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Chapter 1

Introducing PTLsim

1.1 Introducing PTLsim

PTLsim is a state of the art cycle accurate microprocessor simulator and virtual machine for the
x86 and x86-64 instruction sets. PTLsim models a modern superscalar out of order x86-64 com-
patible processor core at a configurable level of detail ranging from full-speed native execution on
the host CPU all the way down to RTL level models of all key pipeline structures. In addition, the
complete cache hierarchy, memory subsystem and supporting hardware devices are modeled with
true cycle accuracy. PTLsim supports the full x86-64 instruction set of the Pentium 4+, Athlon 64
and similar machines with all extensions (x86-64, SSE/SSE2/SSE3, MMX, x87). It is currently
the only tool available to the public to support true cycle accurate modeling of real x86 microar-
chitectures.

PTLsim is very different from most cycle accurate simulators. Because it runs directly on the same
platform it is simulating (an x86 or x86-64 machine, typically running Linux), it is able to switch in
and out of full out of order simulation mode and native x86 or x86-64 mode at any time completely
transparent to the running user code. This lets users quickly profile a small section of the user code
without the overhead of emulating the uninteresting parts, and enables automatic debugging by
finding the divergence point between a real reference machine and the simulation.

PTLsim comes in two flavors. The classic version runs any 32-bit or 64-bit single threaded
userspace Linux application. We have successfully run a wide array of programs under PTLsim,
from typical benchmarks to graphical applications and network servers.

PTLsim/X runs on the bare hardware and integrates with Xen hypervisor, allowing it to provide
full system x86-64 simulation, multi-processor and multi-threading support (SMT and multi-core
models), checkpoints, cycle accurate virtual device timing models, deterministic time dilation, and
much more, all without sacrificing the speed and accuracy inherent in PTLsim’s design. PTLsim/X
makes it possible to run any Xen-compatible operating system under simulation; we have success-
fully booted arbitrary Linux distributions and industry standard applications and benchmarks under
PTLsim/X.

Compared to competing simulators, PTLsim provides extremely high performance even when run-
ning in full cycle accurate out of order simulation mode. Through extensive tuning, cache profiling
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and the use of x86 specific accelerated vector operations and instructions, PTLsim significantly
cuts simulation time compared to traditional research simulators. Even with its optimized core,
PTLsim still allows a significant amount of flexibility for easy experimentation through the use of
optimized C++ template classes and libraries suited to synchronous logic design.

1.2 History

PTLsim was designed and developed by Matt T. Yourst <yourst@yourst.com> with its beginnings
dating back to 2001. The main PTLsim code base, including the out of order processor model,
has been in active development since 2003 and has been used extensively by our processor design
research group at the State University of New York at Binghamton in addition to hundreds of major
universities, industry research labs and several well known microprocessor vendors.

PTLsim is not related to other legacy simulators. It is our hope that PTLsim will help micropro-
cessor researchers move to a contemporary and widely used instruction set (x86 and x86-64) with
readily available hardware implementations. This will provide a new option for researchers stuck
with simulation tools supporting only the Alpha or MIPS based instruction sets, both of which
have since been discontinued on real commercially available hardware (making co-simulation im-
possible) with an uncertain future in up to date compiler toolchains.

The PTLsim software and this manual are free software, licensed under the GNU General Public
License version 2.
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Chapter 2

Getting Started

2.1 Documentation Map

This manual has been divided into several parts:

• Part I introduces PTLsim, reviews the x86 architecture, and describes PTLsim’s implemen-
tation of x86 in terms of uops, microcode and internal structures.

• Part II describes the use and implementation of userspace PTLsim.

– If you simply want to use PTLsim, this part starts with an easy to follow tutorial

• Part III describes the use and implementation of full system PTLsim/X.

– If you simply want to use full system PTLsim/X, this part starts with an easy to follow
tutorial

• Part IV details the design and implementation of the PTLsim out of order superscalar core
model

– Read this part if you want to understand and modify PTLsim’s out of order core.

• Part V is a reference manual for the PTLsim internal uop instruction set, the performance
monitoring events the simulator supports and a variety of other technical information.

2.2 Additional Resources

The latest version of PTLsim and this document are always available at the PTLsim web site:

http://www.ptlsim.org

12



Chapter 3

PTLsim Architecture
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Chapter 4

PTLsim Code Base

4.1 Code Base Overview

PTLsim is written in C++ with extensive use of x86 and x86-64 inline assembly code. It must be
compiled with gcc on a Linux 2.6 based x86 or x86-64 machine. The C++ variant used by PTLsim
is known as Embedded C++. Essentially, we only use the features found in C, but add templates,
classes and operator overloading. Other C++ features such as hidden side effects in constructors,
exception handling, RTTI, multiple inheritance, virtual methods (in most cases), thread local stor-
age and so on are forbidden since they cannot be adequately controlled in the embedded “bare
hardware” environment in which PTLsim runs, and can result in poor performance. We have our
own standard template library, SuperSTL, that must be used in place of the C++ STL.

Even though the PTLsim code base is very large, it is well organized and structured for extensibil-
ity. The following section is an overview of the source files and subsystems in PTLsim:

• PTLsim Core Subsystems:

– ptlsim.cpp and ptlsim.h are responsible for general top-level PTLsim tasks and start-
ing the appropriate simulation core code.

– uopimpl.cpp contains implementations of all uops and their variations. PTLsim imple-
ments most ALU and floating point uops in assembly language so as to leverage the
exact semantics and flags generated by real x86 instructions, since most PTLsim uops
are so similar to the equivalent x86 instructions. When compiled on a 32-bit system,
some of the 64-bit uops must be emulated using slower C++ code.

– ptlhwdef.cpp and ptlhwdef.h define the basic uop encodings, flags and registers. The
tables of uops might be interesting to see how a modern x86 processor is designed at the
microcode level. The basic format is discussed in Section 5.1; all uops are documented
in Section 27.

– seqcore.cpp implements the sequential in-order core. This is a strictly functional core,
without data caches, branch prediction and so forth. Its purpose is to provide fast
execution of the raw uop stream and debugging of issues with the decoder, microcode
or virtual hardware rather than a specific core model.
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• Decoder, Microcode and Basic Block Cache:

– decode-core.cpp coordinates the translation from x86 and x86-64 into uops, maintains
the basic block cache and handles self modifying code, invalidation and other x86
specific complexities.

– decode-fast.cpp decodes the subset of the x86 instruction set used by 95% of all
instructions with four or fewer uops. It should be considered the “fast path” decoder in
a hardware microprocessor.

– decode-complex.cpp decodes complex instructions into microcode, and provides most
of the assists (microcode subroutines) required by x86 machines.

– decode-sse.cpp decodes all SSE, SSE2, SSE3 and MMX instructions

– decode-x87.cpp decodes x87 floating point instructions and provides the associated
microcode

– decode.h contains definitions of the above functions and classes.

• Out Of Order Core:

– ooocore.cpp is the out of order simulator control logic. The microarchitectural model
implemented by this simulator is the subject of Part IV.

– ooopipe.cpp implements the discrete pipeline stages (frontend and backend) of the out
of order model.

– oooexec.cpp implements all functional units, load/store units and issue queue and re-
play logic

– ooocore.h defines most of the configurable parameters for the out of order core not
intrinsic to the PTLsim uop instruction set itself.

– dcache.cpp and dcache.h contain the data cache model. At present the full L1/L2/L3/mem
hierarchy is modeled, along with miss buffers, load fill request queues, ITLB/DTLB
and bus interfaces. The cache hierarchy is very flexible configuration wise; it is de-
scribed further in Section 25.

– branchpred.cpp and branchpred.h is the branch predictor. By default, this is set up as
a hybrid bimodal and history based predictor with various customizable parameters.

• Linux Hosted Kernel Interface:

– kernel.cpp and kernel.h is where all the virtual machine "black magic" takes place to
let PTLsim transparently switch between simulation and native mode and 32-bit/64-bit
mode (or only 32-bit mode on a 32-bit x86 machine). In general you should not need to
touch this since it is very Linux kernel specific and works at a level below the standard
C/C++ libraries.

– lowlevel-64bit.S contains 64-bit startup and context switching code. PTLsim execu-
tion starts here if run on an x86-64 system.
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– lowlevel-32bit.S contains 32-bit startup and context switching code. PTLsim execu-
tion starts here if run on a 32-bit x86 system.

– injectcode.cpp is compiled into the 32-bit and 64-bit code injected into the target
process to map the ptlsim binary and pass control to it.

– loader.h is used to pass information to the injected boot code.

• PTLsim/X Bare Hardware and Xen Interface:

– ptlxen.cpp brings up PTLsim on the bare hardware, dispatches traps and interrupts,
virtualizes Xen hypercalls, communicates via DMA with the PTLsim monitor process
running in the host domain 0 and otherwise serves as the kernel of PTLsim’s own mini
operating system.

– ptlxen-memory.cpp is responsible for all page based memory operations within PTL-
sim. It manages PTLsim’s own internal page tables and its physical memory map,
and services page table walks, parts of the x86 microcode and memory-related Xen
hypercalls.

– ptlxen-events.cpp provides all interrupt (VIRQ) and event handling, manages PTL-
sim’s time dilation technology, and provides all time and event related hypercalls.

– ptlxen-common.cpp provides common functions used by both PTLsim itself and PTL-
mon.

– ptlxen.h provides inline functions and defines related to full system PTLsim/X.

– ptlmon.cpp provides the PTLsim monitor process, which runs in domain 0 and inter-
faces with the PTLsim hypervisor code inside the target domain to allow it to com-
municate with the outside world. It uses a client/server architecture to forward control
commands to PTLsim using DMA and Xen hypercalls.

– xen-types.h contains Xen-specific type definitions

– ptlsim-xen-hypervisor.diff and ptlsim-xen-tools.diff are patches that must be
applied to the Xen hypervisor source tree and the Xen userspace tools, respectively, to
allow PTLsim to be injected into domains.

– ptlxen.lds and ptlmon.lds are linker scripts used to lay out the memory image of
PTLsim and PTLmon.

– lowlevel-64bit-xen.S contains the PTLsim/X boot code, interrupt handling and ex-
ception handling

– ptlctl.cpp is a utility used within a domain under simulation to control PTLsim

– ptlcalls.h provides a library of functions used by code within the target domain to
control PTLsim.

• Support Subsystems:

– superstl.h, superstl.cpp and globals.h implement various standard library func-
tions and classes as an alternative to C++ STL. These libraries also contain a number
of features very useful for bit manipulation.
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– logic.h is a library of C++ templates for implementing synchronous logic structures
like associative arrays, queues, register files, etc. It has some very clever features like
FullyAssociativeArray8bit, which uses x86 SSE vector instructions to associatively
match and process ~16 byte-sized tags every cycle. These classes are fully parameter-
ized and useful for all kinds of simulations.

– mm.cpp is the PTLsim custom memory manager. It provides extremely fast memory
allocation functions based on multi-threaded slab caching (the same technique used
inside Linux itself) and extent allocation, along with a traditional physical page alloca-
tor. The memory manager also provides PTLsim’s garbage collection system, used to
discard unused or least recently used objects when allocations fail.

– mathlib.cpp and mathlib.h provide standard floating point functions suitable for em-
bedded systems use. These are used heavily as part of the x87 microcode.

– klibc.cpp and klibc.h provide standard libc-like library functions suitable for use on
the bare hardware

– syscalls.cpp and syscalls.h declare all Linux system call stubs. This is also used by
PTLsim/X, which emulates some Linux system calls to make porting easier.

– config.cpp and config.h manage the parsing of configuration options for each user
program. This is a general purpose library used by both PTLsim itself and the userspace
tools (PTLstats, etc)

– datastore.cpp and datastore.h manage the PTLsim statistics data store file structure.

• Userspace Tools:

– ptlstats.cpp is a utility for printing and analyzing the statistics data store files in
various human readable ways.

– dstbuild is a Perl script used to parse stats.h and generate the datastore template (Sec-
tion 8)

– makeusage.cpp is used to capture the usage text (help screen) for linking into PTLsim

– cpuid.cpp is a utility program to show various data returned by the x86 cpuid instruc-
tion. Run it under PTLsim for a surprise.

– glibc.cpp contains miscellaneous userspace functions

– ptlcalls.c and ptlcalls.h are optionally compiled into user programs to let them
switch into and out of simulation mode on their own. The ptlcalls.o file is typically
linked with Fortran programs that can’t use regular C header files.

4.2 Common Libraries and Logic Design APIs

PTLsim includes a number of powerful C++ templates, macros and functions not found anywhere
else. This section attempts to provide an overview of these structures so that users of PTLsim will
use them instead of trying to duplicate work we’ve already done.
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4.2.1 General Purpose Macros

The file globals.h contains a wide range of very useful definitions, functions and macros we have
accumulated over the years, including:

• Basic data types used throughout PTLsim (e.g. W64 for 64-bit words, Waddr for words the
same size as pointers, and so on)

• Type safe C++ template based functions, including min, max, abs, mux, etc.

• Iterator macros (foreach)

• Template based metaprogramming functions including lengthof (finds the length of any
static array), offsetof (offset of member in structure), baseof (member to base of structure),
and log2 (takes the base-2 log of any constant at compile time)

• Floor, ceiling and masking functions for integers and powers of two (floor, trunc, ceil, mask,
floorptr, ceilptr, maskptr, signext, etc)

• Bit manipulation macros (bit, bitmask, bits, lowbits, setbit, clearbit, assignbit). Note
that the bitvec template (see below) should be used in place of these macros wherever it is
more convenient.

• Comparison functions (aligned, strequal, inrange, clipto)

• Modulo arithmetic (add_index_modulo, modulo_span, et al)

• Definitions of basic x86 SSE vector functions (e.g. x86_cpu_pcmpeqb et al)

• Definitions of basic x86 assembly language functions (e.g. x86_bsf64 et al)

• A full suite of bit scanning functions (lsbindex, msbindex, popcount et al)

• Miscellaneous functions (arraycopy, setzero, etc)

4.2.2 Super Standard Template Library (SuperSTL)

The Super Standard Template Library (SuperSTL) is an internal C++ library we use internally
in lieu of the normal C++ STL for various technical and preferential reasons. While the full
documentation is in the comments of superstl.h and superstl.cpp, the following is a brief list
of its features:

• I/O stream classes familiar from Standard C++, including istream and ostream. Unique to
SuperSTL is how the comma operator (“,”) can be used to separate a list of objects to send
to or from a stream, in addition to the usual C++ insertion operator (“< <”).

• To read and write binary data, the idstream and odstream classes should be used instead.
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• String buffer (stringbuf) class for composing strings in memory the same way they would
be written to or read from an ostream or istream.

• String formatting classes (intstring, hexstring, padstring, bitstring, bytemaskstring, floatstring)
provide a wrapper around objects to exercise greater control of how they are printed.

• Array (array) template class represents a fixed size array of objects. It is essentially a simple
but very fast wrapper for a C-style array.

• Bit vector (bitvec) is a heavily optimized and rewritten version of the Standard C++ bitset

class. It supports many additional operations well suited to logic design purposes and em-
phasizes extremely fast branch free code.

• Dynamic Array (dynarray) template class provides for dynamically sized arrays, stacks and
other such structures, similar to the Standard C++ valarray class.

• Linked list node (listlink) template class forms the basis of double linked list structures in
which a single pointer refers to the head of the list.

• Queue list node (queuelink) template class supports more operations than listlink and can
serve as both a node in a list and a list head/tail header.

• Index reference (indexref) is a smart pointer which compresses a full pointer into an index
into a specific structure (made unique by the template parameters). This class behaves ex-
actly like a pointer when referenced, but takes up much less space and may be faster. The
indexrefnull class adds support for storing null pointers, which indexref lacks.

• Hashtable class is a general purpose chaining based hash table with user configurable key
hashing and management via add-on template classes.

• SelfHashtable class is an optimized hashtable for cases where objects contain their own keys.
Its use is highly recommended instead of Hashtable.

• ChunkList class maintains a linked list of small data items, but packs many of these items into
a chunk, then chains the chunks together. This is the most cache-friendly way of maintaining
variable length lists.

• CRC32 calculation class is useful for hashing

• CycleTimer is useful for timing intervals with sub-nanosecond precision using the CPU cycle
counter (discussed in Section 11.5).

4.2.3 Logic Standard Template Library (LogicSTL)

The Logic Standard Template Library (LogicSTL) is an internally developed add-on to SuperSTL
which supports a variety of structures useful for modeling sequential logic. Some of its primitives
may look familiar to Verilog or VHDL programmers. While the full documentation is in the
comments of logic.h, the following is a brief list of its features:
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• latch template class works like any other assignable variable, but the new value only be-
comes visible after the clock() method is called (potentially from a global clock chain).

• Queue template class implements a general purpose fixed size queue. The queue supports
various operations from both the head and the tail, and is ideal for modeling queues in
microprocessors.

• Iterators for Queue objects such as foreach_forward, foreach_forward_from, foreach_forward_after,
foreach_backward, foreach_backward_from, foreach_backward_before.

• HistoryBuffer maintains a shift register of values, which when combined with a hash func-
tion is useful for implementing predictor histories and the like.

• FullyAssociativeTags template class is a general purpose array of associative tags in which
each tag must be unique. This class uses highly efficient matching logic and supports pseudo-
LRU eviction, associative invalidation and direct indexing. It forms the basis for most asso-
ciative structures in PTLsim.

• FullyAssociativeArray pairs a FullyAssociativeTags object with actual data values to form
the basis of a cache.

• AssociativeArray divides a FullyAssociativeArray into sets. In effect, this class can provide
a complete cache implementation for a processor.

• LockableFullyAssociativeTags, LockableFullyAssociativeArray and LockableAssociativeArray

provide the same services as the classes above, but support locking lines into the cache.

• CommitRollbackCache leverages the LockableFullyAssociativeArray class to provide a cache
structure with the ability to roll back all changes made to memory (not just within this object,
but everywhere) after a checkpoint is made.

• FullyAssociativeTags8bit and FullyAssociativeTags16bit work just like FullyAssociativeTags,
except that these classes are dramatically faster when using small 8-bit and 16-bit tags. This
is possible through the clever use of x86 SSE vector instructions to associatively match and
process 16 8-bit tags or 8 16-bit tags every cycle. In addition, these classes support features
like removing an entry from the middle of the array while compacting entries around it in
constant time. These classes should be used in place of FullyAssociativeTags whenever
the tags are small enough (i.e. almost all tags except for memory addresses).

• FullyAssociativeTagsNbitOneHot is similar to FullyAssociativeTagsNbit, but the user must
guarantee that all tags are unique. This property is used to perform extremely fast match-
ing even with long tags (32+ bits). The tag data is striped across multiple SSE vectors and
matched in parallel, then a clever adaptation of the sum-of-absolute-differences SSE instruc-
tion is used to extract the single matching element (if any) in O(1) time.
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4.2.4 Miscellaneous Code

The out of order simulator, ooocore.h, contains several reusable classes, including:

• IssueQueue template class can be used to implement all kinds of broadcast based issue queues

• StateList and ListOfStateLists is useful for collecting various lists that objects can be on
into one structure.
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Chapter 5

x86 Instructions and Micro-Ops (uops)

5.1 Micro-Ops (uops) and TransOps

PTLsim presents to the target code a full implementation of the x86 and x86-64 instruction set
(both 32-bit and 64-bit modes), including most user and kernel level instructions supported by the
Intel Pentium 4 and AMD K8 microprocessors (i.e. all standard instructions, SSE/SSE2, x86-64
and most of x87 FP). At the present stage of development, the vast majority of all userspace and
32-bit/64-bit privileged instructions are supported.

The x86 instruction set is based on the two-operand CISC concept of load-and-compute and load-
compute-store. However, all modern x86 processors (including PTLsim) do not directly execute
complex x86 instructions. Instead, these processors translate each x86 instruction into a series
of micro-operations (uops) very similar to classical load-store RISC instructions. Uops can be
executed very efficiently on an out of order core, unlike x86 instructions. In PTLsim, uops have
three source registers and one destination register. They may generate a 64-bit result and various
x86 status flags, or may be loads, stores or branches.

The x86 instruction decoding process initially generates translated uops (transops), which have a
slightly different structure than the true uops used in the processor core. Specifically, sources and
destinations are represented as un-renamed architectural registers (or special temporary register
numbers), and a variety of additional information is attached to each uop only needed during the
renaming and retirement process. TransOps (represented by the TransOp structure) consist of the
following:

• som: Start of Macro-Op. Since x86 instructions may consist of multiple transops, the first
transop in the sequence has its som bit set to indicate this.

• eom: End of Macro-Op. This bit is set for the last transop in a given x86 instruction (which
may also be the first uop for single-uop instructions)

• bytes: Number of bytes in the corresponding x86 instruction (1-15). The same bytes field
value is present in all uops comprising an x86 instruction.
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• opcode: the uop (not x86) opcode

• size: the effective operation size (0-3, for 1/2/4/8 bytes)

• cond: the x86 condition code for branches, selects, sets, etc. For loads and stores, this field
is reused to specify unaligned access information as described later.

• setflags: subset of the x86 flags set by this uop (see Section 5.4)

• internal: set for certain microcode operations. For instance, loads and stores marked in-
ternal access on-chip registers or buffers invisible to x86 code (e.g. machine state registers,
segmentation caches, floating point constant tables, etc).

• rd, ra, rb, rc: the architectural source and destination registers (see Section 18.4.1)

• extshift: shift amount (0-3 bits) used for shifted adds (x86 memory addressing and LEA).
The rc operand is shifted left by this amount.

• cachelevel: used for prefetching and non-temporal loads and stores

• rbimm and rcimm: signed 64-bit immediates for the rb and rc operands. These are selected by
specifying the special constant REG_imm in the rb and rc fields, respectively.

• riptaken: for branches only, the 64-bit target RIP of the branch if it were taken.

• ripseq: for branches only, the 64-bit sequential RIP of the branch if it were not taken.

Appendix 27 describes the semantics and encoding of all uops supported by the PTLsim processor
model. The following is an overview of the common features of these uops and how they are used
to synthesize specific x86 instructions.

5.2 Load-Execute-Store Operations

Simple integer and floating point operations are fairly straightforward to decode into loads, stores
and ALU operations; a typical load-op-store ALU operation will consist of a load to fetch one
operand, the ALU operation itself, and a store to write the result. The instruction set also im-
plements a number of important but complex instructions with bizarre semantics; typically the
translator will synthesize and inject into the uop stream up to 8 uops for more complex instruc-
tions.

5.3 Operation Sizes

Most x86-64 instructions can operate on 8, 16, 32 or 64 bits of a given register. For 8-bit and
16-bit operations, only the low 8 or 16 bits of the destination register are actually updated; 32-bit
and 64-bit operations are zero extended as with RISC architectures. As a result, a dependency on
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the old destination register may be introduced so merging can be performed. Fortunately, since
x86 features destructive overwrites of the destination register (i.e. the rd and ra operands are the
same), the ra operand is generally already a dependency. Thus, the PTLsim uop encoding reserves
2 bits to specify the operation size; the low bits of the new result are automatically merged with the
old destination value (in ra) as part of the ALU logic. This applies to the mov uop as well, allowing
operations like “mov al,bl” in one uop. Loads do not support this mode, so loads into 8-bit and
16-bit registers must be followed by a separate mov uop to truncate and merge the loaded value into
the old destination properly. Fortunately this is not necessary when the load-execute form is used
with 8-bit and 16-bit operations.

The x86 ISA defines some bizarre byte operations as a carryover from the ancient 8086 architec-
ture; for instance, it is possible to address the second byte of many integer registers as a separate
register (i.e. as ah, bh, ch, dh). The mask uop is used for handling this rare but important set of
operations.

5.4 Flags Management and Register Renaming

Many x86 arithmetic instructions modify some or all of the processor’s numerous status and con-
dition flag bits, but only 5 are relevant to normal execution: Zero, Parity, Sign, Overflow, Carry. In
accordance with the well-known “ZAPS rule”, any instruction that updates any of the Z/P/S flags
updates all three flags, so in reality only three flag entities need to be tracked: ZPS, O, F (“ZAPS”
also includes an Auxiliary flag not accessible by most modern user instructions; it is irrelevant to
the discussion below).

The x86 flag update semantics can hamper out of order execution, so we use a simple and well
known solution. The 5 flag bits are attached to each result and physical register (along with invalid
and waiting bits used by some cores); these bits are then consumed along with the actual result
value by any consumers that also need to access the flags. It should be noted that not all uops
generate all the flags as well as a 64-bit result, and some uops only generate flags and no result
data.

The register renaming mechanism is aware of these semantics, and tracks the latest x86 instruction
in program order to update each set of flags (ZAPS, C, O); this allows branches and other flag
consumers to directly access the result with the most recent program-ordered flag updates yet still
allows full out of order scheduling. To do this, x86 processors maintain three separate rename table
entries for the ZAPS, CF, OF flags in addition to the register rename table entry, any or all of which
may be updated when uops are renamed. The TransOp structure for each uop has a 3-bit setflags
field filled out during decoding in accordance with x86 semantics; the SETFLAG_ZF, SETFLAG_CF,
SETFLAG_OF bits in this field are used to determine which of the ZPS, O, F flag subsets to rename.

As mentioned above, any consumer of the flags needs to consult at most three distinct sources:
the last ZAPS producer, the Carry producer and the Overflow producer. This conveniently fits into
PTLsim’s three-operand uop semantics. Various special uops access the flags associated with an
operand rather than the 64-bit operand data itself. Branches always take two flag sources, since in
x86 this is enough to evaluate any possible condition code combination (the cond_code_to_flag_regs

array provides this mapping).
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Various ALU instructions consume only the flags part of a source physical register; these include
addc (add with carry), rcl/rcr (rotate carry), sel.cc (select for conditional moves) and so on.
Finally, the collcc uop takes three operands (the latest producer of the ZAPS, CF and OF flags)
and merges the flag components of each operand into a single flag set as its result.

PTLsim also provides compound compare-and-branch uops (br.sub.cc and br.and.cc); these are
currently used mostly in microcode, but a core could dynamically merge CMP or TEST and Jcc

instructions into these uops; this is exactly what the Intel Core 2 and a few research processors
already do.

5.5 x86-64

The 64-bit x86-64 instruction set is a fairly straightforward extension of the 32-bit IA-32 (x86)
instruction set. The x86-64 ISA was introduced by AMD in 2000 with its K8 microarchitecture;
the same instructions were subsequently plagiarized by Intel under a different name (“EM64T”)
several years later. In addition to extending all integer registers and ALU datapaths to 64 bits,
x86-64 also provides a total of 16 integer general purpose registers and 16 SSE (vector floating
and fixed point) registers. It also introduced several 64-bit address space simplifications, including
RIP-relative addressing and corresponding new addressing modes, and eliminated a number of
legacy features from 64-bit mode, including segmentation, BCD arithmetic, some byte register
manipulation, etc. Limited forms of segmentation are still present to allow thread local storage and
mark code segments as 64-bit. In general, the encoding of x86-64 and x86 are very similar, with
64-bit mode adding a one byte REX prefix to specify additional bits for source and destination
register indexes and effective address size. As a result, both variants can be decoded by similar
decoding logic into a common set of uops.

5.6 Unaligned Loads and Stores

Compared to RISC architectures, the x86 architecture is infamous for its relatively widespread
use of unaligned memory operations; any implementation must efficiently handle this scenario.
Fortunately, analysis shows that unaligned accesses are rarely in the performance intensive parts
of a modern program (with the exception of certain media processing algorithms). Once a given
load or store is known to frequently have an unaligned address, it can be preemptively split into
two aligned loads or stores at decode time. PTLsim does this by initially causing all unaligned
loads and stores to raise an UnalignedAccess internal exception, forcing a pipeline flush. At this
point, the special unaligned bit is set for the problem load or store uop in its translated basic block
representation. The next time the offending uop is encountered, it will be split into two parts very
early in the pipeline.

PTLsim includes special uops to handle loads and stores split into two in this manner. The ld.lo

uop rounds down its effective address bAc to the nearest 64-bit boundary and performs the load.
The ld.hi uop rounds up to dA+8e, performs another load, then takes as its third rc operand
the first (ld.lo) load’s result. The two loads are concatenated into a 128-bit word and the final
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unaligned data is extracted. Stores are handled in a similar manner, with st.lo and st.hi rounding
down and up to store parts of the unaligned value in adjacent 64-bit blocks. Depending on the core
model, these unaligned load or store pairs access separate store buffers for each half as if they were
independent.

5.7 Repeated String Operations

The x86 architecture allows for repeated string operations, including block moves, stores, com-
pares and scans. The iteration count of these repeated operations depends on a combination of the
rcx register and the flags set by the repeated operation (e.g. compare). To translate these instruc-
tions, PTLsim treats the rep xxx instruction as a single basic block; any basic block in progress
before the repeat instruction is terminated and the repeat is decoded as a separate basic block. To
handle the unusual case where the repeat count is zero, a check uop (see below) is inserted at the
top of the loop to protect against this case; PTLsim simply bypasses the offending block if the
check fails.

5.8 Checks and SkipBlocks

PTLsim includes special uops (chk.and.cc, chk.sub.cc) that compare two values or condition codes
and cause a special internal exception if the result is true. The SkipBlock internal exception gener-
ated by these uops tells the core to literally annul all uops in this instruction, dynamically turning it
into a nop. As described above, this is useful for string operations where a zero count causes all of
the instruction’s side effects to be annulled. Similarly, the AssistCheck internal exception dynami-
cally turns the instruction into an assist, for those cases where certain rare conditions may require
microcode intervention more complex than can be inlined into the decoded instruction stream.

5.9 Shifts and Rotates

The shift and rotate instructions have some of the most bizarre semantics in the entire x86 instruc-
tion set: they may or may not modify a subset of the flags depending on the rotation count operand,
which we may not even know until the instruction issues. For fixed shifts and rotates, these se-
mantics can be preserved by the uops generated, however variable rotations are more complex.
The collcc uop is put to use here to collect all flags; the collected result is then fed into the shift
or rotate uop as its rc operand; the uop then replicates the precise x86 behavior (including rotates
using the carry flag) according to its input operands.

5.10 SSE Support

PTLsim provides full support for SSE and SSE2 vector floating point and fixed point, in both
scalar and vector mode. As is done in the AMD K8 and Pentium 4, each SSE operation on a 128-
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bit vector is split into two 64-bit halves; each half (possibly consisting of a 64-bit load and one
or more FPU operations) is scheduled independently. Because SSE instructions do not set flags
like x86 integer instructions, architectural state management can be restricted to the 16 128-bit SSE
registers (represented as 32 paired 64-bit registers). The mxcsr (media extensions control and status
register) is represented as an internal register that is only read and written by serializing microcode;
since the exception and status bits are “sticky” (i.e. only set, never cleared by hardware), this has
no effect on out of order execution. The processor’s floating point units can operate in either 64-bit
IEEE double precision mode or on two parallel 32-bit single precision values.

PTLsim also includes a variety of vector integer uops used to construct SSE2/MMX operations,
including packed arithmetic and shuffles.

5.11 x87 Floating Point

The legacy x87 floating point architecture is the bane of all x86 processor vendors’ existence,
largely because its stack based nature makes out of order processing so difficult. While there are
certainly ways of translating stack based instruction sets into flat addressing for scheduling pur-
poses, we do not do this. Fortunately, following the Pentium III and AMD Athlon’s introduction,
x87 is rapidly headed for planned obsolescence; most major applications released within the last
few years now use SSE instructions for their floating point needs either exclusively or in all perfor-
mance critical parts. To this end, even Intel has relegated x86 support on the Pentium 4 and Core 2
to a separate low performance legacy unit, and AMD has restricted x87 use in 64-bit mode. For this
reason, PTLsim translates legacy x87 instructions into a serialized, program ordered and emulated
form; the hardware does not contain any x87-style 80-bit floating point registers (all floating point
hardware is 32-bit and 64-bit IEEE compliant). We have noticed little to no performance problem
from this approach when examining typical binaries, which rarely if ever still use x87 instructions
in compute-intensive code.

5.12 Floating Point Unavailable Exceptions

The x86 architecture specifies a mode in which all floating point operations (SSE and x87) will
trigger a Floating Point Unavailable exception (EXCEPTION_x86_fpu_not_avail, vector 0x7) if the TS

(task switched) bit in control register CR0 is set. This allows the kernel to defer saving the floating
point registers and state of the previously scheduled thread until that state is actually modified,
thus speeding up context switches. PTLsim supports this feature by requiring any commits to
the floating point state (SSE XMM registers, x87 registers or any floating point related control or
status registers) to check the uop.is_sse and uop.is_x87 bits in the uop. If either of these is set, the
pipeline must be flushed and redirected into the kernel so it can save the FPU state.
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5.13 Assists

Some operations are too complex to inline directly into the uop stream. To perform these instruc-
tions, a special uop (brp: branch private) is executed to branch to an assist function implemented
in microcode. In PTLsim, some assist functions are implemented as regular C/C++ or assembly
language code when they interact with the rest of the virtual machine. Examples of instructions
requiring assists include system calls, interrupts, some forms of integer division, handling of rare
floating point conditions, CPUID, MSR reads/writes, various x87 operations, any serializing in-
structions, etc. These are listed in the ASSIST_xxx enum found in decode.h.

Prior to entering an assist, uops are generated to load the REG_selfrip and REG_nextrip internal
registers with the RIP of the instruction itself and the RIP after its last byte, respectively. This lets
the assist microcode correctly update RIP before returning, or signal a fault on the instruction if
needed. Several other assist related registers, including REG_ar1, REG_ar2, REG_ar3, are used to store
parameters passed to the assist. These registers are not architecturally visible, but must be renamed
and separately maintained by the core as if they were part of the user-visible state.

