
 User Guide

DSP Builder

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Product Version: 2.1.1
Document Version: 2.1.1 rev. 1

Document Date: February 2003

http://www.altera.com

ii Altera Corporation

Copyright DSP Builder User Guide

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S.
and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

UG-DSPBUILDER-2.2

Altera Corporation
About this User Guide
This user guide provides comprehensive information about the Altera®
DSP Builder.

Table 1 shows the user guide revision history.

f ■ See “Features” on page 13 for a complete list of the product features,
including new features in this release.

■ Refer to the DSP Builder readme file for late-breaking information
that is not available in this user guide.

How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars icon in the top toolbar to open the Find
dialog box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Table 1. User Guide Revision History

Date Description

February 2003,
v2.1.1

Added information on “Using DSP Builder Modules in
External RTL Designs” on page 88. Added “Appendix—
Creating Custom Library Blocks” on page 249. Additional
minor documentation updates.

December 2002,
v2.1.0

Added support for Stratix™ GX devices, Cyclone™ devices,
the state machine, and PLL blocks. Added information and
walkthrough for the DSP board, the PLL block, and Simulink
v5.0. Updated information on the SignalCompiler block.

June 2002, v2.0.0 Updated information on the SignalCompiler block. Added
information and walkthrough for the SignalTap® blocks.
Added block descriptions for new arithmetic, storage, DSP
board, complex signals, and SOPC blocks. Described support
for Stratix devices. Updated the tutorial.

October 2001,
v1.0

First version of the user guide for DSP Builder version 1.0.0.
iii

DSP Builder User Guide About this User Guide
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For additional information about Altera products, consult the sources
shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Technical support http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp.altera.com
ftp.altera.com

About this User Guide DSP Builder User Guide
Typographic
Conventions

The DSP Builder User Guide uses the typographic conventions shown in
Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

DSP Builder User Guide About this User Guide
Abbreviations
& Acronyms

CIC Cascaded Integrator and Comb
DSP Digital Signal Processing
EDIF Electronic Design Interchange Format
EAB Embedded Array Block
ESB Embedded System Block
FFT Fast Fourier Transform
FIR Finite Impulse Response
IIR Infinite Impulse Response
IP Intellectual Property
LSB Least Significant Bit
MDL Model File (.mdl)
MSB Most Significant Bit
MUX Multiplexer
NCO Numerically Controlled Oscillator
PLD Programmable Logic Device
POF Programmer Object File
RTL Register Transfer Level
SBF Signed Binary Fractional
VQM Verilog Quartus Mapping File
vi Altera Corporation

Contents
About this User Guide ... iii
How to Find Information .. iii
How to Contact Altera .. iv
Typographic Conventions ..v
Abbreviations & Acronyms .. vi

About DSP Builder ..13
Features ...13
General Description ...14

MegaCore Functions ..14
High-Speed DSP with Programmable Logic ...15

Getting Started ..17
Software Requirements ...17
Design Flow ..18
Install the DSP Builder ..20

Obtaining the DSP Builder ...20
Installing the DSP Builder ..20
DSP Builder Directory Structure ...21

Set Up Licensing ...22
Appending the License to Your license.dat File ..22
Specifying the DSP Builder License File in the Quartus II Software23

DSP Builder Tutorial ...24
Creating the Amplitude Modulation Model ..24

Create a New Model ..25
Add the SignalCompiler Block ..26
Add the Sine Wave Block ...27
Add the SinIn Block ...29
Add the Delay Block ..30
Add the SinDelay Block ..31
Add the Mux Block ..32
Add the Random Number Block ...33
Add the Noise Block ..34
Add the BusBuild Block ..35
Add the GND Block ...36
Add the Product Block ..36
Add the StreamMod Block ...37
Altera Corporation vii

Contents
Add the Scope Block ..38
Simulate Your Model in Simulink ...39

Performing RTL Simulation ...40
Synthesizing & Compiling the Design ..43

Automated Flow (within Simulink) ..43
Manual Flow (Outside Simulink) ..43
Automated Synthesis & Compilation ...44
Manual Synthesis & Compilation ..45

Manual Synthesis ...45
Compile the Design Manually in the Quartus II Software46

Create a Quartus II Symbol of Your DSP Builder Design ..48
Using MegaCore Functions ..48

MegaCore Functions in MATLAB/Simulink ..49
MegaCore Simulation Options ..52

Performing SignalTap II Logic Analysis ..53
Open the Walkthrough Example Design ...54
Specify the Nodes to Analyze ..56
Turn On the SignalTap II Option in SignalCompiler ...58
Generate VHDL, Synthesize, Compile & Download the Design to the DSP Board59
Specify Trigger Conditions ...59
Specify the Radix for the Bus Groups ...61
Perform SignalTap II Analysis ...61

DSP Builder Design Rules ..63
About the DSP Builder Blocks ...63
Bit Width Design Rule ...63
Frequency Design Rule ...64

Single Clock Domain ...64
Multiple Clock Domains ...70
Using Advanced PLL Features ..74

DSP Builder Naming Conventions ..75
SignalCompiler Design Rules ..75
Fixed-Point Notation ...75
Binary Point Location in SBF ..77
Block I/O Formats ...78
Goto & From Block Support ...83
MegaCore Function Support ..84
Hierarchical Design ...85
Black Boxing ...86
Using DSP Builder Modules in External RTL Designs ...88

AltLab Library ..91
HDL SubSystem Block ..91
SignalCompiler Block ..92

Data Width Propagation ...95
viii Altera Corporation

Contents
Tapped Delay Line ...97
Arithmetic Operation ..97

Clock Assignment ..101
DSP Builder Report File ..104

SignalTap II Analysis Block ..107
Design Flow ..107
Nodes ...111
Trigger Conditions ...112

Node Block ..113
SubSystem Builder Block ..114

Arithmetic Library ..117
Comparator Block ..118
Divider Block ..119
Gain Block ...120
Increment Decrement Block ...122
Multiply Accumulate Block ..124
Multiply Add Block ...126
Magnitude Block ..128
Parallel Adder Subtractor Block ..129
Product Block ..131

Bus Manipulation Library ..133
AltBus Block ..133

AltBus Input Port & Output Port Modes ...134
AltBus Internal Node Mode ...135
AltBus Black Box Input Output Mode ..136
AltBus Constant Mode ..137

Input, Output & Constant Blocks ..138
Binary Point Casting Block ...140
BusBuild Block ...141
Bus Concatenation Block ..143
BusConversion Block ...144
ExtractBit Block ..146
GND Block ..147
VCC Block ...148

Complex Signals Library ...149
Butterfly Operator Block ...149
Complex AddSub Block ..151
Complex Product Block ..152
Complex Multiplexer Block ..153
Complex Conjugate Block ..154
Complex Delay Block ..155
Complex Constant Block ...156
Complex to Real-Imag Block ..157
Altera Corporation ix

Contents
Real-Imag to Complex Block ..158

DSP Board Library ..159
APEX DSP Board EP20K1500EBC652-1X Library ...159
APEX DSP Board EP20K200EBC652-1X Library ...162
Stratix DSP Board EP1S25 Library ...165

Gates Library ...169
Case Statement Block ...169
If Statement Block ..172
Logical Bit Operator Block ..174
Logical Bus Operator Block ..175
LUT Block ..176
n-to-1 Multiplexer Block ...177

Rate Change Library ...179
PLL Block ..180
Multi-Rate DFF Block ..182
Tsamp Block ..183

SOPC Ports Library ..185
Avalon Ports ...186

Avalon Ports Block Description ...186
Avalon Ports Walkthrough ..189

Open the Walkthrough Example Design ...190
Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files .191
Instantiating your Design as a Custom Peripheral to the Nios Embedded Processor
in SOPC Builder ...193

Custom Instruction ..195
Custom Instruction Block Description ..195
Custom Instruction Walkthrough ...198

Open the Walkthrough Example Design ...199
Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files .199
Including your Design as a Custom Instruction to the Nios Embedded Processor in
SOPC Builder ..201

State Machine Functions Library ..205
State Machine Table Block ..205

Storage Library ...215
Delay Block ...215
Down Sampling Block ...217
Dual-Port RAM Block ..218
Parallel to Serial Block ...220
Pattern Block ...221
x Altera Corporation

Contents
ROM EAB Block ...222
Serial to Parallel Block ...224
Shift Taps Block ..225
Up Sampling Block ..227

Troubleshooting ..229
Fixing “Unresolved Width” Error When Converting a Model File to VHDL229
Bit Widths in VHDL Are Different than the Expected Bit Width Based on the Simulink
Model File ...231
Simulink Simulation Results for the Pattern & Increment/Decrement Blocks Does Not
Match the Results from ModelSim ..231
Passing Pin Constraints to the AltBus Block ..232
ModelSim Error for Missing “lpm_components” when Running DSP Builder Tcl Script
232
Integrating VHDL Components into Simulink Model Files (Black Boxing)232
Read Previous DSP Builder Designs with DSP Builder v2.1.0233
The Altera DSP Builder Folder Does Not Appear in the Simulink Library Browser 233
Automated Flow Does Not Run Properly ..234

Check the Software Paths (Registry Settings) ..234
Change the System Path Settings ..235

APEX DSP Development Board Troubleshooting ..236
Error Message: SignalCompiler Is Unable to Check a Valid License236

Verifying that Your DSP Builder Licensing Functions Properly236
Verifying that the LM_LICENSE_FILE Variable Is Set Correctly238

Windows NT ..238
Windows 2000 ..238
Windows 98 ..239

I've Tried Everything but It Still Doesn’t Work ...239
ModelSim Fails with the SignalCompiler-Generated Tcl Scripts239
The Simulink Library Browser Does Not Show Altera MegaCore Blocks240
Specifying LeonardoSpectrum, Synplify & Quartus II Path Information for SignalCom-
piler ..240
The Wizard for an IP MegaCore Block Does Not Launch ...241

Appendix—Example Tcl Scripts ...243
Overview ..249

Appendix—Creating Custom Library Blocks ..249
Create a Custom Block ..250

Create a Library Model File with the HDL Subsystem Block250
Build the HDL Subsystem Functionality ..250
Create Parameters & Functionality Using the Mask Editor ..252
Generate the MATLAB Initialization Script ...254
Altera Corporation xi

Abo

1

Altera Corporation
About DSP Builder

ut D

SP Builder
Features ■ Links The Mathworks MATLAB (Signal Processing ToolBox and
Filter Design Toolbox) and Simulink environment with the Altera®
Quartus® II environment

■ MATLAB version 6.5/Simulink 5.0 support
■ Supports Altera DSP cores that are downloadable from the Altera

web site (e.g., FIR Compiler, Reed-Solomon Compiler, etc.)
■ Supports Altera devices:

– Stratix™ GX devices
– Cyclone™ devices
– Stratix™ devices
– APEX™ II devices
– APEX 20KE devices
– APEX 20KC devices
– Mercury™ devices
– ACEX® 1K devices
– FLEX® 10K devices
– FLEX 6000 devices

■ Enables rapid prototyping using the Altera DSP development boards
■ Supports the SignalTap® II logic analyzer, an embedded signal

analyzer that probes signals from the Altera device on the DSP board
and imports the data into the MATLAB work space to facilitate visual
analysis

■ Includes blocks that you can use to build custom logic that works
with the SOPC Builder and Nios® embedded processor designs

■ Includes PLL block for multi-clock designs
■ Includes state machine block
■ Supports a unified representation of the algorithm and

implementation of a DSP system
■ Automatically generates a VHDL testbench or Quartus II Vector File

(.vec) from MATLAB and Simulink test vectors
■ Automatically launches VHDL synthesis and Quartus II compilation
■ Enables bit- and cycle-accurate design simulation
■ Provides a variety of fixed-point arithmetic and logical operators for

use with the Simulink software
13

DSP Builder User Guide About DSP Builder
General
Description

Digital signal processing (DSP) system design in Altera programmable
logic devices requires both high-level algorithm and hardware
description language (HDL) development tools. The Altera DSP Builder
integrates these tools by combining the algorithm development,
simulation, and verification capabilities of The MathWorks MATLAB and
Simulink system-level design tools with VHDL synthesis, simulation, and
Altera development tools.

The DSP Builder shortens DSP design cycles by helping you create the
hardware representation of a DSP design in an algorithm-friendly
development environment. You can combine existing MATLAB functions
and Simulink blocks with Altera DSP Builder blocks and Altera
intellectual property (IP) MegaCore® functions to link system-level design
and implementation with DSP algorithm development. DSP Builder
allows system, algorithm, and hardware designers to share a common
development platform.

You can use the blocks in the DSP Builder to create a hardware
implementation of a system modeled in Simulink in sampled time. The
DSP Builder contains bit- and cycle-accurate Simulink blocks, which cover
basic operations such as arithmetic or storage functions and takes
advantage of key device features such as built-in PLLs, DSP blocks or
embedded memory. You can integrate complex functions by using
MegaCore functions in your DSP Builder model.

MegaCore Functions

Altera MegaCore functions are usually delivered as low-cost, encrypted
functions that can be instantiated directly in your design. MegaCore
functions support Altera’s free IP evaluation features, which allow you to
verify the functionality and timing of a function prior to purchasing a
license.

■ The OpenCore® evaluation feature lets you test-drive IP cores for free
using the Quartus II software; however, you cannot generate device
programming files to test the core in hardware.

■ The OpenCore Plus evaluation feature enhances the OpenCore
evaluation feature by supporting free hardware evaluation. This
feature allows you to generate time-limited programming files for a
design that includes Altera MegaCore functions. With these files, you
can perform board-level design verification before deciding to
purchase licenses for the MegaCore functions.

With both evaluation features, you only need to purchase a license when
you are completely satisfied with a core’s functionality and performance,
and would like to take your design to production.
14 Altera Corporation

About DSP Builder DSP Builder User Guide

About D
SP Builder

1
The DSP Builder SignalCompiler block reads Simulink Model Files (.mdl)
that are built using DSP Builder and MegaCore blocks and generates
VHDL files and Tcl scripts for synthesis, hardware implementation, and
simulation.

High-Speed DSP with Programmable Logic

Programmable logic offers compelling performance advantages over
dedicated digital signal processors. Programmable logic can be thought of
as an array of elements, each of which can be configured as a complex
processor routine. These processor routines can then be linked together in
serial (the same way digital signal processor would execute them), or they
can be connected in parallel. In parallel, they offer many times the
performance of standard digital signal processors by executing hundreds
of instructions at the same time. Algorithms that benefit from this
improved performance include FEC, modulation/demodulation, and
encryption.

Traditionally, designers had to make a trade-off between the flexibility of
off-the-shelf digital signal processors and the performance of custom-built
devices. Altera Stratix devices eliminate the need for this trade-off by
providing exceptional performance combined with the flexibility of
programmable logic devices (PLDs). Stratix devices have dedicated DSP
blocks, which have high-speed parallel processing capabilities, that are
optimized for DSP applications. Additionally, the TriMatrix™ memory
structures can implement a wide variety of memory functions found in
complex designs.

