS e 42
7.3 Asynchronous StmMuli o oo 43
7.3.1 Analog Asynchronous Stimuli 44
7.4 Extended SHMUI oo 44
8 Modules 45
8.1 gpSIMMOGUIES . .« o o o e 46
8.1.1 USART e 46
8.1.2 Loéic 47
8.1.3 12CEEPROM . . o\ oo 48
8.1.4 Switches & ReSIStOrS . . .« o o v v i i 49
8.1.5 \bltage Sources, Resistors, and Capacitors 49
8.1.6 LED 7SEGMENTSandLED 49
8.2 Third Party MOdUIES o o e 50
8.2.1 Character LCD-HD44780 oo it 50
8.22 GraphicLCD-SED1530 oo 51
8.2.3 64 x 8, Serial, 12C Real-Time Clock - DS1807 51
8.3 Writngnewmodules o 51
9 Symbolic Debugging 53
10 Macrogs 54
11 Hex Files 55
12 The ICD- Not Supported in versions 0.21.0 and later 56
13 Examéles 58
14 Regression Tests 59
15 Theory of Operatioﬁ 60
15.1 Backgroundo e 60
15.2 INSHUCHONS .« © + v v v v e e e e e e e e 60
15.3 General File REQISIEIS o o o v e e 16
15.4 Special File Registers 16

15.5 Example of aninstruction oo 16

CONTENTS 4

15.6 Trace e 63
15.7 BreakpointS oo oo e e 63
15.8 TIMERLEXternalinput o o oo e 64
65
16.1 GPSIMLIVK © « o o o 65
16.2 GpsiFh 65

16.3 Libraries libgpsim, libgpsim_modules, libgpsim_ésxd 65

Introduction

gpsim is a full-featured software simulator for MicrochipCPmicrocontrollers dis-
tributed under the GNU General Public License and GNU LeBsibtic License(see
the LICENSE section).

gpsim has been designed to be as accurate as possible. &ctmrhudes the entire
PIC - from the core to the I/O pins and including ALL of the intal peripherals. Thus
it's possible to create stimuli and tie them to the 1/O pind st the PIC the same way
you would in the real world.

gpsim has been designed to be as fast as possible. Real tmé&ton speeds of
20Mhz pics are possible.

gpsim can be controlled from either a graphical user inter{g&Ul), a command line
interface (CLI) or by a remote process. Typical debuggiraifiees like breakpoints,
single stepping, disassembling, memory inspect & changesa on are all supported.
In addition, complex debugging features like real timeitrgcassertions, conditional
breaks, and plugin modules to name a few are also supported.

Chapter 1

gpsim - An Overview

If you don’t care to wade through detalils, this chapter stidelp you get things up and
running. The INSTALL and README files will provide more up-tiate information
than this document, so please refer to those first.

1.1 Making the executable

gpsim’s executable is created in a manner that's consistiémmuch of the other open
source software:

| command | description |
tar -xvzf gpsim-x.y.z.tar.gz expand the compressed tar file
.Jconfigure Create a 'makefile’ unique to your system
make compile gpsim
make install install gpsim

The last step will require root privileges.

1.1.1 Make Details - ./configure options
gui-less

The default configuration will provide a gui (graphical uggerface). The cli (com-
mand line interface) is still available, however many pegplefer just to use the cli.
These hardy souls may build a command-line only interfacednfiguring gpsim:

./configure --disable-gui

debugging

If you want to debug gpsim then you will probably use gdb. Gouently, you will
want to disable shared libraries:

CHAPTER 1. GPSIM - AN OVERVIEW 7

./configure --disable-shared

This will create one, huge monolithic executable with syfidiaformation.

1.1.2 RPMs

gpsim is also distributed in RPM form. In recent versionsréhare two RPMs: gpsim-
devel and gpsim. Both of these must be installed. There @®saRPM for the source
code. This can be used to build a binary RPM unique to youegysPlease see the
latest INSTALL and README for the most up to date information

1.1.3 Windows

gpsim runs on Windows too. Borut Razem maintains the gpsimddivs web site:
http://gpsim.sourceforge.net/gpsimWin32/gpsimWihd2l

You can find detailed instructions there for installing gpsind its dependencies. Snap
shots can be found:

http://gpsim.sourceforge.net/snap.php

1.2 Running

The executable created above is called: gpsim. The folgwommand line options
may be specified when gpsim is invoked.

gpsim [-7] [-p <device> [<hex_file>]] [[-c] <stc_file>] [[-s] <symbol file>]

-pP, --processor=<processor name> processor (e.g. -ppl6c84 for the ’c84)

-c, --command=STRING startup command file (optional .stc files)

-s .cod symbol file (optional .cod files)

-L, -- colon separated list of directories to
search.

-v, --version gpsim version

-i, --cli command line mode only

-d, --i1cd=STRING use ICD (e.g. -d /dev/ttyS0).

Help options:

-7, --help Show this help message

--usage Display brief usage message

Typically gpsim will be invoked like:

[My-Computer]$ gpsim mypic-program.cod

CHAPTER 1. GPSIM - AN OVERVIEW 8

(The[My-Computer]$text is an example of a typical bash command prompt - you will
only type the text after this prompt). This loads the .coddémerated by gputils.

Under Windows, gpsim can also be invoked by navigating thhaihe Start/Program
menu. This will open a DOS window to provide access to the canthine interface.
It's also possible to open a DOS window (or CygWin bash se$siad invoke gpsim
from there.

1.3 Requirements

gpsim has been developed under Linux. It should build andjusinfine under the
popular Linux distributions like Fedora, Ubuntu, etc. gpsias also been ported to the
MAC, MicroSoft Windows, Solaris, and BSD. Two packages gpstquires that may
not be available with all Linux distributions are readlimedagtk (the gimp tool kit).
The ./configure script should tell you if these packages aténstalled on your system
or if the revisions that are installed are too old.

There are no minimum hardware requirements to run gpsinteFasbetter though!

gputils, the gnupic utilities package, is also very usefgbsim will accept straight
hex files, but if you want to do any symbolic debugging then willwant to use the
.codf files that gputils produces. The .cod files are in the samedba®m the .cod files
MPASM?2 produces.

1 cod files are symbol files that were created by ByteCraft aadised by Microchip.
2MPASM is Microchip’s Assembler.

Chapter 2

Command Line Interface

The command line interface is fairly straight-forward. Table below summarizes the
available commands. Brief descriptions of these commaadstso be displayed by
typing helpat the command line.

CHAPTER 2. COMMAND LINE INTERFACE

| command | summary |
attach Attach stimuli to nodes
break Set a break point
bus Add or display node busses
clear Remove a break point
disassemble Disassemble the current cpu
dump Display either the RAM or EEPROM
frequency Set processor frequency
help Type help "command" for more help on a comma
icd In Circuit Debugger support.
list Display source and list files
load Load either a hex or command file
log Log/record events to a file
node Add or display stimulus nodes
module Select & Display modules
processor Add/list processors
quit Quit gpsim
reset Reset all or parts of the simulation
run Execute the pic program
set display and control gpsim behavior flags
step Execute one or more instructions
stimulus Create a stimulus
stopwatch Measure time between events
symbol Add/list symbols
trace Dump the trace history
version Display gpsim’s version
X (deprecated) examine and/or modify memory

The built in 'help’ command provides additional online infieation.

2.1 attach

attach nodel stimulusl [stimulus2 stimulus_N]

10

Attach is used to define connections between one or morelstnamd a node. One
node and at least one stimulus must be specified, but in damerar more stimuli
are used. Attach can be viewed as wiring stimuli togetheh thie node acting as the
wire. A stimulus is either a CPU or module 1/O pin or a stimuhasne.

Attach_pointN can have one of the following formats

pin(<number>) or pin(<symbol>)

This refers to a pin of the current active CPU.

<number> is the pin number

CHAPTER 2. COMMAND LINE INTERFACE 11

<symbol> is an integer symbol whose value is a pin number

<connection> or pin(<connection>)

These two forms are treated exactly the same (i.e. the pas(hb mean-
ing).
<connection> is a stimulus name or an I/O pin name.

I/O pin name can be just the pin name for the CPU or <module exgom_name
for a module or CPU

Example
**gpsim> load instructions_14bit.cod # load code
**gpsim> module library libgpsim_modules #load module 1lib
**gpsim> module load usart Ul # create USART
*xgpsim> node nl # define a node
*xgpsim> node n2 #define another node
**gpsim> symbol TW0=2 #define symbol with value 2
xkgpsim> attach nl pin(1) pin(TWO) #attach CPU pins 1 and 2
**gpsim> attach nl U1l.RXPIN #add usart pin to nl
*x*gpsim> attach n2 portbO pin(U1l.TXPIN) #connect portb0 to UASRT TX pin
**gpsim> node # show results

2.2 break

The break command is used to set and examine break points.biMm@k points are
assigned a unique number. This number can be used to queBaoitite break point.
Break points halt the simulation when the condition asdediwith them is true. Break
points are ignored during single stepping. See chapter féoe examples of break-
points.

Examining break points

break [bp_number]

Break points can be examined by typing the break commanautigmny options. Spe-
cific breaks can be queried by specifying the break point rermb

Program Memory/Execution breaks

The most common break point is an execution break point. @ihéshalts execution
whenever the program counter reaches the address at whkibtinghk point is set. The
syntax is:

break e|r|w ADDRESS [,expr [,message]]

CHAPTER 2. COMMAND LINE INTERFACE 12

The simulation halts when the address is executed, readijttenv The ADDRESS can
be a symbol or a number. If the optional expression is specifieen it must evaluate
to true before the simulation will halt. The optional messatiows a description to be
associated with the break. The read and write options orpyyap those processors
that can manipulate their own program memory.

Register Memory breaks

gpsim can also associate break points with register acze3d@s is useful for cap-
turing bugs that stomp on RAM. E.g. you can say something ‘lilat execution
whenever bit 4 of register 42 is cleared”. The command limgasyis:

break r|w|ch REGISTER [,expr [,messagel]]

The simulation halts wheREGISTERSs read, written, or changed on write, and the
optional expression evaluates to true.