While the exact behavior depends on the core model (out of order, SMT, sequential, etc), generally
when the processor fetches an assist (brp uop), the frontend pipeline is stalled and execution waits
until the brp commits, at which point an assist function within PTLsim is called. This is necessary
because assists are not subject to the out of order execution mechanism; they directly update the
architectural registers on their own. In a real processor there are slightly more efficient ways of
doing this without flushing the pipeline, however in PTLsim assists are sufficiently rare that the
performance impact is negligible and this approach significantly reduces complexity. For the out
of order core, the exact mechanism used is described in Section 24.6.
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Chapter 6

Decoder Architecture and Basic Block
Cache

6.1 Basic Block Cache

As described in Section 5.1, x86 instructions are decoded into transops prior to actual execution
by the core. To achieve high performance, PTLsim maintains a basic block cache (BB cache)
containing the program ordered translated uop (transop) sequence for previously decoded basic
blocks in the program. Each basic block (BasicBlock structure) consists of up to 64 uops and is
terminated by either a control flow operation (conditional, unconditional, indirect branch) or a
barrier operation, i.e. a microcode assist (including system calls and serializing instructions).

6.2 Identifying Basic Blocks

In a userspace only simulator, the RIP of a basic block’s entry point (plus a few other attributes
described below) serves to uniquely identify that basic block, and can be used as a key in accessing
the basic block cache. In a full system simulator, the BB cache must be indexed by much more
than just the virtual address, because of potential virtual page aliasing and the need to persistently
cache translations across context switches. The following fields, in the RIPVirtPhys structure, are
required to correctly access the BB cache in any full system simulator or binary translation system
(128 bits total):

• rip: Virtual address of first instruction in BB (48 bits), since embedded RIP-relative con-
stants and branch encodings depend on this. Modern OS’s map shared libraries and binaries
at the same addresses every time, so translation caching remains effective across runs.

• mfnlo: MFN (Machine Frame Number, i.e. physical page frame number) of first byte in
BB (28 bits), since we need to handle self modifying code invalidations based on physical
addresses (because of possible virtual page aliasing in multiple page tables)
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• mfnhi: MFN of last byte in BB (28 bits), since a single x86 basic block can span up to
two pages. In pathological cases, it is possible to create two page tables that both map the
same MFN X at virtual address V, but map different MFNs at virtual address V+4096. If an
instruction crosses this page boundary, the meaning of the instruction bytes on the second
page will be different; hence we must take into account both physical pages to look up the
correct translation.

• Context info (up to 24 bits), since the uops generated depend on the current CPU mode and
CS descriptor settings

– use64: 32-bit or 64-bit mode? (encoding differences)

– kernel: Kernel or user mode?

– df: EFLAGS status (direction flag, etc)

– Other info (e.g. segmentation assumptions, etc.)

The basic block cache is always indexed using an RIPVirtPhys structure instead of a simple RIP.
To do this, the RIPVirtPhys.rip field is set to the desired RIP, then RIPVirtPhys.update(ctx) is
called to translate the virtual address onto the two physical page MFNs it could potentially span
(assuming the basic block crosses two pages).

Notice that the other attribute bits (use64, kernel, df) mean that two distinct basic blocks may be
decoded from the exact same RIP on the same physical page(s), yet the uops in each translated basic
block will be different because the two basic blocks were translated in a different context (relative
to these attribute bits). This is especially important for x86 string move/compare/store/load/scan
instructions (MOVSB, CMPSB, STOSB, LODSB, SCASB), since the correct increment constants depend on
the state of the direction flag in the context in which the BB was used. Similarly, if a user program
tries to decode a supervisor-only opcode, code to call the general protection fault handler will be
produced instead of the real uops produced only in kernel mode.

6.3 Invalid Translations

The BasicBlockCache.translate(ctx, rvp) function always returns a BasicBlock object, even if
the specified RIP was on an invalid page or some of the instruction bytes were invalid. When
decoding cannot continue for some reason, the decoder simply outputs a microcode branch to one
of the following assists:

• ASSIST_INVALID_OPCODE when the opcode or instruction operands are invalid relative to the
current context.

• ASSIST_EXEC_PAGE_FAULT when the specified RIP falls on an invalid page. This means a page
is marked as not present in the current page table at the time of decoding, or the page is
present but has its NX (no execute) bit set in the page table entry. The EXEC_PAGE_FAULT assist
is also generated when the page containing the RIP itself is valid, but part of an instruction
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extends beyond that page onto an invalid page. The decoder tries to decode as many in-
struction bytes as possible, but will insert an EXEC_PAGE_FAULT assist whenever it determines,
based on the bytes already decoded, that the remainder of the instruction would fall on the
invalid page.

• ASSIST_GP_FAULT when attempting to decode a restricted kernel-only opcode while running
in user mode.

Before redirecting execution to the kernel’s exception handler, the EXEC_PAGE_FAULT microcode
verifies that the page in question is still invalid. This avoids a spurious page fault in the case where
an instruction was originally decoded on an invalid page, but the page tables were updated after
the translation was first made such that the page is now valid. When this is the case, all bogus
basic blocks on the page (which were decoded into a call to EXEC_PAGE_FAULT) must be invalidated,
allowing a correct translation to be made now that the page is valid. The page at the virtual address
after the page in question may also need to be invalidated in the case where some instruction bytes
cross the page boundary.

6.4 Self Modifying Code

In x86 processors, the translation process is considerably more complex, because of self modifying
code (SMC) and its variants. Specifically, the instruction bytes of basic blocks that have already
been translated and cached may be overwritten; these old translations must be discarded. The x86
architecture guarantees that all code modifications will be visible immediately after the instruc-
tion making the modification; unlike other architectures, no “instruction cache flush” operation is
provided. Several kinds of SMC must be handled correctly:

• Classical SMC: stores currently in the pipeline overwrite other instructions that have already
been fetched into the pipeline and even speculatively executed out of order;

• Indirect SMC: stores write to a page on which previously translated code used to reside, but
that page is now being reused for unrelated data or new code. This case frequently arises in
operating system kernels when pages are swapped in and out from disk.

• Cross-modifying SMC: in a multiprocessor system, one processor overwrites instructions
that are currently in the pipeline on some other core. The x86 standard is ambiguous here;
technically no pipeline flush and invalidate is required; instead, the cache coherence mecha-
nism and software mutexes are expected to prevent this case.

• External SMC: an external device uses direct memory access (DMA) to overwrite the phys-
ical DRAM page containing previously translated code. In theory, this can happen while the
affected instructions are in the pipeline, but in practice no operating system would ever allow
this. However, we still must invalidate any translations on the target page to prevent them
from being looked up far in the future.
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To deal with all these forms of SMC, PTLsim associates a “dirty” bit with every physical page
(this is unrelated to the “dirty” bit in user-visible page table entries). Whenever the first uop in
an x86 instruction (i.e. the “SOM”, start-of-macro-op uop) commits, the current context is used
to translate its RIP into the physical page MFN on which it resides, as described in Section 6.2.
If the instruction’s length in bytes causes it to overlap onto a second page, that high MFN is also
looked up (using the virtual address rip + 4096). If the dirty bits for either the low or high MFN
are set, this means the instruction bytes may have been modified sometime after the time they were
last translated and added to the basic block cache. In this case, the pipeline must be flushed, and
all basic blocks on the target MFN (and possibly the overlapping high MFN) must be invalidated
before clearing the dirty bit. Technically the RIP-to-physical translation would be done in the
instruction fetch stage in most core models, then simply stored as an RIPVirtPhys structure inside
the uop until commit time.

The dirty bit can be set by several events. Obviously any store uops will set the dirty bit (thus han-
dling the classical, indirect and cross-modifying cases), but notice that this bit is not checked again
until the first uop in the next x86 instruction. This behavior is required because it is perfectly legal
for an x86 store to overwrite its own instruction bytes, but this does not become visible until the
same instruction executes a second time (otherwise an infinite loop of invalidations would occur).
Microcoded x86 instructions implemented by PTLsim itself set dirty bits when their constituent
internal stores commit. Finally, DMA transfers and external writes also set the dirty bit of any
pages touched by the DMA operation.

The dirty bit is only cleared when all translated basic blocks are invalidated on a given page, and
it remains clear until the first write to that page. However, no action is taken when additional basic
blocks are decoded from a page already marked as dirty. This may seem counterintuitive, but it
is necessary to avoid deadlock: if the page were invalidated and retranslated at fetch time, future
stages in a long pipeline could potentially still have references to unrelated basic blocks on the
page being invalidated. Hence, all invalidations are checked and processed only at commit time.

Other binary translation based software and hardware [17, 12, 10, 13, 14] have special mecha-
nisms for write protecting physical pages, such that when a page with translations is first written
by stores or DMA, the system immediately invalidates all translations on that page. Unfortunately,
this scheme has a number of disadvantages. First, patents cover its implementation [19, 18, 17],
which we would like to avoid. In addition, our design eliminates forced invalidations when the
kernel frees up a page containing code that’s immediately overwritten with normal user data (a
very common pattern according to our studies). If that page is never executed again, any transla-
tions from it will be discarded in the background by the LRU mechanism, rather than interrupting
execution to invalidate translations that will never be used again anyway. Fortunately, true classical
SMC is very rare in modern x86 code, in large part because major microprocessors have slapped a
huge penalty on its use (particularly in the case of the Pentium 4 and Transmeta processors, both
of which store translated uops in a cache similar to PTLsim’s basic block cache).

6.5 Memory Management of the Basic Block Cache

The PTLsim memory manager (in mm.cpp, see Section 7.3 for details) implements a reclaim mech-
anism in which other subsystems register functions that get called when an allocation fails. The
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basic block cache registers a callback, bbcache_reclaim() and BasicBlockCache::reclaim(), to in-
validate and free basic blocks when PTLsim runs out of memory.

The algorithm used to do this is a pseudo-LRU design. Every basic block has a lastused field that
gets updated with the current cycle number whenever BasicBlock::use(sim_cycle) is called (for
instance, in the fetch stage of a core model). The reclaim algorithm goes through all basic blocks
and calculates the oldest, average and newest lastused cycles. The second pass then invalidates
any basic blocks that fall below this average cycle; typically around half of all basic blocks fall
in the least recently used category. This strategy has proven very effective in freeing up a large
amount of space without discarding currently hot basic blocks.

Each basic block also has a reference counter, refcount, to record how many pointers or references
to that basic block currently exist anywhere inside PTLsim (especially in the pipelines of core mod-
els). The BasicBlock::acquire() and release() methods adjust this counter. Core models should
acquire a basic block once for every uop in the pipeline within that basic block; the basic block is
released as uops commit or are annulled. Since basic blocks may be speculatively translated in the
fetch stage of core models, this guarantees that live basic blocks currently in flight are never freed
until they actually leave the pipeline.
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Chapter 7

PTLsim Support Subsystems

7.1 Uop Implementations

PTLsim provides implementations for all uops in the uopimpl.cpp file. C++ templates are combined
with gcc’s smart inline assembler type selection constraints to translate all possible permutations
(sizes, condition codes, etc) of each uop into highly optimized code. In many cases, a real x86 in-
struction is used at the core of each corresponding uop’s implementation; code after the instruction
just captures the generated x86 condition code flags, rather than having to manually emulate the
same condition codes ourselves. The code implementing each uop is then called from elsewhere
in the simulator whenever that uop must be executed. Note that loads and stores are implemented
elsewhere, since they are too dependent on the specific core model to be expressed in this generic
manner.

An additional optimization, called synthesis, is also used whenever basic blocks are translated.
Each uop in the basic block is mapped to the address of a native PTLsim function in uopimpl.cpp

implementing the semantics of that uop; this function pointer is stored in the synthops[] array of
the BasicBlock structure. This saves us from having to use a large jump table later on, and can map
uops to pre-compiled templates that avoid nearly all further decoding of the uop during execution.

7.2 Configuration Parser

PTLsim supports a wide array of command line or scriptable configuration options, described
in Section 10.3. The configuration parser engine (used by both PTLsim itself and utilities like
PTLstats) is in config.cpp and config.h. For PTLsim itself, each option is declared in three places:

• ptlsim.h declares the PTLsimConfig structure, which is available from anywhere as the config

global variable. The fields in this structure must be of one of the following types: W64 (64-bit
integer), double (floating point), bool (on/off boolean), or stringbuf (for text parameters).

• ptlsim.cpp declares the PTLsimConfig::reset() function, which sets each option to its default
value.
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• ptlsim.cpp declares the ConfigurationParser<PTLsimConfig>::setup() template function, which
registers all options with the configuration parser.

7.3 Memory Manager

7.3.1 Memory Pools

PTLsim uses its own custom memory manager for all allocations, given its specialized constraints
(particularly for PTLsim/X, which runs on the bare hardware). The PTLsim memory manager (in
mm.cpp) uses three key structures.

The page allocator allocates spans of one or more virtually contiguous pages. In userspace-only
PTLsim, the page allocator doesn’t really exist: it simply calls mmap() and munmap(), letting the host
kernel do the actual allocation. In the full system PTLsim/X, the page allocator actually works with
physical pages and is based on the extent allocator (see below). The ptl_alloc_private_pages()

and ptl_free_private_pages() functions should be used to directly allocate page-aligned memory
(or individual pages) from this pool.

The general allocator uses the ExtentAllocator template class to allocate large objects (greater
than page sized) from a pool of free extents. This allocator automatically merges free extents and
can find a matching free block in O(1) time for any allocation size. The general allocator obtains
large chunks of memory (typically 64 KB at once) from the page allocator, then sub-divides these
extents into individual allocations.

The slab allocator maintains a pool of page-sized “slabs” from which fixed size objects are allo-
cated. Each page only contains objects of one size; a separate slab allocator handles each size from
16 bytes up to 1024 bytes, in 16-byte increments. The allocator provides extremely fast allocation
performance for object oriented programs in which many objects of a given size are allocated. The
slab allocator also allocates one page at a time from the global page allocator. However, it main-
tains a pool of empty pages to quickly satisfy requests. This is the same architecture used by the
Linux kernel to satisfy memory requests.

The ptl_mm_alloc() function intelligently decides from which of the two allocators (general or
slab) to allocate a given sized object, based on the size in bytes, object type and caller. The
standard new operator and malloc() both use this function. Similarly, the ptl_mm_free() function
frees memory. PTLsim uses a special bitmap to track which pages are slab allocator pages; if a
pointer falls within a slab, the slab deallocator is used; otherwise the general allocator is used to
free the extent.

7.3.2 Garbage Collection and Reclaim Mechanism

The memory manager implements a garbage collection mechanism with which other subsystems
register reclaim functions that get called when an allocation fails. The ptl_mm_register_reclaim_handler()

function serves this role. Whenever an allocation fails, the reclaim handlers are called in sequence,

35



followed by an extent cleanup pass, before retrying the allocation. This process repeats until the
allocation succeeds or an abort threshold is reached.

The reclaim function gets passed two parameters: the size in bytes of the failed allocation, and an
urgency parameter. If urgency is 0, the subsystem registering the callback should do everything in
its power to free all memory it owns. Otherwise, the subsystem should progressively trim more
and more unused memory with each call (and increasing urgency). Under no circumstances is a
reclaim handler allowed to allocate any additional memory! Doing so will create an infinite loop;
the memory manager will detect this and shut down PTLsim if it is attempted.
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Chapter 8

Statistics Collection and Analysis

8.1 PTLsim Statistics Data Store

8.1.1 Introduction

PTLsim maintains a huge number of statistical counters and data points during the simulation pro-
cess, and can optionally save this data to a file by using the “-stats filename” configuration option.
The data store is a binary file format used to efficiently capture large quantities of statistical infor-
mation for later analysis. This file format supports storing multiple regular or triggered snapshots
of all counters. Snapshots can be subtracted, averaged and extensively manipulated, as will be
described later on.

PTLsim makes it trivial to add new performance counters to the statistics data tree. All counters
are defined in stats.h as a tree of nested structures; the top-level PTLsimStats structure is mapped
to the global variable stats, so counters can be directly updated from within the code by simple
increments, e.g. stats.xxx.yyy.zzz.countername++. Every node in the tree can be either a struct,
W64 (64-bit integer), double (floating point) or char (string) type; arrays of these types are also
supported. In addition, various attributes, described below, can be attached to each node or counter
to specify more complex semantics, including histograms, labeled arrays, summable nodes and so
on.

PTLsim comes with a special script, dstbuild (“data store template builder”) that parses stats.h

and constructs a binary representation (a “template”) describing the structure; this template data is
then compiled into PTLsim. Every time PTLsim creates a statistics file, it first writes this template,
followed by the raw PTLsimStats records and an index of those records by name. In this way, the
complete data store tree can be reconstructed at a later time even if the original stats.h or PTLsim
version that created the file is unavailable. This scheme is analogous to the separation of XML
schemas (the template) from the actual XML data (the stats records), but in our case the template
and data is stored in binary format for efficient parsing.

We suggest using the data store mechanism to store all statistics generated by your additions to
PTLsim, since this system has built-in support for snapshots, checkpointing and structured easy to
parse data (unlike simply writing values to a text file). It is further suggested that only raw values
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be saved, rather than doing computations in the simulator itself - leave the analysis to PTLstats
after gathering the raw data. If some limited computations do need to be done before writing each
statistics record, PTLsim will call the PTLsimMachine::update_stats() virtual method to allow your
model a chance to do so before writing the counters.

8.1.2 Node Attributes

After each node or counter is declared, one of several special C++-style “//” comments can be used
to specify attributes for that node:

• struct Name { // rootnode:

The node is at the root of the statistics tree (typically this only applies to the PTLsimStats
structure itself)

• struct Name { // node: summable

All subnodes and counters under this node are assumed to total 100% of whatever quantity
is being measured. This attribute tells PTLstats to print percentages next to the raw values in
this subtree for easier viewing.

• W64 name[arraysize]; // histo: min, max, stride

Specifies that the array of counters forms a histogram, i.e. each slot in the array represents
the number of occurrences of one event out of a mutually exclusive set of events. The min
parameter specifies the meaning of the first slot (array element 0), while the max parame-
ter specifies the meaning of the last slot (array element arraysize-1). The stride parameter
specifies how many events are counted into every slot (typically this is 1).

For example, let’s say you want to measure the frequency distribution of the number of
consumers of each instruction’s result, where the maximum number of possible consumers
is 256. You could specify this as:

W64 consumers[64+1]; // histo: 0, 256, 4

This histogram has a logical range of 0 to 256, but is divided into 65 slots. Because the
stride parameter is 4, any consumer counts from 0 to 3 increment slot 0, counts from 4 to 7
increment slot 1, and so on. When you update this counter array from inside the model, you
should do so as follows:

stats.xxx.yyy.consumers[min(n / 4, 64)]++;

• W64 name[arraysize]; // label: namearray

Specifies that the array of counters is a histogram of named, mutually exclusive events, rather
than simply raw numbers (as with the histo attribute). The namearray must be the name of
an array of arraysize strings, with one entry per event.

For example, let’s say you want to measure the frequency distribution of uop types PTLsim
is executing. If there are OPCLASS_COUNT, you could declare the following:
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W64 opclass[OPCLASS_COUNT]; // label: opclass_names

In some header file included by stats.h, you need to declare the actual array of slot labels:

static const char* opclass_names[OPCLASS_COUNT] = {�logic�, �addsub�,

�addsubc�, ...};

8.1.3 Configuration Options

PTLsim supports several options related to the statistics data store:

• -stats filename

Specify the filename to which statistics data is written. In reality, two files are created:
filename contains the template and snapshot index, while filename.data contains the raw
data.

• -snapshot-cycles N

Creates a snapshot every N simulation cycles, numbered consecutively starting from 0. With-
out this option, only one snapshot, named final, is created at the end of the simulation run.

• -snapshot-now name

Creates a snapshot named name at the current point in the simulation. This can be used
to asynchronously take a look at a simulation in progress. This option is only available in
PTLsim/X.

8.2 PTLstats: Statistics Analysis and Graphing Tools

The PTLstats program is used to analyze the statistics data store files produced by PTLsim. PTL-
stats will first extract the template stored in all data store files, and will then parse the statistics
records into a flexible tree format that can be manipulated by the user. The following is an exam-
ple of one node in the statistics tree, as printed by PTLstats:

dcache {

store {

issue (total 68161716) {

[ 29.7% ] replay (total 20218780) {

[ 0.0% ] sfr_addr_not_ready = 0;

[ 16.8% ] sfr_data_and_data_to_store_not_ready = 3405878;

[ 11.8% ] sfr_data_not_ready = 2379338;

[ 23.4% ] sfr_addr_and_data_to_store_not_ready = 4740838;

[ 24.5% ] sfr_addr_and_data_not_ready = 4951888;

[ 23.4% ] sfr_addr_and_data_and_data_to_store_not_ready = 4740838;

}
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[ 0.0% ] exception = 30429;

[ 7.9% ] ordering = 5404592;

[ 62.4% ] complete = 42507854;

[ 0.0% ] unaligned = 61;

}

Notice how PTLstats will automatically sum up all entries in certain branches of the tree to provide
the user with a breakdown by percentages of the total for that subtree in addition to the raw values.
This is achieved using the “// node: summable” attribute as described in Section 8.1.2.

Here is an example of a labeled histogram, produced using the “// label: xxx” attribute de-
scribed in Section 8.1.2:

size[4] = {

ValRange: 3209623 90432573

Total: 107190122

Thresh: 10720

[ 6.2% ] 0 6686971 1 (byte)

[ 6.4% ] 1 6860955 2 (word)

[ 84.4% ] 2 90432573 4 (dword)

[ 3.0% ] 3 3209623 8 (qword)

};

8.3 Snapshot Selection

The basic syntax of the PTLstats command is “ptlstats -options filename”. If no options are
specified, PTLstats prints out the entire statistics tree from its root, relative to the final snapshot.

To select a specific snapshot, use the following option:

ptlstats -snapshot name-or-number ...

Snapshots may be specified by name or number.

It may be desirable to examine the difference in statistics between two snapshots, for instance
to subtract out the counters at the starting point of a given run or after a warmup period. The
-subtract option provides this facility, for example:

ptlstats -snapshot final -subtract startpoint ...

8.4 Working with Statistics Trees: Collection, Averaging and
Summing

To select a specific subtree of interest, use the syntax of the following example:
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ptlstats -snapshot final -collect /ooocore/dcache/load example1.stats example2.stats ...

This will print out the subtree /ooocore/dcache/load in the snapshot named final (the default
snapshot) for each of the named statistics files example1.stats, example2.stats and so on. Mul-
tiple files are generally used to examine a specific subnode across several benchmarks.

Subtrees or individual statistics can also be summed and averaged across many files, using the
-collectsum or -collectaverage commands in place of -collect.

8.5 Traversal and Printing Options

The -maxdepth option is useful for limiting the depth (in nodes) PTLstats will descend into the
specified subtree. This is appropriate when you want to summarize certain classes of statistics
printed as percentages of the whole, yet don’t want a breakdown of every sub-statistic.

The -percent-of-toplevel option changes the way percentages are displayed. By default, per-
centages are calculated by dividing the total value of each node by the total of its immediate parent
node. When -percent-of-toplevel is enabled, the divisor becomes the total of the entire subtree,
possibly going back several levels (i.e. back to the highest level node marked with the summable
attribute), rather than each node’s immediate parent.

8.6 Table Generation

PTLstats provides a facility to easily generate R-row by C-column data tables from a set of R
benchmarks run with C different sets of parameters. Tables can be output in a variety of formats,
including plain text with tab or space delimiters (suitable for import into a spreadsheet), LATEX (for
direct insertion into research reports) or HTML. To generate a table, use the following syntax:

ptlstats -table /final/summary/cycles -rows gzip,gcc,perlbmk,mesa -cols small,large,huge -table-pattern "%row/ptlsim.stats.%col"

In this example, the benchmarks (“gzip”, “gcc”, “perlbmk”, “mesa”) will form the rows of the
table, while three trials done for each benchmark (“small”, “large”, “huge”) will be listed in the
columns. The row and column names will be combined using the pattern “%row/ptlsim.stats.%col“
to generate statistics data store filenames like “gzip/ptlsim.stats.small”. PTLstats will then
load the data store for each benchmark and trial combination to create the table.

Notice that you must create your own scripts, or manually run each benchmark and trial with
the desired PTLsim options, plus “-stats ptlsim.stats.trialname ”. PTLstats will only report
these results in table form; it will not actually run any benchmarks.

The -tabletype option specifies the data format of the table: “text” (plain text with space delim-
iters, suitable for import into a spreadsheet), “latex” (LATEX format, useful for directly inserting
into research reports), or “html” (HTML format for web pages).
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The “-scale-relative-to-col N ” option forces PTLstats to compute the percentage of increase
or decrease for each cell relative to the corresponding row in some other reference column N.
This is useful when running a “baseline” case, to be displayed as a raw value (usually the cycle
count, /final/summary/cycles) in column 0, while all other experimental cases are displayed as
a percentage increase (fewer cycles, for a positive percentage) or percentage decrease (negative
value) relative to this first column (N = 0).

8.6.1 Bargraph Generation

In addition to creating tables, PTLstats can directly create colorful graphs (in Scalable Vector
Graphics (SVG) format) from a set of benchmarks (specified by the -rows option) and trials of
each benchmark (specified by the -cols option). For instance, to plot the total number of cycles
taken over a set of benchmarks, each run under different PTLsim configurations, use the following
example:

ptlstats -bargraph /final/summary/cycles -rows gzip,gcc,perlbmk,mesa -cols small,large,huge -table-pattern "%row/ptlsim.stats.%col"

In this case, groups of three bars (for the trials “small”, “large”, “huge”) appear for each bench-
mark.

The graph’s layout can be extensively customized using the options -title, -width, -height.

Inkscape (http://www.inkscape.org) is an excellent vector graphics system for editing and format-
ting SVG files generated by PTLstats.

8.7 Histogram Generation

Certain array nodes in the statistics tree can be tagged as “histogram” nodes by using the histo: or
label: attributes, as described in Section 8.1.2. For instance, the ooocore/frontend/consumer-count
node in the out-of-order core is a histogram node. PTLstats can directly create graphs (in Scalable
Vector Graphics (SVG) format) for these special nodes, using the -histogram option:

ptlstats -histogram /ooocore/frontend/consumer-count > example.svg

The histogram’s layout can be extensively customized using the options -title, -width, -height.
In addition, the -percentile option is useful for controlling the displayed data range by excluding
data under the Nth percentile. The -logscale and -logk options can be used to apply a log scale
(instead of a linear scale) to the histogram bars. The syntax of these options can be obtained by
running ptlstats without arguments.
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Chapter 9

Benchmarking Techniques

9.1 Trigger Mode and other PTLsim Calls From User Code

PTLsim optionally allows user code to control the simulator mode through the ptlcall_xxx()

family of functions found in ptlcalls.h when trigger mode is enabled (-trigger configuration
option). This file should be included by any PTLsim-aware user programs; these programs must
be recompiled to take advantage of these features. Amongst the functions provided by ptlcalls.h

are:

• ptlcall_switch_to_sim() is only available while the program is executing in native mode.
It forces PTLsim to regain control and begin simulating instructions as soon as this call
returns.

• ptlcall_switch_to_native() stops simulation and returns to native execution, effectively
removing PTLsim from the loop.

• ptlcall_marker() simply places a user-specified marker number in the PTLsim log file

• ptlcall_capture_stats() adds a new statistics data store snapshot at the time it is called.
You can pass a string to this function to name your snapshot, but all names must be unique.

• ptlcall_nop() does nothing but test the call mechanism.

In userspace PTLsim, these calls work by forcing execution to code on a “gateway page” at a
specific fixed address (0x1000 currently); PTLsim will write the appropriate call gate code to this
page depending on whether the process is in native or simulated mode. In native mode, the call
gate page typically contains a 64-to-64-bit or 32-to-64-bit far jump into PTLsim, while in simulated
mode it contains a reserved x86 opcode interpreted by the x86 decoder as a special kind of system
call. If PTLsim is built on a 32-bit only system, no mode switch is required.

In full system PTLsim/X, the x86 opcodes used to implement these calls are directly handled by
the PTLsim/X hypervisor as if they were actually part of the native x86 instruction set.
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Generally these calls are used to perform “intelligent benchmarking”: the ptlcall_switch_to_sim()
call is made at the top of the main loop of a benchmark after initialization, while the ptlcall_switch_to_native()
call is inserted after some number of iterations to stop simulation after a representative subset of
the code has completed. This intelligent approach is far better than the blind “sample for N million
cycles after S million startup cycles” approach used by most researchers.

Fortran programs will have to actually link in the ptlcalls.o object file, since they cannot include
C header files. The function names that should be used in the Fortran code remain the same as
those from the ptlcalls.h header file.

9.2 Notes on Benchmarking Methodology and “IPC”

The x86 instruction set requires some different benchmarking techniques than classical RISC ISAs.
In particular, uIPC (Micro-Instructions per Cycle) a NOT a good measure of performance for
an x86 processor. Because one x86 instruction may be broken up into numerous uops, it is never
appropriate to compare IPC figures for committed x86 instructions per clock with IPC values
from a RISC machine. Furthermore, different x86 implementations use varying numbers of uops
per x86 instruction as a matter of encoding, so even comparing the uop based IPC between x86
implementations or RISC-like machines is inaccurate.

Users are strongly advised to use relative performance measures instead. Comparing the total
simulated cycle count required to complete a given benchmark between different simulator config-
urations is much more appropriate than IPC with the x86 instruction set. An example would be “the
baseline took 100M cycles, while our improved system took 50M cycles, for a 2x improvement”.

9.3 Simulation Warmup Periods

In some simulators, it is possible to quickly skip through a specific number of instructions before
starting to gather statistics, to avoid including initialization code in the statistics. In PTLsim, this
is neither necessary nor desirable. Because PTLsim directly executes your program on the host
CPU until it switches to cycle accurate simulation mode, there is no way to count instructions in
this manner.

Many researchers have gotten in the habit of blindly skipping a large number of instructions in
benchmarks to avoid profiling initialization code. However, this is not a very intelligent policy:
different benchmarks have different startup times until the top of the main loop is reached, and it is
generally evident from the benchmark source code where that point should be. Therefore, PTLsim
supports trigger points: by inserting a special function call (ptlcall_switch_to_sim) within the
benchmark source code and recompiling, the -trigger PTLsim option can be used to run the code
on the host CPU until the trigger point is reached. If the source code is unavailable, the -startrip

0xADDRESS option will start full simulation only at a specified address (e.g. function entry point).

If you want to warm up the cache and branch predictors prior to starting statistics collection,
combine the -trigger option with the -snapshot-cycles N option, to start full simulation at the
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top of the benchmark’s main loop (where the trigger call is), but only start gathering statistics N
cycles later, after the processor is warmed up. Remember, since the trigger point is placed after all
initialization code in the benchmark, in general it is only necessary to use 10-20 million cycles of
warmup time before taking the first statistics snapshot. In this time, the caches and branch predictor
will almost always be completely overwritten many times. This approach significantly speeds up
the simulation without any loss of accuracy compared to the "fast simulation" mode provided by
other simulators.

In PTLstats, use the -subtract option to make sure the final statistics don’t include the warmup
period before the first snapshot. To subtract the final snapshot from snapshot 0 (the first snapshot
after the warmup period), use a command similar to the following:

ptlstats -subtract 0 ptlsim.stats

9.4 Sequential Mode

PTLsim supports sequential mode, in which instructions are run on a simple, in-order processor
model (in seqcore.cpp) without accounting for cache misses, branch mispredicts and so forth. This
is much faster than the out of order model, but is obviously slower than native execution. The
purpose of sequential mode is mainly to aid in testing the x86 to uop decoder, microcode functions
and RTL-level uop implementation code. It may also be useful for gathering certain statistics on
the instruction mix and count without running a full simulation.

NOTE: Sequential mode is not intended as a “warmup mode” for branch predictors and caches. If
you want this behavior, use statistical snapshot deltas as described in Section 9.3.

Sequential mode is enabled by specifying the “-core seq” option. It has no other core-specific
options.
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Part II

PTLsim Classic: Userspace Linux
Simulation
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Chapter 10

Getting Started with PTLsim

NOTE: This part of the manual is relevant only if you are using the classic userspace-only version
of PTLsim. If you are looking for the full system SMP/SMT version, PTLsim/X, please skip this
entire part and read Part III instead.

10.1 Building PTLsim

Prerequisites:

• PTLsim can be built on both 64-bit x86-64 machines (AMD Athlon 64 / Opteron / Turion,
Intel Pentium 4 with EM64T and Intel Core 2) as well as ordinary 32-bit x86 systems. In
either case, your system must support SSE2 instructions; all modern CPUs made in the last
few years (such as Pentium 4 and Athlon 64) support this, but older CPUs (Pentium III and
earlier) specifically do not support PTLsim.

• If built for x86-64, PTLsim will run both 64-bit and 32-bit programs automatically. If built
on a 32-bit Linux distribution and compiler, PTLsim only supports ordinary x86 programs
and will typically be slower than the 64-bit build, even on 32-bit user programs.

• PTLsim runs on any recent Linux 2.6 based distribution.

• We have successfully built PTLsim with gcc 3.3, 3.4.x and 4.1.x+ (gcc 4.0.x has documented
bugs affecting some of our code).

Quick Start Steps:

• Download PTLsim from our web site (http://www.ptlsim.org/download.php). We recom-
mend starting with the “stable” version, since this contains all the files you need and can be
updated later if desired.

• Unpack ptlsim-2006xxxx-rXXX.tar.gz to create the ptlsim directory.
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• Run make.

– The Makefile will detect your platform and automatically compile the correct version
of PTLsim (32-bit or 64-bit).

10.2 Running PTLsim

PTLsim invocation is very simple: after compiling the simulator and making sure the ptlsim

executable is in your path, simply run:

ptlsim full-path-to-executable arguments...