The Stratix DSP block is composed of multipliers, adders, subtractors,
accumulators, a summation unit, and pipeline registers. The DSP block is
optimized for all DSP applications and can provide data throughput of up
to 2.0 GMACS per DSP block (for 9 × 9 bit data widths). The DSP block is
versatile, highly efficient, and easy to use. You can implement a 4-tap FIR
filter or complex multiplication inside a single DSP block without using
additional logic.

The TriMatrix memory structure is a significant breakthrough in on-chip
memory technology and offers a wide range of memory features. By
efficiently integrating embedded RAM, the TriMatrix memory brings
unprecedented amounts of memory bits (up to 10 Mbits) and memory
bandwidth (12 Tbps) to PLDs. The TriMatrix memory structure consists of
three different sizes of memory blocks designed for a wide array of
applications ranging from small FIFOs to system caches.
Altera Corporation 15

DSP Builder User Guide About DSP Builder
Stratix devices are built to function as the central clock manager to meet
your system timing challenges and are the first FPGAs to offer on-chip
PLL features previously found only in high-end discrete PLL devices. The
Stratix on-chip PLL has the following features:

■ Spread-spectrum clocking
■ Clock switchover
■ Frequency synthesis
■ Programmable phase shift
■ Programmable delay shift
■ External feedback
■ Programmable bandwidth

Stratix PLLs increase system and device performance and provide
advanced clock interfacing and clock-frequency synthesis.
16 Altera Corporation

Altera Corporation
Getting Started

G

etting Started

2

Software
Requirements

The following software is required to create HDL designs that use blocks
from the DSP Builder:

■ MATLAB version 6.1 or 6.5
■ Simulink version 4.1 or 5.0
■ Quartus II version 2.0 or higher

1 If you want to target Cyclone or Stratix GX devices, you
must use Quartus II version 2.1 SP1 or higher.

1 If you want use Quartus II integrated VHDL synthesis, you
must use Quartus II version 2.1 or higher.

DSP Builder provides automated flows using Tcl scripts as well as a
manual flow. In addition to Quartus II native synthesis, the automated
flow also supports:

■ Synplify® version 7.2 or higher or LeonardoSpectrum™ version 2002c
or higher

■ ModelSim® version 5.5 or higher

1 If you want to target Stratix GX or Cyclone devices, you must use
LeonardoSpectrum version 2002.e or higher.

f For more information on any of the software products discussed in this
user guide, refer to the documentation provided with the software.
17

DSP Builder User Guide Getting Started
Design Flow When using the DSP Builder to build a design, you start by creating a
model in the MATLAB/Simulink software. After you have created your
model, you can output VHDL files for synthesis and Quartus II
compilation or generate files for VHDL simulation. The design flow
involves the following steps:

1. Create a model using the MATLAB/Simulink software using a
combination of Simulink and DSP Builder blocks.

2. Perform RTL simulation. The DSP Builder supports an automated
flow for the ModelSim software with Tcl scripts. You can also use the
generated VHDL for manual simulation in other simulation tools. (If
you are using MegaCore functions in your model, refer to the
MegaCore function’s user guide for information on the types of
simulation the core supports.)

3. Use the output files generated by the DSP Builder SignalCompiler
block to perform RTL synthesis. DSP Builder supports an automated
synthesis flow for the Quartus II, Synplify, or LeonardoSpectrum
software with Tcl scripts. Alternatively, you can synthesize the
VHDL files manually using other synthesis tools.

1 You can perform steps 2 and 3 in any order.

4. Compile your design in the Quartus II software.

Figure 1 shows the system-level design flow using the DSP Builder.
18 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 1. System-Level Design Flow Note (1)

Note:
(1) For an automated design flow, the SignalCompiler generates VHDL files and Tcl

scripts for synthesis in the Quartus II, LeonardoSpectrum, or Synplify software,
compilation in the Quartus II software, and simulation in the ModelSim software.
The Tcl scripts let you perform synthesis and compilation automatically from
within the MATLAB and Simulink environment. You can synthesize and simulate
the output files in other software tools without the Tcl scripts.

MATLAB
Simulink

Synthesis

ATOM
Netlist

Quartus II

SignalCompiler

Synthesis
(Quartus II,

LeonardoSpectrum,
or Synplify)

ModelSim

Quartus II
VHDL

Simulator

Programmer
Object File (.pof)

Hardware

Automated Flow
(Within Simulink)

Manual Flow
(Outside Simulink)

ATOM Netlist
Altera Corporation 19

DSP Builder User Guide Getting Started
Install the DSP
Builder

The following instructions describe how to obtain DSP Builder and install
it on your PC.

Obtaining the DSP Builder

If you have Internet access, you can download DSP Builder from Altera’s
web site at http://www.altera.com. Follow the instructions below to
obtain DSP Builder via the Internet. If you do not have Internet access, you
can obtain the software from your local Altera representative.

1. Point your web browser to
http://www.altera.com/products/software/system/sys-
dspbuilder.html.

2. Click the link to download DSP Builder.

3. Fill out the registration form, read the license agreement, and click I
agree.

4. Follow the on-line instructions to download the executable and save
it to your hard disk.

Installing the DSP Builder

To install the DSP Builder on a PC running Windows 98/NT/2000,
perform the following steps.

1 Before you install the DSP Builder, Altera recommends that you
install the MATLAB and Simulink software and the Quartus II
software. You can also use the LeonardoSpectrum or Synplify
software for synthesis.

1. Close the following software applications if they are open:

– Quartus II
– MAX+PLUS II
– LeonardoSpectrum
– Synplify
– MATLAB and Simulink
– ModelSim

2. Choose Run (Windows Start menu).

3. Type <path name>\DSPBuilder.exe, where <path name> is the
location of the downloaded file.
20 Altera Corporation

http://www.altera.com/IPmegastore
http://www.altera.com/IPmegastore
http://www.altera.com/IPmegastore
http://www.altera.com/IPmegastore
http://www.altera.com

Getting Started DSP Builder User Guide

G
etting Started

2

4. Click OK. The DSPBuilder v<version> - InstallShield Wizard dialog
box appears. Follow the on-line instructions to finish installation.

The DSP Builder launches the LeonardoSpectrum, Synplify, or Quartus II
software by retrieving the software’s path information from your PC’s
registry file. If you installed multiple versions of these software products,
the registry may not point to the version you want to use with DSP
Builder. In DSP Builder version 2.0.0 or higher you can specify a path to
use other than the registry setting for each of the tools.

f Refer to “Specifying LeonardoSpectrum, Synplify & Quartus II Path
Information for SignalCompiler” on page 240 for information on
specifying the paths.

When you have finished installing DSP Builder, view the DSP Builder
libraries in the MATLAB software by performing the following steps.

1. Start the MATLAB software.

2. Expand the Simulink icon in the Launch Pad window.

3. Double-click the Library Browser icon. The Altera DSP Builder
folder appears in the Simulink Library Browser window.

DSP Builder Directory Structure

The DSP Builder installation program copies files into the directories
shown in Figure 2.

Figure 2. DSP Builder Directory Structure

DSPBuilder

 AltLib
 Contains the DSP Builder files, including the files needed to execute the MegaCore wizards from within
 the Simulink environment.

 DesignExamples
 Contains a wide variety of example design files that use DSP Builder blocks.

 doc
 Contains DSP builder documentation, including the DSP Builder User Guide and the on-line help files for each
 DSP Builder block, which are displayed in the MATLAB software.

 MegaCoreLib
 Contains the MegaCore function files used by the DSP Builder software.

 MegaCoreSimLib
 Contains simulation files used by the MegaCore functions and library of parameterized modules (LPM) functions
 provided with the DSP Builder.
Altera Corporation 21

DSP Builder User Guide Getting Started
Set Up
Licensing

Before using the DSP Builder, you must request a license file from the
Altera web site at http://www.altera.com/licensing and install it on your
PC. When you request a license file, Altera e-mails you a license.dat file
that enables HDL file and Tcl script generation. If you do not have a DSP
Builder license file, you can create models with the DSP Builder blocks but
you cannot generate HDL files or Tcl scripts.

1 Before you set up licensing for the DSP Builder, you must
already have the Quartus II software installed on your PC with
licensing set up.

To install your license, you can either append the license to your
license.dat file or you can specify a separate DSP Builder license file in the
Quartus II software.

Appending the License to Your license.dat File

To install your license, perform the following steps.

1. Close the following software if it is running on your PC:

■ Quartus II
■ MAX+PLUS II
■ MATLAB and Simulink
■ LeonardoSpectrum
■ Synplify
■ ModelSim

2. Open the DSP Builder license file in a text editor. The file should
contain one FEATURE line, spanning 2 lines.

3. Open your Quartus II license.dat file in a text editor.

4. Copy the FEATURE line from the DSP Builder license file and paste it
into the Quartus II license file.

1 Do not delete any FEATURE lines from the Quartus II license
file.

5. Save the Quartus II license file.

1 When using editors such as Microsoft Word or Notepad,
ensure that the file does not have extra extensions appended
to it after you save (e.g., license.dat.txt or license.dat.doc).
Verify the filename in a DOS box or at a command prompt.
22 Altera Corporation

http://www.altera.com/licensing

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 3 shows an example updated license.dat file that includes the DSP
Builder FEATURE line (highlighted).

Figure 3. Example license.dat File

Specifying the DSP Builder License File in the Quartus II
Software

To specify the license file, perform the following steps:

1. Create a text file with the FEATURE line and save it to your hard disk.

1 Altera recommends that you give the file a unique name,
e.g., dsp_builder_license.dat.

2. Run the Quartus II software.

3. Choose License Setup (Tools menu). The Options dialog box opens
to the License Setup page.

4. In the License file box, add a semicolon to the end of the existing
license path and filename.

5. Type the path and filename of the core license file after the
semicolon.

1 Do not include any spaces either around the semicolon or in
the path/filename.

6. Click OK to save your changes.
Altera Corporation 23

DSP Builder User Guide Getting Started
DSP Builder
Tutorial

This tutorial uses an example amplitude modulation design, SinGen.mdl,
to demonstrate the DSP Builder design flow. The amplitude modulator
design example is a modulator that has a sine wave generator, a
quadrature multiplier, and a delay element. Each block in the model is
parameterizable. When you double-click a block in the model, a dialog
box—in which you can enter the parameters—opens. Click the Help
button in the dialog boxes to view the block’s on-line help.

The instructions provided in this tutorial assume that:

■ You are using a PC running Windows.
■ You installed the DSP Builder in the default location,

C:\DSPBuilder.
■ You are familiar with the MATLAB, Simulink, LeonardoSpectrum,

Quartus II, and ModelSim software and the software is installed on
your PC in the default locations.

1 The instructions in this tutorial assume that you have basic
knowledge of the Simulink software. Refer to Simulink Help for
information on using the software.

This tutorial includes the following sections:

■ Creating the Amplitude Modulation Model
■ Performing RTL Simulation
■ Synthesizing & Compiling the Design

– Automated Synthesis & Compilation
– Manual Synthesis & Compilation

Creating the Amplitude Modulation Model

You can create the amplitude modulation model using the instructions in
this section or you can use the Altera-created model file that is provided
in the DSP Builder DesignExamples directory.

If you want to use the Altera-provided file instead of creating the model
yourself, the file SinGen.mdl is located in the
C:\DSPBuilder\DesignExamples\GettingStarted\SinMdl directory.
Skip to “Performing RTL Simulation” on page 40 to begin using the
model.
24 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

1 If you did not install DSP Builder in the default location,
C:\DSPBuilder, you must define your working directory before
synthesizing and compiling the design:

a. Open the SinGen.mdl model.

b. Double-click SignalCompiler.

c. Click the button next to SinGen.mdl.

d. Browse to the directory in which the SinGen.mdl Model
File is installed, <path>\DSPBuilder\DesignExamples\
GettingStarted\SinMdl.

e. Select the Model File, SinGen.mdl, and click Open.

To create the amplitude modulation model yourself, perform the steps in
the following sections. Figure 4 shows the design you will be creating.

Figure 4. Amplitude Modulation Design Example

Create a New Model

1. Start the MATLAB software.

2. Choose the New > Model command (File menu) to create a new
model file.

3. Choose Save (File menu) in the new model window.
Altera Corporation 25

DSP Builder User Guide Getting Started
4. Browse to the directory in which you want to save the file. This
directory will be your working directory. This tutorial uses the
working directory C:\DSPBuilder\DesignExamples\
GettingStarted\my_SinMdl.

5. Type the filename into the File name box. This tutorial uses the name
singen.mdl.

6. Click Save.

7. Expand the Simulink icon in the MATLAB Launch Pad window by
clicking the + symbol next to the icon.

8. Double-click the Library Browser icon.

The following sections describe how to add blocks to your model and
simulate it.

Add the SignalCompiler Block

Perform the following steps to add the SignalCompiler block.

1. Select the AltLab library from the Altera DSP Builder folder in the
Simulink Library Browser.

2. Drag and drop a SignalCompiler block into your model.

3. Double-click the SignalCompiler block in your model.

4. Click Analyze (see Figure 5).

Figure 5. Click Analyze

5. Leave all other settings at the defaults (see Figure 6).

1 You will make other SignalCompiler parameter settings in
later steps to perform synthesis, compilation, and
simulation.
26 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 6. Insert the SignalCompiler Block

6. Click OK.

7. Choose Save (File menu) to save the model.

Add the Sine Wave Block

Perform the following steps to add the Sine Wave block.

1. In the Simulink Library Browser, click the Simulink Sources library
to view the blocks in the library.

2. Drag and drop a Sine Wave block into your model (the singen
window).

3. Double-click the Sine Wave block in your model.

4. Set the Sine Wave block parameters as shown in Figure 7 and click
OK. (See the equation in “Frequency Design Rule” on page 64 for
information on how to calculate the frequency).
Altera Corporation 27

DSP Builder User Guide Getting Started
Figure 7. 500-kHz, 16-Bit Sine Wave
28 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Add the SinIn Block

Perform the following steps to add the SinIn block.

1. Expand the Altera DSP Builder folder by clicking the + symbol next
it. The DSP Builder libraries are displayed. Leave the Altera DSP
Builder folder expanded for the rest of the tutorial. See Figure 8.

Figure 8. Altera DSP Builder Folder in the Simulink Library Browser

2. Select the Bus Manipulation library.

1 If you are unsure how to position the blocks or draw
connection lines, refer to the completed design shown in
Figure 4 on page 25.
Altera Corporation 29

DSP Builder User Guide Getting Started
3. Drag and drop the AltBus block from the Simulink Library Browser
into your model. Position the block to the right of the Sine Wave
block.