Other syntaxes with a boolean expression are:
break r|w|ch REGISTER == value

The simulation halts wheREGISTERs assigned the specified value, and:
break rlwlch REGISTER & mask == value

The simulation halts when specified bits in REGISTER aregassl the specified
value.

Here’s an example of a register write break. This one wilt Ha simulation if any
value is written to the variable namésmp1

break w templ

Sometimes it's necessary to specify an auxiliary conditigiin a break point. For
example, there may be a temporary variable that is sharedghout the code. You
may wish to trap writes to that variable only while executmgpecific subroutine.
For example, the following break point triggers when tempviitten and while the
program counter is in between the labiisc_startandfunc_end

break w templ (pc >= func_start && pc < func_end)

TIP: Use this type of break point if you suspect an interrupt reaits over writing a
variable.

Another situation is one where you wish to trap writes to aalde only if some other
variable is a certain value:

break w templ (CurTask & 0xOf != Ob101)

CHAPTER 2. COMMAND LINE INTERFACE 13

If the firmware writes to the variable temp1 then the simolatwvill halt if the lower
nibble of CurTask is not equal to 5.

This example breaks only if the hex digit 'C’ is written to thpper nibble of temp1.:

break w templ & 0b11110000 == 0b11000000

Processor exception breakpoints

Stack overflow, underflow and watchdog timeout can also halsimulation.

break so
break su
break wdt

Attribute Breakpoints

break attridute
gpsim also supports a conceptatfribute breakpointsAttributes are parameters that
gpsim and its modules expose to the user interface. For derathe simulator stop-

watch exposes attributes which support breakpoints. Haufe is intend mainly for
module writers to provide a mechanism for allowing the userantrol the module.

Cycle counter Breakpoints

break c cycle_number

The cycle counter is gpsim’s time keeper. It increments @vesy instruction cycle.
The 'c’ option to the break command allows a break point todiesa particular value
of the cycle counter.

2.3 clear

clear bp_number

The clear command is used to clear break points. The breat pomber must be
specified. Theéoreak command without any arguments displays all of the currently
defined break points. This can be used to ascertain the b@akpumber. Once
cleared, a break pointis deletéd.

1A break point disable/enable feature has been discussemhaptie added a future date.

CHAPTER 2. COMMAND LINE INTERFACE 14

2.4 disassemble

disassemble [[begin:end] | [count]]

The disassemble command decodes the program memory opntul#eir standard
mnemonics. With no options, thdisassembleommand disassembles instructions
surrounding the current program counter:

gpsim> disassemble
current pc = Oxlc
0012 2a03 incf reg3,f,0
0014 0004 clrwdt
0016 5000 movf reg,w,0
0018 1001 iorwf regl,w,O
001a 1002 iorwf reg2,w,0
==> 001c 1003 iorwf reg3,w,0
00le elf4 bnz $-0x16 ;(0x8)
0020 d7ff bra $-0x0 ;(0x00020)

With a single numeric option, théisassembleommand will disassemble given num-
ber of instructions starting with the instruction at the PC.

With a two numbers, thdisassembleommand will disassemble instructions starting
and ending given number of instructions from the PC.

2.5 dump

dump [r | s | e [module_name [filename]]]

dump r or dump with no options will display all of the file resiss and special function
registers.

dump s will display only special function registers.

dump e will display the contents of the processor EEPROMffiic being simulated
contains any).

The 'dump e module_name’ command will display the contehtsmdcEPROM where
module_name can either be the name of a module or processch wbntains an
EEPROM.

The 'dump e module_name filename’ command dumps the contérgsmodule’s

EEPROM, in Intel hex format, into the file with the given nariiée 'load e’ command
can later be used to read the dumped file thus allowing theentsdf the EEPROM to
be preserved between runs of gpsim.

See the 'x’ command for examining and modifying individuagjisters.

CHAPTER 2. COMMAND LINE INTERFACE 15

2.6 echo

The echo command is used like a print statement within cordigan files. It just lets
you display information about your configuration file.

2.7 frequency

This command sets the oscillator frequency. By defaultgpsies 20 MHz oscillator.
The oscillator frequency is used to compute time in secotdse this command to
adjust this value. If no value is provided this command grihie current frequency.
Note that PICs have an instruction frequency that's a quafti#e oscillator frequency
clock.

2.8 help

help [command]

By itself, help will display all of the commands along with ad§ description on how
they work. With a command as a parameter help provides maeagixe online help.
The help command can also display information about ategu

29 icd

icd [open <port>]

The open command is used to enable ICD mode and specify tiad gert where the
ICD is. (e.g. "icd open /dev/ttyS0"). Without options (arfteathe icd is enabled), it
will print some information about the ICD.

2.10 list

The list command allows you to view the source code while yewabugging.
list [[s | 1] [*pc] [line_numberl [,line_number2]]]

Without any options, list will use the last specified options
list s will display lines in the source (or .asm) file.
list | will display lines in the .Ist file.

list *pc will display either .asm or .Ist lines around the R@ithout *pc use current PC
as a reference.

Line numbers are relative to the line of the PC.

CHAPTER 2. COMMAND LINE INTERFACE 16

2.11 load

The load command is used to load a program file, a commandffisprom data.

Program file is usually used to program the physical part. &x file provides no
symbolic information. .cod files on the other hand, do prewdgimbolic information.
The only reason to use a hex file is when there’s no .cod fildadlai

The syntax for loading program files is:
load [processortypel] programfile

gpsim will automatically determine if the file is a .hex ordciile. The optionapro-
cessortypeas needed if a .hex file is loaded and processor is not yet defittealso
allows one to override the processor specified in a .cod file.

load [i] commandfile.stc

Command files contain gpsim commands. These are extremeldylder creating a
debugging environment that will be used repeatedly. Ndsmahding a command file
residing in other directories changes working directoritisTcan be overridden with
the "I’ (include) option.

load e module_name file
This command loads the contents of either a processor's EEPBr an EEPROM
module from a file containing the data in Intel hex format. ither case the address
of the first cell of the EEPROM is 0x0000. Used in conjunctioithvthe 'dump e

module_name filename’ command, the contents of an EEPROMeaarried over
from one run of gpsim to another.

2.12 macros
Macros are defined like:

name macro [argl, arg2, ..., argN]

macro body

endm
And they're invoked by:

name paraml, param2, ..., paramN
Macros are a way of collecting several parameterized cordmarto one short com-

mand. The first line of a macro definition specifies the maanasie and optional
arguments. Thaameis used to invoke the macro. The arguments are text strirggpla

CHAPTER 2. COMMAND LINE INTERFACE 17

holders. When a macro is invoked, the parameters are aligitedhe arguments. l.e.
paramlin the invocation can be thought of being assignedryi in the definition.
The parameters replace the arguments in the macro body.

In the following example, a variable or attribute calledc_flagss being manipulated
in an expression. The argumenisd andmaskappear in the macro body and provide
a parameterized way of manipulating this expression.

mac_exp macro add, mask
mac_flags = (mac_flags+tadd) & mask
endm

Note that the indentation is arbitrary. The macro is invokgd
mac_exp 1, 0b00001111 # increment the lower nibble

The parameteaddis replaced by the numbérwhile maskis replaced with the binary
number0b00001111The invocation turns into the gpsim command:

mac_flags = (mac_flags+1l) & Ob00001111

Nested Macros

The macro body can contain any gpsim command. Of particatarest are macro
invocations within other macros. Here’s another macro itmaikes the one defined
above.

Nested macro example
macl macro pl, p2

run

mac_exp pl, p2
endm

And it could be used like:

macl 1, 0b00001111 # test lower nibble
macl (1<<4), 0b11110000 # test upper nibble

The first invocation starts the simulator by executingia command. When a break
point is encountered, control returns to the command lirkthemac_expmacro is
invoked.

CHAPTER 2. COMMAND LINE INTERFACE 18

Displaying Defined Macros

All currently defined macros can be displayed by typing themm@&ommand without
a name or arguments:

gpsim> macro
macl macro pl p2
run
mac_exp pl, p2
endm
mac_exp macro add mask
mac_flags = (mac_flags+tadd) & mask
endm

2.13 module

The modulecommand is used to load and query external modules (seers&cfor
more information about gpsim modules). A module is a spex@de of software that
can extend gpsim in some manner. LED’s and switches are dgarmpmodules. A
modaule library is collection of modules.

Loading module libraries

module 1ib lzb_name

Thelib option is used to load a module library. Module librariessystem dependent
shared libraries, i.e. on Windows they’re DLL's and UNIX ¥fre shared libraries.
This means that either the libraries should reside in a pagrethe OS knows libraries
exist or that the full path name must be specified along withlith name gpsim
provides a module library with a few modules:

gpsim> module 1lib libgpsim_modules

Displaying available modules

module list

Thelist option will display all of the modules that can be loaded. dHisran example
of gpsim’s built-in modules.

gpsim> module list
Module Library Files
libgpsim_modules.so
switch
and?2

CHAPTER 2. COMMAND LINE INTERFACE 19

or2

xor2

not
led_T7segments
led
push_button
PortStimulus
pullup
pulldown
pulsegen
Encoder

usart

TTL377
I2C-EEPROM2k
I2C-EEPROM16k
I2C-EEPROM256k

Loading a specific module

module load module_type [module_name]

Once a library has been loaded, specific modules can be fizgeth Themodule_type
is what's displayed by themodule listcommand. The optional module name specifies
what the instance is called. Here’s an example

gpsim> module load led D1

Display loaded modules

module

Querying modules

Dumping modules and listing the pins is not yet implemented.

2.14 node

node [new_nodel new_node2 ...]