PTLsim reads configuration options for running various user programs by looking for a config-
uration file named /home/username /.ptlsim/path/to/program/executablename .conf. To set op-
tions for each program, you’ll need to create a directory of the form /home/username /.ptlsim

and make sub-directories under it corresponding to the full path to the program. For exam-
ple, to configure /bin/ls you’ll need to run "mkdir /home/username /.ptlsim/bin” and then edit
"/home/username /.ptlsim/bin/ls.conf" with the appropriate options. For example, try putting the
following in ls.conf as described:

-logfile ptlsim.log -loglevel 9 -stats ls.stats -stopinsns 10000

Then run:

ptlsim /bin/ls -la

PTLsim should display its system information banner, then the output of simulating the directory
listing. With the options above, PTLsim will simulate /bin/ls starting at the first x86 instruction
in the dynamic linker’s entry point, run until 10000 x86 instructions have been committed, and
will then switch back to native mode (i.e. the user code will run directly on the real processor)
until the program exits. During this time, it will compile an extensive log of the state of every
micro-operation executed by the processor and will save it to “ptlsim.log” in the current directory.
It will also create “ls.stats”, a binary file containing snapshots of PTLsim’s internal performance
counters. The ptlstats program (Chapter 8) can be used to print and analyze these statistics by
running “ptlstats ls.stats”.

10.3 Configuration Options

PTLsim supports a variety of options in the configuration file of each program; you can run
“ptlsim” without arguments to get a full list of these options. The following sections only list
the most useful options, rather than every possible option.
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The configuration file can also contain comments (starting with “#” at any point on a line) and
blank lines; the first non-comment line is used as the active configuration.

PTLsim supports multiple models of various microprocessor cores; the “-core corename” option
can be used to choose a specific core. The default core is “ooo”, the dynamically scheduled out
of order superscalar core described in great detail in Part IV. PTLsim also comes with a simple
sequential in-order core, “seq”. It is most useful for debugging decoding and microcode issues
rather than actual performance profiling.

10.4 Logging Options

PTLsim can log all simulation events to a log file, or can be instructed to log only a subset of these
events, starting and stopping at various points:

• -logfile filename

Specifies the file to which log messages will be written.

• -loglevel level

Selects a subset of the events that will be logged:

– 0 disables logging

– 1 displays only critical events (such as system calls and state changes)

– 2-3 displays less critical simulator-wide events

– 4 displays major events within the core itself (like pipeline flushes, basic block decodes,
etc)

– 6 displays all events that occur within each pipeline stage of the core every cycle

– 99 displays every possible event. This will create massive log files!

• -startlog cycle

Starts logging only after cycle cycles have elapsed from the start of the simulation.

• -startlogrip rip

Starts logging only after the first time the instruction at rip is decoded or executed. This is
mutually exclusive with -startlog.

10.5 Event Log Ring Buffer

PTLsim also maintains an event log ring buffer. Every time the core takes some action (for instance,
dispatching an instruction, executing a store, committing a result or annulling each uop after an
exception), it writes that event to a circular buffer that contains (by default) the last 32768 events
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in chronological order (oldest to newest). This is extremely useful for debugging in cases where
you want to “look backwards in time” from the point where a specific but unknown “bad” event
occurred, but cannot leave logging at e.g. “-loglevel 99” enabled all the time (because it is far too
slow and space consuming).

The event log ring buffer must be enabled via the -ringbuf option. This is disabled by default since
it exacts a 25-40% performance overhead (but this is much better than the 10000%+ overhead of
full logging).

PTLsim will always print the ring buffer to the log file whenever:

• Any assert statement fails within the out of order simulator core;

• Any fatal exception occurs;

• At user-specified points, by inserting “core.eventlog.print(logfile);” anywhere within the
code;

• Whenever the “-ringbuf-trigger-rip rip” option is used to specify a specific trigger RIP.
When the last uop at this RIP is committed, the ring buffer is printed, exposing all events
that happened over the past few thousand cycles (going backwards in time from the cycle in
which the trigger instruction committed)

• The event log ring buffer is automatically enabled whenever -loglevel is 6 or higher; in this
case all events are logged to the logfile after every cycle.

10.6 Simulation Start Points

Normally PTLsim starts in simulation mode at the first instruction in the target program (or the
Linux dynamic linker, assuming the program is dynamically linked). It may be desirable to skip
time-consuming initialization parts of the program, using one of two methods.

The -startrip rip option places a breakpoint at rip, then immediately switches to native mode until
that breakpoint is hit, at which point PTLsim begins simulation.

Alternatively, if the source code to the program is available, it may be recompiled with call(s) to a
special function, ptlcall_switch_to_sim(), provided in ptlcalls.h. PTLsim is then started with the
-trigger option, which switches it to native mode until the first call to the ptlcall_switch_to_sim()

function, at which point simulation begins. This function, and other special code that can be used
within the target program, is described in Section 9.1.

10.7 Simulation Stop Points

By default, PTLsim continues executing in simulation mode until the target program exits on its
own. However, typically programs are profiled for a fixed number of committed x86 instructions,
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or until a specific point is reached, so as to ensure an identical span of instructions is executed on
every trial, without waiting for the entire program to finish. The following options support this
behavior:

• -stopinsns insns will stop the simulation after insns x86 instructions have committed.

• -stop cycles stops after cycles cycles have been simulated.

• -stoprip rip stops after the instruction at rip is decoded and executed the first time.

PTLsim will normally switch back to native mode after finishing simulation. If the program should
be terminated instead, the -exitend option will do so.

The node is at the root of the statistics tree (typically this only applies to the PTLsimStats structure
itself)

10.8 Statistics Collection

PTLsim supports the collection of a wide variety of statistics and counters as it simulates your code,
and can make regular or triggered snapshots of the counters. Chapter 8 describes this support, while
Section 8.1.3 documents the configuration options associated with statistics collection, including
-stats, -snapshot-cycles, -snapshot-now.
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Chapter 11

PTLsim Classic Internals

11.1 Low Level Startup and Injection

Note: This section deals with the internal operation of the PTLsim low level code, independent of
the out of order simulation engine. If you are only interested in modifying the simulator itself, you
can skip this section.

Note: This section does not apply to the full system PTLsim/X; please see the corresponding
sections in Part III instead.

11.1.1 Startup on x86-64

PTLsim is a very unusual Linux program. It does its own internal memory management and
threading without help from the standard libraries, injects itself into other processes to take control
of them, and switches between 32-bit and 64-bit mode within a single process image. For these
reasons, it is very closely tied to the Linux kernel and uses a number of undocumented system calls
and features only available in late 2.6 series kernels.

PTLsim always starts and runs as a 64-bit process even when running 32-bit threads; it context
switches between modes as needed. The statically linked ptlsim executable begins executing at
ptlsim_preinit_entry in lowlevel-64bit.S. This code calls ptlsim_preinit() in kernel.cpp

to set up our custom memory manager and threading environment before any standard C/C++
functions are used. After doing so, the normal main() function is invoked.

The ptlsim binary can run in two modes. If executed from the command line as a normal pro-
gram, it starts up in inject mode. Specifically, main() in ptlsim.cpp checks if the inside_ptlsim

variable has been set by ptlsim_preinit_entry, and if not, PTLsim enters inject mode. In this
mode, ptlsim_inject() in kernel.cpp is called to effectively inject the ptlsim binary into an-
other process and pass control to it before even the dynamic linker gets to load the program. In
ptlsim_inject(), the PTLsim process is forked and the child is placed under the parent’s control
using ptrace(). The child process then uses exec() to start the user program to simulate (this can
be either a 32-bit or 64-bit program).
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However, the user program starts in the stopped state, allowing ptlsim_inject() to use ptrace()

and related functions to inject either 32-bit or 64-bit boot loader code directly into the user pro-
gram address space, overwriting the entry point of the dynamic linker. This code, derived from
injectcode.cpp (specifically compiled as injectcode-32bit.o and injectcode-64bit.o) is com-
pletely position independent. Its sole function is to map the rest of ptlsim into the user process
address space at virtual address 0x70000000 and set up a special LoaderInfo structure to allow the
master PTLsim process and the user process to communicate. The boot code also restores the old
code at the dynamic linker entry point after relocating itself. Finally, ptlsim_inject() adjusts the
user process registers to start executing the boot code instead of the normal program entry point,
and resumes the user process.

At this point, the PTLsim image injected into the user process exists in a bizarre environment: if
the user program is 32 bit, the boot code will need to switch to 64-bit mode before calling the 64-bit
PTLsim entrypoint. Fortunately x86-64 and the Linux kernel make this process easy, despite never
being used by normal programs: a regular far jump switches the current code segment descriptor
to 0x33, effectively switching the instruction set to x86-64. For the most part, the kernel cannot tell
the difference between a 32-bit and 64-bit process: as long as the code uses 64-bit system calls (i.e.
syscall instruction instead of int 0x80 as with 32-bit system calls), Linux assumes the process
is 64-bit. There are some subtle issues related to signal handling and memory allocation when
performing this trick, but PTLsim implements workarounds to these issues.

After entering 64-bit mode if needed, the boot code passes control to PTLsim at ptlsim_preinit_entry.
The ptlsim_preinit() function checks for the special LoaderInfo structure on the stack and in
the ELF header of PTLsim as modified by the boot code; if these structures are found, PTLsim
knows it is running inside the user program address space. After setting up memory management
and threading, it captures any state the user process was initialized with. This state is used to fill in
fields in the global ctx structure of class CoreContext: various floating point related fields and the
user program entry point and original stack pointer are saved away at this point. If PTLsim is run-
ning inside a 32-bit process, the 32-bit arguments, environment and kernel auxiliary vector array
(auxv) need to be converted to their 64-bit format for PTLsim to be able to parse them from normal
C/C++ code. Finally, control is returned to main() to allow the simulator to start up normally.

11.1.2 Startup on 32-bit x86

The PTLsim startup process on a 32-bit x86 system is essentially a streamlined version of the
process above (Section 11.1.1), since there is no need for the same PTLsim binary to support both
32-bit and 64-bit user programs. The injection process is very similar to the case where the user
program is always a 32-bit program.

11.2 Simulator Startup

In kernel.cpp, the main() function calls init_config() to read in the user program specific configu-
ration as described in Sections 13.2 and 10.3, then starts up the various other simulator subsystems.
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If one of the -excludeld or -startrip options were given, a breakpoint is inserted at the RIP ad-
dress where the user process should switch from native mode to simulation mode (this may be at
the dynamic linker entry point by default).

Finally, switch_to_native_restore_context() is called to restore the state that existed before PTL-
sim was injected into the process and return to the dynamic linker entry point. This may involve
switching from 64-bit back to 32-bit mode to start executing the user process natively as discussed
in Section 11.1.

After native execution reaches the inserted breakpoint thunk code, the code performs a 32-to-64-bit
long jump back into PTLsim, which promptly restores the code underneath the inserted breakpoint
thunk. At this point, the switch_to_sim() function in kernel.cpp is invoked to actually begin the
simulation. This is done by calling simulate() in ptlsim.cpp.

At some point during simulation, the user program or the configuration file may request a switch
back to native mode for the remainder of the program. In this case, the switch_to_native_restore_context()

function gets called to save the statistics data store, map the PTLsim internal state back to the x86
compatible external state and return to the 32-bit or 64-bit user code, effectively removing PTLsim
from the loop.

While the real PTLsim user process is running, the original PTLsim injector process simply waits
in the background for the real user program with PTLsim inside it to terminate, then returns its exit
code.

11.3 Address Space Simulation

PTLsim maintains the AddressSpace class as global variable asp (see kernel.cpp) to track the at-
tributes of each page within the virtual address space. When compiled for x86-64 systems, PTLsim
uses Shadow Page Access Tables (SPATs), which are essentially large two-level bitmaps. Since
pages are 4096 bytes in size, each 64 kilobyte chunk of the bitmap can track 2 GB of virtual ad-
dress space. In each SPAT, each top level array entry points to a chunk mapping 2 GB, such that
with 131072 top level pointers, the full 48 bit virtual address space can typically be mapped with
under a megabyte of SPAT chunks, assuming the address space is sparse.

When compiled for 32-bit x86 systems, each SPAT is just a 128 KByte bitmap, with one bit for
each of the 1048576 4 KB pages in the 4 GB address space.

In the AddressSpace structure, there are separate SPAT tables for readable pages (readmap field),
writable pages (writemap field) and executable pages (execmap field). Two additional SPATs, dtlbmap
and itlbmap, are used to track which pages are currently mapped by the simulated translation looka-
side buffers (TLBs); this is discussed further in Section 25.4.

When running in native mode, PTLsim cannot track changes to the process memory map made
by native calls to mmap(), munmap(), etc. Therefore, at every switch from native to simulation
mode, the resync_with_process_maps() function is called. This function parses the /proc/self/maps

metafile maintained by the kernel to build a list of all regions mapped by the current process.
Using this list, the SPATs are rebuilt to reflect the current memory map. This is absolutely critical
for correct operation, since during simulation, speculative loads and stores will only read and
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write memory if the appropriate SPAT indicates the address is accessible to user code. If the
SPATs become out of sync with the real memory map, PTLsim itself may crash rather than simply
marking the offending load or store as invalid. The resync_with_process_maps() function (or more
specifically, the mqueryall() helper function) is fairly kernel version specific since the format of
/proc/self/maps has changed between Linux 2.6.x kernels. New kernels may require updating this
function.

11.4 Debugging Hints

When adding or modifying PTLsim, bugs will invariably crop up. Fortunately, PTLsim provides a
trivial way to find the location of bugs which silently corrupt program execution. Since PTLsim can
transparently switch between simulation and native mode, isolating the divergence point between
the simulated behavior and what a real reference machine would do can be done through binary
search. The -stopinsns configuration option can be set to stop simulation before the problem
occurs, then incremented until the first x86 instruction to break the program is determined.

The out of order simulator (ooocore.cpp) includes extensive debugging and integrity checking as-
sertions. These may be turned off by default for improved performance, but they can be eas-
ily re-enabled by defining the ENABLE_CHECKS symbol at the top of ooocore.cpp, ooopipe.cpp and
oooexec.cpp. Additional check functions are in the code but commented out; these may be used as
well.

You can also debug PTLsim with gdb, although the process is non-standard due to PTLsim’s co-
simulation architecture:

• Start PTLsim on the target program like normal. Notice the Thread N is running in XX-bit

mode message printed at startup: this is the PID you will be debugging, not the “ptlsim”
process that may also be running.

• Start GDB and type “attach 12345” if 12345 was the PID listed above

• Type “symbol-file ptlsim” to load the PTLsim internal symbols (otherwise gdb only knows
about the benchmark code itself). You should specify the full path to the PTLsim executable
here.

• You’re now debugging PTLsim. If you run the “bt” command to get a backtrace, it should
show the PTLsim functions starting at address 0x70000000.

If the backtrace does not display enough information, go to the Makefile and enable the "no opti-
mization" options (the "-O0" line instead of "-O99") since that will make more debugging infor-
mation available to you.

The “-pause-at-startup seconds” configuration option may be useful here, to give you time to
attach with a debugger before starting the simulation.
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11.5 Timing Issues

PTLsim uses the CycleTimer class extensively to gather data about its own performance using
the CPU’s timestamp counter. At startup in superstl.cpp, the CPU’s maximum frequency is
queried from the appropriate Linux kernel sysfs node (if available) or from /proc/cpuinfo if not.
Processors which dynamically scale their frequency and voltage in response to load (like all Athlon
64 and K8 based AMD processors) require special handling. It is assumed that the processor will
be running at its maximum frequency (as reported by sysfs) or a fixed frequency (as reported by
/proc/cpuinfo) throughout the majority of the simulation time; otherwise the timing results will
be bogus.

11.6 External Signals and PTLsim

PTLsim can be forced to switch between native mode and sequential mode by sending it standard
Linux-style signals from the command line. If your program is called “myprogram”, start it under
PTLsim and run this command from another terminal:

killall -XCPU myprogram

This will force PTLsim to switch between native mode and simulation mode, depending on its
current mode. It will print a message to the console and the logfile when you do this. The initial
mode (native or simulation) is determined by the presence of the -trigger option: with -trigger,
the program starts in native mode until the trigger point (if any) is reached.
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Part III

PTLsim/X: Full System SMP/SMT
Simulation
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Chapter 12

Background

12.1 Virtual Machines and Full System Simulation

Full system simulation and virtualization has been around since the dawn of computers. Typically
virtual machine software is used to run guest operating systems on a physical host system, such
that the guest believes it is running directly on the bare hardware. Modern full system simulators
in the x86 world can be roughly divided into two groups (this paper does not consider systems for
other instruction sets).

Hypervisors execute most unprivileged instructions on the native CPU at full speed, but trap priv-
ileged instructions used by the operating system kernel, where they are emulated by hypervisor
software so as to maintain isolation between virtual machines and make the virtual machine nearly
indistinguishable from the real CPU. In some cases (particularly on x86), additional software tech-
niques are needed to fully hide the hypervisor from the guest OS.

• Xen [6, 7, 5, 8, 9, 2] represents the current state of the art in this field; it will be described in
great detail later on.

• VMware [12] is a very well known commercial product that allows unmodified x86 operating
systems to run inside a virtual machine. Because the x86 instruction set is not fully virtual-
izable, VMware must employ x86-to-x86 binary translation techniques on kernel code (but
not user mode code) to make the virtual CPU indistinguishable from the real CPU for com-
patibility reasons. These translations are typically cached in a hidden portion of the guest
address space to improve performance compared to simply interpreting sensitive x86 in-
structions. While this approach is sophisticated and effective, it exacts a heavy performance
penalty on I/O intensive workloads [9]. Interestingly, the latest microprocessors from Intel
and AMD include hardware features (Intel VT [15], AMD SVM [16]) to eliminate the binary
translation and patching overhead. Xen fully supports these technologies to allow running
Windows and other OS’s at full speed, while VMware has yet to include full support.

VMware comes in two flavors. ESX is a true hypervisor that boots on the bare hardware
underneath the first guest OS. GSX and Workstation use a userspace frontend process con-
taining all virtual device drivers and the binary translator, while the vmmon kernel module
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(open source in the Linux version) handles memory virtualization and context switching
tasks similar to Xen.

• Several other products, including Virtual PC and Parallels, provide features similar to VMware
using similar technology.

• KVM (Kernel Virtual Machine) is a new hypervisor infrastructure built into all Linux kernels
after 2.6.19. It depends on the hardware virtualization extensions (Intel VT and AMD SVM)
built into modern x86 chips, whereas Xen and VMware also support running on older pro-
cessors without special hardware support. KVM is an attractive foundation for future virtual
machine development since it’s built into Linux (so it requires far less setup work than Xen
or VMware) and provides excellent performance.

Unlike hypervisors, simulators perform cycle accurate execution of x86 instructions using inter-
preter software, without running any guest instructions on the native CPU.

• Bochs [11] is the most well known open source x86 simulator; it is considered to be a nearly
RTL (register transfer language) level description of every x86 behavior from legacy 16-
bit features up through modern x86-64 instructions. Bochs is very useful for the functional
validation of real x86 microprocessors, but it is very slow (around 5-10 MHz equivalent) and
is not useful for implementing cycle accurate models of modern uop-based out of order x86
processors (for instance, it does not model caches, memory latency, functional units and so
on).

• QEMU [10] is similar in purpose to VMware, but unlike VMware, it supports multiple CPU
host and guest architectures (PowerPC, SPARC, ARM, etc). QEMU uses binary translation
technology similar to VMware to hide the hypervisor’s presence from the guest kernel. How-
ever, due to its cross platform design, both kernel and user code is passed through x86-to-x86
binary translation (even on x86 platforms) and stored in a translation cache. Interestingly,
Xen uses a substantial amount of QEMU code to model common hardware devices when
running unmodified operating systems like Windows, but Xen still uses its own hardware-
assisted technology to actually achieve virtualization. QEMU supports a proprietary hyper-
visor module to add VMware’s and Xen’s ability to run user mode code natively on the CPU
to reduce the performance penalty; hence it is also in the hypervisor category.

• Simics [13] is a commercial simulation suite for modeling both the functional aspects of var-
ious x86 processors (including vendor specific extensions) as well as user-designed plug-in
models of real hardware devices. It is used extensively in industry for modeling new hard-
ware and drivers, as well as firmware level debugging. Like QEMU, Simics uses x86-to-x86
binary translation to instrument code at a very low level while achieving good performance
(though noticeably slower than a hypervisor provides). Unlike QEMU, Simics is fully ex-
tensible and supports a huge range of real hardware models, but it is not possible to add
cycle accurate simulation features below the x86 instruction level, making it less useful to
microarchitects (both because of technical considerations as well as its status as a closed
source product).
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• SimNow [14] is an AMD simulation tool used during the design and validation of AMD’s
x86-64 hardware. Like Simics, it is a functional simulator only, but it models a variety
of AMD-built hardware devices. SimNow uses x86-to-x86 binary translation technology
similar to Simics and QEMU to achieve good performance. Because SimNow does not
provide cycle accurate timing data, AMD uses its own TSIM trace-based simulator, derived
from the K8 RTL, to do actual validation and timing studies. SimNow is available for free
to the public, albeit as closed source.

All of these tools share one common disadvantage: they are unable to model execution at a level
below the granularity of x86 instructions, making them unsuitable to microarchitects. PTLsim/X
seeks to fill this void by allowing extremely detailed uop-level cycle accurate simulation of x86
and x86-64 microprocessor cores, while simultaneously delivering all the performance benefits of
true native-mode hypervisors like Xen, selective binary translation based hypervisors like VMware
and QEMU, and the detailed hardware modeling capabilities of Bochs and Simics.

12.2 Xen Overview

Xen [7, 6, 5, 8, 9, 2] is an open source x86 virtual machine monitor, also known as a hypervisor.
Each virtual machine is called a “domain”, where domain 0 is privileged and accesses all hardware
devices using the standard drivers; it can also create and directly manipulate other domains. Guest
domains typically do not have hardware access do not have this access; instead, they relay requests
back to domain 0 using Xen-specific virtual device drivers. Each guest can have up to 32 VCPUs
(virtual CPUs). Xen itself is loaded into a reserved region of physical memory before loading a
Linux kernel as domain 0; other operating systems can run in guest domains. Xen is famous for
having essentially zero overhead due to its unique and well planned design; it’s possible to run a
normal workstation or server under Xen with full native performance.

Under Xen’s “paravirtualized” mode, the guest OS runs on an architecture nearly identical to x86
or x86-64, but a few small changes (critical to preserving native performance levels) must be made
to low-level kernel code, similar in scope to adding support for a new type of system chipset or
CPU manufacturer (e.g. instead of an AMD x86-64 on an nVidia chipset, the kernel would need to
support a Xen-extended x86-64 CPU on a Xen virtual “chipset”). These changes mostly concern
page tables and the interrupt controller:

• Paging is always enabled, and any physical pages (called “machine frame numbers”, or
MFNs) used to form a page table must be marked read-only (a.k.a. “pinned”) everywhere.
Since the processor can only access a physical page if it’s referenced by some page table,
Xen can guarantee memory isolation between domains by forcing the guest kernel to replace
any writes to page table pages with special mmu_update() hypercalls (a.k.a. system calls
into Xen itself). Xen makes sure each update points to a page owned by the domain before
updating the page table. This approach has essentially zero performance loss since the guest
kernel can read its own page tables without any further indirections (i.e. the page tables point
to the actual physical addresses), and hypercalls are only needed for batched updates (e.g.
validating a new page table after a fork() requires only a single hypercall).
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– Xen also supports pseudo-physical pages, which are consecutively numbered from 0 to
some maximum (i.e. 65536 for a 256 MB domain). This is required because most ker-
nels (including Linux and Windows) do not support “sparse” (discontiguous) physical
memory ranges very well (remember that every domain can still address every physical
page, including those of other domains - it just can’t access all of them). Xen provides
pseudo-to-machine (P2M) and machine-to-pseudo (M2P) tables to do this mapping.
However, the physical page tables still continue to reference physical addresses and are
fully visible to the guest kernel; this is just a convenience feature.

– Xen can save an entire domain to disk, then restore it later starting at that checkpoint.
Since Xen tracks every read-only page that’s part of some page table, it can restore
domains even if the original physical pages are now used by something else: it au-
tomatically remaps all MFNs in every page table page it knows about (but the guest
kernel must never store machine page numbers outside of page table pages - it’s the
same concept as in garbage collection, where pointers must only reside in the obvious
places).

– Xen can migrate running domains between machines by tracking which physical pages
become dirty as the domain executes. Xen uses shadow page tables for this: it makes
copy-on-write duplicates of the domain’s page tables, and presents these internal tables
to the CPU, while the guest kernel still thinks it’s using the original page tables. Once
the migration is complete, the shadow page tables are merged back into the real page
tables (as with a save and restore) and the domain continues as usual.

– The memory allocation of each domain is elastic: the domain can give any free pages
back to Xen via the “balloon” mechanism; these pages can then be re-assigned to other
domains that need more memory (up to a per-domain limit).

– Domains can share some of their pages with other domains using the grant mechanism.
This is used for zero-copy network and disk I/O between domain 0 and guest domains.

• Interrupts are delivered using an event channel mechanism, which is functionally identical
to the IO-APIC hardware on the bare CPU (essentially it’s a “Xen APIC” instead of the
Intel and AMD models already supported by the guest kernel). Xen sets up a shared info
page containing bit vectors for masked and pending interrupts (just like an APIC’s memory
mapped registers), and lets the guest kernel register an event handler function. Xen then does
an upcall to this function whenever a virtual interrupt arrives; the guest kernel manipulates
the mask and pending bits to ensure race-free notifications. Xen automatically maps physical
IRQs on the APIC to event channels in domain 0, plus it adds its own virtual interrupts (for
the usual timer and a Xen-specific notification port; use cat /proc/interrupts on a Linux
system under Xen to see this). When the guest domain has multiple VCPUs, interprocessor
interrupts (IPIs) are done through the Xen event controller in a manner identical to hardware
IPIs.

– Xen is unique in that PCI devices can be assigned to any domain, so for instance each
guest domain could have its own dedicated PCI network card and disk controller -
there’s no need to relay requests back to domain 0 in this configuration, although it only
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works with hardware that supports IOMMU virtualization (otherwise it’s a security
risk, since DMA can be used to bypass Xen’s page table protections).

• Xen provides the guest with additional timers, so it can be aware of both “wall clock” time as
well as execution time (since there may be gaps in the latter as other domains use the CPU);
this lets it provide a smooth interactive experience in a way systems like VMware cannot.
The timers are delivered as virtual interrupt events.

• All other features of the paravirtualized architecture perfectly match x86. The guest kernel
can still use most x86 privileged instructions, such as rdmsr, wrmsr, and control register
updates (which Xen transparently intercepts and validates), and in domain 0, it can access
I/O ports, memory mapped I/O, the normal x86 segmentation (GDT and LDT) and inter-
rupt mechanisms (IDT), etc. This makes it possible to run a normal Linux distribution,
with totally unmodified drivers and software, at full native speed (we do just this on all our
development workstations and servers). Benchmarks [9] have shown Xen to have ~2-3%
performance decrease relative to a traditional Linux kernel, where as VMware and similar
solutions yield a 20-70% decrease under heavy I/O.

Xen also supports “HVM” (hardware virtual machine) mode, which is equivalent to what VMware
[12], QEMU [10], Bochs [11] and similar systems provide: nearly perfect emulation of the x86
architecture and some standard peripherals. The advantage is that an uncooperative guest OS never
knows it’s running in a virtual machine: Windows XP and Mac OS X have been successfully run
inside Xen in this mode. Unfortunately, this mode has a well known performance cost, even when
Xen leverages the specialized hardware support for full virtualization in newer Intel [15] and AMD
[16] chips. The overhead comes from the requirement that the hypervisor still trap and emulate
all sensitive instructions, whereas paravirtualized guests can intelligently batch together requests
in one hypercall and can avoid virtual device driver overhead.
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Chapter 13

Getting Started with PTLsim/X

NOTE: This part of the manual is relevant only if you are using the full-system PTLsim/X. If you
are looking for the userspace-only version, please skip this entire part and read Part II instead.

WARNING: PTLsim/X assumes fairly high level of familiarity with Xen and the Linux kernel. If
you have never compiled your own Linux kernel or if you are not yet running Xen or are unsure how
to create and use domains, STOP NOW and become familiar with Xen itself before attempting
to use PTLsim/X. The following sections all assume you are familiar with Xen, at least from a
system administration perspective. We cannot provide support for Xen-related issues unless they
are caused by PTLsim.

13.1 Building PTLsim/X

Prerequisites:

• PTLsim/X requires a modern 64-bit x86-64 machine. This means an AMD Athlon 64 /
Opteron / Turion or an Intel Pentium 4 (specifically with EM64T) or Intel Core 2. We do not
plan to offer a 32-bit version of PTLsim/X due to the technical deficiencies in 32-bit x86 that
make it difficult to properly implement a full system simulator with all of PTLsim’s features.
Besides, 64-bit hardware is now the standard (in some cases the only option) from all the
major x86 processor vendors and is very affordable.

• The 64-bit requirement only applies to the host system running PTLsim/X. Inside the virtual
machine, you are still free to use standard 32-bit Linux distributions, applications and so
forth under PTLsim/X

• PTLsim/X assumes you have root access to your machine. The PTLsim/X hypervisor runs
below Linux itself, so you must use a Xen compatible kernel in domain 0 (more on this
later).
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• We highly recommend you use a Linux distribution already designed to work with Xen 3.x.
We use SuSE 10.2 and highly recommend it; most other distributions now support Xen. This
requirement only applies to domain 0 - the virtual machines you’ll be running can use any
distribution and do not even need to know about Xen at all (other than the kernel, which
must support Xen hypercalls and block/network drivers).

• We have successfully built PTLsim/X with gcc 4.1.x+ (gcc 4.0.x has documented bugs af-
fecting some of our code).

Quick Start Steps:

All files listed below can be downloaded from http://www.ptlsim.org/download.php.

IMPORTANT: The instructions below refer to specific versions of various files (i.e., Xen hyper-
visor, Linux kernel, etc.). We regularly update the versions of these files, and newer PTLsim/X
versions may not work correctly with older kernel and/or hypervisor versions (i.e. the versions
should be matching). The following instructions are therefore for informational purposes only;
always check the PTLsim web site’s download page for the latest versions of these files. The
following versions are correct as of September 20th, 2007

1. Set up Xen with PTLsim/X extensions:

• Download our modified Xen source tree (xen-3.1-ptlsim.tar.bz2) from http://www.ptlsim.org/download.php.
This is the easiest way to make sure you have the correct PTLsim-compatible version
of Xen with all patches pre-applied.

– We also provide ptlsim-xen-hypervisor.diff in case you want to manually apply
the patches to a development version of Xen; the patches are fairly simple and can
be adapted as needed.

• Build and install both the Xen hypervisor and the userspace Xen tools:

– In xen-3.1-ptlsim/xen, run make. You can optionally copy the compiled Xen hy-
pervisor (in xen/xen) somewhere else (such as wherever your kernel and initrd files
are stored).

– In xen-3.1-ptlsim/tools, run make, then run make install.
• Download our sample kernel and modules (linux-2.6.22.6-mtyrel-64bit-xen.tar.bz2)

and extract in the root directory (via tar jxvf linux-2.6.22.6-mtyrel-64bit-xen.tar.bz2)
to create /lib/modules/2.6.22.6-mtyrel-64bit-xen/....

– This is a SMP kernel based on 2.6.22.6 with the Xen patches maintained by SuSE
Linux. The complete source is in linux-2.6.22-mtyrel-source.tar.gz, if you want
to recompile it.

– This is just a sample kernel we use - PTLsim/X should work even if you use the
Xen-compatible kernel shipped with your Linux distribution of choice. However,
we recommend you run this same kernel in domain 0 as well as in the target domain
under simulation, simply because we know it works correctly and has all the latest
Xen patches.
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– In addition, our kernels feature the ability to create Xen checkpoints and initiate
PTLsim actions from within the domain by writing to /proc/xen/checkpoint and
/proc/xen/ptlsim, respectively. The major changes are in linux-2.6.22-mtyrel/patches.mty/linux-2.6.22-xen-self-checkpointing.diff

if you want to apply them to a different kernel or learn how they work.

• Activate the new Xen hypervisor and kernel:

– Install the new kernel and Xen hypervisor in a manner specific to your distribution.
While we cannot provide instructions for every distribution, on SuSE, you need to
run mkinitrd to collect the required boot drivers like this:

mkinitrd -k /lib/modules/2.6.22.6-mtyrel-64bit-xen/linux

-i /lib/modules/2.6.22.6-mtyrel-64bit-xen/initrd

-M /lib/modules/2.6.22.6-mtyrel-64bit-xen/System.map

IMPORTANT: All parts of this command should be on a single line (this manual
makes long lines difficult to show)

– Edit the GRUB bootloader configuration (usually in /boot/grub/menu.lst on most
distributions) to specify the new Xen-enabled kernel and hypervisor. The first
entry should be similar to:

title Linux 2.6.22.6-mtyrel-64bit-xen

kernel (hd0,0)/project/xen-3.1-ptlsim/xen/xen console=vga

module (hd0,0)/lib/modules/2.6.22.6-mtyrel-64bit-xen/linux root=/dev/...

module (hd0,0)/lib/modules/2.6.22.6-mtyrel-64bit-xen/initrd

Obviously you may need to adjust the file locations, if you’re booting from a differ-
ent hard drive or compiled Xen in a location other than /project/xen-3.1-ptlsim.

• Reboot, and make sure the PTLsim/X extensions to Xen are actually running: “cat
/sys/hypervisor/properties/capabilities” should list “ptlsim”. If this file doesn’t
exist, you’re not running under Xen at all.

2. Set up sample virtual machine and disk images:

• Download our pre-configured example disk image (ptlsim-disk-image-example.tar.bz2)
and uncompress with tar jxvf ptlsim-disk-image-example.tar.bz2. The sample scripts
inside this archive assume that the files were extracted into /project/ptlsim-disk-image-example.

– We recommend placing this disk image on a local hard disk rather than NFS. How-
ever, if you’re running Cluster NFS and/or are using the no_root_squash NFS op-
tion, it’s perfectly fine if you put the disk image on an NFS volume.

• You already downloaded our Xen-compatible kernel above.

• The disk image archive contains a sample Xen configuration file (sample-xen-domain)
and some helpful scripts (e.g. run-domain, restore-domain, etc.)