4. Click the text AltBus under the block icon in your model.

5. Delete the text AltBus and type the text SinIn to change the name
of the block instance.

6. Double-click the SinIn block in your model. The block’s parameter
dialog box displays.

7. Set the parameters as shown in Figure 9 and click OK.

Figure 9. Setting the 16-Bit Sign Integer Input

8. Draw a connection line from the right side of the Sine Wave block to
the left side of the SinIn block.

Add the Delay Block

Perform the following steps to add the Delay block.

1. Select the Storage library from the Altera DSP Builder folder in the
Simulink Library Browser.

2. Drag and drop the Delay block into your model and position it to the
right of the SinIn block.
30 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

3. Double-click the Delay block in your model.

4. Set the parameters as shown in Figure 10 and click OK.

Figure 10. Downsampling Delay by 2

5. Draw a connection line from the right side of the SinIn block to the
left side of the Delay block.

Add the SinDelay Block

Perform the following steps to add the SinDelay block.

1. Select the Bus Manipulation library from the Altera DSP Builder
folder in the Simulink Library Browser.

2. Drag and drop an AltBus block into your model, positioning it to the
right of the Delay block.

3. Click the text AltBus under the block icon in your model.

4. Change the block instance name by deleting the text AltBus and
typing in the text SinDelay.

5. Double-click the SinDelay block in your model.

6. Choose Output Port from the Node Type list.

7. Click Apply.

1 The dialog box options change when you select a new node
type and click Apply.
Altera Corporation 31

DSP Builder User Guide Getting Started
8. Choose 16 from the [number of bits].[] list. Figure 11 shows the
dialog box after you have made these settings.

9. Click OK to save your changes.

Figure 11. 16-Bit Signed Output Bus

10. Draw a connection line from the right side of the Delay block to the
left side of the SinDelay block.

Add the Mux Block

Perform the following steps to add the Mux block.

1. Select the Simulink Signal Routing library (Signals & Systems in
Simulink v4.1) in the Simulink Library Browser.

2. Drag and drop a Mux block into your design, positioning it to the
right of the SinDelay block.

3. Double-click the Mux block in your model.

4. Set the parameters as shown in Figure 12 and click OK.
32 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 12. 2-to-1 Multiplexer

5. Draw a connection line from the bottom left of the Mux block to the
right side of the SinDelay block.

6. Draw a connection line from the top left of the Mux block to the line
between the SinIn and Delay blocks.

Add the Random Number Block

Perform the following steps to add the Random Number block.

1. Select the Simulink Sources library in the Simulink Library
Browser.

2. Drag and drop a Random Number block into your model,
positioning it underneath the Sine Wave block.

3. Double-click the Random Number block in your model.

4. Set the parameters as shown in Figure 13 and click OK.
Altera Corporation 33

DSP Builder User Guide Getting Started
Figure 13. Random Number Generator

Add the Noise Block

Perform the following steps to add the Noise block.

1. Select the Bus Manipulation library from the Altera DSP Builder
folder in the Simulink Library Browser.

2. Drag and drop an AltBus block into your model, positioning it to the
right of the Random Number block.

3. Click the text AltBus under the block icon in your model.

4. Change the name of the block instance by deleting the text AltBus
and typing in the text Noise.

5. Double-click the Noise block.

6. Choose the Single Bit option from the Bus Type list.

7. Turn off the Bypass Bus Format option.

8. Click Apply. Figure 14 shows the dialog box after you have made
this setting.

1 The dialog box options change when you select a new bus
type and click Apply.

9. Click OK.
34 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 14. 1-Bit Input Port

10. Draw a connection line from the right side of the Random Number
block to the left side of the Noise block.

Add the BusBuild Block

Perform the following steps to add the BusBuild block. This block
converts a bit to a signed bus.

1. Select the Bus Manipulation library from the Altera DSP Builder
folder in the Simulink Library Browser.

2. Drag and drop the BusBuild block into your model, positioning it to
the right of the Noise block.

3. Double-click the BusBuild block in your model.

4. Set the parameters as shown in Figure 15 and click OK.
Altera Corporation 35

DSP Builder User Guide Getting Started
Figure 15. Build a 2-Bit Signed Bus

5. Draw a connection line from the right side of the Noise block to the
top left side of the BusBuild block.

Add the GND Block

Perform the following steps to add the Ground block.

1. Select the Bus Manipulation library from the Altera DSP Builder
folder in the Simulink Library Browser.

2. Drag and drop a GND block into your model, positioning it
underneath the Noise block.

3. Draw a connection line from the right side of the GND block to the
bottom left side of the BusBuild block.

Add the Product Block

Perform the following steps to add the Product block.

1. Select the Arithmetic library from the Altera DSP Builder folder in
the Simulink Library Browser.

2. Drag and drop a Product block into your model, positioning it to the
right of the BusBuild block and slightly above it. Leave enough space
so that you can draw a connection line underneath the Product
block.

3. Double-click the Product block.
36 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

4. Set the parameters as shown in Figure 16.

Figure 16. Multiply Two Signals

5. Click OK.

6. Draw a connection line from the top left of the Product block to the
line between the Delay and SinDelay blocks.

Add the StreamMod Block

Perform the following steps to add the StreamMod block.

1. Select the Bus Manipulation library from the Altera DSP Builder
folder in the Simulink Library Browser.

2. Drag and drop an AltBus block into your model, positioning it to the
right of the Product block.

3. Click the text AltBus under the block icon in your model.

4. Delete the text AltBus and type the text StreamMod to change the
block instance name.

5. Double-click the StreamMod block.

6. Set the parameters as shown in Figure 17.
Altera Corporation 37

DSP Builder User Guide Getting Started
Figure 17. 19-Bit Signed Output Bus

7. Click OK.

8. Draw a connection line from the right side of the Product block to
the left side of the StreamMod block.

Add the Scope Block

Perform the following steps to add the Scope block.

1. Select the Simulink Sinks library in the Simulink Library Browser.

2. Drag and drop a Scope block into your model and position it to the
right of the StreamMod block.

3. Double-click the Scope block.

4. Click the Parameters icon.

5. Type 3 in the Number of axes box to display three signals in time.
Figure 18 shows the ‘Scope’ Parameters dialog box after you have
made the setting.

6. Click OK.

7. Close the Scope.
38 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 18. Display 3 Signals in Time

8. Draw a connection line from the right side of the Mux block to the
top left side of the Scope block.

9. Draw a connection line from the right side of the StreamMod block
to the middle left side of the Scope block.

10. Draw a connection line from the right side of the BusBuild block to
the bottom left of the Scope block.

11. Draw a connection line from the bottom left of the Product block to
the line between the BusBuild block and the Scope block.

Simulate Your Model in Simulink

1 Before simulating your design, check to make sure it is drawn as
shown in Figure 4 on page 25.

To simulate your model in the Simulink software, perform the following
steps.

1. Choose Simulation parameters (Simulation menu).

2. Type 0.000002 in the Stop time box to display 200 samples.

3. Click OK.

4. Start simulation by choosing Start (Simulation menu) or by pressing
the Ctrl+T keys.

5. Double-click the Scope block to view the simulation results.
Altera Corporation 39

DSP Builder User Guide Getting Started
6. Click the binoculars icon to auto-scale the waveforms. Figure 19
shows the scaled waveforms.

Figure 19. Scope Simulation Results

You are now ready to perform RTL simulation.

Performing RTL Simulation

When you turn on the Generate Stimuli for VHDL Testbench option in
SignalCompiler, SignalCompiler generates a VHDL testbench and Tcl
script for your model. You can use both files with the ModelSim software
or you can use just the testbench in another simulation tool.

f Refer to “MegaCore Simulation Options” on page 52 for additional
information on simulating MegaCore functions.

To generate the simulation files for the amplitude modulation design
example, perform the following steps:

1. Double-click the SignalCompiler block in your model.

2. Click Analyze.

3. Click 1 - Convert MDL to VHDL.
40 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

4. Click the right arrow to scroll the tabs to the left.

5. Click the Testbench tab.

6. Turn on the Generate Stimuli for VHDL Testbench option.

7. Click OK.

8. Run the simulation in Simulink to generate the input stimulus files
by choosing Start (Simulation menu). SignalCompiler generates a
simulation script, Tb_SinGen.tcl, and a VHDL testbench that
imports the Simulink input stimuli, Tb_ SinGen.vhd.

To perform RTL simulation with the ModelSim software, perform the
following steps:

1. Start the ModelSim software.

2. Choose Change Directory (File menu).

3. Browse to your working directory and click Open.

4. Choose Execute Macro (Macro menu).

5. Browse for the Tb_SinGen.tcl script and click Open.

The simulation results are displayed in a waveform. The testbench
initializes all of the design registers with a pulse on the SRST input signal.

The ModelSim waveform editor displays the signals in decimal notation.
You can view the signals as a digital or analog waveform. Figure 20 on
page 42 shows the simulation and Figure 21 shows the analog display.
Altera Corporation 41

DSP Builder User Guide Getting Started
Figure 20. VHDL Simulation

Figure 21. Analog Display
42 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

You are now ready to perform synthesis and Quartus II compilation.

Synthesizing & Compiling the Design

Altera provides two synthesis and compilation flows for DSP Builder: the
automated and manual flows. If the DSP Builder design is the top-level
design, you can use either flow with the associated tool’s Tcl script created
on-the-fly by SignalCompiler. If the DSP Builder design is not the top-
level design but is instead a hierarchical module of a non-DSP Builder
hardware design, you cannot use the automated flow or the synthesis or
compilation Tcl scripts created by SignalCompiler. You must manually
create the compilation settings of a top-level design that is created outside
of DSP Builder, including:

■ Adding all of the DSP Builder VHDL files into the synthesis project.
This information is available in the File section of the synthesis tool’s
(Quartus II, Synplify, or LeonardoSpectrum) Tcl file created by
SignalCompiler.

■ Adding all the required IP libraries to the Quartus II project. This
information is available in the User Library section of the Quartus II
Tcl script created by SignalCompiler.

Automated Flow (within Simulink)

The automated flow allows you to control your entire synthesis and
compilation flow from within the MATLAB/Simulink environment using
the SignalCompiler block. With the automated flow, the SignalCompiler
block outputs VHDL files and Tcl scripts, performs synthesis in the
Quartus II, LeonardoSpectrum, or Synplify software, compiles in the
Quartus II software, and, optionally, downloads the design to one of the
DSP development boards. You do not need to make additional settings in
these software tools or run them separately. The automated flow can help
you prototype designs rapidly.

Manual Flow (Outside Simulink)

With the manual flow, you use SignalCompiler to output VHDL files and
Tcl scripts; however, you do not use it to perform synthesis or Quartus II
compilation. After SignalCompiler generates the VHDL files, you can
perform synthesis in tools other than the Quartus II, LeonardoSpectrum
or Synplify software, and then perform compilation in the Quartus II
software. Additionally, you should use the manual flow if you want to
specify your own synthesis or compilation settings.
Altera Corporation 43

DSP Builder User Guide Getting Started
When generating output files, SignalCompiler maps each Altera DSP
Builder block in the MATLAB/Simulink design to the DSP Builder’s
VHDL library. MegaCore functions are treated as black boxes.

f See “Using MegaCore Functions” on page 48 for more information on
using MegaCore functions in a model.

Automated Synthesis & Compilation

SignalCompiler maps each Altera DSP Builder block in the SinGen.mdl
design to the DSP Builder VHDL library. With the automated flow, you
use the buttons under Hardware Compilation to perform synthesis in the
Quartus II, Synplify or LeonardoSpectrum software and compilation in
the Quartus II software.

1 To synthesize and compile the design manually, go to “Manual
Synthesis & Compilation” on page 45.

Perform the following steps for automatic synthesis and compilation:

1. Double-click the SignalCompiler block in your model.

2. Choose Stratix from the Device Family list.

3. Choose Speed from the Optimization list.

4. Choose LeonardoSpectrum from the Synthesis Tool list. This
tutorial uses the LeonardoSpectrum synthesis software. If you want
to use the Synplify software, choose Synplify from the Synthesis
Tool list. If you want to use the Quartus II software, choose
Quartus II from the Synthesis Tool list.

1 If you select Quartus II VHDL synthesis, Quartus II VHDL
synthesis and Quartus II compilation are performed
consecutively when you click the Quartus II Compilation
button.

5. Click the button next to 1 - Convert MDL to VHDL. SignalCompiler
converts the design to VHDL.

6. Click the button next to 2 - Synthesize VHDL. Synthesis begins in
the tool you selected.

7. Click the button next to 3 - Quartus II Compilation. The Quartus II
software compiles the design.
44 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

1 For the Quartus II software to compile automatically, you
must have Quartus II Tcl script support enabled. If you are
using a version of the Quartus II software that does not
support Tcl scripting (e.g., Quartus II Web Edition), you will
receive a message saying the Tcl Script Support feature is
not available.

If your version of the Quartus II software does not support
Tcl scripts, you must perform compilation manually.
Complete the remaining steps below and then go to
“Compile the Design Manually in the Quartus II Software”
on page 46.

8. Click OK to close the SignalCompiler block when you are finished.

Manual Synthesis & Compilation

You should use the manual synthesis and compilation flow if you want to:

■ Use a synthesis tool other than the Quartus II, LeonardoSpectrum, or
Synplify software.

■ Use specific synthesis settings in any synthesis tool or use Quartus II
settings such as the LogicLock™ feature or timing-driven
compilation.

In this tutorial, with the manual flow, you synthesize the SignalCompiler-
created SinGen.vhd file manually in the LeonardoSpectrum software.
The VHDL file contains the RTL design.

1 To synthesize and compile the design automatically, go to
“Automated Synthesis & Compilation” on page 44.

Manual Synthesis

You can synthesize the design files manually by performing the following
steps:

1. Double-click the SignalCompiler block in your model.

2. Click the button next to 1 - Convert MDL to VHDL. SignalCompiler
converts the design to VHDL.

3. Click OK to close the SignalCompiler block.

4. Open the generated SinGen.vhd file in your synthesis tool and
perform synthesis.
Altera Corporation 45

DSP Builder User Guide Getting Started
1 Refer to the documentation for your synthesis tool for
instructions on how to synthesize the design.

Figure 22 shows the amplitude modulation design in the
LeonardoSpectrum software.

Figure 22. Amplitude Modulation Design in LeonardoSpectrum

Compile the Design Manually in the Quartus II Software

When you synthesize the design, the software generates atom netlist files
(EDIF Netlist File (.edf) or Verilog Quartus Mapping File (.vqm)) in your
working directory. Atoms are parameterized, family-dependent
representations of WYSIWYG primitives that correspond to Altera device
features, such as logic cells, I/O elements, product terms, and embedded
system blocks (ESBs). You can compile the atom netlist files in the
Quartus II software to generate the Programmer Object File (.pof) used to
program an Altera device.