Thenodecommand defines or queries “nodes”, used to connect extagralls to the
simulated PIC. If no new_node is specified then all of the sdlat have been defined
are displayed. If a new_node is specified then it will be adddtie node list. See the
"attach" and "stimulus" commands to see how stimuli are ddol¢he nodes.

CHAPTER 2. COMMAND LINE INTERFACE 20

examples:
node // display the node list
node nl n2 n3 // create and add 3 new nodes to the list

2.15 processor

processor [new_processor_type [new_processor_name]] | [list] | [dump]

The processorcommand is used to either define a new processor or to querthahe
has already been defined. Normally there’s no need to ettplaefine the processor
since the symbol file already contains that information. Wi exceptions are when
a) the symbolic information is not available or b) you wishoterride the processor
specified in the symbol file. (See tl@ad command on how the processor in a symbol
file can be overridden.)

To see a list of the processors supported by gpsim, tgpecéssor list To display
the state of the 1/0O processor, tyggocessor pin's For now, this will display the pin
numbers and their current state.

examples:

processor // Display the processors you’ve already defined.
processor list // Display the list of processors supported.
processor pins // Display the processor package and pin state
processor pl6cr84 fred // Create a new processor.

processor pl6c74 wilma // and another.

processor pl6c65 // Create one with no name.

2.16 quit

Quit gpsim.

2.17 run

Start (or continue) simulation. The simulation will contauntil the next break point
is encountered.

2.18 step
Execute a single instruction, or a specified number of insivns.

step [over | n]

CHAPTER 2. COMMAND LINE INTERFACE 21

With no arguments, the step command executes one instnuaftithe PIC code. If a
numeric argument is given, this specifies a fixed number dfinsons to simulate.
The specific word “over” as an argument to step tells gpsinutoaverything involved
in the current instruction. This would normally be used onALC instruction, in
which case the whole subroutine runs and the simulatiorsst€ipr it returns.

2.19 symbol

symbol [symbol_name [symbol_type value]]

Thesymbolcommand is used to query and define symbols. If no optiongeefsed,
the whole symbol table is displayed. The creation of usenddfsymbols is limited at
this time (see the online help for the current state of thimmand).

2.20 stimulus

stimulus [[type] optiomns]

Thestimuluscommand creates a signal that can be tied to a node or arutstribno
options are specified then all currently defined stimuli aspldyed.

Note that in most cases it is easier to create a stimulus #le th type the command
by hand.

initial_state state at the start and at the rollover
start_cycle| simulation cycle when the stimulus will begin
period stimulus period
name specifies the stimulus name

Here’s an example of a stimulus that will generate two puisesrepeat this in 1000
cycles.

stimulus asynchronous_stimulus

The initial state AND the state the stimulus is when

it rolls over

initial_state O

start_cycle 0

the asynchronous stimulus will roll over in ’period’

cycles. Delete this line if you don’t want a roll over.
period 1000

{ 100, 1,
200, O,
300, 1,

400, O

CHAPTER 2. COMMAND LINE INTERFACE 22

}

Give the stimulus a name:
name two_pulse_repeat

end

A stimulus can be queried by typing its name at the commared lin

gpsim> two_pulse_repeat
two_pulse_repeat attached to pulse_node
Vth=0V Zth=250 ohms Cth=0 F nodeVoltage= 7.49998e-07V
Driving=0 drivingState=0 drivenState=0 bitState=0
states = 5
100 1
200 0O
300 1
400 0
1000 O
initial=0
period=1000
start_cycle=0
Next break cycle=100

Even though this example uses 1's and O’s for the data, onesmintegers, floating

point numbers, or expressions instead. Integers are usefslipplying a stimulus to

an attribute. Expressions are useful for abstracting the. ddee Chaptér 7 for more
discussion and examples of stimuli.

2.21 stopwatcE

A timer for monitoring and controlling the simulation.
The units are in simulation cycles.
stopwatch.rollover - specifies rollover value.
stopwatch.direction - specifies count direction.
stopwatch.enable - enables counting if true.

Without any optionsstopwatchwill display the contents of the stopwatch timstop-

watchis writable, so you may initialize it to whatever value yokeli The behavior
of the timer may be manipulated via the three attributes. .Tdi®ver attribute is the
number of cycles at which the stopwatch timer rolls over. Tdieectionand.enable
attributes are boolean types. When true, ithieection attribute will instruction the
stopwatch to count up.

2The stopwatch is really a collection of attributes and nadmmand. But the behavior is so similar to a
command that it has been included here.

CHAPTER 2. COMMAND LINE INTERFACE 23

2.22 trace

trace [dump_amount]

trace will print out the most recent "dump_amount" traces. If namiu amount is
specified, then the entire trace buffer will be displayed.

2.23 version

version

Display gpsim’s version. Note, this command will probabdy geplaced by an attribute
with the same (or similar) name.

2.24 X

The x command is deprecated. It's former use was to examine andfyrmodmory.
The preferred way to do this now is with expressions. The Falpx now indicates
this:

x examine command -- deprecated
Instead of the using a special command to examine and modify
variables, it’s possible to directly access them using gpsim’s
expression parsing. For example, to examine a variable:
gpsim> my_variable
my_variable [0x27] = 0x00 = 0b00000000
To modify a variable
gpsim> my_variable = 10
It’s also possible to assign the value of register to another
gpsim> my_variable = porta
Or to assign the results of an expression:
gpsim> my_variable = (porta ~ portc) & 0xOf

Chapter 3

Graphical User Interface

FIXME: We could use a few illustrations here!

gpsim also provides a graphical user interface that simepliiome of the drudgery
associated with the cli. It's possible to open windows tawa! the details about your
debug environment. To get the most out of your debuggingagsgou will want to
assemble your code with gpasm (the gnupic assembler) arideisgmbolic .cod files
it produces.

3.1 Main window

3.1.1 Menus

File->Open .stc or .cod files.
File->Quit Quit gpsim

Windows->* Open/Close the windows.

3.1.2 Buttons

(These are also found as keyboard bindings in the sourceowijl

Step Step one instruction

Over Step until pc is after next instruction
Finish Run to return address

Run Run continuously

Stop Stop execution

Reset Reset CPU

24

CHAPTER 3. GRAPHICAL USER INTERFACE 25

3.1.3 Simulation mode
This controls how gpsim simulates, and how the GUI updates.
Never Don't ever update the GUI when simulating. This is thstdst

mode. You will have to stop simulation by pressing Ctrl-C lie t
command line interface.

X cycles Update the GUI every x cycles simulated.

every cycle Update the GUI every cycle. (you see everythfngu have filled
up on coffee :-)

X ms animate Here you can slow down simulation with a delayveeh every
cycle.

realtime This will make gpsim try to synchronize simulatspeed with wall
clock time.

3.2 Source Browsers

gpsim provides two views of your source:asm’ and 'obj browsers. The asm’
browser is a color coded display of your pic source.

3.2.1 .asm Browser

When a .cod file with source is loaded, there should be songetini this display.
(TODO: add section about high level debugging).

There is an area to the left of the source, where symbols septiag the program
counter, breakpoints, etc are displayed. Double clickinghis area toggles break-
points. You can drag these symbols up or down in order to musm tand change the
PC or move a breakpoint.

A right button click on the source pops up a menu with six it¢the word 'here’ in
some menu items denote the line in source the mouse poingasmwahen right mouse
button was clicked.):

Menu item Description

Find PC This menu item will find the PC and changed page tabenad the
source view to the current PC.

Run here This sets a breakpoint 'here’ and starts runninigaibteakpoint is
hit.

Move PC here This simply changes PC to the address that lare”m source has.

Breakpoint here Set a breakpoint’here’.

CHAPTER 3. GRAPHICAL USER INTERFACE 26

Profile start here Set a start marker for routine profilingsher
Profile stop here Set a stop marker. (See the section for tiing window.)

Select symbol. This menu item is only available when someitegelected in the
textwidget. What it does is search the list of symbols forsthlected
word, and if it is found it is selected in the symbol window.d2ad-
ing of type of symbol other things are also done, the samejtam
when selecting a symbol in the symbol window:

e Ifitis an address, then the opcode and source views dispéay t
address.

e If it's a register, the register viewer selects the cell.

e [fit's a constant, address, register or ioport, it is sedddh the
symbol window.

Find text This opens up a search dialog. Every time you hitkre’ button,
the current notebook page is found and the source in that isage
used.

Settings A dialog with which you can change the fonts used.

Controls A submenu containing the simulation commandsesghare also

found as keyboard bindings (recommended), or in the maidovin)
These are the keyboard bindings:

Key command

s,S,F7 Step one instruction.
0,0,F8 Step over instruction
r,R,F9 Run continuously.
Escape Stop simulation.

f,F Run to return address

1..9 Step n instructions

3.2.2 Opcode view - the .obj Browser

This window has two tabs. One with each memory cell on onedimg information
about address, hexadecimal value and decoded instrucgordisassembly), and one
with the program memory

displayed with sixteen memory cells per row and a configer&8CII column.

CHAPTER 3. GRAPHICAL USER INTERFACE 27

The Assembly tab you can:

e Double click on a line to toggle breakpoints.
e Use the same keyboard commands as the in the source browser.

e Right click to get a menu where you can change the fonts.

The Opcode tab.

Here the program memory is ordered as columns of sixteen myereds per column
and as many row as needed to contain all memory.

The seventeenth column contains an ASCII representatidheoprogram memory.
You can configure this column to use one of three differentesod

e One byte per cell
e Two bytes per cell, MSB first.
e Two bytes per cell, LSB first.

You can change fonts with the menu item 'Settings’.

You can set breakpoints on one or more (drag the mouse td ssbee cells) addresses
with the right click menu.

3.3 Register views

There are two similar register windows. One for the RAM and @r the EEPROM
data, when available.

Here you see all registers in the current processor. Clickima cell displays it's name
and value above the sheet of registers. You can change \@lwgering it in the entry
(orin the spreadsheet cell).