• Make sure you can create this domain “xm create sample-xen-domain -c”. You should
get a console with the text “Welcome to the PTLsim Demo Machine”.

3. Setup PTLsim itself:
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• Download the stable version of PTLsim from our web site (in ptlsim-2007xxxx-rXXX.tar.gz)
and unpack this file to create the ptlsim directory.

• Edit the PTLsim Makefile and uncomment the “PTLSIM_HYPERVISOR=1” line to enable
full system PTLsim/X support.

• Run make.

– If the build process complains about missing header files, make sure /usr/include/xen

is a symlink to /project/xen-3.1-ptlsim/tools/libxc/xen (or wherever you put
the PTLsim-modified xen-3.1-ptlsim tree you downloaded). Delete /usr/include/xen

beforehand if needed.

13.2 Running PTLsim

PTLsim is run in domain 0 as root, for instance by using the “sudo ptlsim ...” command. The
-domain N option is used to specify the domain to access. The following scenarios show by example
how this is done.

13.3 Booting Linux under PTLsim

In the following examples, we will assume the target domain is called ptlvm.

Start your domain as follows:

sudo xm create domainname --paused

sudo xm list

sudo xm console domainname

The --paused option tells Xen to pause the domain as soon as it’s created, so we can run the entire
boot process under PTLsim.

The xm list command will print the domain ID assigned to ptlvm. On our test machine, the output
looks like:

yourst [typhoon /project/ptlsim] sudo xm create ptlvm --paused; sudo xm list; sudo xm console ptlvm;

Using config file "ptlvm".

Started domain ptlvm

Name ID Mem(MiB) VCPUs State Time(s)

Domain-0 0 7877 4 r----- 137.9

ptlvm 21 128 1 --p--- 0.0

You may also want to give the PTLsim domain a low priority; otherwise it may cause the system
to respond slowly. This can be done by adding:
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sudo xm sched-credit -d ptlvm -w 16

Open another console and start PTLsim on this domain (using the domain ID “21” given in the
example above):

sudo ./ptlsim -domain ptlvm -logfile ptlsim.log -native

The resulting output:

//

// PTLsim: Cycle Accurate x86-64 Full System Simulator

// Copyright 1999-2007 Matt T. Yourst <yourst@yourst.com>

//

// Revision 225 (2007-09-21)

// Built Sep 21 2007 16:21:36 on tidalwave.lab.ptlsim.org using gcc-4.2

// Running on typhoon.lab.ptlsim.org

//

Processing -domain 21 -logfile ptlsim.log -native

System Information:

Running on hypervisor version xen-3.0-x86_64-ptlsim

Xen is mapped at virtual address 0xffff800000000000

PTLsim is running across 1 VCPUs:

VCPU 0: 2202 MHz

Memory Layout:

System: 524208 pages, 2096832 KB

Domain: 32768 pages, 131072 KB

PTLsim reserved: 8192 pages, 32768 KB

Page Tables: 275 pages, 1100 KB

PTLsim image: 407 pages, 1628 KB

Heap: 7510 pages, 30040 KB

Stack: 256 pages, 1024 KB

Interfaces:

PTLsim page table: 282898

Shared info mfn: 4056

Shadow shinfo mfn: 295164

PTLsim hostcall: event channel 3

PTLsim upcall: event channel 4

Switched to native mode

Back in the Xen console for the domain, you’ll see the familiar Linux boot messages:

Bootdata ok (command line is nousb noide root=/dev/hda1 xencons=ttyS console=ttyS0)

Linux version 2.6.18-mtyrel-k8-64bit-xen (yourst@tidalwave) (gcc version 4.1.0 (SUSE Linux)) #2 Sun Oct 8 02:29:10 EDT 2006

BIOS-provided physical RAM map:

Xen: 0000000000000000 - 0000000008800000 (usable)

No mptable found.

Built 1 zonelists. Total pages: 34816

Kernel command line: nousb noide root=/dev/hda1 xencons=ttyS console=ttyS0

Initializing CPU#0
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PID hash table entries: 1024 (order: 10, 8192 bytes)

Xen reported: 2202.808 MHz processor.

Console: colour dummy device 80x25

Dentry cache hash table entries: 32768 (order: 6, 262144 bytes)

Inode-cache hash table entries: 16384 (order: 5, 131072 bytes)

Software IO TLB disabled

Memory: 123180k/139264k available (2783k kernel code, 7728k reserved, 959k data, 184k init)

Calibrating delay using timer specific routine.. 4407.14 BogoMIPS (lpj=2203570)

...

NET: Registered protocol family 1

NET: Registered protocol family 17

VFS: Mounted root (ext2 filesystem) readonly.

Welcome to the PTLsim demo machine!

root [ptlsim /] cat /proc/cpuinfo

You’ll notice how we specified the “-native” option to speed up the boot process by running all
code on the real CPU rather than PTLsim’s synthetic CPU model. Booting Linux within PTL-
sim is slow since the kernel often executes several billion instructions before finally presenting a
command line.

13.4 Running Simulations: PTLctl

At this point, we would like to start an actual simulation run. For purposes of illustration, this run
is composed of three actions:

• Simulate 100 million x86 instructions using PTLsim’s out of order superscalar model

• Simulate another 100 million using PTLsim’s sequential model. The sequential model is
much faster than the out of order superscalar model, so it’s useful for testing and debugging
functional issues, as well as simply interacting with the domain. However, it does not collect
any cycle accurate timing data. Section 9.4 gives more information on the sequential model.

• Return to native mode

In the first example, we will start this run from within the running domain using ptlctl (PTLsim
controller), a program supplied with PTLsim. PTLctl is actually an example program showing
the use of PTLsim hypercalls (“PTL calls”), special x86 instructions that can be used to control a
domain’s own simulation. More information on the PTLcall API is in Section 14.4.

To conduct this simulation, the ptlctl command is used within the running virtual machine (by
typing it at the domain’s console); it is not run on the host system at all:

root [ptlsim /] tar zc usr lib | tar ztv > /tmp/allfiles.txt &

[1] 775

root [ptlsim /] ptlctl -core ooo -stopinsns 100m -run : -core seq -stopinsns 200m -run : -native

Sending flush and command list to PTLsim hypervisor:

-core ooo -stopinsns 100m -run
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-core seq -stopinsns 200m -run

-native

PTLsim returned rc 0

root [ptlsim /]

The first command simply runs several CPU-intensive multi-threaded processes in the background
for simulation purposes (in this case, compressing and uncompressing files in the virtual machine’s
filesystem).

The second ptlctl command submits the three simulation actions to PTLsim, separated by colons
(“:”).

At the PTLsim console, the following output is produced (the cycle counters will update regularly):

...

Breakout request received from native mode

Switched to simulation mode

Returned from switch to native: now back in sim

Processing -core ooo -stopinsns 100m -run

Completed 75258330 cycles, 100000000 commits: 461819 cycles/sec, 795201, insns/sec

Processing -core seq -stopinsns 200m -run

Completed 200000000 cycles, 200000000 commits: 6941302 cycles/sec, 6941302, insns/sec

Processing -native

Switched to native mode

Notice how the command list is always terminated by a final simulation action (in this case,
-native). If the command list only had one simulation run with a fixed duration, once that simula-
tion ended, the domain would freeze, since PTLsim would pause until another command arrived.
However, since the domain is frozen, the next command would never arrive: there is no way to
execute the ptlctl program a second time if the domain is stopped. To avoid this sort of deadlock,
ptlctl lets the user atomically submit batches of multiple commands as shown ahove.

This powerful capability allows “self-directed” simulation scripts (i.e. standard shell scripts), in
which ptlctl is run immediately before starting a benchmark program, then ptlctl is run again
after the program exits to end the simulation and switch back to native mode.

13.5 PTLsim/X Options

In Section 10.3, the configuration options common to both userspace PTLsim and full system
PTLsim/X wer listed. PTLsim/X also introduces a number of special options only applicable to
full system simulation:

Actions:

• -run

Start a simulation run, using the core model specified by the -core option (the default core
is “ooo”).
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• -stop

Stop the simulation run currently in progress, and wait for further commands. This is gener-
ally issued from another console window.

• -native

Switch the domain to native mode.

• -kill

Kill the domain. This is equivalent to “xm destroy”, but it also allows PTLsim to perform
cleanup actions and flush all files before exiting.

13.6 Live Updates of Configuration Options

PTLsim/X provides the ability to send commands and modify configuration options in the running
simulation from another console on the host system. This is different from how the ptlctl program
is used inside the target domain to script simulations: in this case, the commands are submitted
asynchronously from the host system.

For instance,

sudo ptlsim -native -domain ptlvm

will immediately switch the target domain back to native mode.

To reset the log level in the middle of a simulation run, use the following:

sudo ptlsim -domain ptlvm -loglevel 99 : -run

ptlsim: Sending request '-domain ptlvm -loglevel 99 : -run' to domain 12...OK

(This is an example only! Using -loglevel 99 will create huge log files).

Most options (such as -loglevel, -stoprip, etc.) can be updated at any time in this manner.

To end a simulation currently in progress, use this:

sudo ptlsim -domain ptlvm -kill

This will force PTLsim to cleanly exit.
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13.7 Command Scripts

PTLsim supports command scripts, in which a file containing a list of commands is passed on the
PTLsim command line as follows:

sudo ./ptlsim -domain name @ptlvm.cmd

where ptlvm.cmd (specified following the “@” operator) contains the example lines:

# Configuration options:

-logfile ptlsim.log -loglevel 4 -stats ptlsim.stats -snapshot-cycles 10m

# Run the simulation

-core seq -run -stopinsns 20m

-core ooo -run -stopinsns 100m

-native # All done (switch to native mode)

These commands are executed by PTLsim one at a time, waiting until the previous command
completes before starting the next. Notice the use of comments (starting with “#”), and how con-
figuration options can be spread across lines if desired. This mode is very useful for specifying
breakpoints using -stoprip and similar options; when the target RIP is reached, the simulation
stops and the next command in the command list is executed.

Command scripts can be nested (i.e. a script can itself include other scripts using @scriptname).
When multiple commands are given on the command line separated by colons (“:”), any @scriptname

clauses are processed after all other commands on the command line.

13.8 Working with Checkpoints

We maintain a tutorial on how to set up checkpoints and perform advanced checkpointing tech-
niques at http://www.ptlsim.org/capswiki/index.php/SPEC_2006. Note that this address is subject
to change.

Xen provides the ability to capture the state of a domain into a checkpoint file stored on disk.
PTLsim can leverage this capability to start simulation from a checkpoint, avoiding the need to
go through the entire boot process, and allowing precisely reproducable results across multiple
simulation runs.

To create a checkpoint, boot the domain in native mode without PTLsim running, and bring the
domain to the point where you would like to begin simulation. Then, in another console, run:

sudo xm save ptlvm /tmp/ptlvm.img

If you’re using our sample disk images, this command will pause until you do the following from
within the domain:
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echo checkpoint > /proc/xen/checkpoint

This facility allows very precise checkpoint placement, even by writing to this special file from
within a benchmark.

To restore the domain to that checkpoint, run:

sudo xm restore /tmp/ptlvm.img --paused

sudo xm list

sudo xm console ptlvm

PTLsim can then be started in the normal manner, by specifying -domain domainname. If the check-
point was made while the domain waited for input (e.g. at a shell command line), you may have to
press a few keys to get any response from its console.

To exit PTLsim, use “sudo ptlsim -kill -domain X” from another console. To abort PTLsim im-
mediately, use Ctrl+C on the ptlsim process, then type “xm kill ptlvm” to destroy the domain.

13.9 The Nature of Time

Full system simulation poses some difficult philosophical questions about the nature of time itself
and the relativistic phenomenon of “time dilation”. Specifically, if a simulator runs X times slower
than the native CPU, both external interrupts and timer interrupts should theoretically be generated
X times slower than in the real world. This is critical for obtaining accurate simulation results: for
events like network traffic, if a real network device fed interrupts into the domain in realtime, and
the simulator injected these interrupts into the simulation at the same rate, they would appear to
arrive thousands of times faster than any physical network interface could deliver them. This can
easily result in a livelock situation not possible in a real machine; at the very least it will deliver
misleading performance results.

On the other hand, interacting with a domain running at the “correct” rate according to its own
simulated clock can be unpleasant for users. For instance, if the “sleep 1” command is run in a
Linux domain under PTLsim, instead of sleeping for 1 second of wall clock time (as perceived
by the user), the domain will wait until 1 billion cycles have been fully simulated (assuming the
simulated processor frequency is 1 GHz). This is because PTLsim keys interrupt delivery and
all timers to the simulated cycle number in which the interrupt should arrive (based on the core
clock frequency). In addition to being annoying, this behavior will massively confuse network
applications that rely on precise timing information: a TCP/IP endpoint outside the domain will not
expect packets to arrive thousands of times slower than its own realtime clock expects, resulting in
retransmissions and timeouts that would never occur if both endpoints were inside the same “time
dilated” domain.

Rather than attempt to solve this philosophical dilemma, PTLsim allows users to choose the options
that best suit their simulation accuracy needs. The following options control the notion of time
inside the simulation:
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• -corefreq Hz

Specify the CPU core frequency (in Hz) reported to the domain. To specify a 2.4 GHz core,
use “-corefreq 2400m”. This option is used to calculate the number of cycles between timer
interrupts, as described below.

NOTE: If you plan on switching the domain between simulation and native mode, we strongly
recommend avoiding this option, to allow the host machine frequency to match the simulated
frequency.

• -timerfreq Hz

Specify the timer interrupt frequency in interrupts per second. By default, 100 interrupts per
second are used, since this is the standard for Linux kernels.

Hint: if keyboard interaction with the domain seems slow or sluggish, this is because Linux
only flushes console buffers to the screen at every clock tick. Specifying -timerfreq 1000

will greatly improve interactive response at the expense of more interrupt overhead.

• -pseudo-rtc

By default, the realtime clock reported to the domain is the current time of day. This option
forces the clock to reset to whatever time the domain’s checkpoint (if any) was created. This
may allow better cycle accurate reproducibility of random number generators, for instance.

• -realtime

PTLsim normally delivers all interrupts at the time dilated rate, as described above. While
this provides the most realistic simulation accuracy, it may be undesirable for some appli-
cations, particularly in networking. The -realtime option delivers external interrupts to the
domain as soon as they arrive at PTLsim’s interrupt handler; they are not deferred. The re-
altime clock reported to the domain is also not dilated; it is locked to the current wall clock
time. This option does not affect the timer interrupt frequency; use the -timerfreq option to
directly manipulate this.

• -maskints

Do not allow any external interrupts or events to reach the domain; only the timer interrupt
is delivered at the specified rate by PTLsim. This mode is necessary to provide guaranteed
reproducable cycle accurate behavior across runs; it eliminates almost all non-deterministic
events (like outside device interrupts) from the simulation. However, it is not very practical,
since disk and network access is impossible in this mode (since the Xen disk and network
drivers could never wake up the domain when data arrives). This mode is most useful for
debugging starting at a checkpoint, or when using a ramdisk with pre-scripted boot actions.

13.10 Other Options

PTLsim/X has a few additional options related to full system simulation:
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• -reservemem M

Reserves M megabytes of physical memory for PTLsim and its translation cache. The default
is 32 MB; the valid range is from 16 MB to 512 MB. See Chapter 14 for details.

All other options in Section 10.3 (unless otherwise noted) are common to both userspace PTLsim
and full system PTLsim/X.
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Chapter 14

PTLsim/X Architecture Details

The following sections provide insight into the internal architecture of full system PTLsim/X,
and how a simulator is built to run on the bare hardware. It is not necessary to understand this
information to work with or customize machine models in PTLsim, but it may still be fascinating
to those working with the low level infrastructure components.

14.1 Basic PTLsim/X Components

PTLsim/X works in a conceptually similar manner to the normal userspace PTLsim: the simulator
is “injected” into the target user process address space and effectively becomes the CPU executing
the process. PTLsim/X extends this concept, but instead of a process, the core PTLsim code runs
on the bare hardware and accesses the same physical memory pages owned by the guest domain.
Similarly, each VCPU is “collapsed” into a context structure within PTLsim when simulation
begins; each context is then copied back onto the corresponding physical CPU context(s) when
native mode is entered.

PTLsim/X consists of three primary components: the modified Xen hypervisor, the PTLsim mon-
itor process, and the PTLsim core.

14.1.1 Xen Modifications

The Xen hypervisor requires some modifications to work with PTLsim. Specifically, several new
major hypercalls were added:

• XEN_DOMCTL_contextswap atomically swaps all context information in all VCPUs of the target
domain, saving the old context and writing in a new context. In addition to per-VCPU
data (including all registers and page tables), the shared info page is also swapped. This
is done as a hypercall so as to eliminate race conditions between the hypervisor, PTLsim
monitor process in domain 0 and the target domain. The domain is first de-scheduled from
all physical CPUs in the host system, the old context is saved, the new context is validated
and written, and finally the paused domain wakes up to the new context.
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• MMUEXT_GET_GDT_TEMPLATE gets the x86 global descriptor table (GDT) page Xen transparently
maps into the FIRST_RESERVED_GDT_PAGE gdt_frames[] slot. PTLsim needs this data to prop-
erly resolve segment references.

• MMUEXT_QUERY_PAGES queries the page type and reference count of a given guest MFN.

• VCPUOP_set_breakout_insn_action tells the hypervisor about a special breakout instruction.
This is a normally undefined x86 instruction that the ptlctl program (and PTL calls from
user code) can use to request services from PTLsim. The hypervisor uses the x86 invalid
opcode trap to intercept this instruction, and in response it may perform several actions,
including pausing the domain and sending an interrupt to domain 0 for the PTLsim monitor
process to receive. This is the mechanism by which a domain operating in native mode can
request a switch back into simulation mode.

• VCPUOP_set_timestamp_bias is used to virtualize the processor timestamp counter (TSC) read
by the x86 rdtsc instruction. This support is needed to ensure a seamless transition between
simulation mode and native mode without the target domain noticing any cycles are missing.
Since PTLsim runs much slower than the native CPU, a negative bias must be applied to the
TSC to provide timing continuity when returning to native mode. The hypervisor will trap
rdtsc instructions and emulate them when a bias is in effect.

These changes are provided by ptlsim-xen-hypervisor.diff as described in the installation instruc-
tions.

14.1.2 PTLsim Monitor (PTLmon)

The PTLsim monitor (ptlmon.cpp) is a normal Linux program that runs in domain 0 with root
privileges. After connecting to the specified domain, it increases the domain’s memory reservation
so as to reserve a range of physical pages for PTLsim (by default, 32 MB of physical memory).
PTLmon maps all these reserved pages into its own address space, and loads the real PTLsim core
code into these pages. The PTLsim core is linked separately as ptlxen.bin, but is then linked as
a binary object into the final self-contained ptlsim executable. PTLmon then builds page tables
to map PTLsim space into the target domain. Finally, PTLmon fills in various other fields in
the boot info page (including a pointer to the Context structures (a modified version of Xen’s
vcpu_context_t) holding the interrupted guest’s state for each of its VCPUs), prepares the initial
registers and page tables to map PTLsim’s code, then unmaps all PTLsim reserved pages except
for the first few pages (as shown in Table 14.1). This is required since the monitor process cannot
have writable references to any of PTLsim’s pages or PTLsim may not be able to pin those pages
as page table pages. At this point, PTLmon atomically restarts the domain inside PTLsim using
the new contextswap hypercall. The old context of the domain is thus available for PTLsim to use
and update via simulation.

PTLmon also sets up two event channels: the hostcall channel and the upcall channel. PTLsim
notifies the monitor process in domain 0 via the hostcall event channel whenever it needs to access
the outside world. Specifically, PTLsim will fill in the bootpage.hostreq structure with parameters
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to a standard Linux system calls, and will place any larger buffers in the transfer page (see Table
14.1) visible to both PTLmon and PTLsim itself. PTLsim will then notify the hostcall channel’s
port. The domain 0 kernel will then forward this notification to PTLmon, which will do the system
call on PTLsim’s behalf (while PTLsim remains blocked in the synchronous_host_call() function).
PTLmon will then notify the hostcall port in the opposite direction (waking up PTLsim) when the
system call is complete. This is very similar to a remote procedure call, but using shared memory.
It allows PTLsim to use standard system calls (e.g. for reading and writing log files) without
modification, yet remains suitable for a bare-metal embedded environment.

PTLmon can also use the upcall channel to interrupt PTLsim, for instance to switch between native
and simulation mode, trigger a snapshot, or request that PTLsim update its internal parameters.
The PTLmon process sets up a socket in /tmp/ptlsim-domain-XXX and waits for requests on this
socket. The user can then run the ptlsim command again, which will connect to this socket and
tell the main monitor process for the domain to enqueue a text string (usually the command line
parameters to ptlsim) and send an interrupt to PTLsim on the upcall channel. In response, PTLsim
uses the ACCEPT_UPCALL hostcall to read the enqueued command line, then parses it and acts on any
listed actions or parameter updates.

It should be noted that this design allows live configuration updates, as described in Section 13.6.

14.2 PTLsim Core

PTLsim runs directly on the “bare metal” and has no access to traditional OS services except
through the DMA and interrupt based host call requests described above. Execution begins in
ptlsim_init() in ptlxen.cpp. PTLsim first sets up its internal memory management (page pool,
slab allocator, extent allocator in mm.cpp as described in Section 7.3) using the initial page tables
created by PTLmon in conjunction with the modified Xen hypervisor. PTLsim owns the virtual
address space range starting at 0xffffff0000000000 (i.e. x86-64 PML4 slot 510, of 239 bytes). This
memory is mapped to the physical pages reserved for PTLsim. The layout is shown in Table 14.1
(assuming 32 MB is allocated for PTLsim):

Starting at virtual address 0xfffffe0000000000 (i.e. x86-64 PML4 slot 508, of 240 bytes), space is
reserved to map all physical memory pages (MFNs) belonging to the guest domain. This mapping
is sparse, since only a subset of the physical pages are accessible by the guest. When PTLsim is
first injected into a domain, this space starts out empty. As various parts of PTLsim attempt to
access physical addresses, PTLsim’s internal page fault handler will map physical pages into this
space. Normally all pages are mapped as writable, however Xen may not allow writable mappings
to some types of pinned pages (L1/L2/L3/L4 page table pages, GDT pages, etc.). Therefore, if
the writable mapping fails, PTLsim tries to map the page as read only. PTLsim monitors memory
management related hypercalls as they are simulated and remaps physical pages as read-only or
writable if and when they are pinned or unpinned, respectively. When PTLsim switches back to
native mode, it quickly unmaps all guest pages, since we cannot hold writable references to any
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Table 14.1: Memory Layout for PTLsim Space
Page Size Description

(Pages below this point are shared by PTLmon in domain 0 and PTLsim in the target domain)
0 4K Boot info page and ptlxen.bin ELF header (see xc_ptlsim.h and ptlxen.h for the structures)
1 4K Hypercall entry points (filled in by Xen)
2 4K Shared info page for the domain
3 4K Shadow shared info page (as seen by guest)
4 4K Transfer page (for DMA between PTLmon in dom0 and target)
5 128K 32 VCPU Context structure pages

(Pages below this point are private to PTLsim in the target domain)
37 ~2M PTLsim binary

- ~28M PTLsim heap (page pool, slab allocator, extent allocator)
- ~256K PTLsim stack

... ~64K Page tables mapping 32 MB PTLsim space

... ~1MB Page tables (level 1) mapping all physical pages (reserved but not filled in)
(32MB) ~64K Higher level page tables (levels 4/3/2) pointing to other tables

pages the guest kernel may later attempt to pin as page table pages. This unmapping is done very
quickly by simply clearing all present bits in the physical map’s L2 page table page; the PTLsim
page fault handler will re-establish the L2 entries as needed.

14.3 Implementation Details

14.3.1 Page Translation

The Xen-x86 architecture always has paging enabled, so PTLsim uses a simulated TLB for all
virtual-to-physical translations. Each TLB entry has x86 accessed and dirty bits; whenever these
bits transition from 0 to 1, PTLsim must walk the page table tree and actually update the cor-
responding PTE’s accessed and/or dirty bit. Since page table pages are mapped read-only, our
modified update_mmu hypercall is used to do this. TLB misses are serviced in the normal x86
way: the page tables are walked starting from the MFN in CR3 until the page is resolved. This is
done by the Context.virt_to_pte() method, which returns the L1 page table entry (PTE) providing
the physical address and accumulated permissions (x86 has specific rules for deriving the effec-
tive writable/executable/supervisor permissions for each page). Internally, the page_table_walk()

function actually follows the page table tree, but PTLsim maintains a small 16-entry direct mapped
cache (like a TLB) to accelerate repeated translations (this is not related to any true TLB main-
tained by specific cores). The pte_to_ptl_virt() function then translates the PTE and original vir-
tual address into a pointer PTLsim can actually access (inside PTLsim’s mapping of the domain’s
physical memory pages). The software TLB is also flushed under the normal x86 conditions (MOV
CR3, WBINVD, INVLPG, and Xen hypercalls like MMUEXT_NEW_BASE_PTR). Presently TLB support is in
dcache.cpp; the features above are incorporated into this TLB. In addition, Context.copy_from_user()
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and Context.copy_to_user() functions are provided to walk the page tables and copy user data to
or from a buffer inside PTLsim.

In 32-bit versions of Xen, the x86 protection ring mechanism is used to allow the guest kernel
to run at ring 1 while guest userspace runs in ring 3; this allows the “supervisor” bit in PTEs to
retain its traditional meaning. However, in its effort to clean up legacy ISA features, x86-64 has no
concept of privilege rings (other than user/supervisor) or segmentation. This means the supervisor
bit in PTEs is never set (only Xen internal pages not accessible to guest domains have this bit
set). Instead, Xen puts the kernel in a separate address space from user mode; the top-level L4
page table page for kernel mode points to both kernel-only and user pages. Fortunately, Xen uses
TLB global bits and other x86-64 features to avoid much of the context switch overhead from this
approach. PTLsim does not have to worry about this detail during virtual-to-PTE translations: it
just follows the currently active page table based on physical addresses only.

14.3.2 Exceptions

Under Xen, the set_trap_table() hypercall is used to specify an array of pointers to excep-
tion handlers; this is equivalent to the x86 LIDT (load interrupt descriptor table) instruction.
Whenever we switch from native mode to simulation mode, PTLmon copies this array back into
the Context.idt[] array. Whenever PTLsim detects an exception during simulation, it accesses
Context.idt[vector_id] to determine where the pipeline should be restarted (CS:RIP). In the case
of page faults, the simulated CR2 is loaded with the faulting virtual address. It then constructs
a stack frame equivalent to Xen’s structure (i.e. iret_context) at the stack segment and pointer
stored in Context.kernel_sp (previously set by the stack_switch() hypercall, which replaces the
legacy x86 TSS structure update). Finally, PTLsim propagates the page fault to the selected guest
handler by redirecting the pipeline. This is essentially the same work performed within Xen by the
create_bounce_frame() function, do_page_fault() (or its equivalent) and propagate_page_fault()

(or its equivalent); all the same boundary conditions must be handled.

14.3.3 System Calls and Hypercalls

On 64-bit x86-64, the syscall instruction has a different meaning depending on the context in
which it is executed. If executed from userspace, syscall arranges for execution to proceed di-
rectly to the guest kernel system call handler (in Context.syscall_rip). This is done by the
assist_syscall() microcode handler. A similar process occurs when a 32-bit application uses
“int 0x80” to make system calls, but in this case, Context.propagate_x86_exception() is used to
redirect execution to the trap handler registered for that virtual software interrupt.

If executed from kernel space, the syscall instruction is interpreted as a hypercall into Xen itself.
PTLsim emulates all Xen hypercalls. In many simple cases, PTLsim handles the hypercall all by
itself, for instance by simply updating its internal tables. In other cases, the hypercall can safely
be passed down to Xen without corrupting PTLsim’s internal state. We must be very careful as
to which hypercalls are passed through: for instance, before updating the page table base, we
must ensure the new page table still maps PTLsim and the physical address space before we allow
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Xen to update the hardware page table base. These cases are all documented in the comments of
handle_xen_hypercall().

Note that the definition of “user mode” and “kernel mode” is maintained by Xen itself: from the
CPU’s viewpoint, both modes are technically userspace and run in ring 3.

An interesting issue arises when PTLsim passes hypercalls through to Xen: some buffers provided
by the guest kernel may reside in virtual memory not mapped by PTLsim. Normally PTLsim
avoids this problem by copying any guest buffers into its own address space using Context.copy_from_user(),
then copying the results back after the hypercall. However, to avoid future complexity, PTLsim
currently switches its own page tables every time the guest requests a page table switch, such
that Xen can see all guest kernel virtual memory as well as PTLsim itself. Obviously this means
PTLsim injects its two top-level page table slots into every guest top level page table. For multi-
processor simulation, PTLsim needs to swap in the target VCPU’s page table base whenever it
forwards a hypercall that depends on virtual addresses.

14.3.4 Event Channels

Xen delivers outside events, virtual interrupts, IPIs, etc. to the domain just like normal, except
they are redirected to a special PTLsim upcall handler stub (in lowlevel-64bit-xen.S). The handler
checks which events are pending, and if any events (other than the PTLsim hostcall and upcall
events) are pending, it sets a flag so the guest’s event handler is invoked the next time through
the main loop. This process is equivalent to exception handling in terms of the stack frame setup
and call/return sequence: the simulated pipeline is simply redirected to the handler address. It
should be noted that the PTLsim handler does not set or clear any mask bits in the shared info
page, since it’s the (emulated) guest OS code that should actually be doing this, not PTLsim. The
only exception is when the event in question is on the hostcall port or the upcall port; then PTLsim
handles the event itself and never notifies the guest.

14.3.5 Privileged Instruction Emulation

Xen lets the guest kernel execute various privileged instructions, which it then traps and emu-
lates with internal hypercalls. These are the same as in Xen’s arch/x86/traps.c: CLTS (FPU task
switches), MOV from CR0-CR4 (easy to emulate), MOV to and from DR0-DR7 (get or set debug
registers), RDMSR and WRMSR (mainly to set segment bases). PTLsim decodes and executes
these instructions on its own, just like any other x86 instruction.

14.4 PTLcalls

PTLsim defines the special x86 opcode 0x0f37 as a breakout opcode. It is undefined in the normal
x86 instruction set, but when executed by any code running under PTLsim, it can be used to
enqueue commands for PTLsim to execute.
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The ptlctl program uses this facility to switch from native mode to simulation mode as follows.
Whenever PTLsim is about to switch back to native mode, it uses the VCPUOP_set_breakout_insn_action

to specify the opcode bytes to intercept. When the hypervisor sees an invalid instruction match-
ing 0x0f37, it freezes the domain and sends an event channel notification to domain 0. This event
channel is read by PTLmon, which then uses the contextswap hypercall to switch back into PTL-
sim inside the domain. PTLsim then processes whatever command caused the switch back into
simulation mode.

While executing within simulation mode, this is not necessary: since PTLsim is in complete control
of the execution of each x86 instruction, it simply defines microcode to handle 0x0f37 instead of
triggering an invalid opcode exception. This microcode branches into PTLsim, which uses the
PTLSIM_HOST_INJECT_UPCALL hostcall to add the command(s) to the command queue. The queue is
maintained inside PTLmon so as to ensure synchronization between commands coming from the
host and commands from within the domain arriving via PTLcalls. The queue is typically flushed
before adding new commands in this manner: otherwise, it would be impossible to get immediate
results using ptlctl.

All PTL calls are defined in ptlcalls.h, which simply collects the call’s arguments and executes
opcode 0x0f37 as if it were a normal x86 syscall instruction:

• ptlcall_multi_enqueue(const char* list[], size_t length) enqueues a list of commands
to process in sequence

• ptlcall_multi_flush(const char* list[], size_t length) flushes the queue before adding
the commands

• ptlcall_single_enqueue(const char* command) adds one command to the end of the queue

• ptlcall_single_flush(const char* command) immediately flushes the queue and processes
the specified command

• ptlcall_nop() is a simple no-operation command used to get PTLsim’s attention

• ptlcall_version() returns version information about the running PTLsim hypervisor.

The ptlcall opcode 0x0f37 can be executed from both user mode and kernel mode, since it may
be desirable to switch simulation options from a userspace program. This would be impossible if
wrmsr (the traditional method) were used to effect PTLsim operations.

14.5 Event Trace Mode

In Section 13.9, we discussed the philosophical question of how to accurately model the timing
of external events when cycle accurate simulation runs thousands of times slower than the outside
world expects. To solve this problem, PTLsim/X offers event trace mode.

First, the user saves a checkpoint of the target domain, then instructs PTLsim to enter event record
mode. The domain is then used interactively in native mode at full speed, for instance by starting
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benchmarks and waiting for their completion. In the background, PTLsim taps Xen’s trace buffers
to write any events delivered to the domain into an event trace file. “Events” refer to any time-
dependent outside stimulus delivered to the domain, such as interrupts (i.e. Xen event channel
notifications) and DMA traffic (i.e. the full contents of any grant pages from network or disk I/O
transferred into the domain). Each event is timestamped with the relative cycle number (timestamp
counter) in which it was delivered, rather than the wall clock time. When the benchmarks are done,
the trace mode is terminated and recording stops.

The user then restores the domain from the checkpoint and re-injects PTLsim, but this time PTL-
sim reads the event trace file, rather than responding to any outside events Xen may deliver to the
domain while in simulation mode. Whenever the timestamp of the event at the head of the trace
file matches the current simulation cycle, that event is injected into the domain. PTLsim does
this by setting the appropriate pending bits in the shared info page, and then simulates an upcall
to the domain’s shared info handler (i.e. by restarting the simulated pipeline at that RIP). Since
the event channels used by PTLsim and those of the target domain may interfere, PTLsim main-
tains a shadow shared info page that’s updated instead; whenever the simulated load/store pipeline
accesses the real shared info page’s physical address, the shadow page is used in its place. In addi-
tion, the wall clock time fields in the shadow shared info page are regularly updated by dividing the
simulated cycle number by the native CPU clock frequency active during the record mode (since
the guest OS will have recorded this internally in many places).