1 To synthesize and compile the design automatically, go to
“Automated Synthesis & Compilation” on page 44.

To compile the design in the Quartus II software, perform the following
steps:

1. Start the Quartus II software.

2. Choose Auxiliary Windows > Tcl Console (View menu).

3. Change to your DSP Builder working directory.
46 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

4. Type source <file name>_quartus.tcl r. The Quartus II
software executes the Tcl script that sets up the project and
environment for your design.

5. Choose Start Compilation (Processing menu) to begin compilation.

6. Double-click Floorplan View in the SinGen Compilation Report
window to view the results of the compilation.

Figure 23 shows the Quartus II compilation results in the Floorplan View.
The shift register of depth 2 and width 16 (Delay block in Simulink) is
mapped to 32 APEX 20KE logic elements. 33 inputs/outputs are used to
bring data and clock signals into the device.

Figure 23. Quartus II Floorplan View
Altera Corporation 47

DSP Builder User Guide Getting Started
Create a Quartus II Symbol of Your DSP Builder Design

You can create a Quartus II symbol from a DSP Builder design. You can
incorporate this symbol into a larger design. After Quartus II compilation,
the Quartus II software creates a subdirectory called atom_netlists that
contains the Verilog Quartus Mapping File (.vqm) of the design (e.g.,
singen.vqm). To create a Quartus II symbol from this file, perform the
following steps:

1. Open the Quartus II project for the DSP Builder design, e.g.,
singen.quartus.

2. Choose Open (File menu)

3. Browse to the atom_netlists directory.

4. Open the file <design name>.vqm.

5. Choose Create/Update > Create Symbol Files for Current File (File
menu). The symbol is created and added to your project.

Using
MegaCore
Functions

For complex signal processing designs, you can incorporate MegaCore
blocks (that you install separately) into your model. This section describes
how to use MegaCore functions in your model and the simulation options
that are available. Figure 24 shows the DSP Builder design flow using IP.

Figure 24. DSP Builder Design Flow Using IP

Create Model

Simulink Hardware Realization

Add &
Parameterize IP

Design
OK?

Yes

No

VHDL
Simulation Synthesis

Quartus II
Compilation

Board

SignalCompilerSimulate

Compare the
Simulation Results

(RTL)

(.vho)
48 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

MegaCore Functions in MATLAB/Simulink

You can download and install DSP MegaCore functions from the Altera
web site and use them modularly with DSP Builder. Refer to the
MegaCore function’s product web page for information on whether you
can use the core with DSP Builder. To use a MegaCore function in a new
model, perform the following steps:

1. If you have not already done so, download and install the MegaCore
function from the Altera web site at
http://www.altera.com/IPmegastore.

1 Ensure that the MATLAB/Simulink software is not running
when you install the core(s).

2. Run MATLAB/Simulink.

3. Create a new model if you have not already done so.

4. Expand the Simulink icon in the MATLAB Launch Pad window by
clicking the + symbol next to the icon.

5. Double-click the Library Browser icon.

6. The Simulink Library Browser displays the DSP Builder and
MegaCore function(s) you installed.

7. Drag and drop the SignalCompiler block into your design if you
have not already done so.

8. If you have not already done so, specify the top-level .mdl, which
sets your working directory:

a. Double-click SignalCompiler in your model.

b. Click the button next to Select the Top-Level Model File.

c. Browse to the directory in which you saved the Model File, e.g.,
C:\DSPBuilder\DesignExamples\GettingStarted\
my_SinMdl.

d. Select the Model File, e.g., singen.mdl, and click Open.

1 You must include the SignalCompiler block in your
Simulink model file and set the top-level Model File for the
MegaCore wizards to operate properly.
Altera Corporation 49

http://www.altera.com/IPmegastore

DSP Builder User Guide Getting Started
9. Click OK.

10. Choose Save (File menu).

11. Click the + icon next to the name of the MegaCore function you want
to use so that DSP Builder recognizes the block. See Figure 25.

Figure 25. Simulink Library Browser with IP

12. Drag and drop the MegaCore block into your model.

13. Double-click the block to launch the MegaCore wizard.

14. Go through the wizard, setting the desired parameters. Refer to the
MegaCore function’s user guide for more information on how to use
the wizard.

1 You can download the latest user guides for Altera
MegaCore functions from the Literature section on the
Altera web site or from the MegaCore function’s product
web page.
50 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

15. Click Finish to return to the model file.

16. Choose Save (File menu).

Figure 26 shows an example design using the NCO Compiler MegaCore
function. In this example, the design makes the LEDs on the APEX DSP
development board blink. The clock frequency of the board oscillator is
converted from MHz to Hz using an NCO and a counter.

Figure 26. Example MegaCore IP Design Using the NCO Compiler
Altera Corporation 51

DSP Builder User Guide Getting Started
MegaCore Simulation Options

There are four ways to simulate designs that use MegaCore functions:

■ Using the Quartus II software—You can simulate your design in the
Quartus II software before purchasing a license using the OpenCore
feature. You can simulate any Altera MegaCore function using this
method.

■ Using the ModelSim software and precompiled VHDL models before you
have purchased a license for the MegaCore function—Some MegaCore
functions include precompiled VHDL models. With this simulation
option, you can combine the precompiled IP models with
SignalCompiler-generated VHDL file(s) and Tcl script to simulate
your design in the ModelSim software. Refer to “Performing RTL
Simulation” on page 40 for information on how to perform the
simulation.

■ Using the ModelSim software after you have purchased a license for the
MegaCore function—After you purchase a license for MegaCore
functions, you can generate VHDL Output Files (.vho) for timing
simulation in the ModelSim software. You can simulate any Altera
MegaCore function using this method.

With this simulation option, you must modify the SignalCompiler-
generated Tcl script to use the .vho files. Refer to Quartus II Help for
instructions on how to use .vho files for simulation.

■ Using another VHDL simulator with Visual IP models—Some MegaCore
functions include Visual IP models, which you can use to simulate the
MegaCore function with your simulator. For more information on
using Visual IP models, refer to the Simulating the Visual IP Models
with the ModelSim (PC) Simulator White Paper or the Simulating the
Visual IP Models with the NC-Verilog, Verilog-XL, VCS, or ModelSim
(UNIX) Simulators White Paper.

You can use any of these simulation models in a testbench to simulate
your design.

f Refer to the user guide for the MegaCore function for the simulation
options that are available for use with DSP Builder.
52 Altera Corporation

http://www.altera.com/literature/wp/wp_vip_simpc.pdf
http://www.altera.com/literature/wp/wp_vip_simpc.pdf
http://www.altera.com/literature/wp/wp_vip_simunix.pdf
http://www.altera.com/literature/wp/wp_vip_simunix.pdf
http://www.altera.com/literature/wp/wp_vip_simunix.pdf

Getting Started DSP Builder User Guide

G
etting Started

2

Performing
SignalTap II
Logic Analysis

This section provides a walkthrough that describes how to set up and run
the SignalTap II embedded logic analyzer. In this walkthrough, you will
analyze six internal nodes in a simple switch controller design named
switch_control.mdl. The design flow described in this example works for
any of the DSP boards that the DSP Builder supports, including:

■ Stratix EP1S25 DSP development board
■ APEX DSP development board (starter)
■ APEX DSP development board (professional)

To target a specific board, your design must include the board
configuration block for the board you want to use and a board connector.
You must use the board connector block that corresponds with the
appropriate board (the board and connector blocks that work together are
located in the same folders.) See “DSP Board Library” on page 159 for
more information.

In this design, an LED on the DSP development board board turns on or
off based on pressing the user-controlled switches and the value of the
incrementer. The design consists of an incrementer function feeding a
comparator, and four switches fed into two AND gates. The comparator
and AND gate output are feed an OR gate, which feeds an LED on the DSP
development board (starter version). The SignalTap II embedded logic
analyzer captures the signal activity at the output of the two AND gates
and the incrementer of the design loaded into the Altera device on the DSP
board. The logic analyzer retrieves the values and displays them in the
MATLAB work space.

f Refer to “SignalTap II Analysis Block” on page 107 and “Node Block” on
page 113 for detailed information on these blocks and their functionality.

This walkthrough involves the following steps:

1. “Open the Walkthrough Example Design” on page 54

2. “Specify the Nodes to Analyze” on page 56

3. “Turn On the SignalTap II Option in SignalCompiler” on page 58

4. “Generate VHDL, Synthesize, Compile & Download the Design to
the DSP Board” on page 59

5. “Specify Trigger Conditions” on page 59

6. “Specify the Radix for the Bus Groups” on page 61

7. “Perform SignalTap II Analysis” on page 61
Altera Corporation 53

DSP Builder User Guide Getting Started
Open the Walkthrough Example Design

Altera provides the design files for this walkthrough in the directory
structure shown in Figure 27. You can start from the design in the
original_design directory and go through the walkthrough.
Alternatively, you can use the design in the completed_walkthrough
directory and skip to “Specify Trigger Conditions” on page 59.

Figure 27. SignalTap II Design Example Directory Structure

1 The DSP Builder only supports the SignalTap II embedded logic
analyzer for the DSP development boards.

To open the example design:

1. Choose Open (File menu) in the MATLAB software.

2. Browse to the directory that contains the file you want to use (see
Figure 27).

3. Select the file and click Open.

4. If you did not install the DSP Builder into the default location,
c:\DSPBuilder, perform the following steps to set your working
directory.

a. Double-click the SignalCompiler block in the example design.

b. Click the folder icon next to the file name top.mdl under Project
Setting Options.

DSPBuilder\DesignExamples\SignalTap

 starter
 Contains example design files for SignalTap analysis using the APEX DSP development board starter version.

 original_design
 Contains an example design that you can use as a starting point for the SignalTap walkthrough.

 completed_walkthrough
 Contains a functional example design and synthesized, compiled files that you can use to test SignalTap analysis.

 professional
 Contains example design files for SignalTap analysis using the APEX DSP development board professional version.

 original_design
 Contains an example design that you can use as a starting point for the SignalTap walkthrough.

 completed_walkthrough
 Contains a functional example design and synthesized, compiled files that you can use to test SignalTap analysis.
54 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

c. Browse to the directory that contains the example design you
opened in step 3.

d. Select the file and click Open.

Figure 28 shows the design in the original_design directory, which you
will use for the following sections.

Figure 28. Starting Point for the SignalTap II Walkthrough
Altera Corporation 55

DSP Builder User Guide Getting Started
Specify the Nodes to Analyze

In the following steps you will add Node blockNode blocks to the signals
(also called nodes) that you want to analyze: the output of each AND gate
and the output of the incrementer. To add a Node block to a node, perform
the following steps:

1. Go to the AltLab library in the Simulink Library Browser. Refer to
the “DSP Builder Tutorial” on page 24 for instructions on accessing
the library.

2. Drag and drop a Node block into your design. Position the block so
that it is on top of the conection line between the Logical Bit
Operator block (AND) and the Logical Bit Operator2 block (OR).
Refer to Figure 30 if you are unsure of the positioning.

If you position the block using this method, the Simulink software
inserts the block and joins connection lines to both sides of it.

3. Click the text SignalTap under the block icon in your model.

4. Change the block instance name by deleting the text SignalTap
and typing in the text firstandout.

5. Add a Node block between the Logical Bit Operator1 block (AND)
and the Logical Bit Operator2 block (OR) and name it
secondandout.

6. Add a Node block between the Increment Decrement block and the
Comparator block and name it cntout.

7. Double-click the cntout block.

8. Specify that you want to analyze the 3 most significant bits at the
output of the incrementer by setting the following parameters. See
Figure 29.

– MSB: 7
– LSB: 5
56 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Figure 29. Setting cntout Parameters

9. Click OK to save your settings.

10. Choose Save (File menu).

Figure 30 shows the completed design.

Figure 30. Completed SignalTap II Design
Altera Corporation 57

DSP Builder User Guide Getting Started
Turn On the SignalTap II Option in SignalCompiler

When you add Node blocks to signals, the block is connected to the input
of the SignalTap II embedded logic analyzer, which alters your overall
design. Therefore, you must compile the design before you can use the
SignalTap II embedded logic analyzer. To compile the design, perform the
following steps:

1. Double-click on the SignalCompiler block.

2. Click the SignalTap II tab (see Figure 31).

Figure 31. SignalTap II Tab in the SignalCompiler

3. Turn on the Insert SignalTap II Logic Analyzer option. When you
turn on this option the SignalCompiler inserts an instance of the
SignalTap II embedded logic analyzer into the design.

4. Select a depth of 128 for the SignalTap II embedded logic analyzer
sample buffer (i.e., the number of samples stored for each input
signal) in the Sample Depth list.

5. Click OK.
58 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Generate VHDL, Synthesize, Compile & Download the Design to
the DSP Board

Generate VHDL, synthesize, compile, and download the design to the
DSP board by clicking the buttons under Hardware Compilation. Refer to
“DSP Builder Tutorial” on page 24 for detailed instructions. The DSP
Builder only supports the SignalTap II embedded logic analyzer for the
DSP development boards.

1 Click the button next to 1 - Convert MDL to VHDL to view the
estimated ESBs used to perform SignalTap II analysis. The
estimated usage is a function of the number of nodes to be
analyzed and the sample depth (see Table 9 on page 112). The
Messages box displays the ESB usage.

Specify Trigger Conditions

In the switch_control.mdl design, specify “Falling edge” as the trigger
condition for firstandout and “High” as the trigger condition for
secondandout. To specify trigger conditions perform the following
steps:

1 If you used the Altera-provided file in the
completed_walkthrough directory, generate VHDL before
attempting to open the SignalTap II Analyzer block by clicking
the button next to 1 - Convert MDL to VHDL in the
SignalCompiler. You cannot open the SignalTap II Analyzer
block unless you have generated VHDL because the block relies
on data files that are created when SignalCompiler generates the
VHDL.
Altera Corporation 59

DSP Builder User Guide Getting Started
1. Double-click the SignalTap II Analysis block. The SignalTap II
analyzer displays all of the nodes connected to Node blocks as
signals to be analyzed. See Figure 32.

Figure 32. SignalTap II Analyzer

2. Specify the trigger condition for the firstandout node:

a. Click firstandout under Signal Name.

b. Select Falling Edge in the Trigger Condition list.

c. Click Change. The condition is updated.