The following things can be done on one register, or a rangegisters. (Selecting
a range of registers is done by holding down left mouse buttowving cursor, and
releasing button.)

e Set and clear breakpoints. Use the right mousebutton mepagap a menu
where you can select set read, write, read value and writee\mkakpoints. You
can also "clear breakpoints"”, notice the s in "clear breakp§ every breakpoint
on the registers are cleared.

e Set and clear logging of registers. You can log reads, writesds/writes of
specific values and to bits selected by a specified mask. Yosadact a different
file name with 'set log filename...". Default is "gpsim.logfou can choose LXT
or ASCII format. LXT can be read with the program gtkwave. ASE€ default.

CHAPTER 3. GRAPHICAL USER INTERFACE 28

e Copy cells. You copy cells by dragging the border of the gekécell(s).

e Fill cells. Move mouse to lower right corner of the frame of telected cell(s),
and drag it. The one cell's contents will be copied to the oteds.

e Watch them. Select the "Add Watch" menu item.
The cells have different background colors depending dmey represent:

e File Register (e.g. RAM): light cyan.
e Special Function Registers (e.g. STATUS, TMRO0): dark cyan

e aliased register (e.g. the INDF located at address 0x8(eisdime as the one
located at address 0x00): gray

e invalid register: black. If all sixteen registers in a rove amvalid, then the row is
not shown.

e aregister with one or more breakpoints: red. Logged registes also red.

gpsim dynamically updates the registers as the simulatioogeds. Registers that
change value between updates of the window during simulatie highlighted with a
blue foreground color.

The menu also has a 'settings’ item where you can change titei$ed.

3.4 Symbol view

This window, as its name suggests, displays symbols. Alhefspecial function reg-
isters will have entries in the symbol viewer. If you are gsiood files then you will
additionally have file registers (that are defined in cblpokguates, and address labels.

You can filter out some symbol types using the buttons in tpeofdhe window, and
you can sort the rows by clicking on the column buttons (thesoreading 'symbol’,
‘type’ and 'address’).

You can add the symbol to the watch window by right-clickimgl gelecting the "Add
to watch window" menu item. This will add the ram registerhnatddress equal to the
symbols value to the watch window.

The symbol viewer is linked to the other windows. For examflgou click on a
symbol and:

e Ifitis an address, then the opcode and source views disptagddress.

e Ifit's a register, the register viewer selects the cell.

CHAPTER 3. GRAPHICAL USER INTERFACE 29

3.5 Watch view

This is not a output-only window as the name suggests (chaage?). You can both
view and change data. Double-clicking on a bit toggles the Wou add variables
here by marking them in a register viewer and select “Add Watom menu. The

right-click menu has the following items:

e Remove watch

e Set register value

e Clear Breakpoints

e Set break onread

e Set break on write

e Set break on read value
e Set break on write value

e Columns...

"Columns...” opens up a window where you can select whictheffdllowing data to
display:

e BP

Type

e Name
e Address
e Dec

e Hex

e Bx (bits of word)

You can sort the list of watches by clicking on the columndwst Clicking twice sorts
the list backwards.

3.6 Stack viewer

This window displays current stack. Selecting an entry rake code windows dis-
play the return address. Double clicking sets a breakpaitihe return address.

CHAPTER 3. GRAPHICAL USER INTERFACE 30

3.7 Breadboard

Here you can create/modify and examine the environmentnardhe pic. Pins are
displayed as an arrow. The direction of the arrow indicdtis an input or output pin.
The color of the arrow indicates its state (green=Ilow, réghh

You can't instantiate pic processors from here, you willdvavdo that from the com-
mand line, or from a .stc file.

Your can create nodes by clicking on the "new node" buttonngde is 'a piece of
wire’ to which you can connect stimulus.) You can see thedlistreated nodes under
the "nodes" item in the upper-left tree widget.

You can create connections to nodes by clicking on a pin, hed tlicking on the
button "Connect stimulus to node". This will bring up a li$tnmdes. Choose one by
double-clicking on the one you like.

If you click on a pin that is already connected to a node, ttmnwill see the node and
its connections in the lower left part of the window. You cascdnnect a stimulus by
clicking on it and pressing the "remove stimulus" button.

When you want to add a module to the simulation, you first hawspecify the library
which contains the module you want. Click on the "add lib¥doytton and enter
the library name (e.g. "libgpsim_modules.so"). Now you chek the "add module”
button. Select the module you want from the list by doubilekahg on it. Enter a
name for the module (this has to be unique, and not used Hefgoel now have to
position the module. Move the mouse pointer to where you d/bke the module, and
left-click.

If you middle-click on a pin, you will see how the pin is conteat. Press the "trace
all"to see all at

once, and "clear traces" to remove all (you will only remave graphical trace, not
the connection!). If the tracing doesn’t work, try movingthackages so that there are
more space around the pins.

When you are done, you can save by clicking the "save configatfautton. You can
then load this file from the command line like this (assumimg fcod file with your
source is called "mycode.cod", and the file you just savedoatisd "mynets.stc":

gpsim -s mycode.cod -c mynets.stc
You can't load only the .stc file since this doesn’t contaia finocessor type and code.
You can create (with an editor) your own .stc file (e.g. myjgebstc) and in that file

put a command "load ¢ mynets.stc" after you have loaded tfile. You then only
have to load this file (gpsim -c my_project.stc).

3.8 Trace viewer

This window shows the trace of instructions executed.| See 6.

CHAPTER 3. GRAPHICAL USER INTERFACE 31

3.9 Profile viewer

This window show execution count for program memory adaér®s3 he profile win-
dow must be opened before starting simulation, becauseabiag is not enabled by
default.

Instruction profile

This shows the number of times each instruction are executed

Instruction range profile

Here you can group ranges of instruction into one entry.
The right click menu contains:

Remove range Remove an entry.

Add range... Open a dialog from where you can add a range wbigt®ns as
an entry.

Add all labels Add all code labels as ranges.

Snapshotto plot Open a window containing a graph of the d&tam this new
window you can also save (postscript) or print it.

Register profile

This shows the number of reads or writes the simulator doesgister.

Routine profile

Here you can see statistics about execution time for a seleoutine. You mark the
entry and exit points from the source browser (profile sttop). If the routine you
want to measure have multiple entry and/or exit points, frmnhave to put a marker
on every entry point as well as (and especially) every exittpdOtherwise you will
get bad data.

When you have done that, gpsim will (as simulation goes lreshe execution times
of that routine and calculate min/max/average/etc. Youalaa use the menu item
'Plot distribution’ to open a window displaying a histograrfithe data. From this new
window you can also save (in postscript) or print it.

You can also measure call period by switching the ’entry’ &ndt’ points. If also
want the time from reset (or some equal point) to the firstrignthen you must also
put an 'entry’ point there.

CHAPTER 3. GRAPHICAL USER INTERFACE 32

3.10 Stopwatch

The stopwatch window shows a cycle counter and a re-settaibieter. The cycle
counter is the same as the one in the register window. It dlsmounts instructions.

The other counter counts at the same rate as the cycle cpobuteran be cleared by
clicking the "clear" button (or preset by entering a numbethie entry box).

The up/down indicator denotes the direction the countentsou

The rollover value specifies the range the cycle counter ean fa modulo counter).
For example, if the rollover value is specified to be Ox42ntivaenever the resettable
counter reaches 0x42 it will rollover to zero. If the countercounting down, then
when it reaches 0 the next state will be 0x41. If you don’t watike this, then set the
rollover value to something large.

3.11 Scope Window

FIXME: The scope window still needs some work...

The Scope Window graphs 1/O pin states. It is similar to anlloscope or logic
analyzer. It can be controlled either from the command linfeam the GUI. Currently
only the digital state of 1/O pins are supported.

To use the scope window, each scope channel being used rstiseftonnected to the
stimulus being tracked. This can only be done on the commaeddr via the .sim
directive in the .asm file). The following example shows hbig ts done, but note that
in the .sim command the ""s need to be escaped with a'\'.

**gpsim> scope.ch0 = “portc3d”
**gpsim> scope.chl = ‘“portc4”

Once the data are caputred, the scope window display maytodedaltered to better
see the data. In the GUI, the following keys can be used:

z Zoom In
Z Zoom out
I Pan left
r Pan right

Inthe command line, zooming and panning can be achieved bljfiyiag the scope.start
and scope.end variables.

Chapter 4

Scripting and Configuring

gpsim does not have a native scripting language per se. Hmitas possible to place
gpsim commands into a file and load them later. This is usefubfiding modules and
stimuli and connecting various devices together. By cotisangpsim’s configuration
files have the extensiastg for startupconfiguration.

4.1 Embedded Commands

If you're using gputils, it is possible to embed configuratmommands directly into
your PIC assembly source. The gputils supplied includecfifif.inccontains several
macros that embed simulation command into a COFF and COD files

4.1.1 .sim macro

; Simulator Command

.sim macro x
.direct "e", x
endm

The.simmacro allows gpsim configuration commands to be embedded in
the PIC source. While gpsim loads a .cod file, the commands in the
.simmacros are collected. After the .cod file is loaded, the commands
are redirected to gpsim’s command line interpreter in the order they
were received.

Here’s an example of switch module being loaded and confiure

;# Module libraries:

.sim "module library libgpsim_modules"
.sim "module load switch SW1"

.sim "SW1l.state=false"

33

CHAPTER 4. SCRIPTING AND CONFIGURING 34

.sim "SW1l.xpos = 216.0"
.sim "SW1l.ypos = 156.0"
.sim "SW1.Ropen = 1.0e8"

This loads gpsim’s module library, instantiates a switchdoile, and configures the
switch’s attributes.

4.1.2 .command macro

.command macro x
.direct "c", x
endm

The. command macro is similar to a .simmacro except that it associates
a gpsim command with a particular instruction. This is useful for
changing attribute values at different points of the program.

4.1.3 .assert macro

; Assertion
.assert macro x
.direct "a", x
endm

The.assertmacro provides a source code mechanism for setting bresiisgeee chap-
ter/5). An assertion is an expression associated with afgpatstruction. It essential
means, “If the expression at this instruction evaluatealsef then halt the simulation.”