This scheme does require some extra software support, since we need to be able to identify which
pages the outside source has overwritten with incoming data (i.e. as in a virtual DMA). The console
I/O page is actually a guest page that domain 0 maps in xenconsoled; this is easy to identify and
capture. The network and block device pages are typically grant pages; the domain 0 Linux device
drivers must be modified to let PTLsim know what pages will be overwritten by outside sources.

14.6 Multiprocessor Support

PTLsim/X is designed from the ground up to support multiple VCPUs per domain. The contextof(vcpuid)

function returns the Context structure allocated for each VCPU; this structure is passed to all func-
tions and assists dealing with the domain. It is the responsibility of each core (e.g. sequential core,
out of order core, user-designed cores, etc.) to update the appropriate context structure according
to its own design.

VCPUs may choose to block by executing an appropriate hypercall (sched_block, sched_yield,
etc.), typically suspending execution until an event arrives. PTLsim cores can simulate this by
checking the Context.running field; if zero, the corresponding VCPU is blocked and no instructions
should be processed until the running flag becomes set, such as when an event arrives. In realtime
mode (where Xen relays real events like timer interrupts back to the simulated CPU), events and
upcalls may be delivered to other VCPUs than the first VCPU which runs PTLsim; in this case,
PTLsim must check the pending bitmap in the shared info page and simulate upcalls within the
appropriate VCPU context (i.e. whichever VCPU context has its upcall_pending bit set).

Some Xen hypercalls must only be executed on the VCPU to which the hypercall applies. In
cases where PTLsim cannot emulate the hypercall on its own internal state (and defer the actual
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hypercall until switching back to native mode), the Xen hypervisor has been modified to support
an explicit vcpu parameter, allowing the first VCPU (which always runs PTLsim itself) to execute
the required action on behalf of other VCPUs.

For simultaneous multithreading support, PTLsim is designed to run the simulation entirely on the
first VCPU, while putting the other VCPUs in an idle loop. This is required because there’s no
easy way to parallelize an SMT core model across multiple simulation threads. In theory, a multi-
core simulator could in fact be parallelized in this way, but it would be very difficult to reproduce
cycle accurate behavior and debug deadlocks with asynchronous simulations running in different
threads. For these reasons, currently PTLsim itself is single threaded in simulation mode, even
though it simulates multiple virtual cores or threads.

Cache coherence is the responsibility of each core model. By default, PTLsim uses the “instant
visibility” model, in which all VCPUs can have read/write copies of cache lines and all stores
appear on all other VCPUs the instant they commit. More complex MOESI-compliant policies
can be implemented on top of this basic framework, by stalling simulated VCPUs until cache lines
travel across an interconnect network.
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Part IV

Out of Order Processor Model
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Chapter 15

Introduction

15.1 Out Of Order Core Features

PTLsim completely models a modern out of order x86-64 compatible processor, cache hierarchy
and key devices with true cycle accurate simulation. The basic microarchitecture of this model
is a combination of design features from the Intel Pentium 4, AMD K8 and Intel Core 2, but
incorporates some ideas from IBM Power4/Power5 and Alpha EV8. The following is a summary
of the characteristics of this processor model:

• The simulator directly fetches pre-decoded micro-operations (Section 17.1) but can simulate
cache accesses as if x86 instructions were being decoded on fetch

• Branch prediction is configurable; PTLsim currently includes various models including a
hybrid g-share based predictor, bimodal predictors, saturating counters, etc.

• Register renaming takes into account x86 quirks such as flags renaming (Section 5.4)

• Front end pipeline has configurable number of cycles to simulate x86 decoding or other
tasks; this is used for adjusting the branch mispredict penalty

• Unified physical and architectural register file maps both in-flight uops as well as committed
architectural register values. Two rename tables (speculative and committed register rename
tables) are used to track which physical registers are currently mapped to architectural reg-
isters.

• Unified physical register file for both integer and floating point values.

• Operands are read from the physical register file immediately before issue. Unlike in some
microprocessors, PTLsim does not do speculative scheduling: the schedule and register read
loop is assumed to take one cycle.

• Issue queues based on a collapsing design use broadcast based matching to wake up instruc-
tions.
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• Clustered microarchitecture is highly configurable, allowing multi-cycle latencies between
clusters and multiple issue queues within the same logical cluster.

• Functional units, mapping of functional units to clusters, issue ports and issue queues and
uop latencies are all configurable.

• Speculation recovery from branch mispredictions and load/store aliasing uses the forward
walk method to recover the rename tables, then annuls all uops after and optionally including
the mis-speculated uop.

• Replay of loads and stores after store to load forwarding and store to store merging depen-
dencies are discovered.

• Stores may issue even before data to store is known; the store uop is replayed when all
operands arrive.

• Load and store queues use partial chunk address matching and store merging for high per-
formance and easy circuit implementation.

• Prediction of load/store aliasing to avoid mis-speculation recovery overhead.

• Prediction and splitting of unaligned loads and stores to avoid mis-speculation overhead

• Commit unit supports stalling until all uops in an x86 instruction are complete, to make x86
instruction commitment atomic

The PTLsim model is fully configurable in terms of the sizes of key structures, pipeline widths,
latency and bandwidth and numerous other features.

15.2 Processor Contexts

PTLsim uses the concept of a VCPU (virtual CPU) to represent one user-visible microprocessor
core (or a hardware thread if a SMT machine is being modeled). The Context structure (defined in
ptlhwdef.h) maintains all per-VCPU state in PTLsim: this includes both user-visible architectural
registers (in the Context.commitarf[] array) as well as all per-core control registers and internal
state information. Context only contains general x86-visible context information; specific machine
models must maintain microarchitectural state (like physical registers and so forth) in their own
internal structures.

The contextof(N ) macro is used to return the Context object for a specific VCPU, numbered 0 to
contextcount-1. In userspace-only PTLsim, there is only one context, contextof(0). In full system
PTLsim/X, there may be up to 32 (i.e. MAX_CONTEXTS) separate contexts (VCPUs).
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15.3 PTLsim Machine/Core/Thread Class Hierarchy

PTLsim easily supports user defined plug-in machine models. Two of these models, the out of
order core (“ooo”) and the sequential in-order core (“seq”) ship with PTLsim; others can be easily
added by users. PTLsim implements several C++ classes used to build simulation models by
dividing a virtual machine into CPU sockets, cores and threads.

The PTLsimMachine class is at the root of the hierarchy. Every simulation model must subclass
PTLsimMachine and define its virtual methods. Adding a machine model to PTLsim is very simple:
simply define one instance of your machine class in a source file included in the Makefile. For
instance, assuming XYZMachine subclasses PTLsimMachine and will be called “xyz”:

XyzMachine xyzmodel(�xyz�);

The constructor for XyzMachine will be called by PTLsim after all other subsystems are brought
up. It should use the addmachine(�name �) static method to register the core model’s name with
PTLsim, so it can be specified using the “-core xyz ” option.

The machine models included with PTLsim (namely, OutOfOrderMachine and SequentialMachine)
have been placed in their own C++ namespace. When adding your own core, copy the example
source file(s) to new names and adjust the namespace specifiers to a new name to avoid clashes.
You should be able to link any number of machine models defined in this manner into PTLsim all
at once.

The PTLsimMachine::init() method is called to initialize each machine model the first time it is
used. This function is responsible for dividing the contextcount contexts up into sockets, cores
and threads, depending entirely on the machine model’s design and any configuration options
specified by the config parameter.

PTLsimMachine::run() is called to actually run the simulation; more details will be given on this
later.

PTLsimMachine::update_stats() is described in Section 8.

PTLsimMachine::dump_state() is called to aid debugging whenever an assertion fails, the simulator
accesses a null pointer or invalid address, or from anywhere else it may be useful.
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Chapter 16

Out Of Order Core Overview

The out of order core is spread across several source files:

• ooocore.cpp contains control logic, the definition of the OutOfOrderMachine class and its func-
tions (see Section 15.3), the top-level pipeline control functions, all event printing logic
(Section 16.1) and miscellaneous code.

• ooopipe.cpp contains all pipeline stages, except for execution stages and functional units.

• oooexec.cpp contains the functional units, load/store unit, issue queues, replay control and
exception handling.

• ooocore.h defines all structures and lists easy to configure parameters.

The OutOfOrderMachine structure is divided into an array of one or more OutOfOrderCore struc-
tures (by default, one per VCPU). The OutOfOrderMachine::init() function creates contextcount

cores and binds one per-VCPU Context structure to each core. The init() function is declared in
ooocore.h, since some user configurable state is set up at this point.

The OutOfOrderMachine::run() function first flushes the pipeline in each core, using core.flush_pipeline()

to copy state from the corresponding Context structure into the physical register file and other per-
core structures (see Section 24.6 for details).

The run() function then enters a loop with one iteration per simulated cycle:

• update_progress() prints the current performance information (cycles, committed instruc-
tions and simulated cycles/second) to the console and/or log file.

• inject_events() injects any pending interrupts and outside events into the processor; these
will be processed at the next x86 instruction boundary. This function only applies to full
system PTLsim/X.

• The OutOfOrderCore::runcycle() function is called for each core in sequence, to step its
entire state machine forward by one cycle (see below for details). If a given core is blocked
(i.e. paused while waiting for some outside event), its Context.running field is zero; in this
case, the core’s handle_interrupt() method may be called to wake it up (see below).
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• Any global structures (like memory controllers or interconnect networks) are clocked by one
cycle using their respective clock() methods.

• check_for_async_sim_break() checks if the user has requested the simulation stop or switch
back to native mode. This function only applies to full system PTLsim/X.

• The global cycle counter and other counters are incremented.

The OutOfOrderCore::runcycle() function is where the majority of the work in PTLsim’s out of
order model occurs. This function, in ooocore.cpp, runs one cycle in the core by calling functions to
implement each pipeline stage, the per-core data caches and other clockable structure. If the core’s
commit stage just encountered a special event (e.g. barrier, microcode assist request, exception,
interrupt, etc.), the appropriate action is taken at the cycle boundary.

In the following chapters, we describe every pipeline stage and structure in detail.

Every structure in the out of order model can obtain a reference to its parent OutOfOrderCore struc-
ture by calling its own getcore() method. Similarly, getcore().ctx returns a reference to the
Context structure for that core.

16.1 Event Log Ring Buffer

Section 10.5 describes PTLsim’s event log ring buffer system, in which the simulator can log all
per-cycle events to a circular ring buffer when the -ringbuf option is given. The ring buffer can
help developers look backwards in time from when an undesirable event occurs (for instance, as
specified by -ringbuf-trigger-rip), allowing much easier debugging and experimentation.

In the out of order core, the EventLog structure provides this ring buffer. The buffer consists of an
array of OutOfOrderCoreEvent structures (in ooocore.h); each structure contains a fixed header with
subject information common to all events (e.g. the cycle, uuid, RIP, uop, ROB slot, and so forth),
plus a union with sub-structures for each possible event type. The actual events are listed in an
enum above this structure.

The EventLog class has various functions for quickly adding certain types of events and filling
in their special fields. Specifically, calling one of the EventLog::add() functions allocates a new
record in the ring buffer and returns a pointer to it, allowing additional event-specific fields to
be filled in if needed. The usage of these functions is very straightforward and documented by
example in the various out of order core source files.

In ooocore.cpp, the OutOfOrderCoreEvent::print() method lists all event types and gives code to
nicely format the recorded event data. The eventlog.print() function prints every event in the ring
buffer; this function can be called from anywhere an event backtrace is needed.
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Chapter 17

Fetch Stage

17.1 Instruction Fetching and the Basic Block Cache

As described in Section 5.1, x86 instructions are decoded into transops prior to actual execution
by the out of order core. Some processors do this translation as x86 instructions are fetched from
an L1 instruction cache, while others use a trace cache to store pre-decoded uops. PTLsim takes a
middle ground to allow maximum simulation flexibility. Specifically, the Fetch stage accesses the
L1 instruction cache and stalls on cache misses as if it were fetching several variable length x86
instructions per cycle. However, actually decoding x86 instructions into uops over and over again
during simulation would be extraordinarily slow.

Therefore, for simulation purposes only, the out of order model uses the PTLsim basic block cache.
The basic block cache, described in Chapter 6, stores pre-decoded uops for each basic block, and
is indexed using the RIPVirtPhys structure, consisting of the RIP virtual address, several context-
dependent flags and the physical page(s) spanned by the basic block (in PTLsim/X only).

During the fetch process (implemented in the OutOfOrderCore::fetch() function in ooopipe.cpp),
PTLsim looks up the current RIP to fetch from (fetchrip), uses the current context to construct
a full RIPVirtPhys key, then uses this key to query the basic block cache. If the basic block has
never been decoded before, bbcache.translate() is used to do this now. This is all done by the
fetch_or_translate_basic_block() function.

Technically speaking, the cached basic blocks contain transops, rather than uops: as explained in
Section 5.1, each transop gets transformed into a true uop after it is renamed in the rename stage.
In the following discussion, the term uop is used interchangeably with transop.

17.2 Fetch Queue

Each transop fetched into the pipeline is immediately assigned a monotonically increasing uuid
(universally unique identifier) to uniquely track it for debugging and statistical purposes. The fetch
unit attaches additional information to each transop (such as the uop’s uuid and the RIPVirtPhys of
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the corresponding x86 instruction) to form a FetchBufferEntry structure. This fetch buffer is then
placed into the fetch queue (fetchq) assuming it isn’t full (if it is, the fetch stage stalls). As the
fetch unit encounters transops with their EOM (end of macro-op) bit set, the fetch RIP is advanced
to the next x86 instruction according to the instruction length stored in the SOM transop.

Branch uops trigger the branch prediction mechanism (Section 26) used to select the next fetch
RIP. Based on various information encoded in the branch transop and the next RIP after the x86
instruction containing the branch, the branchpred.predict() function is used to redirect fetching.
If the branch is predicted not taken, the sense of the branch’s condition code is inverted and the
transop’s riptaken and ripseq fields are swapped; this ensures all branches are considered correct
only if taken. Indirect branches (jumps) have their riptaken field overwritten by the predicted
target address.

PTLsim models the instruction cache by using the caches.probe_icache() function to probe the
cache with the physical address of the current fetch window. Most modern x86 processors fetch
aligned 16-byte or 32-byte blocks of bytes into the decoder and try to pick out 3 or 4 x86 instruc-
tions per cycle. Since PTLsim uses the basic block cache, it does not actually decode anything at
this point, but it still attempts to pick out up to 4 uops (or whatever limit is specified in ooocore.h)
within the current 16-byte window around the fetch RIP; switching to a new window must occur
in the next cycle. The instruction cache is only probed when switching fetch windows.

If the instruction cache indicates a miss, or the ITLB misses, the waiting_for_icache_fill vari-
able is set, and the fetch unit remains stalled in subsequent cycles until the cache subsystem calls
the OutOfOrderCoreCacheCallbacks::icache_wakeup() callback registered by the core. The core’s
interactions with the cache subsystem will be described in great detail later on.
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Chapter 18

Frontend and Key Structures

18.1 Resource Allocation

During the Allocate stage, PTLsim dequeues uops from the fetch queue, ensures all resources
needed by those uops are free, and assigns resources to each uop as needed. These resources
include Reorder Buffer (ROB) slots, physical registers and load store queue (LSQ) entries. In the
event that the fetch queue is empty or any of the ROB, physical register file, load queue or store
queue is full, the allocation stage stalls until some resources become available.

18.2 Reorder Buffer Entries

The Reorder Buffer (ROB) in the PTLsim out of order model works exactly like a traditional ROB:
as a queue, entries are allocated from the tail and committed from the head. Each ReorderBufferEntry

structure is the central tracking structure for uops in the pipeline. This structure contains a variety
of fields including:

• The decoded uop (uop field). This is the fully decoded TransOp augmented with fetch-related
information like the uop’s UUID, RIP and branch predictor information as described in the
Fetch stage (Section 17.1).

• Current state of the ROB entry and uop (current_state_list; see below)

• Pointers to the physical register (physreg), LSQ entry (lsq) and other resources allocated to
the uop

• Pointers to the three physical register operands to the uop, as well as a possible store depen-
dency used in replay scheduling (described later)

• Various cycle counters and related fields for simulating progress through the pipeline
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18.2.1 ROB States

Each ROB entry and corresponding uop can be in one of a number of states describing its progress
through the simulator state machine. ROBs are linked into linked lists according to their current
state; these lists are named rob_statename_list. The current_state_list field specifies the list the
ROB is currently on. ROBs can be moved between states using the ROB::changestate(statelist )

method. The specific states will be described below as they are encountered.

NOTE: the terms “ROB entry” (singular) and “uop” are used interchangeably from now on unless
otherwise stated, since there is a 1:1 mapping between the two.

18.3 Physical Registers

18.3.1 Physical Registers

Physical registers are represented in PTLsim by the PhysicalRegister structure. Physical registers
store several components:

• Index of the physical register (idx) and the physical register file id (rfid) to which it belongs

• The actual 64-bit register data

• x86 flags: Z, P, S, O, C. These are discussed below in Section 5.4.

• Waiting flag (FLAG_WAIT) for results not yet ready

• Invalid flag (FLAG_INVAL) for ready results which encountered an exception. The exception
code is written to the data field in lieu of the real result

• Current state of the physical register (state)

• ROB currently owning this physical register, or architectural register mapping this physical
register

• Reference counter for the physical register. This is required for reasons described in Section
24.5.

18.3.2 Physical Register File

PTLsim uses a flexible physical register file model in which multiple physical register files with dif-
ferent sizes and properties can optionally be defined. Each physical register file in the OutOfOrderCore::physregfiles[]
array can be made accessible from one or more clusters. For instance, uops which execute on float-
ing point clusters can be forced to always allocate a register in the floating point register file, or
each cluster can have a dedicated register file.
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Various heuristics can also be used for selecting the register file into which a result is placed. The
default heuristic simply finds the first acceptable physical register file with a free register. Accept-
able physical register files are those register files in which the uop being allocated is allowed to
write its result; this is configurable based on clustering as described below. Other allocation poli-
cies, such as alternation between available register files and dependency based register allocation,
are all possible by modifying the rename() function where physical registers are allocated..

In each physical register file, physical register number 0 is defined as the null register: it always
contains the value zero and is used as an operand anywhere the zero value (or no value at all) is
required.

Physical register files are configured in ooocore.h. The PhysicalRegisterFile[] array is defined
to declare each register file by name, register file ID (RFID, from 0 to the number of register
files) and size. The MAX_PHYS_REG_FILE_SIZE parameter must be greater than the largest physical
register in the processor.

18.3.3 Physical Register States

Each physical register can be in one of several states at any given time. For each physical register
file, PTLsim maintains linked lists (the PhysicalRegisterFile.states[statename] lists) to track
which registers are in each state. The state field in each physical register specifies its state, and im-
plies that the physical register is on the list physregfiles[physreg.rfid].states[physreg.state].
The valid states are:

• free: the register is not allocated to any uop.

• waiting: the register has been allocated to a uop but that uop is waiting to issue.

• bypass: the uop associated with the register has issued and produced a value (or encountered
an exception), but that value is only on the bypass network - it has not actually been written
back yet. For simulation purposes only, uops immediately write their results into the physical
register as soon as they issue, even though technically the result is still only on the bypass
network. This helps simplify the simulator considerably without compromising accuracy.

• written: the uop associated with the register has passed through the writeback stage and the
value of the physical register is now up to date; all future consumers will read the uop’s result
from this physical register.

• arch: the physical register is currently mapped to one of the architectural registers; it has no
associated uop currently in the pipeline

• pendingfree: this is a special state described in Section 24.5.

One physical register is allocated to each uop and moved into the waiting state, regardless of which
type of uop it is. For integer, floating point and load uops, the physical register holds the actual
numerical value generated by the corresponding uop. Branch uops place the target RIP of the
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branch in a physical register. Store uops place the merged data to store in the register. Technically
branches and stores do not need physical registers, but to keep the processor design simple, they
are allocated registers anyway.

18.4 Load Store Queue Entries

Load Store Queue (LSQ) Entries (the LoadStoreQueueEntry structure in PTLsim) are used to
track additional information about loads and stores in the pipeline that cannot be represented by a
physical register. Specifically, LSQ entries track:

• Physical address of the corresponding load or store

• Data field (64 bits) stores the loaded value (for loads) or the value to store (for stores)

• Address valid bit flag indicates if the load or store knows its effective physical address yet.
If set, the physical address field is valid.

• Data valid bit flag indicates if the data field is valid. For loads, this is set when the data has
arrived from the cache. For stores, this is set when the data to store becomes ready and is
merged.

• Invalid bit flag is set if an exception occurs in the corresponding load or store.

The LoadStoreQueueEntry structure is technically a superset of a structure known as an SFR (Store
Forwarding Register), which completely represents any load or store and can be passed between
PTLsim subsystems easily. One LSQ entry is allocated to each load or store during the Allocate
stage.

In real processors, the load queue (LDQ) and store queue (STQ) are physically separate for circuit
complexity reasons. However, in PTLsim a unified LSQ is used to make searching operations
easier. One additional bit flag (store bit) specifies whether an LSQ entry is a load or store.

18.4.1 Register Renaming

The basic register renaming process in the PTLsim x86 model is very similar to classical register
renaming, with the exception of the flags complications described in Section 5.4. Two versions
of the register rename table (RRT) are maintained: a speculative RRT which is updated as uops
are renamed, and a commit RRT, which is only updated when uops successfully commit. Since the
simulator implements a unified physical and architectural register file, the commit process does not
actually involve any data movement between physical and architectural registers: only the commit
RRT needs to be updated. The commit RRT is used only for exception and branch mispredict
recovery, since it holds the last known good mapping of architectural to physical registers.

Each rename table contains 80 entries as shown in Table 18.1. This table maps architectural regis-
ters and pseudo-registers to the most up to date physical registers for the following:
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Table 18.1: Architectural registers and pseudo-registers used for renaming.
Architectural Registers and Pseudo-Registers

0 rax rcx rdx rbx rsp rbp rsi rdi

8 r8 r9 r10 r11 r12 r13 r14 r15

16 xmml0 xmmh0 xmml1 xmmh1 xmml2 xmmh2 xmml3 xmmh3

24 xmml4 xmmh4 xmml5 xmmh5 xmml6 xmmh6 xmml7 xmmh7

32 xmml8 xmmh8 xmml9 xmmh9 xmml10 xmmh10 xmml11 xmmh11

40 xmml12 xmmh12 xmml13 xmmh13 xmml14 xmmh14 xmml15 xmmh15

48 fptos fpsw fptags fpstack tr4 tr5 tr6 ctx

56 rip flags iflags selfrip nextrip ar1 ar2 zero

64 temp0 temp1 temp2 temp3 temp4 temp5 temp6 temp7

72 zf cf of imm mem temp8 temp9 temp10

• 16 x86-64 integer registers

• 16 128-bit SSE registers (represented as separate 64-bit high and low halves)

• ZAPS, CF, OF flag sets described in Section 5.4. These rename table entries point to the
physical register (with attached flags) of the most recent uop in program order to update any
or all of the ZAPS, CF, OF flag sets, respectively.

• Various integer and x87 status registers

• Temporary pseudo-registers temp0-temp7 not visible to x86 code but required to hold tem-
poraries (e.g. generated addresses or value to swap in xchg instructions).

• Special fixed values, e.g. zero, imm (value is in immediate field), mem (destination of stores)

Once the uop’s three architectural register sources are mapped to physical registers, these physical
registers are placed in the operands[0,1,2] fields. The fourth operand field, operands[3], is used
to hold a store buffer dependency for loads and stores; this will be discussed later. The speculative
RRT entries for both the destination physical register and any modified flags are then overwritten.
Finally, the ROB is moved into the frontend state.

18.4.2 External State

Since the rest of the simulator outside of the out of order core does not know about the RRTs
and expects architectural registers to be in a standardized format, the per-core Context structure is
used to house the architectural register file. These architectural registers, including REG_flags and
REG_rip, are directly updated in program order by the out of order core as instructions commit.
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18.5 Frontend Stages

To simulate various processor frontend pipeline depths, ROBs are placed in the frontend state for
a user-selectable number of cycles. In the frontend() function, the cycles_left field in each ROB
is decremented until it becomes zero. At this point, the uop is moved to the ready_to_dispatch
state. This feature can be used to simulate various branch mispredict penalties by setting the
FRONTEND_STAGES constant.

97



Chapter 19

Scheduling, Dispatch and Issue

19.1 Clustering and Issue Queue Configuration

The PTLsim out of order model can simulate an arbitrarily complex set of functional units grouped
into clusters. Clusters are specified by the Cluster structure and are defined by the clusters[] array
in ooocore.h. Each Cluster element defines the name of the cluster, which functional units belong
to the cluster (fu_mask field) and the maximum number of uops that can be issued in that cluster
each cycle (issue_width field)

The intercluster_latency_map matrix defines the forwarding latency, in cycles, between a given
cluster and every other cluster. If intercluster_latency_map[A][B] is L cycles, this means that
functional units in cluster B must wait L cycles after a uop U in cluster A completes before cluster
B’s functional units can issue a uop dependent on U’s result. If the latency is zero between clusters
A and B, producer and consumer uops in A and B can always be issued back to back in subsequent
cycles. Hence, the diagonal of the forwarding latency matrix is always all zeros.

This clustering mechanism can be used to implement several features of modern microprocessors.
First, traditional clustering is possible, in which it takes multiple additional cycles to forward
results between different clusters (for instance, one or more integer clusters and a floating point
unit). Second, several issue queues and corresponding issue width limits can be defined within
a given virtual cluster, for instance to sort loads, stores and ALU operations into separate issue
queues with different policies. This is done by specifying an inter-cluster latency of zero cycles
between the relevant pseudo-clusters with separate issue queues. Both of these uses are required
to accurately model most modern processors.

There is also an equivalent intercluster_bandwidth_map matrix to specify the maximum number
of values that can be routed between any two clusters each cycle.

The IssueQueue template class is used to declare issue queues; each cluster has its own issue queue.
The syntax IssueQueue<size> issueq_name; is used to declare an issue queue with a specific size.
In the current implementation, the size can be from 1 to 64 slots. The macros foreach_issueq(),
sched_get_all_issueq_free_slots() and issueq_operation_on_cluster_with_result() macros must
be modified if the cluster and issue queue configuration is changed to reflect all available clusters;
the modifications required should be obvious from the example code. These macros with switch
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statements are required instead of a simple array since the issue queues can be of different template
types and sizes.

19.2 Cluster Selection

The ReorderBufferEntry::select_cluster() function is responsible for routing a given uop into a
specific cluster at the time it is dispatched; uops do not switch between clusters after this.

Various heuristics are employed to select which cluster a given uop should be routed to. In the
reference implementation provided in ooopipe.cpp, a weighted score is generated for each possible
cluster by scanning through the uop’s operands to determine which cluster they will be forwarded
from. If a given operand’s corresponding producer uop S is currently either dispatched to cluster
C but waiting to execute or is still on the bypass network of cluster C, then cluster C’s score is
incremented.

The final cluster is selected as the cluster with the highest score out of the set of clusters which the
uop can actually issue on (e.g. a floating point uop cannot issue on a cluster with only integer units).
The ReorderBufferEntry::executable_on_cluster_mask bitmap can be used to further restrict which
clusters a uop can be dispatched to, for instance because certain clusters can only write to certain
physical register files. This mechanism is designed to route each uop to the cluster in which the
majority of its operands will become available at the earliest time; in practice it works quite well
and variants of this technique are often used in real processors.

19.3 Issue Queue Structure and Operation

PTLsim implements issue queues in the IssueQueue template class using the collapsing priority
queue design used in most modern processors.

As each uop is dispatched, it is placed at the end of the issue queue for its cluster and several asso-
ciative arrays are updated to reflect which operands the uop is still waiting for. In the IssueQueue
class, the insert() method takes the ROB index of the uop (its tag in issue queue terminology),
the tags (ROB indices) of its operands, and a map of which of the operands are ready versus wait-
ing. The ROB index is inserted into an associative array, and the ROB index tags of any waiting
operands are inserted into corresponding slots in parallel arrays, one array per operand (in the cur-
rent implementation, up to 4 operands are tracked). If an operand was ready at dispatch time, the
slot for that operand in the corresponding array is marked as invalid since there is no need to wake
it up later. Notice that the new slot is always at the end of the issue queue array; this is made
possible by the collapsing mechanism described below.

The issue queue maintains two bitmaps to track the state of each slot in the queue. The valid

bitmap indicates which slots are occupied by uops, while the issued bitmap indicates which of
those uops have been issued. Together, these two bitmaps form the state machine described in
Table 19.1.
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Table 19.1: Issue Queue State Machine
Valid Issued Meaning
0 0 Unused slot
0 1 (invalid)
1 0 Dispatched but waiting for operands
1 1 Issued to a functional unit but not yet completed

After insert() is called, the slot is placed in the dispatched state. As each uop completes, its tag
(ROB index) is broadcast using the broadcast() method to one or more issue queues accessible in
that cycle. Because of clustering, some issue queues will receive the broadcast later than others;
this is discussed below. Each slot in each of the four operand arrays is compared against the
broadcast value. If the operand tag in that slot is valid and matches the broadcast tag, the slot (in
one of the operand arrays only, not the entire issue queue) is invalidated to indicate it is ready and
no longer waiting for further broadcasts.

Every cycle, the clock() method uses the valid and issued bitmaps together with the valid bitmaps
of each of the operand arrays to compute which issue queue slots in the dispatched state are no
longer waiting on any of their operands. This bitmap of ready slots is then latched into the allready
bitmap.

The issue() method simply finds the index of the first set bit in the allready bitmap (this is the
slot of the oldest ready uop in program order), marks the corresponding slot as issued, and returns
the slot. The processor then selects a functional unit for the uop in that slot and executes it via
the ReorderBufferEntry::issue() method. After the uop has completed execution (i.e. it cannot
possibly be replayed), the release() method is called to remove the slot from the issue queue,
freeing it up for incoming uops in the dispatch stage. The collapsing design of the issue queue
means that the slot is not simply marked as invalid - all slots after it are physically shifted left by
one, leaving a free slot at the end of the array. This design is relatively simple to implement in
hardware and makes determining the oldest ready to issue uop very trivial.

Because of the collapsing mechanism, it is critical to note that the slot index returned by issue()

will become invalid after the next call to the remove() method; hence, it should never be stored
anywhere if a slot could be removed from the issue queue in the meantime.

If a uop issues but determines that it cannot actually complete at that time, it must be replayed. The
replay() method clears the issued bit for the uop’s issue queue slot, returning it to the dispatched
state. The replay mechanism can optionally add additional dependencies such that the uop is only
re-issued after those dependencies are resolved. This is important for loads and stores, which may
need to add a dependency on a prior store queue entry after finding a matching address in the
load or store queues. In rare cases, a replay may also be required when a uop is issued but no
applicable functional units are left for it to execute on. The ReorderBufferEntry::replay() method
is a wrapper around IssueQueue::replay() used to collect the operands the uop is still waiting for.
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19.3.1 Implementation

PTLsim uses a novel method of modeling the issue queue and other associative structures with
small tags. Specifically, the FullyAssociativeArrayTags8bit template class declared in logic.h

and used to build the issue queue makes use of the host processor’s 128-bit vector (SSE) instruc-
tions to do massively parallel associative matching, masking and bit scanning on up to 16 tags
every clock cycle. This makes it substantially faster than simulators using the naive approach
of scanning the issue queue entries linearly. Similar classes in logic.h support O(1) associative
searches of both 8-bit and 16-bit tags; tags longer than this are generally more efficient if the
generic FullyAssociativeArrayTags using standard integer comparisons is used instead.

As a result of this high performance design, each issue queue is limited to 64 entries and the tags to
be matched must be between 0 and 255 to fit in 8 bits. The FullyAssociativeArrayTags16bit class
can be used instead if longer tags are required, at the cost of reduced simulation performance. To
enable this, BIG_ROB must be defined in ooocore.h.

19.3.2 Other Designs

It’s important to remember that the issue queue design described above is one possible implemen-
tion out of the many designs currently used in industry and research processors. For instance,
in lieu of the collapsing design (used by the Pentium 4 and Power4/5/970), the AMD K8 uses
a sequence number tag of the ROB and comparator logic to select the earliest ready instruction.
Similarly, the Pentium 4 uses a set of bit vectors (a dependency matrix) instead of tag broadcasts to
wake up instructions. These other approaches may be implemented by modifying the IssueQueue

class as appropriate.

19.4 Issue

The issue() top-level function issues one or more instructions in each cluster from each issue queue
every cycle. This function consults the clusters[clusterid].issue_width field defined in ooocore.h

to determine the maximum number of uops to issue from each cluster. The issueq_operation_on_cluster_with_result(cluster,

iqslot, issue()) macro (Section 19.1) is used to invoke the issue() method of the appropriate
cluster to select the earliest ready issue queue slot, as described in Section 19.3.

The ReorderBufferEntry::issue() method of the corresponding ROB entry is then called to actu-
ally execute the uop. This method first makes sure a functional unit is available within the cluster
that’s capable of executing the uop; if not, the uop is replayed and re-issued again on the next cycle.
At this point, the uop’s three operands (ra, rb, rc) are read from the physical register file. If any of
the operands are invalid, the entire uop is marked as invalid with an EXCEPTION_Propagate result
and is not further executed. Otherwise, the uop is executed by calling the synthesized execute
function for the uop (see Section 17.1).

Loads and stores are handled specially by calling the issueload() or issuestore() method. Since
loads and stores can encounter an mis-speculation (e.g. when a load is erroneously issued be-
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fore an earlier store to the same addresses), the issueload() and issuestore() functions can re-
turn ISSUE_MISSPECULATED to force all uops in program order after the mis-speculated uop to be
annulled and sent through the pipeline again. Similarly, if issueload() or issuestore() return
ISSUE_NEEDS_REPLAY, issuing from that cluster is aborted since the uop has been replayed in accor-
dance with Section 19.3. It is important to note that loads which miss the cache are considered
to complete successfully and do not require a replay; their physical register is simply marked as
waiting until the load arrives. In both the mis-speculation and replay cases, no further uops from
the cluster’s issue queue are dispatched until the next cycle.