3. Specify the trigger condition High for the secondandout node.

The SignalTap II embedded logic analyzer captures data for analysis
when it simultaneously detects all trigger patterns on the input signals.
For example, because you specified Falling Edge for firstandout and
High for secondandout in the top.mdl design, the SignalTap II
embedded logic analyzer is only triggered when it detects a falling edge
on firstandout and a logic level high on secondandout.
60 Altera Corporation

Getting Started DSP Builder User Guide

G
etting Started

2

Specify the Radix for the Bus Groups

In the top.mdl design, specify Signed Decimal for the bus group cntout by
performing the following steps:

1. Right-click cntout under Signal Name. A popup menu displays.
See Figure 33.

Figure 33. Specifying the Radix

2. Select Signed Decimal. The radix is updated.

Perform SignalTap II Analysis

You are ready to run the analyzer and display the results in a MATLAB
plot. After you click the Start Analysis button, the SignalTap II embedded
logic analyzer begins analyzing the data and waits for the trigger
conditions to occur. Perform the following steps:

1. Click Start Analysis.

2. Press switch 0 on the DSP development board to trigger the
SignalTap II embedded logic analyzer.

3. Click OK in the SignalTap II Analysis block when you are finished.
Two MATLAB plots display the captured data: in binary format,
Figure 34, and in the radix you specified, .
Altera Corporation 61

DSP Builder User Guide Getting Started
Figure 34. MATLAB Plot of SignalTap II Analysis (Binary Format)

Figure 35. MATLAB Plot of SignalTap II Analysis (User-Specified Radix)
62 Altera Corporation

Altera Corporation
DSP Builder Design Rules

Design Rules

3

About the DSP
Builder Blocks

DSP Builder blocks are delivered in libraries, classified by functionality.
The following libraries are included with the DSP Builder:

■ AltLab
■ Arithmetic
■ Bus Manipulation
■ Complex Signals
■ DSP Boards

– DSP Board Stratix EP1S25
– DSP Board EP20K200EBC652-1X
– DSP Board EP20K1500EBC652-1X

■ Gates
■ Rate Change
■ SOPC Ports

– Avalon™ Bus
– Custom Instruction

■ State Machine
■ Storage

Bit Width
Design Rule

You must specify the bit width at the source and destination of the data
path. The SignalCompiler block propagates this bit width from the source
to the destination through all intermediate blocks. You can optionally
specify the bit width of intermediate blocks.

For example, in the amplitude modulation design (see the “DSP Builder
Tutorial” on page 24), the SinIn and SinDelay blocks have a bit width of
16. Therefore, SignalCompiler automatically assigns a bit width of 16 to
the intermediate Delay block. Each DSP Builder block has specific design
rules. The bit width growth rule is described in the documentation for
each block.

DSP Builder blocks are of type double, which supports data widths up to
51 bits. If you need more than 51 bits, divide the data bus into multiple
slices. For example, Figure 36 shows a 60-bit adder.
63

DSP Builder User Guide Design Rules
Figure 36. 60-Bit Adder with Multiple Bus Slices

Frequency
Design Rule

This section describes the frequency design rules for single and multiple
clock domains.

Single Clock Domain

If your design does not contain the PLL block from the Rate Change
library, the DSP Builder uses synchronous design rules to convert a
Simulink design into hardware. All DSP Builder registered blocks—such
as the Delay block—operate on the positive edge of the single clock
domain, which runs at the system sampling frequency. For these blocks,
the clock pin is not graphically displayed in Simulink. However, when
SignalCompiler converts the design to VHDL it automatically connects
the clock pin of the registered blocks (i.e., the delay block) to the single
clock domain of the system.

By default, Simulink does not graphically display the clock enable and
synchronous reset input pins of the DSP Builder registered blocks. When
SignalCompiler converts the design to VHDL, it connects these pins to
VCC and the system reset, respectively. If you turn on the Use Control
Inputs parameter in the parameter dialog box of each of the DSP Builder
registered blocks, you can access and drive the clock enable and
synchronous reset input pins graphically in the Simulink software.
64 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

To maintain cycle accuracy between the Simulink and the VHDL domain,
you should set the solver options to fixed-step discrete and set the mode
to single-tasking. see Figure 37.

Figure 37. Simulation Delay Parameters
Altera Corporation 65

DSP Builder User Guide Design Rules
From a Simulink simulation standpoint, all DSP Builder blocks (including
registered DSP Builder blocks) have an inherited sampling frequency. The
sampling period values are propagated from the source block to the
destination block via the I/O pins, specifically, the sampling period
information is propagated from the output pins of the source block to the
input pins of the destination block. If a DSP Builder block has no input
pins, (i.e., the Increment or Pattern block), this propagation mechanism
cannot take place. Therefore, you must set the sampling period manually
in the block parameter. To do so, perform the following steps:

1. Right-click the block.

2. Choose Block Parameters from the pop-up menu.

3. In the S-Function box, replace the first parameter (by default -1)
with the desired sampling period.

4. Click OK to save your changes.

When a block has multiple inputs driven by blocks, with different
sampling frequencies values, the destination block operates at the fastest
rate in the Simulink software.

1 In the Simulink software, set the Sample Time Color (Format
menu) to see the sampling frequency of each data path.

Figure 38 shows the design SingleClockDelay.mdl (in the
dspbuilder/designexamples/multi_clock directory). There are many
ways to specify the sampling frequency of the sources. Figure 39 shows
how you can specify the sample time in a sine wave block using the
Sample Time edit box.
66 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 38. SingleClockDelay.mdl

Figure 39. Specify the Sample Time
Altera Corporation 67

DSP Builder User Guide Design Rules
In SingleClockDelay.mdl for a single clock domain, where the DSP
Builder design does not use the PLL block, the sample time of all DSP
Builder blocks must be identical and therefore appear with the same color
when the sample time color simulation parameter is on. In the
SingleClockDelay.mdl, the sample time value of the Simulink blocks
Sine Wave a and Sine Wave b are set to 1e–6, which is interpreted as
1000 ns by the SignalCompiler.

When you convert the DSP Builder design into RTL using the
SignalCompiler, it generates a report file that lists all of the design’s DSP
Builder blocks with bit-width and simulation-sampling period values (see
Figure 40). For single-clock domain designs, the SignalCompiler issues
warnings, if it detects multiple simulation-sampling period values. This
design has no warnings.
68 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 40. Single-Clock Domain Report File
Altera Corporation 69

DSP Builder User Guide Design Rules
Figure 41 shows the LeonardoSpectrum RTL represenation of
SingleClockDelay.mdl. A single clock input pin is feeding the two
registers Delaya and Delayb.

Figure 41. LeonardoSpectrum Representation of SingleClockDelay.mdl

Multiple Clock Domains

If your design contains the PLL block from the rate change library, the
DSP Builder registered blocks operate on the positive edge of one of the
PLL’s output clocks. Figure 42 shows the design
MultilpleClockDelay.mdl (in the
dspbuilder/designexamples/multi_clock directory), which shows an
example of the multiple-clock domain support.
70 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 42. MultipleClockDelay.mdl

The DSP Builder maps the PLL block to the hardware device PLL; the PLL
block supports the following device families:

■ Stratix—Support for up to 6 output clocks
■ Cyclone—Support for up to 6 output clocks

The MultilpleClock.mdl design shows the PLL block’s configuration. The
output pllclock1 is set to 1000 ns; the output pllclock2 is set to 100
ns. There are several ways to specify that the data path A (shown in green
in Figure 42) operates on pllclock1 and data path B (shown in red in
Figure 42) operates on pllclock2. In this design the Sample Time edit
box of the Sine Wave block a and Sine Wave block b are set to 1e-6 and
1e-7, respectively (see Figure 43).
Altera Corporation 71

DSP Builder User Guide Design Rules
Figure 43. PLL Setting

When you convert the DSP Builder design into RTL using the
SignalCompiler, it generates a report file that lists all of the design’s DSP
Builder blocks with bit-width and simulation-sampling period values (see
Figure 44). For multiple-clock domain designs, the SignalCompiler issues
warnings if the DSP Builder block simulation-sampling period values are
not equal to one of the PLL’s output clock periods.
72 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 44. Multiple-Clock Domain Report File
Altera Corporation 73

DSP Builder User Guide Design Rules
Figure 45 shows the LeonardoSpectrum RTL representation of
MultipleClock.mdl. The registers Delaya and Delayb operate on the
Stratix PLL’s output clocks 1 and 2, respectively.

Figure 45. LeonardoSpectrum Representation of MultipleClockDelay.mdl

Using Advanced PLL Features

The DSP Builder PLL blockset supports the fundamental multiplication
and division factor for the PLL. If you want to use other features (phase
shift, duty cycle, etc.) of the PLL, you can edit the <file_name>_pll.vhd
generated by SignalCompiler. After doing so, you can make the necessary
changes to the PLL component in the top-level VHDL file for your design.
74 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

DSP Builder
Naming
Conventions

DSP Builder block instance names must follow VHDL naming
conventions. Some guidelines to follow include:

■ Be careful of case. VHDL is not case sensitive. For example the
subsystems Mydesign and MYDESIGN will be the same VHDL
entity.

■ Avoid using VHDL keywords for DSP Builder block instance names.
■ Watch for illegal characters. VHDL entity names can only contain

a - z, 0 - 9, and underscore (_) characters.
■ Begin all instance names with a letter (a - z). VHDL does not allow

entity names to begin with non-alphabetic characters.
■ Do not use two underscores in succession (__) because it is illegal in

VHDL.

1 White spaces in the names for the blocks/components are
ignored when SignalCompiler converts the Model File into
VHDL.

Aditionally, SignalCompiler generates a separate VHDL file for each DSP
Builder HDL SubSystem block, each containing a single
entity/architecture pair. DSP Builder creates VHDL files in which the
entity name space is global; therefore, all subsystem names must be
unique.

SignalCompiler
Design Rules

Refer to “SignalCompiler Block” on page 92 for detailed information on
the SignalCompiler block and its design rules.

Fixed-Point
Notation

Table 4 describes the fixed-point notation used in the DSP Builder. Refer
to “Block I/O Formats” on page 78 for the number formats each block
supports.
Altera Corporation 75

DSP Builder User Guide Design Rules
Note:
(1) STD_LOGIC_VECTOR and STD_LOGIC are VHDL signal types defined in the IEEE library (ieee.std_logic_1164.all

and ieee.std_logic_signed.all packages).

Figure 46 graphically compares the signed binary fractional, signed
binary, and unsigned binary number formats.

Table 4. Number Types

Number
Type

Description Notation Simulink-to-HDL Translation
(1)

SBF Signed binary
fractional
representation; a
fractional
number.

[L].[R] where:

[L] is the number of bits to the left of the
binary point; the left-most bit is the sign
bit.

[R] is the number of bits to the right of the
binary point.

A Simulink SBF signal A[L].[R] maps to
STD_LOGIC_VECTOR({L + R - 1}
DOWNTO 0) in VHDL.

Signed
binary

Signed binary;
integer.

[L] where:

[L] is the number of bits of the signed bus;
the sign bit is the left-most bit.

A Simulink signed binary signal A[L]
maps to
STD_LOGIC_VECTOR({L - 1}
DOWNTO 0) in VHDL.

Unsigned
binary

Unsigned binary;
integer.

[L] where:

[L] is the number of bits of the unsigned
bus.

A Simulink unsigned binary signal
A[L] maps to
STD_LOGIC_VECTOR({L - 1}
DOWNTO 0) in VHDL.

Single bit Integer that takes
the values 1 or 0.

[1] A Simulink single bit signal maps to a
STD_LOGIC signal in VHDL.
76 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 46. Number Format Comparison

Binary Point
Location in SBF

For hardware implementation, Simulink signals must be cast into the
desired hardware bus format. Therefore, floating-point values must be
converted to fixed-point values. This conversion is a critical step for
hardware implementation because the number of bits required to
represent a fixed-point value plus the location of the binary point affects
both the amount of the hardware resources used and the system
performance.

Choosing a large number of bits yields excellent performance—the fixed-
point result is almost identical to the floating-point result—but consumes
a large amount of hardware. The designer’s task consists of finding the
right size/performance trade-off. The DSP Builder speeds up the design
cycle by enabling simulation with fixed-point and floating-point signals in
the same environment.

The AltBus block casts floating-point Simulink signals of type double into
fixed-point signals. The fixed-point signals are represented in signed
binary fractional (SBF) format as shown below:

■ [number of bits].[]—Represents the number of bits to the left of the
binary point including the sign bit.

■ [].[number of bits]—Represents the number of bits to the right of the
binary point.

In VHDL, the signals are typed as STD_LOGIC_VECTOR (see Note (1) on
page 76). For example, the 4-bit binary number 1101 is represented as:

Simulink This signed integer is interpreted as –3

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

7 6 5 4 3 2 1 0

[4].[4] Signed Binary Fractional Notation

7 6 5 4 3 2 1 0

8-Bit Signed Integer

Sign Bit

7 6 5 4 3 2 1 0

8-Bit Unsigned Integer

Sign Bit
Altera Corporation 77

DSP Builder User Guide Design Rules
If you change the location of the binary point to 11.01, i.e., 2 bits on the left
side of the binary point and two bits on the right side, the numbers are
represented as:

Simulink This signed integer is interpreted as –0.75

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

From a system-level analysis standpoint, multiplying a number by –0.75
or –3 is obviously very different, especially when looking at the bit width
growth. In the one case the multiplier output bus grows on the MSB, in the
other case the multiplier output bus grows on the LSB.

In both cases the binary numbers are identical. However, the location of
the binary point affects how a simulator formats the signal representation.
For complex systems, you can adjust the binary point location to define
the signal range and the area of interest.

f For more information on number systems, refer to AN 83: Binary
Numbering Systems.

Block I/O
Formats

Table 5 describes the I/O formats for the DSP Builder blocks. The HDL
SubSystem, SubSystemBuilder, and SignalCompiler blocks do not have
I/O formats. Refer to the following notation conventions for Table 5:

■ In the [L].[R] notation, [L] is the number of bits on the left side of the
binary point and [R] is the number of bits on the right side of the
binary point.