; Close the switch because of capacitance portcl will go high after a delay:
; R=145, C=4.2e-6 TC=6.11e-4 or 1527 cycles 0-2 volts requires 0.51 Tc
.command "SW1l.state=closed"
nop
; portcO should be same as portcl

.assert "(portc & 3) == 0, \"SWl closed, cap holds low\""
nop

In this example, thecommandnacro writes to the switch modulestateattribute (see

section 8.1.4). Just prior to executing the first nop ingtoug the switch will be closed.
The.assertmacro at the very next instruction makes sure that the ezpetate is seen
on PORTC.

CHAPTER 4. SCRIPTING AND CONFIGURING 35

4.2 Sockets

gpsim supports a socket interface. This is inhibited by uleféAdvanced users may
wish to study code in thexamples/scriptsubdirectory. This code not distributed and
is only available in the subversion repository.

Chapter 5

Assertions and Extended
Breakpoints

gpsim supports a wide variety of breakpoints and assertiblay of these were de-
scribed with the break command. This section will illustrabw to extend the break
command even further and introduce simulation assertions.

Breakpoint Messages

A breakpoint message is an ASCII string that is displayednekier a breakpoint is
encountered. Any break point can have an associated mes3égesyntax at the
command line is

break conditions, ‘“‘This s a breakpoint message’’

The conditions are described above in the break commandrankeconditions under
which the break occurs.

Breakpoint messages are useful for distinguishing amony rdéferent breakpoints.
break w counter & 0xf0 == 0x80, ‘““Counter overflowed!”’

In this example, the user is monitoring the upper nibble efvhriable counter and
breaking whenever it is equal to 8. When the command is ethtgpesim will display:

break when bit pattern 1000XXXX is written to register counter(0x26). break #: 0x20
The breakpoint can be queried with the break command:

gpsim> break 32
32: pl8f452 register write value: [0x26] & 0xfO == 0x8
Message:Counter overflowed!

When the simulation encounters the break, execution hadt$tee message is printed.

36

CHAPTER 5. ASSERTIONS AND EXTENDED BREAKPOINTS 37

5.1 Assertions and Embedded Simulation commands

gpsim’s breakpoint design is a powerful tool that can catemynproblems. The as-
sertion design extends this power even further. An asseiditke a breakpoint that is

defined in the program source code for a particular inswactjpsim reads the break-
point from a special message area in the .cod file. For exaymlemay have a routine
that requires BANK 0 be selected. A gpsim assertion can keegdlat the entry of the

routine to verify that this is the case.

.assert "(status & 0x60) == 0, \"Bank O must be selected!\""

The syntax is identical to the extended breakpoint commarite expression is the
condition that is checked. If the expression evaluateslse fahen the code halts and
prints the message. Thassertis a macro that is part of gputils. It requires a string
as its input argument. Notice that the assertion messagelis@ded in the argument.
gpasm and MPASM copy C’s method of placing a backslash irt fstbquotations that
are part of a string.

Command Assertions

A command assertion is a gpsim associated with a particagdriction in your PIC
source code. These are useful for changing the behaviordfithulation based on
where the code executes. Almost any gpsim command can bedpiia@ command
assertion. However, the most useful ones are assignmembands. For example:

.command ‘‘SW1.state = open”

This assignment writes to the state attribute of a switchuteodamed SW1.

Chapter 6

Trace and Log: What has
happen?

Inspecting the current state of your program is sometimasfiicient to determine the
cause of a bug. Often times it's useful to know the condititwas led up to the current
state. gpsim provides a history or trace of everything tleatics - whether you want it
or not - to help you diagnose these otherwise difficult to yrabugs.

| Whatstraced | notes |
program counter addresses executed
instructions opcode
register read value and location
register write value and location
cycle counter current value
skipped instructiong addresses skipped
status register | during implicit modification
interrupts
break points type
resets type

The 'trace’ command will dump the contents of the trace buffe

A large circular buffer (whose size is hard coded) storedrtf@mation for the trace
buffer. When it fills, it will wrap around and write over thedohistory. The contents
of the trace buffer are parsed into frames, where one framegmonds to a simulation
cycle.

Here’s an example of a trace output:

38

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 39

gpsim> trace
0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3d,w,0
Read: 0x00 from reg3(0x0003)
Wrote: 0xE7 to W(OxOFE8) was OxE7
Wrote: 0x18 to status(0xOFD8) was 0x18
0x00000000000026F7 p18f452 0x001E OxE1F4 bnz $-0x16 ;(0x8)
0x00000000000026F8 p18f452 0x0008 0x3EO00 incfsz reg,f,0
Read: 0xE4 from reg(0x0000)
Wrote: OxE5 to reg(0x0000) was OxE4
0x00000000000026F9 p18£f452 0x000A 0xD004 bra $+0xa ;(0x00014) 0x00000000000026FA
0x00000000000026FB p18f452 0x0016 0x5000 movf reg,w,0
Read: 0xE5 from reg(0x0000)
Wrote: OxE5 to W(OxOFE8) was OxET7
Wrote: 0x18 to status(0xOFD8) was 0x18
0x00000000000026FC p18£452 0x0018 0x1001 iorwf regl,w,0
Read: 0x03 from regl(0x0001)
Wrote: OxE7 to W(OxOFE8) was OxEb
Wrote: 0x18 to status(0xOFD8) was 0x18

Each trace frame begins with a new simulation cycle. Typidhlis will include a
simulated instruction. Here’s each of the fields:

64-bit simulation cycle processor PC opcode instruction
0x00000000000026F6 pl18£452 0x001C 0x1003 iorwf reg3,w,0

Other events that occur during the trace frame are indenfgdically these will be
register read or write traces. The read traces show the vehde Write traces show
the value written and the value that was previously in thésteg

Saving Trace to afile

The trace buffer may contain thousands of entries makingficualt to search. The
trace save feature will allow the trace buffer to be writter ffile.

gpsim> trace save mytrace.log
The entire contents of the trace buffer are decoded andewritt the file. The format
of the trace is the same as it is when displayed at the comniraand |
Raw Traces

Theraw trace buffer is the trace buffer displayed in a minimally alded form. This
is primarily used for gpsim development. When saved to atiile,raw trace is not

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 40

decoded at all. In addition, the processor’s state is writtethe file. Thus third party
tools can be written to create custom trace re@orts

1FIXME - The dynamically created trace type information relbe written to this file too. Without it,
it is difficult to tell what each traced item is.

Chapter 7

Simulating the Real World:
Stimuli

Stimuli are extremely useful, if not necessary, for simolas. They provides a means
for simulating interactions with the real world.

The gpsim stimuli capability is designed to be accurateciefit and flexible. The
models for the PIC’s I/0O pins mimic the real devices. For eglanthe open collector
output on port A of a PIC16C84 can only drive low. Multiple Ifins may be tied to
one another so that the open collector on port A can get a putsistor from port B.
The overhead for stimuli only occurs when a stimulus chastges. In other words,
stimuli are not polled to determine their state.

Analog stimuli are also available. It's possible to creaittage references and sources
to simulate almost any kind of real world thing. For examfile possible to combine
two analog stimuli together to create signals like DTMF ®ne

7.1 How They Work

In the simplest case, a stimulus acts a source for an 1/O pia BIC. For example,
you may want to simulate a clock and measure its period usMB0d. In this case,

the stimulus is the source and the TMRO input pin on the pibgédaad. In gpsim you

would create a stimulus for the clock using the stimulus camdand connect it to the
I/0 pin using the node command.

In general, you can have several 'sources’ and severalsidhét are interconnected
with noded. A good analogy is a spice circuit. The spice netlist coroesis to a
node-list in gpsim and the spice elements correspond tatithelssources and loads.
This general approach makes it possible to create a varfistynolation environments.
Here’s a list of different ways in which stimuli may be contezt

1Although, gpsim is currently limited to *one-port’ devicetn other words, it is assumed that ground
serves as a common reference for the sources and the loads.

41

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 42

. Stimulus connected to one I/O pin

. Stimulus connected to several I/O pins

1

2

3. Several stimuli connected to one I/O pin

4. Several stimuli connected to several I/O pins
5

. 1/0O pins connected to I/O pins
The general technique for implementing stimuli is as fodow

1. Define the stimulus or stimuli.
2. Define a node.

3. Attach the stimuli to the node.

More often than not, the stimulus definition will reside inle fi

7.1.1 Contention among stimuli

One of the problems with this nodal approach to modelingudtim that it's possible
for contention to exist. For example, if two I/O pins are ceated to one another and
driving in the opposite directions, there will be contentigpsim resolves contention
with attribute summing. Each stimulus - even if it's an inpbias an effect on the node.
This effect is characterised by a voltage and an impedandenVd node is updated,
gpsim performs a Thevenin voltage summing of all the stirtagether. The resultant
voltage is then propagated to all connected stimuli as thentistate of the node.

For example, in the port A open collector / port B weak pullagmnection example,
gpsim assigns a voltage of 5V with an impedance of 20kohmise@till up resistor,
and a voltage of OV with an impedance of 1500hms to the opdaatot if it is active,
or 100Mohms if it's not driving. The Thevenin sum will be rdug 0.05V if the output
is driving, or 5V otherwise. Capacitive effects are not eutly supported.

7.2 1/0O Pins

gpsim models 1/O pins as stimuli. Thus anywhere a stimuluséd, an 1/0O pin may
be substituted. For example, you may want to tie two I/O pinsrie another; like a
port B pull up resistor to a port A open collector. gpsim audtically creates the 1/0O
pin stimuli whenever a processor is created. All you needatis do specify a node and
then attach the stimuli to it. The names of these stimuli arsméd by concatenating
the port name with the bit position of the 1/0 pin. For exampié€3 in port B is called
portb3.