Branches are handled similar to integer and floating point operations, except that they may cause a
mis-speculation in the event of a branch misprediction; this is discussed below.

If the uop caused an exception, we force it directly to the commit stage and not through writeback;
this keeps dependencies waiting until they can be properly annulled by the speculation recovery
logic. The commit stage will detect the exception and take appropriate action. If the exceptional
uop was speculatively executed beyond a branch, it will never reach commit anyway since the
bogus branch would have to commit before the exception would even become visible.

NOTE: In PTLsim, all issued uops put their result in the uop’s assigned physical register at the
time of issue, even though the data technically does not appear there until writeback (i.e. the
physical register enters the written state). This is done to simplify the simulator implementation; it
is assumed that any data “read” from physical registers before writeback is in fact being read from
the bypass network instead.
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Chapter 20

Speculation and Recovery

20.1 Misspeculation Cases

PTLsim supports three speculative execution recovery mechanisms to handle various types of spec-
ulation failures:

• Replay is for scheduling and dependency mis-predictions only. Replayed uops remain in
the issue queue so replay is very fast but limited in scope. Replay is described extensively in
Section 19.

• Redispatch finds the slice of uops in the ROB dependent on a mis-speculated uop and sends
only those dependent uops back to the ready-to-dispatch state. It is used for load-store
aliasing recovery, value mispredictions and other cases where the fetched uops themselves
are still valid, but their outputs are invalid.

• Annulment removes any uops in program order after (or optionally including) a given uop.
It is used for branch mispredictions and misalignment recovery.

20.2 Redispatch

20.2.1 Redispatch Process

Many types of mis-speculations do not require refetching a different set of uops; instead, any uops
dependent on a mis-speculated uop can simply be recirculated through the pipeline so they can
re-execute and produce correct values. This process is known as redispatch; in the baseline out of
order core, it is used to recover from load-store aliasing (Section 22.2.1).

When a mis-speculated ROB is detected, ROB.redispatch_dependents() is called. This function
identifies the slice of uops that consumed values (directly or indirectly) from the mis-speculated
uop, using dependency bitmaps similar to those used in real processors. ROB.redispatch_dependents(bool
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inclusive) has an inclusive parameter: if false, only the dependent uops are redispatched, not in-
cluding the mis-speculated uop. This is most useful for value prediction, where the correct value
can be directly reinjected into the mis-speculated uop’s physical register without re-executing it.

In ROB.redispatch(), each affected uop is placed back into the rob_ready_to_dispatch state, lways
in program order. This helps to avoid deadlocks, since the redispatched slice is given priority
for insertion back into the issue queue. The resources associated with each uop (physical register,
LDQ/STQ slot, IQ slot, etc.) are also restored to the state they were in immediately after renaming,
so they can be properly recirculated through the pipeline as if the uop never issued. Various other
issues must also be handled, such as making sure known store-to-load aliasing constraints are
preserved across the redispatch so as to avoid infinite replay loops, and branch directions must be
corrected if a mispredict caused a fetch unit redirection but that mispredict was in fact based on
mis-speculated data.

20.2.2 Deadlock Recovery

Redispatch can create deadlocks in cases where other unrelated uops occupy all the issue queue
slots needed by the redispatched uops to make forward progress, and there is a circular dependency
loop (e.g. on loads and stores not known at the time of the redispatch) that creates a chicken-and-
egg problem, thus blocking forward progress.

To recover from this situation, we detect the case where no uops have been dispatched for 64
cycles, yet the ready_to_dispatch queue still has valid uops. This situation very rarely happens in
practice unless there is a true deadlock. To break up the deadlock, ideally we should only need to
redispatch all uops occupying issue queue slots or those already waiting for dispatch - all others
have produced a result and cannot block the issue queues again. However, this does not always
work in pathological cases, and can sometime lead to repeated deadlocks. Since deadlocks are very
infrequent, they can be resolved by just flushing the entire pipeline. This has a negligible impact
on performance.

20.2.3 Statistical Counters

Several statistical counters are maintained in the PTLsim statistics tree to measure redispatch over-
head, in the ooocore.dispatch.redispatch node:

• deadlock-flushes measures how many times the pipeline must be flushed to resolve a dead-
lock.

• trigger-uops measures how many uops triggered redispatching because of a misspeculation.
This number does not count towards the statistics below.

• dependent-uops is a histogram of how many uops depended on each trigger uop, not including
the trigger uop itself.
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20.3 Annulment

20.3.1 Branch Mispredictions

Branch mispredictions form the bulk of all mis-speculated operations. Whenever the actual RIP re-
turned by a branch uop differs from the riptaken field of the uop, the branch has been mispredicted.
This means all uops after (but not including) the branch must be annulled and removed from all
processor structures. The fetch queue (Section 17.1) is then reset and fetching is redirected to the
correct branch target. However, all uops in program order before the branch are still correct and
may continue executing.

Note that we do not just reissue the branch: this would be pointless, as we already know the correct
RIP since the branch uop itself has already executed once. Instead, we let it writeback and commit
as if it were predicted correctly.

20.3.2 Annulment Process

In PTLsim, the ReorderBufferEntry::annul() method removes any and all ROBs that entered the
pipeline after and optionally including the misspeculated uop (depending on the keep_misspec_uop
argument). Because this method moves all affected ROBs to the free state, they are instantly taken
out of consideration for future pipeline stages and will be dropped on the next cycle.

We must be extremely careful to annul all uops in an x86 macro-op; otherwise half the x86 instruc-
tion could be executed twice once refetched. Therefore, if the first uop to annul is not also the first
uop in the x86 macro-op, we may have to scan backwards in the ROB until we find the first uop of
the macro-op. In this way, we ensure that we can annul the entire macro-op. All uops comprising
the macro-op are guaranteed to still be in the ROB since none of the uops can commit until the
entire macro-op can commit. Note that this does not apply if the final uop in the macro-op is a
branch and that branch uop itself is being retained as occurs with mispredicted branches.

The first uop to annul is determined in the annul() method by scanning backwards in time from the
excepting uop until a uop with its SOM (start of macro-op) bit is set, as described in Section 5.1.
This SOM uop represents the boundary between x86 instructions, and is where we start annulment.
The end of the range of uops to annul is at the tail of the reorder buffer.

We have to reconstruct the speculative RRT as it existed just before the first uop to be annulled was
renamed. This is done by calling the pseudocommit() method of each annulled uop to implement
the “fast flush with pseudo-commit” algorithm as follows. First, we overwrite the speculative RRT
with the committed RRT. We then simulate the commitment of all non-speculative ROBs up to the
first uop to be annulled by updating the speculative RRT as if it were the commit RRT. This brings
the speculative RRT to the same state as if all in flight nonspeculative operations before the first
uop to be annulled had actually committed. Fetching is then resumed at the correct RIP, where new
uops are renamed using the recovered speculative RRT.

Other methods of RRT reconstruction (like backwards walk with saved checkpoint values) are
difficult to impossible because of the requirement that flag rename tables be restored even if some
of the required physical registers with attached flags have since been freed. Technically RRT
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checkpointing could be used but due to the load/store replay mechanism in use, this would require
a checkpoint at every load and store as well as branches. Hence, the forward walk method seems
to offer the best performance in practice and is quite simple. The Pentium 4 is believed to use a
similar method of recovering from some types of mis-speculations.

After reconstructing the RRT, for each ROB to annul, we broadcast the ROB index to the appro-
priate cluster’s issue queue, allowing the issue queue to purge the slot of the ROB being annulled.
Finally, for each annulled uop, we free any resources allocated to it (i.e., the ROB itself, the des-
tination physical register, the load/store queue entry (if any) and so on. Any updates to the branch
predictor and return address stack made during the speculative execution of branches are also rolled
back.

Finally, the fetch unit is restarted at the correct RIP and uops enter the pipeline and are renamed
according to the recovered rename tables and allocated resource maps.
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Chapter 21

Load Issue

21.1 Address Generation

Loads and stores both have their physical addresses computed using the ReorderBufferEntry::addrgen()

method, by adding the ra and rb operands. If the load or store is one of the special unaligned fixup
forms (ld.lo, ld.hi, st.lo, st.hi) described in Section 5.6, the address is re-aligned according to
the type of instruction.

At this point, the check_and_translate() method is used to translate the virtual address into a
mapped physical address using the page tables and TLB. The function of this method varies sig-
nificantly between userspace-only PTLsim and full system PTLsim/X. In userspace-only PTLsim,
the shadow page access tables (Section 11.3) are used to do access checks; the same virtual address
is then returned to use as a physical address. In full system PTLsim/X, the real x86 page tables
are used to produce the physical address, significantly more involved checks are done, and finally
a pointer into PTLsim’s mapping of all physical pages is returned (see Section 14.3.1).

If the virtual address is invalid or not present for the specified access type, check_and_translate()
will return a null pointer. At this point, handle_common_load_store_exceptions() is called to take
action as follows.

If a given load or store accesses an unaligned address but is not one of the special ld.lo/ld.hi/st.lo/st.hi
uops described in Section 5.6, the processor responds by first setting the “unaligned” bit in the orig-
inal TransOp in the basic block cache, then it annuls all uops after and including the problem load,
and finally restarts the fetch unit at the RIP address of the load or store itself. When the load or
store uop is refetched, it is transformed into a pair of ld.lo/ld.hi or st.lo/st.hi uops in accordance
with Section 5.6. This refetch approach is required rather than a simple replay operation since a
replay would require allocating two entries in the issue queue and potentially two ROBs, which is
not possible with the PTLsim design once uops have been renamed.

If a load or store would cause a page fault for any reason, the check_and_translate() function will
fill in the exception and pfec (Page Fault Error Code) variables. These two variables are then placed
into the low and high 32 bits, respectively, of the 64-bit result in the destination physical register
or store buffer, in place of the actual data. The load or store is then aborted and execution returns
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to the ReorderBufferEntry::issue() method, causing the result to be marked with an exception
(EXCEPTION_PageFaultOnRead or EXCEPTION_PageFaultOnWrite).

One x86-specific complication arises at this point. If a load (or store) uop is the high part (ld.hi
or st.hi) of an unaligned load or store pair, but the actual user address did not overlap any of the
high 64 bits accessed by the ld.hi or st.hi uop, the load or store should be completely ignored,
even if the high part overlapped onto an invalid page. This is because it is perfectly legal to do an
unaligned load or store at the very end of a page such that the next 64 bit chunk is not mapped to a
valid page; the x86 architecture mandates that the load or store execute correctly as far as the user
program is concerned.

21.2 Store Queue Check and Store Dependencies

After doing these exception checks, the load/store queue (LSQ) is scanned backwards in time
from the current load’s entry to the LSQ’s head. If a given LSQ entry corresponds to a store, the
store’s address has been resolved and the memory range needed by the load overlaps the memory
range touched by the store, the load effectively has a dependency on the earlier store that must be
resolved before the load can issue. The meaning of “overlapping memory range” is defined more
specifically in Section 22.1.

In some cases, the addresses of one or more prior stores that a load may depend on may not have
been resolved by the time the load issues. Some processors will stall the load uop until all prior
store addresses are known, but this can decrease performance by incorrectly preventing indepen-
dent loads from starting as soon as their address is available. For this reason, the PTLsim processor
model aggressively issues loads as soon as possible unless the load is predicted to frequently alias
another store currently in the pipeline. This load/store aliasing prediction technique is described in
Section 22.2.1.

In either of the cases above, in which an overlapping store is identified by address but that store’s
data is not yet available for forwarding to the load, or where a prior store’s address has not been
resolved but is predicted to overlap the load, the load effectively has a data flow dependency on the
earlier store. This dependency is represented by setting the load’s fourth rs operand (operands[RS]
in the ReorderBufferEntry) to the store the load is waiting on. After adding this dependency, the
replay() method is used to force the load back to the dispatched state, where it waits until the
prior store is resolved. After the load is re-issued for a second time, the store queue is scanned
again to make sure no intervening stores arrived in the meantime. If a different match is found this
time, the load is replayed a third time. In practice, loads are rarely replayed more than once.

21.3 Data Extraction

Once the prior store a load depends on (if any) is ready and all the exception checks above have
passed, it is time to actually obtain the load’s data. This process can be complicated since some
bytes in the region accessed by the load could come from the data cache while other bytes may be
forwarded from a prior store. If one or more bytes need to be obtained from the data cache, the
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L1 cache is probed (via the caches.probe_cache_and_sfr() function) to see if the required line is
present. If so, and the combination of the forwarded store (if any) and the L1 line fills in all bytes
required by the load, the final data can be extracted.

To extract the data, the load unit creates a 64-bit temporary buffer by overlaying the bytes touched
by the prior store (if any) on top of the bytes obtained from the cache (i.e., the bytes at the mapped
address returned by the addrgen() function). The correct word is then extracted and sign extended
(if required) from this buffer to form the result of the load. Unaligned loads (described in Section
5.6) are somewhat more complex in that both the low and high 64 bit chunks from the ld.lo and
ld.hi uops, respectively, are placed into a 128-bit buffer from which the final result is extracted.

For simulation purposes only, the data to load is immediately accessed and recorded by issueload()

regardless of whether or not there is a cache miss. This makes the loaded data significantly easier
to track. In a real processor, the data extraction process obviously only happens after the missing
line actually arrives, however our implementation in no way affects performance.

21.4 Cache Miss Handling

If no combination of the prior store’s forwarded bytes and data present in the L1 cache can fulfill
a load, this is miss and lower cache levels must be accessed. This process is described in Sections
25.2 and 25.3. As far as the core is concerned, the load is completed at this point even if the data has
not yet arrived. The issue queue entry for the load can be released since the load is now officially in
progress and cannot be replayed. Once the loaded data has arrived, the cache subsystem calls the
OutOfOrderCoreCacheCallbacks::dcache_wakeup() function, which marks both the physical register
and LSQ entry of the load as ready, and places the load’s ROB into the completed state. This
allows the processor to wake up dependents of the load on the next cycle.
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Chapter 22

Stores

22.1 Store to Store Forwarding and Merging

In the PTLsim out of order model, a given store may merge its data with that of a previous store
in program order. This ensures that loads which may need to forward data from a store always
reference exactly one store queue entry, rather than having to merge data from multiple smaller
prior stores to cover the entire byte range being loaded. In this model, physical memory is divided
up into 8 byte (64 bit) chunks. As each store issues, it scans the store queue backwards in program
order to find the most recent prior store to the same 8 byte aligned physical address. If there is
a match, the current store depends on the matching prior store, and cannot complete and forward
its data to other consuming loads and stores until the prior store in question also completes. This
ensures that the current store’s data can be composited on top of the older store’s data to form a
single up to date 8-byte chunk. As described in Section 18.4, each store queue entry contains a
byte mask to indicate which of the 8 bytes in each chunk are currently modified by stores in flight
versus those bytes which must come from the data cache.

Technically there are more efficient approaches, such as allowing stores to issue in any order so
long as they do not overlap on the basis of individual bytes. However, no modern processor allows
such arbitrary forwarding since the circuit complexity involved with scanning the store queue for
partial address matches would be prohibitive and slow. Instead, most processors only support store
to load forwarding when a single larger prior store covers the entire byte range accessed by a
smaller or same sized load; all other combinations stall the load until the overlapping prior stores
commit to the data cache.

The store inheritance scheme used by PTLsim (described first) is an improvement to the more
common “stall on size mismatch” scheme above, but may incur more store dependency replays
(since stores now depend on other stores when they target the same 8-byte chunk) compared to a
stall on size mismatch scheme. As a case study, the Pentium 4 processor (Prescott core) implements
a combination of these approaches.
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22.2 Split Phase Stores

The ReorderBufferEntry::issuestore() function is responsible for issuing all store uops. Stores
are unusual in that they can issue even if their rc operand (the value to store) is not ready at the
same time as the ra and rb operands forming the effective address. This property is useful since
it allows a store to establish an entry in the store queue as soon as the effective address can be
generated, even if the data to store is not ready. By establishing addresses in the store queue as
soon as possible, we can avoid performance losses associated with the unnecessary replay of loads
that may depend on a store whose address is unavailable at the time the load issues. In effect, this
means that each store uop may actually issue twice.

In the first phase issue, which occurs as soon as the ra and rb operands become ready, the store
uop computes its effective physical address, checks that address for all exceptions (such as align-
ment problems and page faults) and writes the address into the corresponding LoadStoreQueueEntry

structure before setting its the addrvalid bit as described in Section 18.4. If an exception is detected
at this point, the invalid bit in the store queue entry is set and the destination physical register’s
FLAG_inv flag is set so any attempt to commit the store will fail.

22.2.1 Load Queue Search (Alias Check)

The load queue is then searched to find any loads after the current store in program order which
have already issued but have done so without forwarding data from the current store. These loads
erroneously issued before the current store (now known to overlap the load’s address) was able
to forward the correct data to the offending load(s). This situation is known as aliasing, and
is effectively a mis-speculation requiring us to reissue any uops depending on the store. The
redispatch method (Section 20.2) is used to re-execute only those uops dependent (either directly
or indirectly) on the store.

Since the redispatch process required to correct aliasing violations is expensive and may result
in infinite loops, it is desirable to predict in advance which loads and stores are likely to alias
each other such that loads predicted to alias are never issued when prior stores in the store queue
still have unknown addresses. This works because in most out of order processors, statistically
speaking, very few loads alias stores compared to normal loads from the cache. When an aliasing
mis-speculation occurs, an entry is added to a small fully associative structure (typically ≤ 16
entries) called the Load Store Alias Predictor (LSAP). This structure is indexed by a portion of the
address of the load instruction that aliased. This allows the load unit to avoid issuing any load uop
that matches any address in the LSAP if any prior store addresses are still unresolved; if this is
the case, a dependency is created on the first unresolved store such that the load is replayed (and
the load and store queues are again scanned) once that store resolves. Similar methods of aliasing
prediction are used by the Pentium 4 (Prescott core only) and Alpha 21264.

22.2.2 Store Queue Search (Merge Check)

At this point the store queue is searched for prior stores to the same 8-byte block as described
above in Section 22.1; if the store depends on a prior store, the scheduler structures are updated to
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add an additional dependency (in operands[RS]) on this prior store before the store is replayed in
accordance with Section 19.3 to wait for the prior store to complete. If no prior store is found,
or the prior store is ready, the current store is marked as a second phase store by setting the
load_store_second_phase flag in its ROB entry. Finally, the store is replayed in accordance with
Section 19.3.

In the second phase of store uop scheduling, the store uop is only re-issued when all four operands
(ra + rb address, rc data and rs source store queue entry) are valid. The second phase repeats
the scan of the load and store queues described above to catch any loads and stores that may have
issued between the first and second phase issues; the store is replayed a third time if necessary.
Otherwise, the rc operand data is merged with the data from the prior store (if any) store queue
entry, and the combined data and bytemask is written into the current store’s store queue entry.
Finally, the entry’s dataready bit is set to make the entry available for forwarding to other waiting
loads and stores.

The first and second phases may be combined into a single issue without replay if both the address
and data operands of the store are all ready at the same time and the prior store (if any) the current
store inherits from has already successfully issued.
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Chapter 23

Forwarding, Wakeup and Writeback

23.1 Forwarding and the Clustered Bypass Network

Immediately after each uop is issued and the ReorderBufferEntry::issue() method actually gener-
ates its result, the cycles_left field of the ROB is set to the expected latency of the uop (e.g. be-
tween 1 and 5 cycles). The uop is then moved to the issued state and placed on the rob_issued_list.
Every cycle, the complete() method iterates through each ROB in issued state and decrements its
cycles_left field. If cycles_left becomes zero, the corresponding uop has completed execution.
The ROB is moved to the completed state (on rob_completed_list) and its physical register or store
queue entry is moved to the bypass state so newly dispatched uops do not try to wait for it.

The transfer() function is also called every cycle. This function examines the list of ROBs in
the completed state and is responsible for broadcasting the completed ROB’s tag (ROB index) to
the issue queues. Because of clustering (Section 19.1), some issue queues will receive the broad-
cast later than others. Specifically, the ROB’s forward_cycle field determines which issue queues
and remote clusters are visible forward_cycle cycles after the uop completed. The forward()

method, called by transfer() for each uop in the completed state, indexes into a lookup table
forward_at_cycle_lut[cluster][forward_cycle] to get a bitmap of which remote clusters are ac-
cessible forward_cycle cycles after he uop completed, relative to the original cluster.the uop issued
in. The IssueQueue::broadcast() method (Section 19.3) is then called for each applicable cluster
to wake up any operands of uops in that cluster waiting on the newly completed uop.

The MAX_FORWARDING_LATENCY constant (in ooocore.h) specifies the maximum number of cycles be-
tween any two clusters. After the ROB has progressed through MAX_FORWARDING_LATENCY cycles
in the completed state, it is moved to the ready-to-writeback state, effectively meaning the result
has arrived at the physical register file and is eligible for writeback in the next cycle.

23.2 Writeback

Every cycle, the writeback() function scans the list of ROBs in the ready-to-writeback state and
selects at most WRITEBACK_WIDTH results to write to the physical register file. The forward() method
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is first called one final time to catch the corner case in which a dependent uop was dispatched while
producer uop was waiting in the ready-to-writeback state.

As mentioned in Section 19.4, for simulation purposes only, each uop puts its result directly into
its assigned physical register at the time of issue, even though the data technically does not appear
there until writeback. This is done to simplify the simulator implementation; it is assumed that any
data “read” from physical registers before writeback is in fact being read from the bypass network
instead. Therefore, no actual data movement occurs in the writeback() function; its sole purpose
is to place the uop’s physical register into the written state (via the PhysicalRegister::writeback()

method) and to move the ROB into its terminal state, ready-to-commit.
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Chapter 24

Commitment

24.1 Introduction

The commit stage examines uops from the head of the ROB, blocks until all uops comprising a
given x86 instruction are ready to commit, commits the results of those uops to the architectural
state and finally frees the resources associated with each uop.

24.2 Atomicity of x86 instructions

The x86 architecture specifies atomic execution for all distinct x86 instructions. This means that
since each x86 instruction may be comprised of multiple uops; none of these uops may commit
until all uops in the instruction are ready to commit. In PTLsim, this is accomplished by checking
if the uop at the head of the ROB (next to commit) has its SOM (start of macro-op) bit set. If so, the
ROB is scanned forwards from the SOM uop to the next uop in program order with its EOM (end
of macro-op) bit set. If all uops in this range are ready to commit and exception-free, the SOM
uop is allowed to commit, effectively unlocking the ROB head pointer until the next uop with a
SOM bit set is encountered. However, any exception in any uop comprising the x86 instruction
at the head of the ROB causes the pipeline to be flushed and an exception to be taken. Similarly,
external interrupts are only acknowledged at the boundary between x86 instructions (i.e. after the
EOM uop of each instruction).

24.3 Commitment

As each uop commits, it may update several components of the architectural state.

Integer ALU and floating point uops obviously update their destination architectural register (rd).
In PTLsim, this is done by simply updating the committed register rename table (commitrrt) rather
than actually copying register values. However, the old physical register mapped to architectural
register rd will normally become inaccessible after the Commit RRT mapping for rd is overwritten
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with the committing uop’s physical register index. The old physical register previously mapped
to rd can then be freed. Technically physical registers allocated to intermediate uops (such as
those used to hold temporary values) can be immediately freed without updating any Commit RRT
entries, but for consistency we do not do this.

In PTLsim, a physical register is freed by moving it to the PHYSREG_FREE state. Unfortunately for
various reasons related to long pipelines and the renaming of x86 flags, register reclamation is not
so simple, but this will be discussed below in Section 24.5.

Some uops may also commit to a subset of the x86 flags, as specified in the uop encoding. For
these uops, in theory no rename tables need updating, since the flags can be directly masked into
the REG_flags architectural pseudo-register. Should the pipeline be flushed, the rename table entries
for the ZAPS, CF, OF flag sets will all be reset to point to the REG_flags pseudo-register anyway.
However, for the speculation recovery scheme described in Section 20.3.2, the REG_zf, REG_cf, and
REG_of commit RRT entries are updated as well to match the updates done to the speculative RRT.

Branches and jumps update the REG_rip pseudo architectural register, while all other uops simply
increment REG_rip by the number of bytes in the x86 instruction being committed. The number of
bytes (1-15) is stored in a 4-bit bytes field of each uop in each x86 instruction.

Stores commit to the architectural state by writing directly to the data cache, which in PTLsim
is equivalent to writing into real physical memory. Remember that a series of stores into a given
64-bit chunk of memory are merged within the store queue to the store uop’s corresponding STQ
entry as the store uop issues, so the commit unit always writes 64 bits to the cache at a time. The
byte mask associated with the STQ entry of the store uop is used to only update the modified bytes
in each chunk of memory in program order.

24.4 Additional Commit Actions for Full System Use

In full system PTLsim/X, several additional actions must be taken at commit time:

• Self modifying code checks must be done using smc_isdirty(mfn), as described in Section
6.4.

• Stores must set the dirty bit on the target physical page, using the smc_setdirty(mfn) function
(so as to properly notify subsequent instructions of self modifying code).

• The x86 page table accessed and dirty bits must be updated whenever a load or store com-
mits, using the Context.update_pte_acc_dirty() function.

• If an interrupt is pending, and we have just committed the last uop in an atomic x86 instruc-
tion, we can now safely service it.
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24.5 Physical Register Recycling Complications

24.5.1 Problem Scenarios

In some processor designs, it is not always possible to immediately free the physical register
mapped to a given architectural register when that old architectural register mapping is overwrit-
ten during commit as described above. Out of order x86 processors must maintain three separate
rename table entries for the ZAPS, CF, OF flags in addition to the register rename table entry, any
or all of which may be updated when uops rename and retire, depending on the uop’s flag renam-
ing semantics (see Section 5.4), For this reason, even though a given physical register value may
become inaccessible and hence dead at commit time, the flags associated with that physical reg-
ister are frequently still referenced within the pipeline, so the physical register itself must remain
allocated.

Consider the following specific example, with uops listed in program order:

• sub rax = rax,rbx

Assign RRT[rax] = phys reg r0
Assign RRT[flags] = r0 (since SUB all updates flags)

• mov rax = rcx

Assign RRT[rax] = phys reg r1
No flags renamed: MOV never updates flags, so RRT[flags] is still r0.

• br.e target

Depends on flags attached to r0, even though actual architectural register (rax) for r0 has
already been overwritten in the commit RRT by the MOV’s commit. We cannot free r0 since
the BR uop might not have issued yet.

This situation only happens with instruction sets like x86 (and SPARC or even PowerPC to some
extent) which support writing flags (particularly multiple independent flags) and data in a single
instruction.

24.5.2 Reference Counting

For these reasons, we need to prevent U2’s register from being freed if it is still referenced by
anything still in the pipeline; the normal reorder buffer mechanism cannot always handle this
situation in a very long pipeline.

One solution (the one used by PTLsim) is to give each physical register a reference counter. Phys-
ical registers can be referenced from three structures: as operands to ROBs, from the speculative
RRT, and from the committed RRT. As each uop operand is renamed, the counter for the corre-
sponding physical register is incremented by calling the PhysicalRegister::addref() method. As
each uop commits, the counter for each of its operands is decremented via the PhysicalRegister::unref()

method. Similarly, unref() and addref() are used whenever an entry in the speculative RRT or
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commit RRT is updated. During mis-speculation recovery (see Section 20.3.2), unref() is also
used to unlock the operands of uops slated for annulment. Finally, unref() and addref() are used
when loads and stores need to add a new dependency on a waiting store queue entry (see Sections
21 and 22.2).

As we update the committed RRT during the commit stage, the old register R mapped to the des-
tination architectural register A of the uop being committed is examined. The register R is only
moved to the free state iff its reference counter is zero. Otherwise, it is moved to the pendingfree
state. The hardware examines the counters of pendingfree physical registers every cycle and moves
physical registers to the free state only when their counters become zero and they are in the pend-
ingfree state.

24.5.3 Hardware Implementation

The hardware implementation of this scheme is straightforward and low complexity. The counters
can have a very small number of bits since it is very unlikely a given physical register would be
referenced by all 100+ uops in the ROB; 3 bits should be enough to handle the typical maximum
of < 8 uops sharing a given operand. Counter overflows can simply stall renaming or flush the
pipeline since they are so rare.

The counter table can be updated in bulk each cycle by adding/subtracting the appropriate sum or
just adding zero if the corresponding register wasn’t used. Since there are several stages between
renaming and commit, the same counter is never both incremented and decremented in the same
cycle, so race conditions are not an issue.

In real processors, the Pentium 4 uses a scheme similar to this one but uses bit vectors instead.
For smaller physical register files, this may be a better solution. Each physical register has a bit
vector with one bit per ROB entry. If a given physical register P is still used by ROB entry E in the
pipeline, P’s bit vector bit R is set. Register P cannot be freed until all bits in its vector are zero.

24.6 Pipeline Flushes and Barriers

In some cases, the entire pipeline must be empty after a given uop commits. For instance, a barrier
uop, represented by any br.p (branch private) uop, will stall the frontend when first renamed, and
when committed (at which point it is the only uop in the pipeline), it will call flush_pipeline()
to restart fetching at the appropriate RIP. Exceptions have a similar effect when they reach the
commit stage. After doing this, the current architectural registers must be copied into the externally
visible ctx.commitarf[] array, since normally the architectural registers are scattered throughout
the physical register file. Fortunately, the commit stage also updates ctx.commitarf[] in parallel
with the commit RRT, even though the commitarf array is never actually read by the out of order
core. Interrupts are a special case of barriers, the difference being they can be serviced after any
x86 instruction commits its last uop.

At this point, the handle_barrier(), handle_exception() or handle_interrupt() function is called to
actually communicate with the world outside the out of order core. In the case of handle_barrier(),
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generally this involves executing native code inside PTLsim to redirect execution into or out of the
kernel, or to service a very complex x86 instruction (e.g. cpuid, floating point save or restore,
etc). For handle_exception(), on userspace-only PTLsim, the simulation is stopped and the user
is notified that a genuine user visible (non-speculative) exception reached the commit stage. In
contrast, on full system PTLsim/X, exceptions are little more than jumps into kernel space; this is
described in detail in Chapter 14.

If execution can continue after handling the barrier or exception, the external_to_core_state()

function is called to completely reset the out of order core using the state stored in ctx.commitarf[].
This involves allocating a fixed physical register for each of the 64 architectural registers in ctx.commitarf[],
setting the speculative and committed rename tables to their proper cold start values, and re-
setting all reference counts on physical registers as appropriate. If the processor is configured
with multiple physical register files (Section 18.3), the initial physical register for each architec-
tural register is allocated in the first physical register file only (this is configurable by modifying
external_to_core_state()). At this point, the main simulation loop can resume as if the processor
had just restarted from scratch.
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Chapter 25

Cache Hierarchy

The PTLsim cache hierarchy model is highly flexible and can be used to model a wide variety of
contemporary cache structures. The cache subsystem (defined in dcache.h and implemented by
dcache.cpp) by default consists of four levels:

• L1 data cache is directly probed by all loads and stores

• L1 instruction cache services all instruction fetches

• L2 cache is shared between data and instructions, with data paths to both L1 caches

• L3 cache is also shared and is optionally present

• Main memory is considered infinite in size but still has configurable characteristics

These cache levels are listed in order from highest level (closer to the core) to lowest level (far
away). The cache hierarchy is assumed to be inclusive, i.e. any data in higher levels is assumed
to always be present in lower levels. Additionally, the cache levels are generally write-through,
meaning that every store updates all cache levels, rather than waiting for a dirty line to be evicted.
PTLsim supports a 48-bit virtual address space and 40-bit physical addresses (full system PTL-
sim/X only) in accordance with the x86-64 standard.

25.1 General Configurable Parameters

All caches support configuration of:

• Line size in bytes. Any power of two size is acceptable, however the line size of a lower
cache level must be the same or larger than any line size of a higher level cache. For example,
it is illegal to have 128 byte L1 lines with 64 byte L2 lines.

• Set count may be any power of two number. The total cache size in bytes is of course (line
size) × (set count)× (way count)
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• Way count (associativity) may be any number from 1 (direct mapped) up to the set count
(fully associative). Note that simulation performance (and clock speed in a real processor)
will suffer if the associativity is too great, particularly for L1 caches.

• Latency in cycles from a load request to the arrival of the data.

In dcache.h, the two base classes CacheLine and CacheLineWithValidMask are interchangeable,
depending on the model being used. The CacheLine class is a standard cache line with no actual
data (since the bytes in each line are simply held in memory for simulation purposes).

The CacheLineWithValidMask class adds a bitmask specifying which bytes within the cache line
contain valid data and which are unknown. This is useful for implementing “no stall on store”
semantics, in which stores simply allocate a new way in the appropriate set but only set the valid
bits for those bytes actually modified by the store. The rest of the cache line not touched by the
store can be brought in later without stalling the processor (unless a load tries to access them); this
is PTLsim’s default model. Additionally, this technique may be used to implement sectored cache
lines, in which the line fill bus is smaller than the cache line size. This means that groups of bytes
within the line may be filled over subsequent cycles rather than all at once.

The AssociativeArray template class in logic.h forms the basis of all caches in PTLsim. To
construct a cache in which specific lines can be locked into place, the LockableAssociativeArray

template class may be used instead. Finally, the CommitRollbackCache template class is useful for
creating versions of PTLsim with cache level commit/rollback support for out of order commit,
fault recovery and advanced speculation techniques.

The various caches are defined in dcache.h by specializations of these template classes. The
classes are L1Cache, L1ICache, L2Cache and L3Cache.