■ I1[L].[R] is an input port.
■ O1[L].[R] is an output port.
■ For signed or unsigned integers R = 0, i.e., [L].[0].
■ For signed integers and signed binary fractional numbers, the MSB

bit is the sign bit.
■ For single bits, R = 0, i.e., [1] is a single bit.
■ Explicit means that the port bit width information is a block

parameter.
■ Implicit means that the port bit width information is set by the data

path bit with propagation mechanism. If you want to specify the bus
format of an implicit input port, use a BusConversion block to set the
width.
78 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Table 5. Block I/O Formats (Part 1 of 5)

Block I/O Simulink VHDL Type
Arithmetic

Comparator I I1[L1].[R1]
I2[L2].[R2]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

Implicit
Implicit

O O1[1] O1: out STD_LOGIC Implicit

Divider I I1[L].[R]
I2[L].[R]

I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Explicit
Explicit

O O1[L].[R]
O2[L].[R]

O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)
O2: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Explicit
Explicit

Gain I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1 + LK].2*max(R1,RK)]
where K is the gain constant
with the format K[L K] . [R K]

O1: out STD_LOGIC_VECTOR({L1 + LK + 2*max(R1,RK) - 1}
DOWNTO 0)

Implicit

Increment
Decrement

I I1[1] I1: in STD_LOGIC Explicit -
Optional

I2[1] I2: in STD_LOGIC Explicit -
Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Magnitude I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1 + 1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1} DOWNTO 0) Implicit

Multiply
Accumulate

I I1[L1].[R1]
I2[L2].[R2]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

Implicit

O O1[LO].[RO] O1: out STD_LOGIC_VECTOR({L0 + R0 - 1} DOWNTO 0) Explicit

Multiply Add I I1[L1].[R1]

….
Ii[L1].[R1]

…
In[L1].[R1]
where 3 < n < 9

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
…
Ii: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
….
In: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
where 3 < n < 9

Explicit

O O12 x [L1]+ ceil(log2(n)).2 x [R1] O1: out STD_LOGIC_VECTOR({(2 x L1) + ceil(log2(N)) + (2 x
R1) - 1} DOWNTO 0)

Implicit

Parallel Adder
Subtractor

I I1[L1].[R1]

….
Ii[LI].[RI]

…
In[LN].[RN]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
…
Ii: in STD_LOGIC_VECTOR({LI + RI - 1} DOWNTO 0)
….
In: in STD_LOGIC_VECTOR({LN + RN - 1} DOWNTO 0)

Implicit

O O1[max(LI) + ceil(log2(N))].[max(RI)] O1: out STD_LOGIC_VECTOR({max(LI) + ceil(log2(N)) +
max(RI) - 1} DOWNTO 0)

Implicit

Product I I1[L1].[R1]
I2[L2].[R2]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

Implicit

O O1[L1 + L2].[2 x max(R1,R2)] O1: out STD_LOGIC_VECTOR({L1 + L2 + 2 x max(R1,R2) - 1}
DOWNTO 0)

Implicit

Bus Manipulation

AltBus I I1[L1].[R1] Implicit -
Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit
Altera Corporation 79

DSP Builder User Guide Design Rules
BusBuild I I1[1]
…
INPi[1]
….
INPn[1]

I1: in STD_LOGIC
…
INPi: in STD_LOGIC
….
INPn: in STD_LOGIC

Explicit

O O1[LP].[RP] with LP + RP = N
where N is the number of
inputs

O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Binary Point
Casting

I I1[Li].[Ri] I1: in STD_LOGIC_VECTOR({Li + Ri - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

Explicit

O O1[LO].[RO]
where LO + RO - Li + Ri

O1: out STD_LOGIC_VECTOR({LO + RO - 1} DOWNTO 0) Explicit

Bus
Concatenation

I I1[L1].[0]
I2[L2].[0]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

Explicit

O O1[L1 + L2].[0] O1: out STD_LOGIC_VECTOR({L1 + L2 - 1} DOWNTO 0) Explicit

Bus
Conversion

I I1[LPi].[RPi] I1: in STD_LOGIC_VECTOR({LPi + RPi - 1} DOWNTO 0) Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + LPO - 1} DOWNTO 0) Explicit

Extract Bit I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[1] O1: out STD_LOGIC Explicit

GND O O1[1] O1: out STD_LOGIC Explicit

VCC O O1[1] O1: out STD_LOGIC Explicit

Complex Signals (1)

Butterfly
Operator

I I1Real([Li].[0])Imag([Li].[0])
I2Real([Li].[0])Imag([Li].[0])
I3Real([Li].[0])Imag([Li].[0])

I1Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
I2Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
I2Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
I3Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
I3Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

Explicit

O O1Real([Lo].[0])Imag([Li].[0])
O2Real([Lo].[0])Imag([Li].[0])

O1Real: in STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)
O1Imag: in STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)
O2Real: in STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)
O2Imag: in STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)

Explicit

Complex
AddSub

I I1Real([L1].[R1])Imag([L1].[R1])
I2Real([L2].[R2])Imag([L2].[R2])

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I2Real: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)
I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

Implicit

O O1Real(max(L1,L2) + 1),(max(RI,R2)

+ 1)Imag(max(L1,L2)

+ 1),(max(RI,R2) + 1)

O1Real: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2)}
DOWNTO 0)
O1Imag: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2)}
DOWNTO 0)

Implicit

Table 5. Block I/O Formats (Part 2 of 5)

Block I/O Simulink VHDL Type
80 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Complex
Product

I I1Real([L1].[R1])Imag([L1].[R1])
I2Real([L2].[R2])Imag([L2].[R2])

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I2Real: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)
I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

Implicit

O O1Real(2 x max(LI,L2)),(2 x max(RI,

R2))Imag(2 x max(LI,L2)),(2 x max(RI,

R2))

O1Real: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) +
(2 x max(RI,R2)) -1} DOWNTO 0)
O1Imag: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) +
(2 x max(RI,R2)) -1} DOWNTO 0)

Implicit

Complex
Multiplier

I I1Real([L1].[R1])Imag([L1].[R1])
I2Real([L2].[R2])Imag([L2].[R2])
I3[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I2Real: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)
I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)
I3: in STD_LOGIC

Implicit

O O1Real(max(L1,L2)),(max(RI,R2))Im

ag(max(L1,L2)),(max(RI,R2))

O1Real: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2) -
1} DOWNTO 0)
O1Imag: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2) -
1} DOWNTO 0)

Implicit

Complex
Conjugate

I I1Real([L1].[R1])Imag([L1].[R1]) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1] + 1.[R1])Imag([L1] +

1.[R1])

O1Real: in STD_LOGIC_VECTOR({LP1 + RP1} DOWNTO 0)
O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1} DOWNTO 0)

Implicit

Complex
Delay

I I1Real([L1].[R1])Imag([L1].[R1]) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1].[R1])Imag([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)
O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)

Implicit

Complex to
Real-Imag

I I1Real([L1].[R1])Imag([L1].[R1]) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1].[R1])
O2Imag([L1].[R1])

O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)
O2Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)

Explicit

Real-Imag to
Complex

I I1Real([L1].[R1])
I2Imag([L1].[R1])

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1].[R1])Imag([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)
O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO
0)

Explicit

Gates

Case
Statement

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Implicit

O O1[1]
…
OUTi[1]
….
OUTn[1]

O1: out STD_LOGIC
…
OUTi: out STD_LOGIC
….
OUTn: out STD_LOGIC

Explicit

Table 5. Block I/O Formats (Part 3 of 5)

Block I/O Simulink VHDL Type
Altera Corporation 81

DSP Builder User Guide Design Rules
If Statement I I1[L1].[R1]

….
INPi[LI].[RI]

…
INPn[LN].[RN]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
…
INPi: in STD_LOGIC_VECTOR({LI + RI - 1} DOWNTO 0)
….
INPn: in STD_LOGIC_VECTOR({LN + RN - 1} DOWNTO 0)

Implicit

O O1[1]
O2[1]

O1: out STD_LOGIC
O2: out STD_LOGIC

Explicit

Logical Bit
Operator

I I1[1]
…
INPi[1]
….
INPn[1]

I1: in STD_LOGIC
…
INPi: in STD_LOGIC
….
INPn: in STD_LOGIC

Explicit

O O1[1] O1: out STD_LOGIC Explicit

Logical Bus
Operator

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

LUT I I1[L1].[0] I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + LPO - 1} DOWNTO 0)

n-to-1
Multiplexer

I IS[LS].[0] (select input)
I1[L1].[R1]

….
Ii[LI].[RI]

…
In[LN].[RN]

(n = number of inputs)

IS: in STD_LOGIC_VECTOR({LS - 1} DOWNTO 0)
I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
…
Ii: in STD_LOGIC_VECTOR({LI + RI - 1} DOWNTO 0)
….
In: in STD_LOGIC_VECTOR({LN + RN - 1} DOWNTO 0)

Implicit

O O1[max(LI)].[max(RI)]

with (0 < I < N + 1)
O1: out STD_LOGIC_VECTOR({max(LI)) + max(RI) - 1}
DOWNTO 0)

Implicit

Rate Change

Multi-Rate
DFF

I I1[L].[R] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L].[R] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Tsamp I I1[L].[R] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L].[R] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Storage

Delay I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Down
Sampling

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Dual Port
RAM

I I1[L1].[R1]
I2[L2].[0]
I3[L2].[0]
I4[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)
I3: in STD_LOGIC_VECTOR({L3 - 1} DOWNTO 0)
I4: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Table 5. Block I/O Formats (Part 4 of 5)

Block I/O Simulink VHDL Type
82 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Note:
(1) The bit widths you set for complex numbers apply to both the real and imaginary parts.

Goto & From
Block Support

DSP Builder supports the Goto and From blocks from the generic
Simulink library (Signal and System Folder). These blocks are used for
large fan-out signals and enhance the diagram clarity. The DSP Builder
supports the Goto and From mode Tag Visibilty = local.

1 Goto and From blocks must be in the same hierarchical level.

Figure 47 shows an example of the Goto and From blocks. The Goto blocks
([coef1], [coef2], [coef3], [coef4]) are used respectively with the From
blocks ([coef1], [coef2], [coef3], [coef4]), which are connected to the
Product blocks.

Parallel to
Serial

I I1[L1].[R1]
I2[1]
I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
I2: in STD_LOGIC
I3: in STD_LOGIC

Explicit

O O1[1] O1: out STD_LOGIC Explicit

Pattern I I1[1] I1: in STD_LOGIC Explicit -
Optional

I2[1] I2: in STD_LOGIC Explicit -
Optional

O O1[1] O1: out STD_LOGIC Explicit

ROM EAB I I1[L1].[0] I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + LPO - 1} DOWNTO 0) Explicit

Serial to
Parallel

I I1[1]
I2[1]
I3[1]

I1: in STD_LOGIC
I2: in STD_LOGIC
I3: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Shift Taps I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1]

….
Oi[L1].[R1]

…
On[L1].[R1]

(n = number of taps)

O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
…
Oi: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
….
On: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
(n = number of taps)

Implicit

Up Sampling I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Table 5. Block I/O Formats (Part 5 of 5)

Block I/O Simulink VHDL Type
Altera Corporation 83

DSP Builder User Guide Design Rules
Figure 47. Goto & From Block Example

MegaCore
Function
Support

Altera MegaCore functions are rigorously tested and optimized for the
highest performance and lowest cost in Altera programmable logic
devices (PLDs). All MegaCore functions are fully parameterizable
through Altera’s unique MegaWizard® Plug-In Manager.

MegaCore functions support Altera’s free IP evaluation features, which
allow you to verify the functionality and timing of a function prior to
purchasing a license.

■ The OpenCore® evaluation feature lets you test-drive IP cores for free
using the Quartus® II software; however, you cannot generate device
programming files to test the core in hardware.
84 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

■ The OpenCore Plus evaluation feature enhances the OpenCore
evaluation feature by supporting free hardware evaluation. This
feature allows you to generate time-limited programming files for a
design that includes Altera MegaCore functions. With these files, you
can perform board-level design verification before deciding to
purchase licenses for the MegaCore functions.

With both evaluation features, you only need to purchase a license when
you are completely satisfied with a core’s functionality and performance,
and would like to take your design to production. DSP Builder supports a
variety of Altera DSP cores such as FIR Compiler, Reed-Solomon
Compiler, and IIR Compiler.

f Refer to the IP MegaStore on the Altera web site for a listing of which cores
DSP Builder supports.

To use a core with the DSP Builder, download a DSP core from the Altera
web site at http://www.altera.com/IPmegastore and install it on your
PC. When you restart the MATLAB software, the DSP Builder
automatically detects the new core and adds it to the Simulink Library
Browser. Refer to the core’s product web page for information on whether
it works modularly with DSP Builder.

1 Some IP core features are not available for use with the DSP
Builder. Refer to the core user guide for a description of which
features are unavailable.

f Refer to “Using MegaCore Functions” on page 48 for more information on
using IP in your model.

Hierarchical
Design

The DSP Builder supports hierarchical design via the subsystem
mechanism available in the Simulink software. You define the boundaries
of each hierarchical level by connecting the Altera AltBus block to the
Simulink Input/Output block. The SignalCompiler block preserves the
hierarchy structure in the VHDL design and each Simulink Model File
(.mdl) hierarchical level translates into one VHDL file. Refer to “DSP
Builder Naming Conventions” on page 75 for information on naming
HDL subsystem instances.

Figure 48 illustrates a hierarchy for the sample design fir3tap.mdl, which
implements two FIR filters as described in “Data Width Propagation” on
page 95.
Altera Corporation 85

http://www.altera.com/IPmegastore

DSP Builder User Guide Design Rules
Figure 48. Hierarchical Design Example

Black Boxing You can add your own VHDL code to the design and specify which
subsystem block(s) should be translated into VHDL by the
SignalCompiler. This process, called black boxing, uses the AltBus block
in Black Box Input Output mode by setting the AltBus Node Type
parameter to Black Box Input Output. When processing SubSystem 1 in
Figure 49, SignalCompiler replaces SubSystem 1 with a black box in the
VHDL design. Figure 49 shows the parameter settings for creating a black
box.

f Refer to “AltBus Black Box Input Output Mode” on page 136 for more
information on using the AltBus block to create a black box.
86 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 49. Using a Black Box

1 If you use a MegaCore IP block in your model, the IP block is
treated as a black box when SignalCompiler generates HDL
output files for synthesis. Refer to “Using MegaCore Functions”
on page 48 for more information on using IP.

To add your own customized entity to a DSP Builder design, perform the
following steps:

1. Define a customized entity in an HDL file.

2. Declare synchronous clear (sclr) and clock as inputs in the entity,
even if your design uses a synchronous reset and a clock. These
inputs are routed to a global clock pin and a global synchronous
clear pin. If the entity does not need a clock and/or a global
synchronous clear, you should still declare these signals as inputs
and leave them unconnected.
Altera Corporation 87

DSP Builder User Guide Design Rules
1 To map the clock port of the back boxed VHDL code to the
DSP Builder global system clock, you must name the Altbus
input block (configured as Black Box Input Output)
simulink_clock.

3. Create an .mdl and save it into the same directory as the HDL file
you created in step 1.

4. Add a SubSystem block to the .mdl and give it the same name as the
customized entity.

5. Assign the inputs and outputs of the SubSystem block so that they
have the same name as the inputs and outputs of the customized
entity. You do not have to create inputs in the SubSystem block for
sclr and the clock.

6. In the SubSystem block, connect all of the inputs and outputs to
Altbus blocks of type Black Box Input Output.

7. In the SubSystem block, describe the functionality of the customized
entity using blocks from any available libraries (e.g., the Simulink
library, DSP Builder, the Communications Blockset library, etc.).