Here’s a list of the types of I/0 pin stimuli that are suppdrte

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 43

| I/0 Pin Type | Function |
INPUT_ONLY Only accepts input (like MCLR)
Bl_DIRECTIONAL Can be a source or a load (most I/O pins)
BI_DIRECTIONAL_PU PU=Pullup resistor (PORTB)
OPEN_COLLECTOR Can only drive low (RA4 on c84)

There is no special pin type for analog I/O pins. All pic amgiloputs are multiplexed
with digital inputs. The 1/O pin definition will always be fdhe digital input. gpsim
automatically knows when 1/O pin is analog input.

7.3 Asynchronous Stimuli

Asynchronous stimuli are analog or digital stimuli that cluange states at any given
instant (limited to the resolution of the cycle counter). eyttan be defined to be
repetitive too.

| parameter | function |
start_cycle | The # of cycles before the stimulus stafts
cycles[] An array of cycle #'s
data[] Stimulus state for a cycle
period The # of cycles for one period
initial_state The initial state before data[0]

When the stimulus is first initialized, it will be driven todHinitial state’ and will
remain there until the cpu’s instruction cycle counter rhatcthe specified 'start’ cycle.
After that, the two arrays 'cycles[]’ and 'data[]’ define ts@mulus’ outputs. The
size of the arrays are the same and correspond to the numbeets that are to be
created. So the event number, if you will, serves as the imttexthese arrays. The
‘cycles|[]’ array define when the events occur while the 'ataray defines the states
the stimulus will enter. The 'cycles|[]’ are measured witlsgect to the 'start’ cycle.
The asynchronous stimulus can be made periodic by spegifii;mnumber of cycles
in the 'period’ parameter.

Here’s an example that generates three pulses and thergepea

stimulus asynchronous_stimulus # or we could have used asy
The initial state AND the state the stimulus is when

it rolls over

initial_state 1

all times are with respect to the cpu’s cycle counter
start_cycle 100

the asynchronous stimulus will roll over in ’period’

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 44

cycles. Delete this line if you don’t want a roll over.
period 5000
Now the cycles at which stimulus changes states are

specified. The initial cycle was specified above. So
the first cycle specified below will toggle this state.
In this example, the stimulus will start high.
At cycle 100 the stimulus ’begins’. However nothing happens
until cycle 200+100.
{ 200, 0,

300, 1,

400, O,

600, 1,

1000, O,

3000, 1 %

Give the stimulus a name:

name asy_test

Finally, tell the command line interface that we’re done
with the stimulus

end

7.3.1 Analog Asynchronous Stimuli

Analog Asynchronous Stimuli are identical to Synchronotim@li except the data
points are floating point numbers.

7.4 Extended Stimuli

Discuss the extended stimuli in the modules/ directory. antipular, describe the
PulseGemmodule and how it can complete replace the asynchronousilgtirilso
describe théullUp andPullDownmodules and how they can be manipulated into be-
ing general purpose DC voltage sources (FIXME, would it me@se to rename these
modules?).

Chapter 8

Modules

gpsim has been designed to debug microprocessors. Howsiggprocessors are
always a part of a system. And invariably, the bugs one ofteroenters are those
that are a result of interfacing with a system. Modules mteuisers with a way to
extend gpsim and simulate a system. For examplesyhenmay be a processor with
a few pull up resistors and switches or it may be a processtraanLCD display.
gpsim provides a few modules that one may use either for dgbg@r as templates
for creating new modules.

Modules reside in a library and are dynamically loaded wiith mhodulecommand.
All modules have 1/0O pins which can connect to other modulegrocessors. Most
modules providattributesthat allow the user to control a module’s behavior or query
its internal state. For example, the USART module has tréresmd receive baud rate
attributes that may be configured:

gpsim> Ul.txbaud = 9600 # set the transmit rate
gpsim> Ul.rxbaud # query the receiver rate
9600

The symbol command can be used to query all attributes of ailmod

gpsim> symbol Ul. # note the period
Ul = USARTModule

Ul.console = false

Ul.crlf = true

Ul.loop = true

Ul.rx =0

Ul.rxbaud = 9600

Ul.tx =0

Ul.txbaud = 9600

Ul.xpos = 72.00000000000000
Ul.ypos = 276.0000000000000

45

CHAPTER 8. MODULES 46

Modules may provide only help which can be accessed usingelpecommand:

gpsim> help Ul
USARTModule
no description

Well, the USART module isn’t the best example here! Howeadretter example is
one of the USART attributes.

gpsim> help Ul.txbaud
9600
USART Module Transmitter baud rate

8.1 gpsim Modules

gpsim provides a library of useful modules for simulatioheTurrent version includes
the following modules:

pushbutton
pullup A resistor connected (nominally) to VVdd
pulldown A resistor connected (nominally) to Vss
usart A serial interface with a GUI terminal window
pulsegen

[2C-EEPROM2K | A 256 byte 12C serial EEPROM like the 24LC024.
I2C-EEPROM16K | A 2k byte I2C serial EEPROM like the 24LC168B.
I2C-EEPROM256K| A 32k byte 12C serial EEPROM like the 24LC256.

switch Switch, which connects two nodes together
and?2 2-input logical AND gate
or2 2-input logical OR gate
Xor2 2-input logical XOR gate
not Inverter (logical NOT gate)
led_7segments A 7-segment LED digit
led A single LED with cathode tied to Vss.
TTL377 A 74HC377 style 8-bit tristate latch
Encoder
8.1.1 USART

The USART module is a full duplex configurable USART. In gregshmode, the US-
ART will display its output in a console. In addition, the cmte will accept keyboard

input.

CHAPTER 8. MODULES 47

Attributes

X - The.tx attribute is the USART transmit register. Data written tis tittribute will
initiate a transmission. The USART does not support a trérfsifrO.

.rx - The.rx attribute is the USART receiver register. Data receivedigyWSART is
available for querying through here.

.txbaud - Thetxbaudattribute specifies the transmitter baud rate.
.rxbaud - The .rxbaud attribute specifies the receiver bated r

.console - When set tvue, the console window will display received data and will
accept keyboard entries for the transmitter.

.crlf - When set tdrue, carriage returns and line feeds generate new lines in theode
window.

.hex - When set ttrue, the data is assumed to be binary and all bytes are shown in hex
.loop - When set to true, received characters are loopedtbable transmitter.

.Xpos - horizontal position in breadboard window.

.ypos - vertical position in breadboard window.

1/0 Pins

.TXPIN - transmit pin

.RXPIN - receiver pin

.CTS - Clear to send pin. This can be left unconnected
.RTS - Request to send pin.

8.1.2 Logic

The only attributes supported be the logic devices are thedsird.xposand .ypos
breadboard positions.

and2 - Two input AND gate
I/O pins

.in0 - First input
.in1 - First input
.out - Output

or2 - Two input OR gate

.in0 - First input
.inl - First input
.out - Output

CHAPTER 8. MODULES 48

xor2 - Two input XOR gate

.in0 - First input
.in1 - First input
.out - Output

not - Inverter

.in0 - Input
.out - Output

8.1.3 12C EEPROM

There are currently three 12C EEPROMSs supported: 12C-EERROQI2C-EEPROM16k,
and [2C-EEPROM256K.

The commands 'dump e module_name filename’ and 'load e modatee filename’
can be used to save and restore the contents of the EEPROMeanadthis allows the
contents of the EEPROM to be preserved between runs of gpsim.

The cells of the EEPROM can be examined and modified usingaimerand interface
with the commands 'module_name.eeData[index]’ and 'medoame.eeData[index]
=new_value'. The following example shows loading an EEPR@blule, setting cell
16 to '0’ (0x30) and checking that the new value was written.

*xgpsim> module load I2C-EEPROM16k e2
**xgpsim>

xkgpsim> e2.eeDatal[16] = $30

x*gpsim> e2.eeDatal[16]

e2.eeDatal[$10] = $30

**xgpsim>

1/0O Pins

A0 - Chip select to set bit 0 of slave address
Al - Chip select to set bit 1 of slave address
A2 - Chip select to set bit 2 of slave address
.SCL - 12C serial clock

.SDA - 12C serial data

.WP - Hardware write protect

CHAPTER 8. MODULES 49

8.1.4 Switches & Resistors

The switchmodule is a model of a simple two terminal switch. It may betoated
either from the command line or the breadboard GUI. $Wwéchmodule’s open and
closed resistance are controlled by attributes. Thus adwoihal resistor can be mod-
eled as a switch that is always closed (or open).

Attributes

.Ropen - Switch resistance in ohms when the switch is opened.
.Rclosed - Switch resistance in ohms when the switch is dlose

.State - Switch state. The switch state takes the valuepenor closed although
falsefor open andrue for closed is supported for backward compatibility. Thiate
attribute is writable.

1/0O Pins

.A - One side

.B - The other side

8.1.5 \oltage Sources, Resistors, and Capacitors

The pullup andpulldownmodules are two terminal devices with one terminal tied to

a voltage source. Their voltage, resistance, and pin capaea are controllable via
attributes.

Attributes

.voltage - DC voltage
.resistance - resistance in ohms between the 1/0 pin andtitegye source.
.capacitance - capacitance in farads between the 1/O pigieohd.

1/0 Pins

.pin - the only pin exposed.

8.1.6 LED_7SEGMENTS and LED

led_7segments - 7 segment common cathod LED display

The segments are numberd as per the following figure.

CHAPTER 8. MODULES 50

51011
41612
3
1/0 Pins

.cc - common cathod
.seg0 - segment O
.segl - segment 1
.seg2 - segment 2
.seg3 - segment 3
.seg4 - segment 4
.seg5 - segment 5
.seg6 - segment 6

Led - Simple LED

The simple LED is a single pin module with an implied groundathod. The LED is
by default red, but can be made a different color via an aitieib

Attributes

color - LED color, possible values red, green, yellow, oeogblue
I/O Pin

.in - drives LED

8.2 Third Party Modules

In addition to the standard modules, third are separatslyiblite gpsim modules.