25.2 Initiating a Cache Miss

As described in Section 21, in the out of order core model, the issueload() function determines
if some combination of a prior store’s forwarded bytes (if any) and data present in the L1 cache
can fulfill a load. If not, this is a miss and lower cache levels must be accessed. In this case, a
LoadStoreInfo structure (defined in dcache.h) is prepared with various metadata about the load,
including which ROB entry and physical register to wake up when the load arrives, its size, align-
ment, sign extension properties, prefetch properties and so on. The issueload_slowpath() func-
tion (defined in dcache.cpp) is then called with this information, the physical address to load and
any data inherited from a prior store still in the pipeline. The issueload_slowpath() function
moves the load request out of the core pipeline and into the cache hierarchy.

The Load Fill Request Queue (LFRQ) is a structure used to hold information about any outstanding
loads that have missed any cache level. The LFRQ allows a configurable number of loads to be
outstanding at any time and provides a central control point between cache lines arriving from the
L2 cache or lower levels and the movement of the requested load data into the processor core to
dependent instructions. The LoadFillReq structure, prepared by issueload_slowpath(), contains
all the data needed to return a filled load to the core: the physical address of the load, the data
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and bytemask already known so far (e.g. forwarded from a prior store) and the LoadStoreInfo

metadata described above.

The Miss Buffer (MB) tracks all outstanding cache lines, rather than individual loads. Each
MB slot uses a bitmap to track one or more LFRQ entries that need to be awakened when the
missing cache line arrives. After adding the newly created LoadFillReq entry to the LFRQ, the
MissBuffer::initiate_miss() method uses the missing line’s physical address to allocate a new
slot in the miss buffer array (or simply uses an existing slot if a miss was already in progress on a
given line). In any case, the MB’s wakeup bitmap is updated to reflect the new LFRQ entry refer-
ring to that line. Each MB entry contains a cycles field, indicating the number of cycles remaining
for that miss buffer before it can be moved up the cache hierarchy until it reaches the core. Each
entry also contains two bits (icache and dcache) indicating which L1 caches to which the line
should eventually be delivered; this is required because a single L2 line (and corresponding miss
buffer) may be referenced by both the L1 data and instruction caches.

In initiate_miss(), the L2 and L3 caches are probed to see if they contain the required line.
If the L2 has the line, the miss buffer is placed into the STATE_DELIVER_TO_L1 state, indicating
that the line is now in progress to the L1 cache. Similarly, an L2 miss but L3 hit results in the
STATE_DELIVER_TO_L2 state, and a miss all the way to main memory results in STATE_DELIVER_TO_L3.

In the very unlikely event that either the LFRQ slot or miss buffer are full, an exception is re-
turned to out of order core, which typically replays the affected load until space in these structures
becomes available. For prefetch requests, only a miss buffer is allocated; no LFRQ slot is needed.

25.3 Filling a Cache Miss

The MissBuffer::clock() method implements all synchronous state transitions. For each active
miss buffer, the cycles counter is decremented, and if it becomes zero, the MB’s current state is
examined. If a given miss buffer was in the STATE_DELIVER_TO_L3 state (i.e. in progress from
main memory) and the cycle counter just became zero, a line in the L3 cache is validated with the
incoming data (this may involve evicting another line in the same set to make room). The MB is
then moved to the next state up the cache hierarchy (i.e. STATE_DELIVER_TO_L2 in this example)
and its cycles field is updated with the latency of the cache level it is now leaving (e.g. L3_LATENCY
in this example).

This process continues with successive levels until the MB is in the STATE_DELIVER_TO_L1 state
and its cycles field has been decremented to zero. If the MB’s dcache bit is set, the L1 cor-
responding line is validated and the lfrq.wakeup() method is called to invoke a new state ma-
chine to wake up any loads waiting on the recently filled line (as known from the MB’s lfrqmap

bitmap). If the MB’s icache bit was set, the line is validated in the L1 instruction cache, and the
PerCoreCacheCallbacks::icache_wakeup() callback is used to notify the out of order core’s fetch
stage that it may probe the cache for the missing line again. In any case, the miss buffer is then
returned to the unused state.

Each LFRQ slot can be in one of three states: free, waiting and ready. LFRQ slots remain
in the waiting state as long as they are referenced by a miss buffer; once the lfrq.wakeup()
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method is called, all slots affiliated with that miss buffer are moved to the ready state. The
LoadFillRequestQueue::clock() method finds up to MAX_WAKEUPS_PER_CYCLE LFRQ slots in the
ready state and wakes them up by calling the PerCoreCacheCallbacks::dcache_wakeup() callback
with the saved LoadStoreInfo metadata. The out of order core handles this callback as described
in Section 21.4.

For simulation purposes only, the value to be loaded is immediately recorded as soon as the load
issues, independent of the cache hit or miss status. In real hardware, the LFRQ entry data would
be used to extract the correct bytes from the newly arrived line and perform sign extension and
alignment. If the original load required bytes from a mixture of its source store buffer and the data
cache, the SFR data and mask fields in the LFRQ entry would be used to perform this merging
operation. The data would then be written into the physical register specified by the LoadStoreInfo
metadata and that register would be marked as ready before sending a signal to the issue queues to
wake up dependent operations.

In some cases, the out of order core may need to annul speculatively executed loads. The cache
subsystem is notified of this through the annul_lfrq_slot() function called by the core. This
function clears the specified LFRQ slot in each miss buffer’s lfrqmap entry (since that slot should
no longer be awakened now that it has been annulled), and frees the LFRQ entry itself.

25.4 Translation Lookaside Buffers

The following section applies to full system PTLsim/X only. The userspace version of PTLsim
does not model TLBs since doing so would be inaccurate: it is physically impossible to model
TLB miss delays without actually walking real page tables and encountering the associated cache
misses. For more information, please see Section 14.3.1 concerning page translation in PTLsim/X.
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Chapter 26

Branch Prediction

26.1 Introduction

PTLsim provides a variety of branch predictors in branchpred.cpp. The branch prediction subsys-
tem is relatively independent of the core simulator and can be treated as a black box, so long as it
implements the interfaces in branchpred.h.

The branch prediction subsystem always contains at least three distinct predictors for the three
main classes of branches:

• Conditional Branch Predictor returns a boolean (taken or not taken) for each conditional
branch (br.cc uop)

• Branch Target Buffer (BTB) predicts indirect branch (jmp uop) targets

• Return Address Stack (RAS) predicts return instructions (i.e. specially marked indirect jmp
uops) based on prior calls

• Unconditional branches (bru) are never predicted since their destination is explicitly en-
coded.

All these predictors are accessed by the core through the BranchPredictorInterface object.
Based on the opcode and other uop information, the core determines the type flags of each branch
uop:

• BRANCH_HINT_UNCOND for unconditional branches. These are never predicted since the desti-
nation is implied.

• BRANCH_HINT_COND for conditional branches.

• BRANCH_HINT_INDIRECT for indirect branches, including returns.

• BRANCH_HINT_CALL for calls (both direct and indirect). This implies that the return address
of the call should be a should be pushed on the RAS.
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• BRANCH_HINT_RET for returns (indirect branches). This implies that the return address should
be taken from the top RAS stack entry, not the BTB.

Multiple flags may be present for each uop (for instance, BRANCH_HINT_RET and BRANCH_HINT_INDIRECT

are both used for the jmp uop terminating an x86 ret instruction).

To make a prediction at fetch time, the core calls the BranchPredictorInterface::predict()

method, passing it a PredictorUpdate structure. This structure is carried along with each uop until
it retires, and contains all the information needed to eventually update the branch predictor at the
end of the pipeline. The contents will vary depending on the predictor chosen, but in general this
structure contains pointers into internal predictor counter tables and various flags. The predict()

method fills in this structure.

As each uop commits, the BranchPredictorInterface::update() method is passed the uop’s
saved PredictorUpdate structure and the branch outcome (expected target RIP versus real target
RIP) so the branch predictor can be updated. In PTLsim, predictor updates only occur at retirement
to avoid corruption caused by speculative instructions.

26.2 Conditional Branch Predictor

The PTLsim conditional branch predictor is the most flexible predictor, since it can be easily re-
placed. The default predictor implemented in branchpred.cpp is a selection based predictor. In
essence, two separate predictors are maintained. The history predictor hashes a shift register of
previously predicted branches into a table slot; this slot returns whether or not the branch with
that history is predicted as taken. PTLsim supports various combinations of the history and branch
address to provide gshare based semantics. The bimodal predictor is simpler; it uses 2-bit sat-
urating counters to predict if a given branch is likely to be taken. Finally, a selection predictor
specifies which of the two predictors is more accurate and should be used for future predictions.
This style of predictor, sometimes called a McFarling predictor, has been described extensively in
the literature and variations are used by most modern processors.

Through the CombinedPredictor template class, the user can specify the sizes of all the tables
(history, bimodal, selector), the history depth, the method in which the global history and branch
address are combined and so on. Alternatively, the conditional branch predictor can be replaced
with something entirely different if desired.

26.3 Branch Target Buffer

The Branch Target Buffer (BTB) is essentially a small cache that maps indirect branch RIP ad-
dresses (i.e., jmp uops) into predicted target RIP addresses. It is set associative, with a user con-
figurable number of sets and ways. In PTLsim, the BTB does not take into account any indirect
branch history information. The BTB is a nearly universal structure in branch prediction; see the
literature for more information.
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26.4 Return Address Stack

The Return Address Stack (RAS) predicts the target address of indirect jumps marked with the
BRANCH_HINT_RET flag. Whenever the BRANCH_HINT_RET flag is passed to the predict() method, the
top RAS stack entry is returned as the predicted target, overriding anything in the BTB.

Unlike the conditional branch predictor and BTB, the RAS updated speculatively in the frontend
pipeline, before the outcome of calls and returns are known. This allows better performance when
closely spaced calls and returns must be predicted as they are fetched, before either the call or
corresponding return have actually executed. However, when called with the BRANCH_HINT_RET

flag, the predict() method only returns the RIP at the top of the RAS, but does not push or pop
the RAS. This must be done after the corresponding bru or jmp (for direct and or indirect calls,
respectively) or jmp (for returns) uop is actually allocated in the ROB.

This approach is required since the RAS is speculatively updated: if uops must be annulled (be-
cause of branch mispredictions or mis-speculations), the annulment occurs by walking backwards
in the ROB until the excepting uop is encountered. However, if the RAS were updated during
the fetch stage, some uops may not be in the ROB yet and hence the rollback logic cannot undo
speculative changes made to the RAS by these uops. This causes the RAS to get out of alignment
and performance suffers.

To solve this problem, the RAS is only updated in the allocate stage immediately after fetch. In the
out of order core’s rename() function, the BranchPredictorInterface::updateras() method is
called to either push or pop an entry from the RAS (calls push entries, returns pop entries). Unlike
the conditional branch predictor and BTB, this is the only place the RAS is updated, rather than
performing updates at commit time.

If uops must be annulled, the ReorderBufferEntry::annul() method calls the BranchPredictorInterface::annulras()
method with the PredictorUpdate structure for each uop it encounters in reverse program order.
This method effectively undoes whatever change was made to the RAS when the updateras()

method was called with the same PredictorUpdate information during renaming and allocation.
This is possible because updateras() saves checkpoint information (namely, the old RAS top of
stack and the value at that stack slot) before updating the RAS; this allows the RAS state to be
rolled backwards in time as uops are annulled in reverse program order. At the end of the annul-
ment process when fetching is restarted at the correct RIP, the RAS state should be identical to the
state that existed before the last uop to be annulled was originally fetched.
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Part V

Appendices
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Chapter 27

PTLsim uop Reference

The following sections document the semantics and encoding of each micro-operation (uop) sup-
ported by the PTLsim processor core. The opinfo[] table in ptlhwdef.cpp and constants in
ptlhwdef.h give actual numerical values for the opcodes and other fields described below.
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Merging Rules

Mnemonic Syntax Operation
op rd = ra,rb rd = ra← (ra op rb)

Merging Rules:

The x86 compatible ALUs implement operations on 1, 2, 4 or 8 byte quantities. Unless
otherwise indicated, all operations take a 2-bit size shift field (sz) used to determine the
effective size in bytes of the operation as follows:

• sz = 0: Low byte of rd is set to the 8-bit result; high 7 bytes of rd are set to corre-
sponding bytes of ra.

• sz = 1: Low two bytes of rd is set to the 16-bit result; high 6 bytes of rd are set to
corresponding bytes of ra.

• sz = 2: Low four bytes of rd is set to the 32-bit result; high 4 bytes of rd are cleared
to zero in accordance with x86-64 zero extension semantics. The ra operand is
unused and should be REG_zero.

• sz = 3: All 8 bytes of rd are set to the 64-bit result. ra is unused and should be
REG_zero.

Flags are calculated based on the sz-byte value produced by the ALU, not the final 64-bit
result in rd .

Other Pseudo-Operators

The descriptions in this reference use various pseudo-operators to describe the semantics
of each uop. These operators are described below.

EvalFlags(ra)

The EvalFlags pseudo-operator evaluates the ZAPS, CF, OF flags attached to the source
operand ra in accordance with the type of condition code evaluation specified by the uop.
The operator returns 1 if the evaluation is true; otherwise 0 is returned.

SignExt(ra, N)

The SignExt operator sign extends the ra operand by the number of bits specified by N.
Specifically, bit ra[N] is copied to all high order bits from bit 63 down to bit N. If N is not
specified, it is assumed to mean the number of bits in the effective size of the uop’s result
(as described under Merging Rules).
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MergeWithSFR(mem, sfr)

The MergeWithSFR pseudo-operator is described in the reference page for load uops.

MergeAlign(mem, sfr)

The MergeAlign pseudo-operator is described in the reference page for load uops.
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mov and or xor andnot ornot nand nor eqv

Logical Operations

Mnemonic Syntax Operation
mov rd = ra,rb rd = ra← rb
and rd = ra,rb rd = ra← ra & rb
or rd = ra,rb rd = ra← ra | rb
xor rd = ra,rb rd = ra← ra ^ rb
andnot rd = ra,rb rd = ra← (~ra) & rb
ornot rd = ra,rb rd = ra← (~ra) | rb
nand rd = ra,rb rd = ra← ~(ra & rb)
nor rd = ra,rb rd = ra← ~(ra | rb)
eqv rd = ra,rb rd = ra← ~(ra ^ rb)

Notes:

• All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.
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add sub addadd addsub subadd subsub addm subm addc subc

Add and Subtract

Mnemonic Syntax Operation
add rd = ra,rb rd = ra← ra + rb
sub rd = ra,rb rd = ra← ra - rb
adda rd = ra,rb,rc*S rd = ra← ra + rb + (rc < < S)
adds rd = ra,rb,rc*S rd = ra← ra - rb + (rc < < S)
addm rd = ra,rb,rc rd = ra← (ra + rb) & rc
subm rd = ra,rb,rc rd = ra← (ra - rb) & rc
addc rd = ra,rb,rc rd = ra← (ra + rb) + rc.cf
subc rd = ra,rb,rc rd = ra← (ra - rb) - rc.cf

Notes:

• All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.

• The adda and adds uops are useful for small shifts and x86 three-operand LEA-style
address generation.

• The addc and subc uops use only the carry flag field of their rc operand; the value is
unused.

• The addm and subm uops mask the result by the immediate in rc. They are used in
microcode for modular stack arithmetic.
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sel

Conditional Select

Mnemonic Syntax Operation
sel.cc rd = ra,rb,(rc) rd = ra← (EvalFlags(rc)) ? rb : ra

Notes:

• cc is any valid condition code flag evaluation

• The sel uop merges the selected operand with ra in accordance with the standard
x86 merging rules described previously

• The 64-bit result and all flags are treated as a single value for selection purposes,
i.e. the flags attached to the selected input are passed to the output

• If one of the (ra, rb) operands is not valid (has FLAG_INV set) but the selected operand
is valid, the result is valid. This is an exception to the invalid bit propagation rule
only when the selected input is valid. If the rc operand is invalid, the result is always
invalid.

• If any of the inputs are waiting (FLAG_WAIT is set), the uop does not issue, even if the
selected input was ready. This is a pipeline simplification.

• set rd = (a),b

• sel rd = b,0,1,c
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set

Conditional Set

Mnemonic Syntax Operation
set.cc rd = ra,rb,(rc) rd = ra← EvalFlags(rc) ? rb : 0

Notes:

• cc is any valid condition code flag evaluation

• The value 0 or 1 is zero extended to the operation size and merged with rb in ac-
cordance with the standard x86 merging rules described previously (except that set
uses rb as the merge target instead of ra)

• Flags attached to ra (condition code) are passed through to the output
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set.sub set.and

Conditional Compare and Set

Mnemonic Syntax Operation
set.sub.cc rd = ra,rb,rc rd = rc← EvalFlags(ra - rb) ? 1 : 0
set.and.cc rd = ra,rb,rc rd = rc← EvalFlags(ra & rb) ? 1 : 0

Notes:

• The set.sub and set.and uops take the place of a sub or and uop immediately con-
sumed by a set uop; this is intended to shorten the critical path if uop merging is
performed by the processor

• cc is any valid condition code flag evaluation

• The value 0 or 1 is zero extended to the operation size and then merged with rc in
accordance with the standard x86 merging rules described previously (except that
set.sub and set.and use rc as the merge target instead of ra)

• Flags generated as the result of the comparison are passed through with the result
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br

Conditional Branch

Mnemonic Syntax Operation
br.cc rip = (ra,rb),riptaken,ripseq rip = EvalFlags(ra) ? riptaken : ripseq

Notes:

• cc is any valid condition code flag evaluation

• The rip (user-visible instruction pointer register) is reset to one of two immediates. If
the flags evaluation is true, the riptaken immediate is selected; otherwise the ripseq
immediate is selected.

• If the flag evaluation is false (i.e., ripseq is selected), the BranchMispredict internal
exception is raised. The processor should annul all uops after the branch and restart
fetching at the RIP specified by the result (in this case, ripseq).

• Branches are always assumed to be taken. If the branch is predicted as not taken
(i.e. future uops come from the next sequential RIP after the branch), it is the re-
sponsibility of the decoder or frontend to swap the riptaken and ripseq immediates
and invert the condition of the branch. All condition encodings can be inverted by
inverting bit 0 of the 4-bit condition specifier.

• The destination register should always be REG_rip; otherwise this uop is undefined.

• If the target RIP falls within an unmapped page, not present page or a page marked
as no-execute (NX), the PageFaultOnExec exception is taken.

• No flags are generated by this uop
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br.sub br.and

Compare and Conditional Branch

Mnemonic Syntax Operation
br.cc rip = ra,rb,riptaken,ripseq rip = EvalFlags(ra - rb) ? riptaken : ripseq
br.cc rip = ra,rb,riptaken,ripseq rip = EvalFlags(ra & rb) ? riptaken : ripseq

Notes:

• The br.sub and br.and uops take the place of a sub or and uop immediately consumed
by a br uop; this is intended to shorten the critical path if uop merging is performed
by the processor

• cc is any valid condition code flag evaluation

• The rip (user-visible instruction pointer register) is reset to one of two immediates. If
the flags evaluation is true, the riptaken immediate is selected; otherwise the ripseq
immediate is selected

• If the flag evaluation is false (i.e., ripseq is selected), the BranchMispredict internal
exception is raised. The processor should annul all uops after the branch and restart
fetching at the RIP specified by the result (in this case, ripseq)

• Branches are always assumed to be taken. If the branch is predicted as not taken
(i.e. future uops come from the next sequential RIP after the branch), it is the re-
sponsibility of the decoder or frontend to swap the riptaken and ripseq immediates
and invert the condition of the branch. All condition encodings can be inverted by
inverting bit 0 of the 4-bit condition specifier.

• The destination register should always be REG_rip; otherwise this uop is undefined

• If the target RIP falls within an unmapped page, not present page or a page marked
as no-execute (NX), the PageFaultOnExec exception is taken.

• Flags generated as the result of the comparison are passed through with the result
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jmp

Indirect Jump

Mnemonic Syntax Operation
jmp rip = ra,riptaken rip = ra

Notes:

• The rip (user-visible instruction pointer register) is reset to the target address spec-
ified by ra

• If the ra operand does not match the riptaken immediate, the BranchMispredict in-
ternal exception is raised. The processor should annul all uops after the branch and
restart fetching at the RIP specified by the result (in this case, ra)

• Indirect jumps are always assumed to match the predicted target in riptaken. If some
other target is predicted, it is the responsibility of the decoder or frontend to set the
riptaken immediate to that predicted target

• The destination register should always be REG_rip; otherwise this uop is undefined

• If the target RIP falls within an unmapped page, not present page or a marked as
no-execute (NX), the PageFaultOnExec exception is taken.

• No flags are generated by this uop
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jmpp

Indirect Jump Within Microcode

Mnemonic Syntax Operation
jmpp null = ra,riptaken internalrip = ra

Notes:

• The jmpp uop redirects uop fetching into microcode not accessible as x86 instruc-
tions. The target address (inside PTLsim, not x86 space) is specified by ra

• If the ra operand does not match the riptaken immediate, the BranchMispredict in-
ternal exception is raised. The processor should annul all uops after the branch and
restart fetching at the RIP specified by the result (in this case, ra)

• Indirect jumps are always assumed to match the predicted target in riptaken. If some
other target is predicted, it is the responsibility of the decoder or frontend to set the
riptaken immediate to that predicted target

• The destination register should always be REG_rip; otherwise this uop is undefined

• The user visible rip register is not updated after this uop issues; otherwise it would
point into PTLsim space not accessible to x86 code. Updating is resumed after
a normal jmp issues to return to user code. It is the responsibility of the decoder
to move the user address to return to into some temporary register (traditionally
REG_sr2 but this is not required).

• No flags are generated by this uop
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bru

Unconditional Branch

Mnemonic Syntax Operation
bru rip = riptaken rip = riptaken

Notes:

• The rip (user-visible instruction pointer register) is reset to the specified immediate.
The processor may redirect fetching from the new RIP

• No exceptions are possible with unconditional branches

• If the target RIP falls within an unmapped page, not present page or a marked as
no-execute (NX), the PageFaultOnExec exception is taken.

• No flags are generated by this uop
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brp

Unconditional Branch Within Microcode

Mnemonic Syntax Operation
bru null = riptaken internalrip = riptaken

Notes:

• The brp uop redirects uop fetching into microcode not accessible as x86 instructions.
The target address (inside PTLsim, not x86 space) is specified by the riptaken im-
mediate

• The rip (user-visible instruction pointer register) is reset to the specified riptaken
immediate. The processor may redirect fetching from the new RIP

• No exceptions are possible with unconditional branches

• The user visible rip register is not updated after this uop issues; otherwise it would
point into PTLsim space not accessible to x86 code. Updating is resumed after a
normal jmp uop issues to return to user code. It is the responsibility of the decoder
to move the user address to return to into some temporary register (traditionally
REG_sr2 but this is not required).

• No flags are generated by this uop

141



chk

Check Speculation

Mnemonic Syntax Operation
chk.cc rd = ra,recrip,extype rd = EvalCheck(ra) ? 0 : recrip

Notes:

• The chk uop verifies certain properties about ra. If this verification check passes, no
action is taken. If the check fails, chk signals an exception of the user specified type
in the rc immediate. The result of the chk uop in this case is the user specified RIP
to recover at after the check failure is handled in microcode. This recovery RIP is
saved in the recoveryrip internal register.

• This mechanism is intended to allow simple inlined uop sequences to branch into
microcode if certain conditions fail, since normally inlined uop sequences cannot
contain embedded branches. One example use is in the REP series of instructions to
ensure that the count is not zero on entry (a special corner case).

• Unlike most conditional uops, the chk uop directly checks the numerical value of ra
against zero, and ignores any attached flags. Therefore, the cc condition code flag
evaluation type is restricted to the subset (e, ne, be, nbe, l, nl, le, nle).

• No flags are generated by this uop
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ld ld.lo ld.hi ldx ldx.lo ldx.hi

Load

Mnemonic Syntax Operation
ld rd = [ra,rb],sfra rd = MergeWithSFR(mem[ra + rb], sfra)
ld.lo rd = [ra+rb],sfra rd = MergeWithSFR(mem[floor(ra + rb), 8],

sfra)
ld.hi rd = [ra+rb],rc,sfra rd = MergeAlign(

MergeWithSFR(mem[(floor(ra + rb), 8) + 8],
sfra), rc)

Notes:

• The PTLsim load unit model is described in substantial detail in Section 21; this
section only gives an overview of the load uop semantics.

• The ld family of uops loads values from the virtual address specified by the sum ra
+ rb. The ld form zero extends the loaded value, while the ldx form sign extends the
loaded value to 64 bits.

• All values are zero or sign extended to 64 bits; no subword merging takes place as
with ALU uops. The decoder is responsible for following the load with an explicit mov
uop to merge 8-bit and 16-bit loads with their old destination register.

• The sfra operand specifies the store forwarding register (a.k.a. store buffer) to merge
with data from the cache to form the final result. The inherited SFR may be deter-
mined dynamically by querying a store queue or can be predicted statically.

• If the load misses the cache, the FLAG_WAIT flag of the result is set.

• Load uops do not generate any other condition code flags

Unaligned Load Support:

• The processor supports unaligned loads via a pair of ld.lo and ld.hi uops; an
overview can be found in Section 5.6. The alignment type of the load is stored in the
uop’s cond field (0 = ld, 1 = ld.lo, 2 = ld.hi).

• The ld.lo uop rounds down its effective address bra+ rbc to the nearest 64-bit
boundary and performs the load. The ld.hi uop rounds dra+ rb+8e up to the next
64-bit boundary, performs a load at that address, then takes as its third rc operand
the first (ld.lo) load’s result. The two loads are concatenated into a 128-bit word and
the final unaligned data is extracted (and sign extended if the ldx form was used).
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• Special corner case for when the actual user address (ra + rb) did not actually re-
quire any bytes in the 8-byte range loaded by the ld.hi uop (i.e. the load was
contained entirely within the low 64-bit aligned chunk). Since it is perfectly legal to
do an unaligned load to the very end of the page such that the next 64 bit chunk is
not mapped to a valid page, the ld.hi uop does not actually access memory; the
entire result is extracted from the prior ld.lo result in the rc operand.

Exceptions:

• UnalignedAccess if the address (ra + rb) is not aligned to an integral multiple of the
size in bytes of the load. Unaligned loads (ld.lo and ld.hi) do not generate this
exception. Since x86 automatically corrects alignment problems, microcode must
handle this exception as described in Section 5.6.

• PageFaultOnRead if the virtual address (ra + rb) falls on a page not accessible to the
caller in the current operating mode, or a page marked as not present.

• Various other exceptions and replay conditions may exist depending on the specific
processor core model.
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st

Store

Mnemonic Syntax Operation
st sfrd = [ra,rb],rc,sfra sfrd = MergeWithSFR((ra + rb), sfra, rc)
st.lo sfrd = [ra+rb],rc,sfra sfrd = MergeWithSFR(floor(ra + rb, 8), sfra, rc)
st.hi sfrd = [ra+rb],rc,sfra sfrd = MergeWithSFR(floor(ra + rb, 8) + 8, sfra, rc)

Notes:

• The PTLsim store unit model is described in substantial detail in Section 22.1; this
section only gives an overview of the store uop semantics.

• The st family of uops prepares values to be stored to the virtual address specified
by the sum ra + rb.

• The sfra operand specifies the store forwarding register (a.k.a. store buffer) to merge
the data to be stored (the rc operand) into. The inherited SFR may be determined
dynamically by querying a store queue or can be predicted statically, as described
in 22.1.

• Store uops only generate the SFR for tracking purposes; the cache is only written
when the SFR is committed.

• The store uop may issue as soon as the ra and rb operands are ready, even if the rc
and sfra operands are not known. The store must be replayed once these operands
become known, in accordance with Section 22.2.

• Store uops do not generate any other condition code flags

Unaligned Store Support:

• The processor supports unaligned stores via a pair of st.lo and st.hi uops; an
overview can be found in Section 5.6. The alignment type of the load is stored in the
uop’s cond field (0 = st, 1 = st.lo, 2 = st.hi).

• Stores are handled in a similar manner, with st.lo and st.hi rounding down and up to store
parts of the unaligned value in adjacent 64-bit blocks.

• The st.lo uop rounds down its effective address bra+ rbc to the nearest 64-bit
boundary and stores the appropriately aligned portion of the rc operand that ac-
tually falls within that range of 8 bytes. The ld.hi uop rounds dra+ rb+8e up to the
next 64-bit boundary and similarly stores the appropriately aligned portion of the rc

operand that actually falls within that high range of 8 bytes.
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• Special corner case for when the actual user address (ra + rb) did not actually touch
any bytes in the 8-byte range normally written by the st.hi uop (i.e. the store was
contained entirely within the low 64-bit aligned chunk). Since it is perfectly legal to
do an unaligned store to the very end of the page such that the next 64 bit chunk is
not mapped to a valid page, the st.hi uop does not actually do anything in this case
(the bytemask of the generated SFR is set to zero and no exceptions are checked).

Exceptions:

• UnalignedAccess if the address (ra + rb) is not aligned to an integral multiple of the
size in bytes of the store. Unaligned stores (st.lo and st.hi) do not generate this
exception. Since x86 automatically corrects alignment problems, microcode must
handle this exception as described in Section 5.6.

• PageFaultOnWrite if the virtual address (ra + rb) falls on a write protected page, a
page not accessible to the caller in the current operating mode, or a page marked
as not present.

• LoadStoreAliasing if a prior load is found to alias the store (see Section 22.2.1).

• Various other exceptions and replay conditions may exist depending on the specific
processor core model.
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ldp ldxp

Load from Internal Microcode Space

Mnemonic Syntax Operation
ldp rd = [ra,rb] rd = MSR[ra+rb]
ldxp rd = [ra+rb] rd = SignExt(MSR[ra+rb])

Notes:

• The ldp and ldxp uops load values from the internal PTLsim address space not ac-
cessible to x86 code. Typically this address space is mapped to internal machine
state registers (MSRs) and microcode scratch space. The internal address to ac-
cess is specified by the sum ra + rb. The ldp form zero extends the loaded value,
while the ldxp form sign extends the loaded value to 64 bits.

• Load uops do not generate any other condition code flags

• Internal loads may not be unaligned, and never stall or generate exceptions.
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stp

Store to Internal Microcode Space

Mnemonic Syntax Operation
stp null = [ra,rb],rc MSR[ra+rb] = rc

Notes:

• The stp uop stores a value to the internal PTLsim address space not accessible to
x86 code. Typically this address space is mapped to internal machine state registers
(MSRs) and microcode scratch space. The internal address to store is specified by
the sum ra + rb and the value to store is specified by rc.

• Store uops do not generate any other condition code flags

• Internal stores may not be unaligned, and never stall or generate exceptions.
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shl shr sar rotl rotr rotcl rotcr

Shifts and Rotates

Mnemonic Syntax Operation
shl rd = ra,rb,rc rd = ra← (ra < < rb)
shr rd = ra,rb,rc rd = ra← (ra > > rb)
sar rd = ra,rb,rc rd = ra← SignExt(ra > > rb)
rotl rd = ra,rb,rc rd = ra← (ra rotateleft rb)
rotr rd = ra,rb,rc rd = ra← (ra rotateright rb)
rotcl rd = ra,rb,rc rd = ra← ({rc.cf, ra} rotateleft rb)
rotcr rd = ra,rb,rc rd = ra← ({rc.cf, ra} rotateright rb)

Notes:

• The shift and rotate instructions have some of the most bizarre semantics in the en-
tire x86 instruction set: they may or may not modify flags depending on the rotation
count operand, which we may not even know until the instruction issues. This is
introduced in Section 5.9.

• The specific rules are as follows:

– If the count rb = 0 is zero, no flags are modified

– If the count rb = 1, both OF and CF are modified, but ZAPS is preserved

– If the count rb > 1, only the CF is modified. (Technically the value in OF is un-
defined, but on K8 and P4, it retains the old value, so we try to be compatible).

– Shifts also alter the ZAPS flags while rotates do not.

• For constant counts (immediate rb values), the semantics are easy to determine in
advance.

• For variable counts (rb comes from register), things are more complex. Since the
shift needs to determine its output flags at runtime based on both the shift count and
the input flags (CF, OF, ZAPS), we need to specify the latest versions in program
order of all the existing flags. However, this would require three operands to the shift
uop not even counting the value and count operands. Therefore, we use a collcc

(collect condition code flags, see Section 5.4) uop to get all the most up to date flags
into one result, using three operands for ZAPS, CF, OF. This forms a zero word with
all the correct flags attached, which is then forwarded as the rc operand to the shift.
This may add additional scheduling constraints in the case that one of the operands
to the shift itself sets the flags, but this is fairly rare. Conveniently, this also lets
us directly implement the 65-bit rotcl/rotcr uops in hardware with little additional
complexity.
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• All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.

• The specific flags attached to the result depend on the input conditions described
above. The user should always assume these uops always produce the latest ver-
sion of each of the ZAPS, CF, OF flag sets.
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mask

Masking, Insertion and Extraction

Mnemonic Syntax Operation
mask.x|z rd = ra,rb,[ms,mc,ds] See semantics below

Notes:

• The mask uop and its variants are used for generalized bit field extraction, insertion,
sign and zero extension using the 18-bit control field in the immediate

• These uops are used extensively within PTLsim microcode, but are also useful if the
processor supports dynamically merging a chain of shr, and, or uops.

• The condition code flags (ZAPS, CF, OF) are the flags logically generated by the
final AND operation.

Control Field Format

The 18-bit rc immediate has the following three 6-bit fields:

DS MC MS
12 6 0

• The mask uop and its variants are used for generalized bit field extraction, insertion,
sign and zero extension using the 18-bit control field in the immediate

Operation:

M = 1'[(ms+mc-1):ms]

T = (ra & ~M) | ((rb > > > ds) & M)

if (Z) {

# Zero extend

rd = ra ← (T & 1'[(ms+mc-1):0])

else if (X) {

# Sign extend

rd = ra ← (T[ms+mc-1]) ? (T | 1'[63:(ms+mc)]) : (T & 1'[(ms+mc-1):0])

} else {

rd = ra ← T

}
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bswap

Byte Swap

Mnemonic Syntax Operation
bswap rd = ra rd = ra← ByteSwap(rb)

Notes:

• The bswap uop reverses the endianness of the rb operand. The uop’s effective result
size determines the range of bytes which are reversed.