Using DSP
Builder
Modules in
External RTL
Designs

You can use DSP Builder designs as modules in RTL designs created in
other applications, e.g., the Quartus II software. When incorporating your
DSP Builder design, you must adjust your top-level design settings to
support the DSP Builder design, including:

■ Quartus II compilation settings
■ Project settings (include all DSP Builder VHDL files)
■ Library path settings

For a top-level design that has a DSP Builder submodule, the Quartus II
project must include all of the Quartus II compilation settings of the
standalone DSP Builder design. The Tcl script <DSP Builder
design>_quartus.tcl contains the DSP Builder design’s Quartus II
compilation settings. Figure 50 shows the Tcl script for the CIC filter
example (<path>\designexamples\cicfilter\cic_pll_quartus.tcl).
88 Altera Corporation

Design Rules DSP Builder User Guide

Design Rules

3

Figure 50. CIC Filter Example Quartus II Compilation Settings Tcl Script
Altera Corporation 89

DSP Builder User Guide Design Rules
The Quartus II top-level design project settings must include all of the
DSP Builder VHDL files needed to compile the DSP Builder module. For
the CIC filter example, these files are:

■ DSPBUILDERPACK.VHD
■ DSPBUILDER.VHD
■ int4.vhd
■ int3.vhd
■ int2.vhd
■ int1.vhd
■ int.vhd
■ IntegratorSection.vhd
■ comb4.vhd
■ comb3.vhd
■ comb2.vhd
■ comb1.vhd
■ comb.vhd
■ CombSection.vhd
■ cic_pll.vhd

The top-level design’s Quartus II project settings must include all of the
user library paths needed to compile the DSP Builder module. For the CIC
filter example, this path is:

c:/DSPBuilder/MegaCoreLib

This path is shown in the Tcl script in the lines:

set megadir "c:/DSPBuilder/MegaCoreLib"
project add_assignment "" "cic_pll" "" "" "USER_LIBRARIES" "$megadir"
90 Altera Corporation

Altera Corporation
AltLab Library

AltLab Library

4

The blocks in the AltLab library are used to manage design hierarchy and
generate RTL VHDL for synthesis and simulation.

HDL
SubSystem
Block

You can use the HDL SubSystem block to add a level of hierarchy to your
design. SignalCompiler generates a separate VHDL file for each DSP
Builder HDL SubSystem block, each containing a single
entity/architecture pair. For example, if you have a single model file with
two subsystems, SignalCompiler creates 3 output files, one for the model
file and one for each of the subsystems.

DSP Builder creates VHDL files in which the entity name space is global;
therefore, all subsystem names must be unique. If your model has the
structure shown in Figure 51, both instances of subsystem C must be
identical. If they are different, only one will be used.

Figure 51. Example Design Hierarchy

f Refer to the DSP Builder Report File, which is output when
SignalCompiler finishes generating HDL, for a listing of the HDL
SubSystem blocks used in the design.

 Top

 A B

C F C D

Top.vhd
A.vhd
B.vhd
C.vhd
D.vhd
F.vhd
91

DSP Builder User Guide AltLab Library
SignalCompiler
Block

The SignalCompiler block is the heart of the DSP Builder, and performs
the following functions:

■ Converts your Simulink design into synthesizable RTL VHDL.
■ Generates VHDL testbenches.
■ Exports Simulink stimulus into a VHDL testbench and produces the

expected response in an ASCII (.txt) file.
■ Generates Tcl scripts for Quartus II compilation.
■ Generates Tcl scripts for the LeonardoSpectrum, Synplify, and

ModelSim software.
■ Generates a vector file (.vec) for Quartus II simulation
■ Generates a PTF configuration file, which you can use to import the

design automatically into the SOPC Builder
■ Enables generation of a SignalTap II .stp file

f For more information on the SOPC Builder, refer to
http://www.altera.com/products/software/system/products/sopc/so
p-index.html

You can use the SignalCompiler to control your design flow for synthesis,
compilation, and simulation. DSP Builder supports the following flows:

■ Synthesis and compilation

– Automated Flow—The automated flow allows you to control the
entire design process from within the MATLAB/Simulink
environment using the SignalCompiler block. With this flow, the
SignalCompiler creates RTL HDL design files and Tcl scripts in
your working directory. Then, SignalCompiler executes the Tcl
scripts to synthesize the design in the Quartus II,
LeonardoSpectrum, or Synplify software and compile it in the
Quartus II software. The results of the synthesis and compilation
are displayed in the SignalCompiler Messages box. You can also
use the automated flow to download your design into the DSP
development boards (starter or professional).

– Manual Flow—With the manual flow, you use SignalCompiler to
output VHDL files and Tcl scripts; however, you do not use the
scripts to run synthesis or compilation tools. After you choose to
generate VHDL, SignalCompiler generates the RTL HDL design
files and Tcl scripts in your working directory. You can then use
the VHDL files to synthesize the design in your tool of choice.
You can compile the synthesized results in the Quartus II
software. You should use the manual flow if you want to make
your own synthesis or compilation settings.
92 Altera Corporation

http://www.altera.com/products/software/system/products/sopc/sop-index.html

AltLab Library DSP Builder User Guide

AltLab Library

4

■ Simulation—The Generate Stimuli for VHDL Testbench option
(Testbench tab) in the SignalCompiler block (Testbench tab), causes
the SignalCompiler to generate a VHDL testbench and ModelSim Tcl
script for your model as well as a Vector File for Quartus II
simulation. You can use the testbench and Tcl script with the
ModelSim software, you can use the testbench in another simulation
tool, or you can use the Vector File with the Quartus II software.

Table 6 shows the parameters for the SignalCompiler analyzer.

Table 7 shows the parameters for this block.

Table 6. SignalCompiler Analyzer Parameters

Name Value Description

Update Simulation On or Off When this option is turned on, SignalCompiler performs a simulation update
command on the design and then extracts DSP Builder block information.

Analyze – When you click this button, SignalCompiler reads the current MDL file and
detects hierarchy level and sample period of all DSP Builder blocks. You
must analyze the design every time you modify it.

Skip Analysis – Click this button to bypass the analysis, i.e., to change the design.

Table 7. SignalCompiler Parameters (Part 1 of 3)

Name Value Description

Device APEX 20KE, APEX 20KC,
APEX II, Stratix, Mercury,
ACEX 1K, FLEX 10K,
FLEX 6000, Cyclone, DSP
Board

Indicate which Altera device family you want to target.
You can also target the Stratix or APEX DSP
development boards. If you are using the automated
design flow, the Quartus II software chooses the smallest
device in which your design fits.

Synthesis Tool Quartus II,
LeonardoSpectrum,
Synplicity

Indicate which synthesis tool you want to use. If you
choose Quartus II, LeonardoSpectrum, or Synplify,
SignalCompiler generates Tcl scripts for use with the
automated design flow.

Optimization Area or Speed Indicate whether you want to optimize the design for area
or speed.

Select the Top-Level
Model File

User Defined Click the icon to browse to the location of your top-level
Model File (.mdl). Specifying the file sets your working
directory.
Altera Corporation 93

DSP Builder User Guide AltLab Library
Generate Stimuli for
VHDL Testbench

On or Off To perform simulation in a third-party simulator, turn on
this option and then run your simulation in Simulink.
SignalCompiler outputs files for use with ModelSim or
other simulators. This option is located on the
Testbench tab.

If this option is turned on, the Simulink simulation runs
more slowly than if it is turned off. Therefore, you should
only turn on this option when you wish to generate files
for use with ModelSim or other simulators.

Period (ns) User Defined Specify the clock period. This box is located on the Clock
tab.

Location User Defined This option is available the Reset tab. For the DSP
development boards, you can assign the reset to switch
1, 2, or 3 on the board.

Connect to Ground On or Off Indicate whether you want to connect the reset signal to
ground. This option is located on the Reset tab.

Insert SignalTap II Logic
Analyzer

On or Off Indicate whether you want to insert an instance of the
SignalTap II logic analyzer into the design. You can use
the logic analyzer to capture and probe signals on the
DSP development boards.

This option is located on the SignalTap tab and only
applies if your are targeting the DSP development
boards.

Generate PTF SOPC File On or Off When this option is turned on, SignalCompiler generates
a class.ptf configuration file. With this file, the DSP
Builder design is a plug-and-play peripheral for use with
SOPC Builder.

1 - Convert MDL to VHDL – Click this button to generate VHDL design files and Tcl
scripts for your design.

2 - Synthesize VHDL – Click this button to synthesize the generated VHDL in the
synthesis tool that you selected. When the synthesis tool
is Quartus II, this button is grayed out and the VHDL
synthesis step is merged with Quartus II compilation into
a single step, which is invoked by clicking the Quartus II
Compilation button.

Table 7. SignalCompiler Parameters (Part 2 of 3)

Name Value Description
94 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Data Width Propagation

During the Simulink-to-VHDL conversion, SignalCompiler assigns a bit
width to all of the Altera blocks in the design. You can specify the bit
width of an Altera block in the Simulink design. However, you do not
need to specify the bit width for all blocks. SignalCompiler propagates the
bit width from the source of a data path to its destination.

The design fir3tapsub.mdl, which is provided in the
<path>\DSPBuilder\DesignExamples\GettingStarted\Fir3Tap
directory, illustrates bit width propagation. The fir3tapsub.mdl design is
a 3-tap finite impulse response (FIR) filter. See Figure 52.

1 Before simulating the model or generating HDL files, ensure that
the path to your working directory is set up properly. The
Working Directory box is case-sensitive. The default working
directory used in the example is:

C:\DSPBuilder\DesignExamples\GettingStarted\Fir3Tap

The design has the following attributes:

■ The input data signal is an 8-bit signed integer bus
■ The output data signal is a 20-bit signed integer bus
■ Three delay blocks are used to build the tapped delay line
■ The coefficient values are {1.0000, -5.0000, 1.0000}. A Gain block

performs the coefficient multiplication

3 - Quartus II Compilation – Click this button to compile the design in the Quartus II
software.

4 - Program DSP Board – If you selected one of the DSP development boards from
the Device list, this button is enabled. Click this button to
download your design into the targeted board.

Refer to the APEX DSP Development Kit Getting Started
User Guide or the DSP Development Kit, Stratix Edition
Getting Started User Guide for information on setting up
the board and connecting it to your PC.

System Information – Click this button to view the paths to the Synplify,
LeonardoSpectrum, or Quartus II software, or your
working directory.

Table 7. SignalCompiler Parameters (Part 3 of 3)

Name Value Description
Altera Corporation 95

DSP Builder User Guide AltLab Library
Figure 52. 3-Tap FIR Filter

Figure 53 shows the RTL representation (in the Synplify software) of
fir3tapsub.mdl created by SignalCompiler.

Figure 53. 3-Tap FIR Filter in RTL View (Synplify Software)
96 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Tapped Delay Line

The bit width propagation mechanism starts at the source of the data path,
in this case at the AltBus block iInputDatas, which is an 8-bit input bus.
This bus feeds the register U0, which feeds U1, which feeds U2.
SignalCompiler propagates the 8-bit bus in this register chain where each
register is 8 bits wide. See Figure 54.

Figure 54. Tap Delay Line in RTL View (Synplify Software)

Arithmetic Operation

Figure 55 shows the arithmetic section of the filter, which computes the
output yout:

Where c[i] are the coefficients and x[k - i] are the data.

yout k[] x k i–[]c i[]

i 0=

2

∑=
Altera Corporation 97

DSP Builder User Guide AltLab Library
Figure 55. 3-Tap FIR Filter Arithmetic Operation in RTL View (Synplify
Software)
98 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

The design requires three multipliers and one parallel adder. The
arithmetic operations increase the bus width in the following ways:

■ Multiplying a × b in SBF format (where l is left and r is right) is equal
to:

[la].[ra] × [lb].[rb]

The bus width of the resulting signal is:

([la] + [lb]).([ra] + [rb])

■ Adding a + b + c in SBF format (where l is left and r is right) is equal to:

[la].[ra] + [lb].[rb] + [lc].[rc]

The bus width of the resulting signal is:

(max([la], [lb], [lc]) + 2).(max([ra], [rb], [rc]))

The parallel adder has three input buses of 14, 16, and 14 bits. To perform
this addition in binary, SignalCompiler automatically sign extends the
14 bit buses to 16 bits. The output bit width of the parallel adder is 18 bits,
which covers the full resolution.

There are several options that can change the internal bit width resolution
and therefore change the size of the hardware required to perform the
function described in Simulink:

■ Change the bit width of the input data.
■ Change the bit width of the output data. The VHDL synthesis tool

will remove the unused logic.
■ Insert BusConversion blocks to change the internal signal bit width.

Figure 56 shows how AltBus blocks are used to control internal bit widths.
In this example, the output of the Gain block has 4 bits removed
(BusConversion format converts [11:0] to [11:3]). The scope displays the
functional effect of this truncation on the coefficient values.
Altera Corporation 99

DSP Builder User Guide AltLab Library
Figure 56. 3-Tap Filter with BusConversion to Control Bit Widths

The RTL view illustrates the effect of this truncation. The parallel adder
required has a smaller bit width and the synthesis tool reduces the size of
the multiplier to have a 9-bit output. See Figure 57.
100 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Figure 57. 3-Tap Filter with BusConversion to Control Bit Widths in RTL View (Synplify Software)

Clock Assignment

As described in “Frequency Design Rule” on page 64, SignalCompiler
identifies registered DSP Builder blocks such as the Delay block and
implicitly connects the clock, clock enable, and reset signals in the VHDL
design for synthesis. When the design does not contain the PLL block, the
SignalCompiler implicitly connects all of the registered DSP Builder
blocks’ clock pins to a single clock domain (signal 'clock' in VHDL). When
the design contains the PLL block and the detected Simulink sampling
period of the registered DSP Builder blocks is equal to one of the output
clock periods defined in the PLL block, the SignalCompiler implicitly
connects all of the registered blocks’ clock pins to one of the PLL’s output
clocks, otherwise the SignalCompiler returns an error.

From a clocking standpoint, DSP Builder blocks fall into two categories:

■ Combinatorial blocks—The output always changes at the same sample
time slot as the input.

■ Registered blocks—The output changes after a variable number of
sample time slots.
Altera Corporation 101

DSP Builder User Guide AltLab Library
Figure 58 illustrates DSP Builder block combinatorial behavior. The
Magnitude block translates as a combinatorial signal in VHDL.
SignalCompiler does not add clock pins to this function.

Figure 58. Magnitude Block

Figure 59 illustrates the behavior of a registered DSP block. In the VHDL
netlist, SignalCompiler adds clock pin inputs to this function. The Delay
block, with the clock phase selection parameter equal to 100, is
converted into a VHDL shift register with a decimation of 3 and an initial
value of zero.

Figure 59. Delay Block
102 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

For feedback circuitry (i.e., the output of a block fed back into the input of
a block), a registered block must be in the feedback loop. Otherwise, an
unresolved combinatorial loop is created. See Figure 60.

Figure 60. Feedback Loop

You can design multi-rate designs by using the PLL block and assigning
different sampling periods on registered DSP Builder blocks.
Alternatively, you can design multi-rate designs without the DSP Builder
PLL block by using a single clock domain and the following design rules.
For a multi-rate design using a single clock domain with clock enable:

■ The fastest sample rate is an integer multiple of the slower sample
rates. The values are specified in the Clock Phase Selection box in the
Delay dialog box.