8.2.1 Character LCD - HD44780

This module emulates the ubiquitous HD44780 character LCDs

CHAPTER 8. MODULES 51

8.2.2 Graphic LCD - SED1530

This module emulates a 100X32 pixel graphics LCD based oth $E®1350 con-
trollers.

8.2.3 64 x 8, Serial, 12C Real-Time Clock - DS1307

This module emulates the Dallas Semiconductor DS1307 Ree-clock which also
has 56 x 8 eeprom memory and connects via an 12C serial bus.

8.3 Writing new modules

A module is a library of code. On Windows the library is a .Dukdeon Unix a shared
library. There are a few details that a module must adhetmitan general the module
has full access to gpsim’s API.

The easiest way to write a new module is to start from the saoode from one of

the existing modules. For example, suppose your projectymes a serial bit-stream
in PPM coding and you want to display the output during theugation. The external

module you need is similar to the usart module but not the samstart by making a
copy of the usart module and then modify it to work how you need

To be able to load your module into gpsim it needs to be in atiprUsually you will be
creating a new library just for one device, but sometimeswiithave a few devices.
Either way, the library must declare to gpsim what devicesiitains. This is achieved
with an array of Module_Types class instances, returnegsogby a function named
“get_mod_list”. All gpsim module libraries must declaréstfunction. You can copy
the required template from the gpsim source — probably otfesofextras” modules is
slightly cleaner than the main library. For our PPM decod@neple, we might have a
module_manager.cc containing the following code:

/* IN_MODULE should be defined for modules */
#define IN_MODULE
#include <stdio.h>
#include <gpsim/modules.h>
#include "ppm.h"
Module_Types available_modules[] =
{
{ "ppm_display", "ppm_rx_iface", PpmDisplay: :construct},
// No more modules
{ NULL,NULL,NULL}
s
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

/***

CHAPTER 8. MODULES 52

* get_mod_list - Report all of the modules in this library.
*
* This is a required function for gpsim compliant libraries.

*/
Module_Types * get_mod_list(void)
{
return available_modules;
}
#ifdef __cplusplus
¥
#endif /* __cplusplus */

This declares that this library provides one module, cabieoh_display, implemented
by the C++ class PpmDisplay. The class which implements theute must provide a
static method “construct” to create a new instance of thesclaor example:

Module * PpmDisplay::construct(const char *_new_name=0)

{
PpmDisplay *ppmd = new PpmDisplay(_new_name) ;
ppmd->create_iopin_map();
ppmd->create_window(_new_name) ;
return ppmd;

}

Your module will need to include stimuli for its 1/0O connemtis. You can use the stan-

dard gpsim stimulus classes: IOPIN, io_bidirectionalbidlirectional_pu,io_open_collector.
In many cases, however, you will want to derive your own cfem® one of them. This

will allow you to customise the actions when the node stassgles. For example:

class DecoderPin : public IOPIN

{

private:
PpmDisplay * Parent;

public:
DecoderPin (PpmDisplay * parent, unsigned int b, const char * name=0);
virtual void setDrivenState(bool new_state);

s

The only methods we provide here are the constructor and emidgen “setDriven-
State”. This is because our PPM decoder needs to be told akengut pin changes
state.

Chapter 9

Symbolic Debugging

gpsim maintains a symbol table.
<write me>

53

Chapter 10

Macros

<write me>

54

Chapter 11

Hex Files

The target code simulated by gpsim can be supplied by a hexfilaore specifically

an Intel Hex file. gpsim accepts the format of hex provided ppgsgn and mpasm. The
hex file does not provide any symbolic information. It's recoended that hex files
only be used if 1) you suspect there’s a problem with the wag fites are generated
by your assembler or compiler OR 2) your assembler or comdid@sn’t generate
.cod files. Also, you must supply a processor when loadingfitex See the load

command.

55

Chapter 12

The ICD- Not Supported in
versions 0.21.0 and later

gpsim supports (partly) the first version of the ICD (as oot ICD2 (the round
hockey-puck shaped one)).

Special configuration of the code

Read the MPLAB ICD USER’s GUIDE.
Here’s the short version:

e disable at least: brown out detection, low voltage programgnand all code
protection. Itis probably good to turn of the watchdog teee the MPLAB ICD
USER'’s GUIDE for more information.

have a NOP as the first instruction.

Don't touch RB6 or RB7.

e Don't use the last stack level.

e Don't use these registers and program words:

| Processof Register | Program |
-870/1/2 0x70, OxBB-0xBF Ox6E0-Ox7FF
-873/4 | 0x6D, 0x1fD, OXEB-0xFO, OX1Eb-Ox1Fp OXEEO-OxFFF
-876/7 0x70, OX1Eb-Ox1Ef Ox1F00-Ox1FFF
icdprog

Download and install icdprog.
Use icdprog to program the target with the hex fitlprog mycode.hgx

56

CHAPTER 12. THE ICD- NOT SUPPORTED IN VERSIONS 0.21.0 AND LBRS7

ICD usage

Start gpsim like this:

gpsim -d /dev/ttySO -s mycode.cod

, assuming the ICD is connected to the first serial port.
Now you can type 'icd’ to see some information:

**gpsim> icd

ICD version "2.31.00" was found.
Target controller is 16F877 rev 13.
Vdd: 5.2 Vpp: 13.3

Debug module is present

2.31 is the firmware version. | have only tried this particwersion...

You can step, reset, run, halt, set the breakpoint and reacefjisters. It works both
from the GUI and the cli.

ICD TODO

e MPLAB has a setting for target CPU frequency, | have onlydtrgth a 20MHz
crystal, so there may be adjustments to be made to the sertaimpeout settings
in gpsim.

e The source, disassembly, watch, symbol and RAM windows siokkd the rest
doesn'’t. | guess the breadboard should be able to work dtftaabe pic, but it
doesn't.

e EEPROM support
e modifying data
e Fix the Ul to give more feedback about what's happening duldmg delays.

e Better error detection. gpsim doesn’t always see that tigetés not functional.

Chapter 13

Examples

The examples/iubdirectory contains several examples. &kamples/projectsgub-
directory demonstrate sample projects that can serve galdtes for new projects.
In addition, theexamples/modulesubdirectory contains several examples illustrating
how to use gpsim’s various modules. Finally, as describezhapter 14, gpsim’s re-
gression tests illustrate many powerful debugging teahesghat have not been fully
documented.

usart_gui example

Each example contains a brifEADME explaining its purpose. For example, the
READMEfor theusart_guiexample in theexamples/moduletirectory contains

The tests the USART module with the GUI fix.

The code for a 16£628 PIC is used. The code first transmits a string of
characters, which are instructions to the user, to the USART module which
will then be displayed on its GUI. This verifies that the USART can receive
serial data.

When the focus is on the USART GUI window, characters typed on the keyboard
are sent from the USART to the PIC and then retransmitted from the PIC back
to the USART.

If all works, the typed characters will be displayed in the GUI text window
of the USART. Both transmit and receive must be functioning for this to
happen.

Fixme- we really need to document all of the examples!

58

Chapter 14

Regression Tests

Starting with version 0.22.0, gpsim distributes regrassests. The purpose of a re-
gression test is to validate correctness. The tests argrobito exercise many of
the aspects of gpsim and gpsim’s modules. While designadapity for developers

though, the regression tests also serve as a rich sourcewnipdes. There are many
features gpsim’s developers will tuck away into a regresgigt and fail to document!

59

Chapter 15

Theory of Operation

This section is only provided for those who may be interestdtbw gpsim operates.
The information in here is 'mostly’ accurate. However, asigpevolves so do the
details of the theory of operation. Use the information jled here as a high level
introduction and use the (well commented :]) source to |&aerdetails.

15.1 Background

gpsim is written mostly in C++. Why? Well the main reason is#sily implement
a hierarchical model of a pic. If you think about a microcotigr, it's really easy to
modularize the various components. C++ lends itself wethte conceptualization.
Furthermore Microchip, like other microcontroller manctizrers, has created families
of devices that are quite similar to one another. Again, the @rovides 'inheritance’
that allows the relationships to be shared among the vanmggls of pics.

15.2 Instructions

There’s a base class for the 14-bit instructions (I plan t@ge step further and cre-
ate a base class from which all pic instructions can be déyivé primarily serves
two purposes: storage that is common for each instructidreaneans for generically
accessing virtual functions. The common information cstssof a name - or more
specifically the instruction mnemonic, the opcode, and atpoto the processor own-
ing the instruction. Some of the virtual functions are 'exetand 'name’. As the hex
file is decoded, instances of the instructions are creatddstmed in an array called
program_memory. The index into this array is the addresshi¢hahe instruction
resides. To execute an instruction the following code secgiés invoked:

program_memory[pc.value]->execute();

60

CHAPTER 15. THEORY OF OPERATION 61

which says, get the instruction at the current program @upic.value) and invoke
via the virtual function execute(). This approach allows@xion break points to be
easily set. A special break point instruction can replaeetie residing in the program
memory array. When 'execute’ is called the break point cambaked.

15.3 General File Registers

A file register is simulated by the ’file_register’ class. Téés one instance of a
'file_register’ object for each file register in the PIC. Afithe registers are collected
together into an array called 'registers’ which is indexgdHe registers’ correspond-
ing PIC addresses. The array is linear and not banked likaritthe PIC. (Banking is

handled during the simulation.)

15.4 Special File Registers

Special file registers are all of the other registers thatnategeneral file registers.

This includes the core registers like status and option &salthe peripheral registers
like eeadr for the EEPROM. The special file registers arevddrirom the general file

registers and are also stored in the 'registers’ array. &leone instance for each
register - even if the register is accessible in more thanbamk. So for example,

there’s only one instance for the ’status’ register, howéveay be accessed through
the 'registers’ array in more than one place.