• This uop’s semantics are identical to the x86 bswap instruction.

• This uop does not generate any condition code flags.
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collcc

Collect Condition Codes

Mnemonic Syntax Operation
collcc rd = ra,rb,rc rd.zaps = ra.zaps

rd.cf = rb.cf
rd.of = rc.of
rd = rd.flags

Notes:

• The collcc uop collects the condition code flags from three potentially distinct source
operands into a single output with the combined condition code flags in both its
appended flags and data.

• This uop is useful for collecting all flags before passing them as input to another uop
which only supports one source of flags (for instance, the shift and rotate uops).
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movccr movrcc

Move Condition Code Flags Between Register Value and Flag
Parts

Mnemonic Syntax Operation
movccr rd = ra rd = ra.flags

rd.flags = 0
movrcc rd = ra rd.flags = ra

rd = ra

Notes:

• The movccr uop takes the condition code flag bits attached to ra and copies them
into the 64-bit register part of the result.

• The movrcc uop takes the low bits of the ra operand and moves those bits into the
condition code flag bits attached to the result.

• The bits moved consist of the ZF, PF, SF, CF, OF flags

• The WAIT and INV flags of the result are always cleared since the uop would not
even issue if these were set in ra.
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andcc orcc ornotcc xorcc

Logical Operations on Condition Codes

Mnemonic Syntax Operation
andcc rd = ra,rb rd.flags = ra.flags & rb.flags
orcc rd = ra,rb rd.flags = ra.flags | rb.flags
ornotcc rd = ra,rb rd.flags = ra.flags | (~rb.flags)
xorcc rd = ra,rb rd.flags = ra.flags ^ rb.flags

Notes:

• These uops are used to perform logical operations on the condition code flags at-
tached to ra and rb.

• If the rb operand is an immediate, the immediate data is used instead of the flags
normally attached to a register operand.

• The 64-bit value of the output is always set to zero.
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mull mulh

Integer Multiplication

Mnemonic Syntax Operation
mull rd = ra,rb rd = ra← lowbits(ra × rb)
mulh rd = ra,rb rd = ra← highbits(ra × rb)

Notes:

• These uops multiply ra and rb, then retain only the low N bits or high N bits of the
result (where N is the uop’s effective result size in bits). This result is then merged
into ra.

• The condition code flags generated by these uops correspond to the normal x86
semantics for integer multiplication (imul); the flags are calculated relative to the
effective result size.

• The rb operand may be an immediate

156



bt bts btr btc

Bit Testing and Manipulation

Mnemonic Syntax Operation
bt rd = ra,rb rd.cf = ra[rb]

rd = ra← (rd.cf) ? -1 : +1
bts rd = ra,rb rd.cf = ra[rb]

rd = ra← ra | (1 < < rb)
btr rd = ra,rb rd.cf = ra[rb]

rd = ra← ra & (~(1 < < rb))
btc rd = ra,rb rd.cf = ra[rb]

rd = ra← ra ^ (1 < < rb)

Notes:

• These uops test a given bit in ra and then atomically modify (set, reset or comple-
ment) that bit in the result.

• The CF flag of the output is set to the original value in bit position rb of ra. Other
condition code flag bits in the output are undefined.

• The bt (bit test) uop is special: it generates a value of -1 or +1 if the tested bit is 1
or 0, respectively. This is used in microcode for setting up an increment for the rep

x86 instructions.
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ctz clz

Count Trailing or Leading Zeros

Mnemonic Syntax Operation
ctz rd = ra rd.zf = (rb == 0)

rd = ra← (rb) ? LSBIndex(rb) : 0
clz rd = ra rd.zf = (rb == 0)

rd = ra← (rb) ? MSBIndex(rb) : 0

Notes:

• These uops find the bit index of the first ’1’ bit in rb, starting from the lowest bit 0 (for
ctz) or the highest bit of the data type (for clz).

• The result is zero (technically, undefined) if ra is zero.

• The ZF flag of the result is 1 if rb was zero, or 0 if rb was nonzero. Other condition
code flags are undefined.
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ctpop

Count Population of ’1’ Bits

Mnemonic Syntax Operation
ctpop rd = ra rd.zf = (ra == 0)

rd = PopulationCount(ra)

Notes:

• The ctpop uop counts the number of ’1’ bits in the ra operand.

• The ZF flag of the result is 1 if ra was zero, or 0 if ra was nonzero. Other condition
code flags are undefined.
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Floating Point Format and Merging

All floating point uops use the same encoding to specify the precision and vector format
of the operands. The uop’s size field is encoded as follows:

• 00: Single precision scalar floating point (op fp mnemonic). The operation is only
performed on the low 32 bits (in IEEE single precision format) of the 64-bit inputs;
the high 32 bits of the ra operand are copied to the high 32 bits of the output.

• 01: Single precision vector floating point (op fv mnemonic). The operation is per-
formed on both 32 bit halves (in IEEE single precision format) of the 64-bit inputs in
parallel

• 1x: Double precision scalar floating point (op fd mnemonic). The operation is per-
formed on the full 64 bit inputs (in IEEE double precision format)

Most floating point operations merge the result with the ra operand to prepare the desti-
nation. Since a full 64-bit result is generated with the vector and double formats, the ra
operand is not needed and may be specified as zero to reduce dependencies.

Exceptions to this encoding are listed where appropriate.

Unless otherwise noted, all operations update the internal floating point status register
(FPSR, equivalent to the MXCSR register in x86 code) by ORing in any exceptions that
occur. If the uop is encoded to generate an actual exception on excepting conditions, the
FLAG_INV flag is attached to the output to cause an exception at commit time.

No condition code flags are generated by floating point uops unless otherwise noted.
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addf subf mulf divf minf maxf

Floating Point Arithmetic

Mnemonic Syntax Operation
addf rd = ra,rb rd = ra← ra + rb
subf rd = ra,rb rd = ra← ra - rb
mulf rd = ra,rb rd = ra← ra × rb
divf rd = ra,rb rd = ra← ra / rb
minf rd = ra,rb rd = ra← (ra < rb) ? ra : rb
maxf rd = ra,rb rd = ra← (ra >= rb) ? ra : rb

Notes:

• These uops do arithmetic on floating point numbers in various formats as specified
in the Floating Point Format and Merging page.

161



maddf msubf

Fused Multiply Add and Subtract

Mnemonic Syntax Operation
maddf rd = ra,rb,rc rd = ra← (ra × rb) + rc
msubf rd = ra,rb,rc rd = ra← (ra × rb) - rc

Notes:

• The maddf and msubf uops perform fused multiply and accumulate operations on
three operands.

• The full internal precision is preserved between the multiply and add operations;
rounding only occurs at the end.

• These uops are primarily used by microcode to calculate floating point division,
square root and reciprocal.
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sqrtf rcpf rsqrtf

Square Root, Reciprocal and Reciprocal Square Root

Mnemonic Syntax Operation
sqrtf rd = ra,rb rd = ra← sqrt(rb)
rcpf rd = ra,rb rd = ra← 1 / rb
rsqrtf rd = ra,rb rd = ra← 1 / sqrt(rb)

Notes:

• These uops perform the specified unary operation on rb and merge the result into
ra (for a single precision scalar mode only)

• The rcpf and rsqrtf uops are approximates - they do not provide the full precision
results. These approximations are in accordance with the standard x86 SSE/SSE2
semantics.
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cmpf

Compare Floating Point

Mnemonic Syntax Operation
cmpf.type rd = ra,rb rd = ra← CompareFP(ra, rb, type) ? -1 : 0

Notes:

• This uop performs the specified comparison of ra and rb. If the comparison is true,
the result is set to all ’1’ bits; otherwise it is zero. The result is then merged into ra.

• The cond field in the uop encoding holds the comparison type. The set of compare
types matches the x86 SSE/SSE2 CMPxx instructions.
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cmpccf

Compare Floating Point and Generate Condition Codes

Mnemonic Syntax Operation
cmpccf.type rd = ra,rb rd.flags = CompareFPFlags(ra, rb)

Notes:

• This uop performs all comparisons of ra and rb and produces x86 condition code
flags (ZF, PF, CF) to represent the result.

• The semantics of the generated condition code flags exactly matches the x86 SSE/SSE2
instructions COMISS/COMISD/UCOMISS/UCOMISD.

• Unlike most encodings, the size field holds the comparison type of the two values
as follows:

– 00: cmpccfp: single precision ordered compare (same semantics as x86 SSE
COMISS)

– 01: cmpccfp.u: single precision unordered compare (same semantics as x86
SSE UCOMISS)

– 10: cmpccfd: double precision ordered compare (same semantics as x86 SSE2
COMISD)

– 11: cmpccfd.u: double precision ordered compare (same semantics as x86
SSE2 UCOMISD)
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cvtf.i2s.ins cvtf.i2s.p cvtf.i2d.lo cvtf.i2d.hi

Convert 32-bit Integer to Floating Point

Mnemonic Syntax Operation Used
By

cvtf.i2s.ins rd = ra,rb rd = ra← Int32ToFloat(rb) CVTSI2SS

cvtf.i2s.p rd = zero,rb rd[31:0] = Int32ToFloat(rb[31:0])
rd[63:32] = Int32ToFloat(rb[63:32])

CVTPI2PS

cvtf.i2d.lo rd = zero,rb rd = Int32ToDouble(rb[31:0]) CVTSI2SD

CVTPI2PD
cvtf.i2d.hi rd = zero,rb rd = Int32ToDouble(rb[63:32]) CVTPI2PD

Notes:

• These uops convert 32-bit integers to single or double precision floating point

• The semantics of these instructions are identical to the semantics of the x86 SSE/SSE2
instructions shown in the table

• The uop size field is not used by these uops
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cvtf.q2s.ins cvtf.q2d

Convert 64-bit Integer to Floating Point

Mnemonic Syntax Operation Used
By

cvtf.q2s.ins rd = ra,rb rd = ra← Int64ToFloat(rb) CVTSI2SS

(x86-64)
cvtf.q2d rd = ra rd = Int64ToDouble(ra) CVTPI2PS

(x86-64)

Notes:

• These uops convert 64-bit integers to single or double precision floating point

• The semantics of these instructions are identical to the semantics of the x86 SSE/SSE2
instructions shown in the table

• The uop size field is not used by these uops
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cvtf.s2i cvt.s2q cvtf.s2i.p

Convert Single Precision Floating Point to Integer

Mnemonic Syntax Operation Used
By

cvtf.s2i rd = ra rd = FloatToInt32(ra[31:0]) CVTSS2SI

cvtf.s2i.p rd = ra rd[31:0] = FloatToInt32(ra[31:0])
rd[63:32] = FloatToInt32(ra[63:32])

CVTPS2PI

CVTPS2DQ
cvtf.s2q rd = ra rd = FloatToInt64(ra) CVTSS2SI

(x86-64)

Notes:

• These uops convert single precision floating point values to 32-bit or 64-bit integers

• The semantics of these instructions are identical to the semantics of the x86 SSE/SSE2
instructions shown in the table

• Unlike most encodings, the size field holds the rounding type of the result as follows:

– x0: normal IEEE rounding (as determined by FPSR)

– x1: truncate to zero

168



cvtf.d2i cvtf.d2q cvtf.d2i.p

Convert Double Precision Floating Point to Integer

Mnemonic Syntax Operation Used
By

cvtf.d2i rd = ra rd = DoubleToInt32(ra) CVTSD2SI

cvtf.d2i.p rd = ra,rb rd[63:32] = DoubleToInt32(ra)
rd[31:0] = DoubleToInt32(rb)

CVTPD2PI

CVTPD2DQ
cvtf.d2q rd = ra rd = DoubleToInt64(ra) CVTSD2SI

(x86-64)

Notes:

• These uops convert double precision floating point values to 32-bit or 64-bit integers

• The semantics of these instructions are identical to the semantics of the x86 SSE/SSE2
instructions shown in the table

• Unlike most encodings, the size field holds the rounding type of the result as follows:

– x0: normal IEEE rounding (as determined by FPSR)

– x1: truncate to zero
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cvtf.d2s.ins cvtf.d2s.p cvtf.s2d.lo cvtf.s2d.hi

Convert Between Double Precision and Single Precision Float-
ing Point

Mnemonic Syntax Operation Used
By

cvtf.d2s.ins rd = ra,rb rd = ra← DoubleToFloat(rb) CVTSD2SS

cvtf.d2s.p rd = ra,rb rd[63:32] = DoubleToFloat(ra)
rd[31:0] = DoubleToFloat(rb)

CVTPD2PS

cvtf.s2d.lo rd = zero,rb rd = FloatToDouble(rb[31:0]) CVTSS2SD

CVTPS2PD
cvtf.s2d.hi rd = zero,rb rd = FloatToDouble(rb[63:32]) CVTPS2PD

Notes:

• These uops convert single precision floating point values to double precision floating
point values

• The semantics of these instructions are identical to the semantics of the x86 SSE/SSE2
instructions shown in the table

• The uop size field is not used by these uops
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Chapter 28

Performance Counters

PTLsim maintains hundreds of performance and statistical counters and data points as it simulates
user code. In Section 8, the basic mechanisms and data structures through which PTLsim col-
lects these data were disclosed, and a guide to extending the existing set of collection points was
presented.

This section is a reference listing of all the current performance counters present in PTLsim by
default. The sections below are arranged in a hierarchical tree format, just as the data are repre-
sented in PTLsim’s data store. The types of data collected closely match the performance counters
available on modern Intel and AMD x86 processors, as described in their respective reference
manuals.

28.1 General

As described in Section 8, PTLsim maintains a hierarchical tree of statistical data, defined in
stats.h. The data store contains a potentially large number of snapshots of this tree, numbered
starting at 0. The final snapshot, taken just before simulation completes, is labeled as “final”. Each
snapshot branch contains all of the data structures described in the next few sections. Snapshots
are enabled with the -snapshot-cycles configuration option (Section 10.3); if they are disabled,
only the “0” and “final” snapshots are provided.

28.2 Summary

The summary toplevel branch summarizes information about the simulation run across all cores:

summary: general information

• cycles: total number of simulated cycles completed

• insns: total number of complete x86 instructions committed
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• uops: total number of uops committed

• basic_blocks: total number of basic blocks executed

snapshot_uuid: the universally unique ID (UUID) of this snapshot. This number starts from 0 and
increases to infinity.

snapshot_name: name of this snapshot, if any. Named snapshots can be taken by the ptlcall_snapshot()

call within the virtual machine, or by the -snapshot-now name command.

28.3 Simulator

The simulator toplevel branch represents information about PTLsim itself:

version: PTLsim version information

• build_timestamp: the date and time PTLsim (specifically, ptlsim.o) was last built

• svn_revision: Subversion revision number for this PTLsim version

• svn_timestamp: Date and time of Subversion commit for this version

• build_hostname: machine name on which PTLsim was compiled

• build_compiler: gcc compiler version used to build PTLsim

run: runtime environment information

• timestamp: time (in POSIX seconds-since-epoch format) this instance of PTLsim was started

• hostname: machine name on which PTLsim is running

• kernel_version: Linux kernel version PTLsim is running under. For PTLsim/X, this is the
domain 0 kernel version

• hypervisor_version: PTLsim/X Xen hypervisor version

• executable: the executable file being run under simulation (userspace PTLsim only)

• args: the arguments to the executable file (userspace PTLsim only)

• native_cpuid: CPUID (brand/model/revision) of the host machine running PTLsim

• native_hz: core frequency (cycles per second) of the host machine

config: the configuration options last passed to PTLsim for this run

performance: PTLsim internal performance data
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• rate: operations per wall-clock second (i.e. in outside world, not inside the virtual machine),
averaged over entire run. These are the status lines PTLsim prints on the console and in the
log file as it runs.

– cycles_per_second: simulated cycles completed per second

– issues_per_second: uops issued per second

– user_commits_per_second: x86 instructions committed per second

28.4 Decoder

The decoder toplevel branch represents the x86-to-uop decoder, basic block cache, code page cache
and other common structures:

throughput: total decoded entities

• basic_blocks: total basic blocks (uop sequence terminated by a branch) decoded

• x86_insns: total x86 instructions decoded

• uops: total uops produced from all decoded x86 instructions

• bytes: total bytes in all decoded x86 instructions

bb_decode_type: predominant decoder type used for each basic block

• all_insns_fast: number of basic blocks all instructions in the basic block were in the simple
regular subset of x86 and could be decoded entirely by the fast decoder (decode-fast.cpp)

• some_insns_complex: number of basic blocks in which one or more instructions required
complex decoding

page_crossings: alignment of instructions within page

• within_page: number of basic blocks in which all bytes in the basic block fell within a single
page

• crosses_page: number of basic blocks in which some bytes crossed a page boundary (i.e.
required two MFN invalidate locators)

bbcache: basic block cache accesses

• count: basic blocks currently in the cache (i.e. at the time the stats snapshot was made)

• inserts: total insert operations
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• invalidates: invalidation operations by type

– smc: self modifying code required page to be invalidated

– dma: DMA into page with existing translations required page to be invalidated

– spurious: exec_page_fault assist determined the page has now been made executable

– reclaim: garbage collector discarded unused LRU basic blocks

– dirty: page was already dirty when new translation was to be made

– empty: page was empty (has no basic blocks)

pagecache: physical code page cache

• count: physical pages currently in the cache (i.e. at the time the stats snapshot was made)

• inserts: total physical page insert operations

• invalidates: invalidation operations by type

– smc: self modifying code required page to be invalidated

– dma: DMA into page with existing translations required page to be invalidated

– spurious: exec_page_fault assist determined the page has now been made executable

– reclaim: garbage collector discarded unused LRU basic blocks

– dirty: page was already dirty when new translation was to be made

– empty: page was empty (has no basic blocks)

reclaim_rounds: number of times the memory manager attempted to reclaim unused basic blocks
(possibly with several attempts until enough memory was available)

28.5 Out of Order Core

The out of order core is represented by the ooocore toplevel branch of the statistics data store tree:

cycles: total number of processor cycles simulated

fetch: fetch stage statistics

• stop: totals up the reasons why fetching finally stopped in each cycle

– stalled: fetch unit was already stalled in the previous cycle

– icache_miss: an instruction cache miss prevented further fetches

– fetchq_full: the uop fetch queue is full
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– bogus_rip: speculative execution redirected the fetch unit to an inaccessible (or non-
executable) page. The fetch unit remains stalled in this state until the mis-speculation
is resolved.

– microcode_assist: microcode assist must wait for pipeline to empty

– branch_taken: taken branches to non-sequential addresses always stop fetching

– full_width: the maximum fetch width was utilized without encountering any of the
events above

• opclass: histogram of how many uops of various operation classes passed through the fetch
unit. The operation classes are defined in ptlhwdef.h and assigned to various opcodes in
ptlhwdef.cpp.

• width: histogram of the fetch width actually used on each cycle

• blocks: blocks of x86 instructions fetched (typically the processor can read at most e.g. 16
bytes out of a 64 byte instruction cache line per cycle)

• uops: total number of uops fetched

• user_insns: total number of x86 instructions fetched

frontend: frontend pipeline (decode, allocate, rename) statistics

• status: totals up the reasons why frontend processing finally stopped in each cycle

– complete: all uops were successfully allocated and renamed

– fetchq_empty: no more uops were available for allocation

– rob_full: reorder buffer (ROB) was full

– physregs_full: physical register file was full even though an ROB slot was free

– ldq_full: load queue was full (too many loads in the pipeline) even though physical
registers were available

– stq_full: store queue was full (too many stores in the pipeline)

• width: histogram of the frontend width actually used on each cycle

• renamed: summarizes the type of renaming that occurred for each uop (of the destination,
not the operands)

– none: uop did not rename its destination (primarily for stores and branches)

– reg: uop renamed destination architectural register

– flags: uop renamed one or more of the ZAPS, CF, OF flag sets but had no destination
architectural register
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– reg_and_flags: uop renamed one or more of the ZAPS, CF, OF flag sets as well as a
destination architectural register

• alloc: summarizes the type of resource allocation that occurred for each uop (in addition to
its ROB slot):

– reg: uop was allocated a physical register

– ldreg: uop was a load and was allocated both a physical register and a load queue entry

– sfr: uop was a store and was allocated a store forwarding register (SFR), a.k.a. store
queue entry

– br: uop was a branch and was allocated branch-related resources (possibly including a
destination physical register)

dispatch: dispatch unit statistics

• source: totals up where each operand to each uop currently resided at the time the uop was
dispatched. These statistics are broken out by cluster.

– waiting: how many operands were waiting (i.e. not yet ready)

– bypass: how many operands would come from the bypass network if the uop were
immediately issued

– physreg: how many operands were already written back to physical registers

– archreg: how many operands would be obtained from architectural registers

• cluster: tracks the number of uops issued to each cluster (or issue queue) in the processor.
This list will vary depending on the processor configuration. The value none means that no
cluster could accept the uop because all issue queues were full.

• redispatch: statistics on the redispatch speculation recovery rmechanism (Section 20.3.2)

– trigger_uops measures how many uops triggered redispatching because of a mis-speculation.
This number does not count towards the statistics below.

– deadlock_flushes measures how many times the pipeline must be flushed to resolve a
deadlock.

– dependent_uops is a histogram of how many uops depended on each trigger uop, not
including the trigger uop itself.

issue: issue statistics

• result: histogram of the final disposition of issuing each uop

– no-fu: no functional unit was available within the uop’s assigned cluster even though
it was already issued
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– replay: uop attempted to execute but could not complete, so it must remain in the
issue queue to be replayed. This event generally occurs when a load or store detects a
previously unknown forwarding dependency on a prior store, when the data to actually
store is not yet available, or when insufficient resources are available to complete the
memory operation. Details are given in Sections 21 and 22.2.

– misspeculation: uop mis-speculated and now all uops after and including the issued
uop must be annulled. This generally occurs with loads (Section 21) and stores (Section
22.2.1) when unaligned accesses or load-store aliasing occurs. This event is handled in
accordance with Section 20.3.2.

– refetch: uop and all subsequent uops must be re-fetched to be decoded differently. For
example, unaligned loads and stores take this path so they can be cracked into two parts
after being refetched.

– branch_mispredict: uop was a branch and mispredicted, such that all uops after (but
not including) the branch uop must be annulled. See Section 20 for details.

– exception: uop caused an exception (though this may not be a user visible error due to
speculative execution)

– complete: uop completed successfully. Note that this does not mean the result is im-
mediately ready; for loads it simply means the request was issued to the cache.

• source: totals up where each operand to each uop was read from as it was issued

– bypass: how many operands came directly off the bypass network

– physreg: how many operands were read from physical registers

– archreg: how many operands were read from committed architectural registers

• width: histogram of the issue width actually used on each cycle in each cluster. This object is
further broken down by cluster, since various clusters have different issue width and policies.

• opclass: histogram of how many uops of various operation classes were issued. The opera-
tion classes are defined in ptlhwdef.h and assigned to various opcodes in ptlhwdef.cpp.

writeback: writeback stage statistics

• total_writebacks: total number of results written back to the physical register file

• transient: transient versus persistent values

– transient: the result technically does not have to be written back to the physical reg-
ister file at all, since all consumers sourced the value off the bypass network and the
result is no longer available since the destination architectural register pointing to it has
since been renamed.

– persistent: all values which do not meet the conditions above and hence must still be
written back
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• width: histogram of the writeback width actually used on each cycle in each cluster. This
object is further broken down by cluster, since various clusters have different issue width and
policies.

commit: commit unit statistics

• uops: total number of uops committed

• insns: total number of complete x86 instructions committed

• result: histogram of the final disposition of attempting to commit each uop

– none: one or more uops comprising the x86 instruction at the head of the ROB were
not yet ready to commit, so commitment is terminated for that cycle

– ok: result was successfully committed

– exception: result caused a genuine user visible exception. In userspace PTLsim, this
will terminate the simulation. In full system PTLsim/X, this is a normal and frequent
event. Floating point state dirty faults are counted under this category.

– skipblock: This occurs in rare cases when the processor must skip over the currently
executing instruction (such as in pathological cases of the rep x86 instructions).

– barrier: the processor encountered a barrier instruction, such as a system call, assist or
pipeline flush. The frontend has already been stopped and fetching has been redirected
to the code to handle the barrier; this condition simply commits the barrier instruction
itself.

– smc: self modifying code: the instruction attempting to commit has been modified since
it was last decoded (see Section 6.4)

– stop: special case for when the simulation is to be stopped after committing a certain
number of x86 instructions (e.g. via the -stopinsns option in Section 10.3).

• setflags: how many uops updated the condition code flags as they committed

– yes: how many uops updated at least one of the ZAPS, CF, OF flag sets (the REG_flags

internal architectural register)

– no: how many uops did not update any flags

• freereg: how many uops were able to free the old physical register mapped to their archi-
tectural destination register at commit time

– pending: old physical register was still referenced within the pipeline or by one or more
rename table entries

– free: old physical register could be immediately freed

• free_regs_recycled: how many physical registers were recycled (garbage collected) later
than normal because of one of the conditions above
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• width: histogram of the issue width actually used on each cycle in each cluster. This object is
further broken down by cluster, since various clusters have different issue width and policies.

• opclass: histogram of how many uops of various operation classes were issued. The opera-
tion classes are defined in ptlhwdef.h and assigned to various opcodes in ptlhwdef.cpp.

branchpred: branch predictor statistics

• predictions: total number of branch predictions of any type

• updates: total number of branch predictor updates of any type

• cond: conditional branch (br.cc uop) prediction outcomes, broken down into correct predic-
tions and mispredictions

• indir: indirect branch (jmp uop) prediction outcomes, broken down into correct predictions
and mispredictions

• return: return (jmp uop with BRANCH_HINT_RET flag) prediction outcomes, broken down into
correct predictions and mispredictions

• summary: summary of all prediction outcomes of the three types above, broken down into
correct predictions and mispredictions

• ras: return address stack (RAS) operations

– push: RAS pushes on calls

– push_overflows: RAS pushes on calls in which the RAS overflowed

– pop: RAS pops on returns

– pop_underflows: RAS pops on returns in which the RAS was empty

– annuls: annulment operations in which speculative updates to the RAS were rolled
back

28.6 Cache Subsystem

The cache subsystem is listed under the ooocore/dcache branch.

load: load unit statistics

• issue: histogram of the final disposition of issuing each load uop

– complete: cache hit

– miss: L1 cache miss, and possibly lower levels as well (Sections 21.4 and 25.2)
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– exception: load generated an exception (typically a page fault), although the exception
may still be speculative (Section 21)

– ordering: load was misordered with respect to stores (Section 22.2.1)

– unaligned: load was unaligned and will need to be re-executed as a pair of low and
high loads (Sections 5.6 and 21)

– replay: histogram of events in which a load needed to be replayed (Section 21)

∗ sfr-addr-and-data-not-ready: load was predicted to forward data from a prior
store (Section 22.2.1), but neither the address nor the data of that store has resolved
yet
∗ sfr-addr-not-ready: load was predicted to forward data from a prior store, but the

address of that store has not resolved yet
∗ sfr-data-not-ready: load address matched a prior store in the store queue, but the

data that store should write has not resolved yet
∗ missbuf-full: load missed the cache but the miss buffer and/or LFRQ (Section

25.2) was full at the time

• hit: histogram of the cache hierarchy level each load finally hit

– L1: L1 cache hit

– L2: L1 cache miss, L2 cache hit

– L3: L1 and L2 cache miss, L3 cache hit

– mem: all caches missed; value read from main memory

• forward: histogram of which sources were used to fill each load

– cache: how many loads obtained all their data from the cache

– sfr: how many loads obtained all their data from a prior store in the pipeline (i.e. load
completely overlapped that store)

– sfr-and-cache: how many loads obtained their data from a combination of the cache
and a prior store

• dependency: histogram of how loads related to previous stores

– independent: load was independent of any store currently in the pipeline

– predicted-alias-unresolved: load was stalled because the load store alias predictor
(LSAP) predicted that an earlier store would overlap the load’s address address even
though that earlier store’s address was unresolved (Section 22.2.1)

– stq-address-match: load depended on an earlier store still found in the store queue

• type: histogram of the type of each load uop

– aligned: normal aligned loads
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– unaligned: special unaligned load uops ld.lo or ld.hi (Section 5.6)

– internal: loads from PTLsim space by microcode

• size: histogram of the size in bytes of each load uop

• transfer-L2-to-L1: histogram of the types of L2 to L1 line transfers that occurred (Section
25)

– full-L2-to-L1: all bytes in cache line were transferred from L2 to L1 cache

– partial-L2-to-L1: some bytes in the L1 line were already valid (because of stores to
those bytes), but the remaining bytes still need to be fetched

– L2-to-L1I: all bytes in the L2 line were transferred into the L1 instruction cache

• dtlb: data cache translation lookaside buffer hit versus miss rate (Section 25.4)

fetch: instruction fetch unit statistics (Section 17.1)

• hit: histogram of the cache hierarchy level each fetch finally hit

– L1: L1 cache hit

– L2: L1 cache miss, L2 cache hit

– L3: L1 and L2 cache miss, L3 cache hit

– mem: all caches missed; value read from main memory

• itlb: instruction cache translation lookaside buffer hit versus miss rate (Section 25.4)

prefetches: prefetch engine statistics

• in-L1: requested data already in L1 cache

• in-L2: requested data already in L2 cache (and possibly also in L1 cache)

• required: prefetch was actually required (data was not cached or was in L3 or lower levels)

missbuf: miss buffer performance (Sections 25.2 and 25.3)

• inserts: total number of lines inserted into the miss buffer

• delivers: total number of lines delivered to various cache hierarchy levels from the miss
buffer

– mem-to-L3: deliver line from main memory to the L3 cache

– L3-to-L2: deliver line to the L3 cache to the L2 cache
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– L2-to-L1D: deliver line from the L2 cache to the L1 data cache

– L2-to-L1I: deliver line from the L2 cache to the L1 instruction cache

lfrq: load fill request queue (LFRQ) performance (Sections 25.2 and 25.3)

• inserts: total number of loads inserted into the LFRQ

• wakeups: total number of loads awakened from the LFRQ

• annuls: total number of loads annulled in the LFRQ (after they were annulled in the proces-
sor core)

• resets: total number of LFRQ resets (all entries cleared)

• total-latency: total latency in cycles of all loads passing through the LFRQ

• average-miss-latency: average load latency, weighted by cache level hit and latency to that
level

• width: histogram of how many loads were awakened per cycle by the LFRQ

store: store unit statistics

• issue: histogram of the final disposition of issuing each store uop

– complete: store completed without problems

– exception: store generated an exception (typically a page fault), although the exception
may still be speculative (Section 22.1)

– ordering: store detected that a later load in program order aliased the store but was
issued earlier than the store (Section 22.2.1)

– unaligned: store was unaligned and will need to be re-executed as a pair of low and
high stores (Sections 5.6)

– replay: histogram of events in which a store needed to be replayed (Sections 22.2 and
22.1)

∗ wait-sfraddr-sfrdata: neither the address nor the data of a prior store this store
inherits some of its data from was ready
∗ wait-sfraddr: the data of a prior store was ready but its address was still unavail-

able
∗ wait-sfrdata: the address of a prior store was ready but its data was still unavail-

able
∗ wait-storedata-sfraddr-sfrdata: the actual data value to store was not ready

(Section 22.2), in addition to having neither the data nor the address of a prior
store (Section 22.1)
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∗ wait-storedata-sfraddr: the actual data value to store was not ready (Section
22.2), in addition to not having the address of the prior store (Section 22.1)
∗ wait-storedata-sfrdata: the actual data value to store was not ready (Section

22.2), in addition to not having the data from the prior store (Section 22.1)

• forward: histogram of which sources were used to construct the merged store buffer:

– zero: no prior store overlapping the current store was found in the pipeline

– sfr: data from a prior store in the pipeline was merged with the value to be stored to
form the final store buffer

• type: histogram of the type of each store uop

– aligned: normal aligned store

– unaligned: special unaligned store uops st.lo or st.hi (Section 5.6)

– internal: stores to PTLsim space by microcode

• size: histogram of the size in bytes of each store uop

• commit: histogram of how stores are committed

– direct: store committed directly to the data cache in the commit stage (Section 24)

• commits: total number of committed uops

• usercommits: total number of committed x86 instructions

• issues: total number of uops issued. This includes uops issued more than once by through
replay (Section 19.3).

• ipc: Instructions Per Cycle (IPC) statistics

– commit-in-uops: average number of uops committed per cycle

– issue-in-uops: average number of uops issued per cycle

– commit-in-user-insns: average number of x86 instructions committed per cycle

NOTE: Because one x86 instruction may be broken up into numerous uops, it is never
appropriate to compare IPC figures for committed x86 instructions per clock with IPC
values from a RISC machine. Furthermore, different x86 implementations use varying
numbers of uops per x86 instruction as a matter of encoding, so even comparing the uop
based IPC between x86 implementations or RISC-like machines is inaccurate. Users
are strongly advised to use relative performance measures instead (e.g. total cycles
taken to complete a given benchmark).

simulator: describes the performance of PTLsim itself. Useful for tuning the simulator.
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• total_time: total time in seconds (not simulated cycles!) spent in various parts of the simu-
lator. Please refer to the source code (in ooocore.cpp) for the range of code each time value
corresponds to.

• cputime: PTLsim simulator performance

– fetch: seconds spent in fetch stage

– decode: seconds spent decoding instructions (in decoder subsystem)

– rename: seconds spent in allocate and rename stage

– frontend: seconds spent in frontend stages

– dispatch: seconds spent in dispatch stage

– issue: seconds spent in ALU issue stage, not including loads and stores

– issueload: seconds spent issuing loads

– issuestore: seconds spent issuing stores

– complete: seconds spent in completion stage

– transfer: seconds spent in transfer stage

– writeback: seconds spent in writeback stage

– commit: seconds spent in commit stage

28.7 External Events

• assists: histogram of microcode assists invoked from any core

• traps: histogram of x86 interrupt vectors (traps) invoked from any core (PTLsim/X only)
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