All file registers are accessed by the virtual functions "und 'get’. This is done
for two main reasons. First, it conveniently encapsuldtesireakpoint overhead (for
register breakpoints) in the file register and not in therutdton. Second, and more
important, it allows derived classes to implement the pdt@et more specifically. For
example, a 'put’ to the indf register is a whole lot differéh&in a put to the intcon
register. In each case, the 'put’ initiates an action beysingbly storing a byte of data
in an array. It also allows the following code sequence tods#lgimplemented:

movlw trisa ;Get the address of tris

movwi fsr
movf indf,w ;Read trisa indirectly

15.5 Example of an instruction

Here’s an example of the code for the movf instruction tHasitates what has been
discussed above. Somewhere in gpsim the code sequence:

program_memory [pc.value]->execute();

CHAPTER 15. THEORY OF OPERATION 62

is executed. Let’s say that the pc is pointing to a movf irdtam. The ->execute()
virtual function will invoke MOVF::execute. I've added eatcomments (that aren’tin
the main code) to illustrate in detail what's happening.

void MOVF::execute(void)

{

unsigned int source_value;

// All instructions are ’traced’ (discussed below). It’s sufficient
//to only store the opcode. However, even this may be unnecessary since
//the program counter is also traced. Expect this to disappear in the
//future. ..

trace.instruction(opcode) ;

// ’source’ is a pointer to a ’file_register’ object. It is initialized
//by reading the ’registers’ array. Note that the index depends on the
//’rp’ bits (actually just one bit) in the status register. Time is

// saved by caching rp as opposed to decoding the status register.
source = cpu->registers[cpu->rp | opcode®_IN_INSTRUCTION_MASK];

// We have no idea which register we are trying to access and how it
//should be accessed or if there’s a breakpoint set on it. No problem,
//the virtual function ’get’ will resolve all of those details

// and ’do the right thing’.

source_value = source->get();

// If the destination is W, then the constructor has already initialized
//’destination’. Otherwise the destination and source are the same.
if (opcode&DESTINATION_MASK)

destination = source; // Result goes to source

// Write the source value to the destination. Again, we have no idea
// where the destination may be or

// or how the data should be written there.

destination->put (source_value);

// The movf instruction will set Z (zero) bit in the status register
//if the source value was zero.
cpu->status.put_Z(0==source_value);

// Finally, advance the pc by one.
cpu->pc.increment () ;

CHAPTER 15. THEORY OF OPERATION 63

15.6 Trace

Everything that is simulated is tracedH of the time. The trace buffer is one huge
circular buffer of integers. Information is or'ed with a ¢eatoken and then is stored
in the trace buffer. No attempt is made to associate the itertee trace buffer while
the simulator is simulating a PIC. Thus, if you look at the tavffer you will see stuff
like: cycle counter = ..., opcode fetch = ..., register read,7egister write = ..., etc.
However, this information is post processed to ascertaiatwippened and when it
happened. It's also possible to use this information to wthdsimulation, or in other
words you can step backwards. | don’t have this implemeng¢thpugh.

15.7 Breakpoints

Breakpoints fall into three categories: execution, regjsind cycle.

Execution:

For execution breakpoints a special instruction appregsi@alled 'Breakpoint_Instruction
is created and placed into the program memory array at ttadidocthe break point is
desired. The original instruction is saved in the newly trddreakpoint instruction.
When the break pointis cleared, the original instructidieished from the break point
instruction and placed back into the program memory array.

Note that this scheme has zero overhead. The simulationlysaffiected when the
breakpoint is encountered.

Register:

There are at least four different breakpoint types that esdb on a register: read any
value, write any value, read a specific value, or write a jpecalue. Like the execu-
tion breakpoints, there are special breakpoint regishatséplace a register object. So
when the user sets a write breakpoint at register 0x20 fomeleg, a new breakpoint
object is created and insert into the file register array @tion 0x20. When the sim-
ulator attempts to access register location 0x20, the paakobject will be accessed
instead.

Note that this scheme too has zero overhead, accept wheakpbist is encountered.

Cycle:

Cycle breakpoints allow gpsim to alter execution at a speiiitruction cycle. This is
useful for running your simulation for a very specific amooftime. Internally, gpsim
makes extensive use of the cycle breakpoints. For exani@el MRO object can be
programmed to generate a periodic cycle break point.

CHAPTER 15. THEORY OF OPERATION 64

Cycle break points are implemented with a sorted doublkekhlist. The linked list
contains two pieces of information (besides the links): djpele at which the break is
to occur and the call back functibthat's to be invoked when the cycle does occur.
The break logic is extremely simple. Whenever the cycle tais advanced (that is,
incremented), it's compared to the next desired cycle bpeaht. If there’s NO match,
then we're done. So the overhead for cycle breaks is the tmgeired to implement
a comparison. If there IS a match, then the call back functissociated with this
break point is invoked and the next break point in the dolibled list serves as the
reference for the next cycle break.

15.8 TIMERL1 External input

The timerl module can support external input, on some psocesas either a crystal
using two pins or a single pin drive.

External Crystal

If an external crystal, typically 32,768 KHz, is being us#tten both TLOSCEN and
TMRI1CS in register TLCON should be true. Gpsim will then auwtically simulate

timerl being driven at the crystal frequency which can bengkd from the default
frequency by changing the value of the processor symbaadathrl_freq.

Single pin drive

If the single pin drive is being used, then the TLCON registisrfor TLOSCEN should
be false and TMR1CS true, and the T1CKI pin must be driven raiynsuch as by a
stimuli command.

1A call back function is a pointer to a function. In this cortteypsim is given a pointer to the function
that's to be invoked (called) whenever a cycle break occurs.

Chapter 16

LICENSES

16.1 Gpsim.lyx

Copyright(©2000-2010
T. Scott Dattalo, Ralf Forsberg, Robert Pearce, Borut RagiedhRoy Rankin
The source of this document is gpsim.lyx.

This document is free software; you can redistribute it anaodify it under the terms
of the GNU General Public License published by the Free Sofiiroundation; either
version 2, or (at your option) any later version.

This document is distributed in the hope that it will be uselfut WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTARBITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Publierise for
more details.

You should have received a copy of the GNU General Publicrisealong with gpsim;
see the file COPYING. If not, write to the Free Software Fouintig 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

16.2 Gpsim

The Gpsim program is licensed under version 2 or higher of3N& General Public
License. Detalils of this license can be found in the COPYIN&Viihich should have
come with this program. If not the license can be found athvw.gnu.org/licenses/gpl-2.0.html.

16.3 Libraries libgpsim, libgpsim_modules, libgpsim_eX&m

The libraries libgpsim, libgpsim_modules, and libgpsitddbem are licensed under
version 2.1 of the GNU Lesser General Public License. Detdithis license can be

65

http://www.gnu.org/licenses/gpl-2.0.html

CHAPTER 16. LICENSES 66

found in the COPYING.LESSER file whcih should have come wihth program. If
not, the license can be found at http://www.gnu.org/liesfgpl-2.1.html.

http://www.gnu.org/licenses/lgpl-2.1.html

Index

7SEGMENTS; 49

and2| 47
attach| 10

break| 10, 111
bus/ 10

Capacitord, 49
clear/10] 13

disassemble, 10, 14
DS1307,51
dump| 10} 14

echo| 15
frequency, 10, 15
GNU GPL,/ 65

HD44780] 50
help/10; 15

12C EEPROM; 48
icd,[10/15
instructions], 60

LED,[49
list,/10, 15
load/ 10; 16
log,/10
Logic,[47

macros|, 16
module] 10, 18
Modules| 45

node| 10, 19

not,[48

or2,/47
processor, 10, 20
quit,[10/20

registers, 61
Resistors, 49
run, 10/ 20

SED1530, 51
set[10

step, 10, 20
Stimulus] 41
stimulus| 10, 21
stopwatch, 10, 22
Switches| 49
symbol] 10} 21

trace| 10, 23
USART modul€, 46

version| 10
Voltage Sources, 49

x,[10/23
xor2,[48

67

	gpsim - An Overview
	Making the executable
	Make Details - ./configure options
	RPMs
	Windows

	Running
	Requirements

	Command Line Interface
	attach
	break
	clear
	disassemble
	dump
	echo
	frequency
	help
	icd
	list
	load
	macros
	module
	node
	processor
	quit
	run
	step
	symbol
	stimulus
	stopwatchThe stopwatch is really a collection of attributes and not a command. But the behavior is so similar to a command that it has been included here.
	trace
	version
	x

	Graphical User Interface
	Main window
	Menus
	Buttons
	Simulation mode

	Source Browsers
	.asm Browser
	Opcode view - the .obj Browser

	Register views
	Symbol view
	Watch view
	Stack viewer
	Breadboard
	Trace viewer
	Profile viewer
	Stopwatch
	Scope Window

	Scripting and Configuring
	Embedded Commands
	.sim macro
	.command macro
	.assert macro

	Sockets

	Assertions and Extended Breakpoints
	Assertions and Embedded Simulation commands

	Trace and Log: What has happen?
	Simulating the Real World: Stimuli
	How They Work
	Contention among stimuli

	I/O Pins
	Asynchronous Stimuli
	Analog Asynchronous Stimuli

	Extended Stimuli

	Modules
	gpsim Modules
	USART
	Logic
	I2C EEPROM
	Switches & Resistors
	Voltage Sources, Resistors, and Capacitors
	LED_7SEGMENTS and LED

	Third Party Modules
	Character LCD - HD44780
	Graphic LCD - SED1530
	64 x 8, Serial, I2C Real-Time Clock - DS1307

	Writing new modules

	Symbolic Debugging
	Macros
	Hex Files
	The ICD- Not Supported in versions 0.21.0 and later
	Examples
	Regression Tests
	Theory of Operation
	Background
	Instructions
	General File Registers
	Special File Registers
	Example of an instruction
	Trace
	Breakpoints
	TIMER1 External input

	LICENSES
	Gpsim.lyx
	Gpsim
	Libraries libgpsim, libgpsim_modules, libgpsim_eXdbm