■ The Clock Phase Selection box accepts a binary pattern string to
describe the clock phase selection. Each digit or bit of this string is
processed sequentially on every cycle of the fastest clock. When a bit
is equal to one, the block is enabled; when a bit is equal to zero, the
block is disabled. For example, see Table 8.
Altera Corporation 103

DSP Builder User Guide AltLab Library
Figure 61 compares the scopes for the Delay block operating at a one
quarter rate on the 1000 and 0100 phases, respectively.

Figure 61. 1000 vs. 0100 Phase Delay

DSP Builder Report File

After generating VHDL, SignalCompiler outputs a report file that lists the
SignalCompiler block parameters, the files generated by SignalCompiler,
links to the synthesis log file and the Quartus II Report File, and the
following information for each VHDL entity:

■ SignalCompiler settings
■ Signal width mismatches
■ Out-of-range signals
■ Detected Simulink sampling period
■ Block port bit width information for the entity
■ Number of HDL SubSystem instances used (heirarchy information)

Table 8. Clock Phase Selection Example

Phase Description

1 The Delay block is always enabled and captures all data passing through
the block (sampled at the rate 1).

10 The Delay block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100 The Delay block is enabled on the second phase out of 4 and only the
second data out of 4 (sampled at the rate 1) passes through. In other
words, the data on phases 1, 3, and 4 do not pass through the Delay
block.
104 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

The report file shows how SignalCompiler propagates the bit widths to all
of the design blocks at each level of hierarchy. Figures 62 and 63 show an
example DSP Builder report file.

Figure 62. DSP Builder Block Report File
Altera Corporation 105

DSP Builder User Guide AltLab Library
Figure 63. Example DSP Builder Report File
106 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

SignalTap II
Analysis Block

As programmable logic design complexity increases, system verification
in software becomes time consuming and replicating real-world stimulus
is increasingly difficult. To alleviate these problems, you can supplement
traditional methods of system verification with efficient board-level
verification. DSP Builder version 2.0 and higher supports the
SignalTap® II embedded logic analyzer, which lets you capture signal
activity from internal Altera device nodes while the system under test
runs at speed.

The DSP Builder includes the SignalTap II Analysis block with which you
can set up event triggers, configure memory, and display captured
waveforms (you use the Node block to select signals to monitor). Samples
are saved to internal embedded system blocks (ESBs) when the logic
analyzer is triggered, and are subsequently streamed off chip via the
JTAG port using the ByteBlasterMV™ download cable. The captured data
is then stored in a text file, displayed as a waveform in a MATLAB plot,
and transferred to the MATLAB work space as a global variable.

The DSP Builder and the SignalTap II Analysis block create a SignalTap II
embedded logic analyzer that:

■ Has a simple, easy-to-use interface
■ Analyzes signals in the top-level design file
■ Uses a single clock source
■ Captures data around a trigger point: 88% of the data is pre-trigger

and 12% of the data is post-trigger

1 You can also use the Quartus II software to insert an instance of
the SignalTap II embedded logic analyzer in your design. The
Quartus II software supports additional features such as
analyzing nodes in all levels of the design hierarchy, using
multiple clock domains, and adjusting what percentage of data
is captured around the trigger point. Refer to Quartus II Help for
more information on using the SignalTap II embedded logic
analyzer with the Quartus II software.

Design Flow

Working with the SignalTap II embedded logic analyzer and the DSP
Builder involves the following flow.

1. Add a SignalTap II Analysis block to your Simulink design.

1 You cannot open the SignalTap Analyzer block unless you
have generated VHDL by clicking the button next to 1 -
Convert MDL to VHDL in the SignalCompiler.
Altera Corporation 107

DSP Builder User Guide AltLab Library
2. Specify the signals (i.e., nodes) that you want to analyze by inserting
Node blocks. Figure 64 shows an example design.

Figure 64. Example SignalTap II Analysis Model

3. Turn on the Insert SignalTap Logic Analyzer option in the
SignalTap tab of SignalCompiler. See Figure 65.

Figure 65. SignalTap II Tab in SignalCompiler
108 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

4. Target one of the DSP development board devices in the
SignalCompiler.

5. Using SignalCompiler, generate VHDL, synthesize it, perform
Quartus II compilation, and download the design into the DSP
development board (starter or professional).

6. Specify trigger conditions in the SignalTap II Analysis block. See
Figure 66.

Figure 66. Specifying Trigger Conditions

7. Specify the radix for the signal groups and run the analyzsis. You can
view the captured data as a waveform in two MATLAB plots. The
first plot displays the signals in binary format. The second plot
displays the signals in the radix you specified. See Figures 67 and 68.

1 DSP Builder only supports the SignalTap II embedded logic
analyzer with the ByteBlasterMV download cable.
Altera Corporation 109

DSP Builder User Guide AltLab Library
Figure 67. Example SignalTap II Analysis MATLAB Plot
110 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Figure 68. MATLAB Plot with User-Specified Radix

f For detailed instructions on using the SignalTap II Analysis and
SignalTap II blocks, refer to “Performing SignalTap II Logic Analysis” on
page 53.

Nodes

By definition, a node represents a wire carrying a signal that travels
between different logical components of a design file. The SignalTap II
embedded logic analyzer can capture signals from any internal device
node in a top-level design file, including I/O pins.

1 When you implement the SignalTap II embedded logic analyzer
using DSP Builder, you can only analyze signals in a top-level
design file. You cannot probe signals within a subsystem.

The SignalTap II embedded logic analyzer can analyze up to 128 internal
nodes or I/O elements. As more signals are captured, more logic elements
(LEs) and embedded system blocks (ESBs) are used. Table 9 lists the
number of Altera device ESBs consumed for a given sample depth and
number of signals.
Altera Corporation 111

DSP Builder User Guide AltLab Library
Note:
(1) The signals and samples you can implement are dependant on the Altera device

you use. Rows shaded in blue indicate signals and samples that you can implement
in the APEX DSP development board (starter version). You can implement all
signal widths and samples in the professional version.

Before capturing signals, each node to be analyzed must be assigned to a
SignalTap II embedded logic analyzer input channel. To assign a node to
an input channel, you must connect it to a Node block.

Trigger Conditions

The trigger pattern describes a logic event in terms of logic levels and/or
edges. It is a comparison register used by the SignalTap II embedded logic
analyzer to recognize the moment when the input signals match the data
specified in the trigger pattern.

The trigger pattern is composed of a logic condition for each input signal.
By default, all signal conditions for the trigger pattern are set to “Don’t
Care,” masking them from trigger recognition. You can select one of the
following logic conditions for each input signal in the trigger pattern:

■ Don’t Care
■ Low
■ High
■ Rising Edge
■ Falling Edge
■ Either Edge

The SignalTap II embedded logic analyzer is triggered when it detects the
trigger pattern on the input signals.

Table 9. ESB Usage Note (1)

Signals
(Width)

Samples (Depth)

0 128 256 512 1,024 2,048

1 0 1

2 0 1 2

4 0 1 2 4

8 0 1 2 4 8

16 0 1 2 4 8 16

32 0 2 4 8 16 32

64 0 4 8 16 32 64

128 0 8 16 32 64 128
112 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Node Block You use the Node block with the SignalTap II Analysis block to capture
signal activity from internal Altera device nodes while the system under
test runs at speed. The Node block indicates the signals (also called nodes)
for which you want to capture activity. When you add a Node block, you
specify a range of bits to analyze by choosing the bit position of the most
significant bit (MSB) and least significant bit (LSB). For example, if you
want to analyze the 3 most significant bits of an 8-bit bus, you would
specify 7 for the MSB parameter and 5 for the LSB parameter.

Table 10 shows the block parameters.

Figure 64 on page 108 shows an example using the Node block.

f Refer to the following sources for more information:

■ “Block I/O Formats” on page 78
■ “SignalTap II Analysis Block” on page 107
■ “Performing SignalTap II Logic Analysis” on page 53

Table 10. Node Parameters

Name Value Description

MSB 0 to 51 Indicate the bit position for the MSB of the range of bits you want to analyze.

LSB 0 to 51 Indicate the bit position for the LSB of the range of bits you want to analyze.
Altera Corporation 113

DSP Builder User Guide AltLab Library
SubSystem
Builder Block

The SubSystemBuilder block makes it easy for you to import a VHDL
design’s input and output signals into a Simulink subsystem. You can
then add the rest of the VHDL design functionality to the subsystem
(using DSP Builder blocks or MATLAB functions) and simulate it in
Simulink. You can optionally treat the VHDL design as a black box.

The SubSystemBuilder block automatically maps any input ports named
simulink_clock in the VHDL entity section to the main Simulink
system clock.

The VHDL entity should be formatted according to the following
guidelines:

■ The VHDL file should contain a single entity
■ Port direction: in or out
■ Port type: STD_LOGIC or STD_LOGIC_VECTOR
■ Bus size:

– a(7 DOWNTO 0) is supported
– a(8 DOWNTO 1) is not supported
– a(0 TO 7) is not supported

■ Single port declaration per line:
– a :STD_LOGIC; is supported
– a,b,c:STD_LOGIC is not supported

To use the block, drag and drop it into your model, click Select VHDL
File, specify the file to import, and click the Add <entity name> in <model
name> button.

Table 11 shows the block parameters.

Figure 69 shows an example using the SubSystemBuilder block.

Table 11. SubSystem Builder Parameters

Name Value Description

Select VHDL File User defined Use this button to specify the VHDL file to import.

Create Black Box
SubSystem

On or Off Turn on this option if you want to treat the imported VHDL design as a
black box.
114 Altera Corporation

AltLab Library DSP Builder User Guide

AltLab Library

4

Figure 69. SubSystemBuilder Block & Example
Altera Corporation 115

Altera Corporation
Arithmetic Library
Arithm
etic

5

Library
This library contains two’s complement signed arithmetic blocks such as
multipliers and adders. Some blocks have the Use Dedicated Circuitry
option, which implements functionality into dedicated hardware in
Altera Stratix (e.g., in the DSP block) or Mercury devices.

f For more information on these device families, refer to:

■ Stratix Programmable Logic Device Family Data Sheet
■ AN 214: Using the DSP Blocks in Stratix Devices
■ Mercury Programmable Logic Device Family Data Sheet
117

DSP Builder User Guide Arithmetic Library
Comparator
Block

The Comparator block compares two Simulink signals and returns a
single bit. The block implicitly understands the input data type (e.g.,
signed binary or unsigned integer) and produces a single-bit output.
Table 12 shows the block parameters.

Figure 70 shows an example using the Comparator block.

Figure 70. Comparator Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 12. Comparator Parameters

Name Value Description

Operator a == b, a ~= b, a < b,
a <= b, a >= b, a > b

Indicate which operation you wish to perform on the two buses.
118 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Divider Block The Divider block takes a numerator and a denominator and computes a
quotient and a remainder. The bit-width format of the numerator,
denominator, quotient, and reminder are identical. Table 13 shows the
block parameters.

Figure page page104_dividerexample.bmp shows an example using the
Divider block.

Figure 71. Divider Example

Table 13. Divider Block Parameters

Name Value Description

Bus Type Signed Integer, Signed
Fractional, Unsigned Integer

Indicate the bus number format that you want to use for
the divider.

[number of bits].[] 1 to 51 Select the number of bits to the left of the binary point.

[].[number of bits] 0 to 51 Select the number of bits to the right of the binary point for
the gain.

This option is only available when Signed Fractional is
selected.

Pipeline On or off When on, adds one pipeline level to increase the data
throughput.
Altera Corporation 119

DSP Builder User Guide Arithmetic Library
Gain Block The Gain block generates its output by multiplying the signal input by a
specified gain factor. You must enter the gain as a numeric value in the
Gain parameter field. The signal input and gain must be scalars.

1 The Simulink software also provides a Gain block. If you use the
Simulink Gain block in your model, you can only use it for
simulation; SignalCompiler cannot convert it to HDL.

Table 14 shows the block parameters.

Table 14. Gain Parameters (Part 1 of 2)

Name Value Description

Gain Value User Defined Indicate the gain value you want to use as a decimal number. The
gain is masked to the number format (bus type) you select.

Map Gain Value to
Bus Type

Signed Integer, Signed
Fractional, Unsigned
Integer

Indicate the bus number format you want to use for the gain value.

[Gain value
number of bits].[]

1 - 51 Select the number of bits to the left of the binary point, including the
sign bit for the gain.

[].[Gain value
number of bits]

0 - 51 Select the number of bits to the right of the binary point for the gain.
This option is only available when Signed Fractional is selected.

Number of
Pipeline Levels

0 - 4 Specify the pipeline delay.

Use LPM On or Off This parameter is used for synthesis. When the Use LPM option is
turned on, the Gain block is mapped to the LPM_MULT library of
parameterized modules (LPM) function and the VHDL synthesis
tool uses the Altera LPM_MULT implementation.

Use Control Inputs On or Off Indicate whether you would like to use additional control inputs
(clock enable and reset). This option is only available if the
Number of Pipeline Levels setting is greater than 1.
120 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Figure 72 shows an example using the Gain block.

Figure 72. Gain Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Clock Phase
Selection

User Defined Phase selection. This option is only available if the Number of
Pipeline Levels setting is greater than 1. Indicate the phase
selection with a binary string, where a 1 indicates the phase in
which the block is enabled. For example:

1—The block is always enabled and captures all data passing
through the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only
the second data out of 4 (sampled at the rate 1) passes through. In
other words, the data on phases 1, 3, and 4 do not pass through
the delay block.

Table 14. Gain Parameters (Part 2 of 2)

Name Value Description
Altera Corporation 121

DSP Builder User Guide Arithmetic Library
Increment
Decrement
Block

The Increment Decrement block generates a counting sequence in time.
The output can be a signed integer, unsigned integer, or signed binary
fractional number. For all number formats, the counting sequence
increments/decrements the LSB bit by one. Table 15 shows the block
parameters. The block has a clock phase selection control that operates as
described in Table 15.

Figure 73 shows an example using the Increment Decrement block.

Table 15. Increment Decrement Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Choose the number format you wish to use for the bus.

<number of bits>.[] 1 - 51 Select the number of bits to the left of the binary point, including the
sign bit.

[].<number of bits> 0 - 51 Select the number of bits to the right of the binary point. This option
is only available when Signed Fractional is selected.

Direction Increment or
Decrement

Indicate whether you wish to count up or down.

Starting Value User Defined Enter the value with which to begin counting.

Use Control Inputs On or Off Indicate whether you would like to use additional control inputs (clock
enable and reset).

Clock Phase
Selection

User Defined Phase selection. Indicate the phase selection with a binary string,
where a 1 indicates the phase in which the block is enabled. For
example:

1—The block is always enabled and captures all data passing
through the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only
the second data out of 4 (sampled at the rate 1) passes through. In
other words, the data on phases 1, 3, and 4 do not pass through the
delay block.
122 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Figure 73. Increment Decrement Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 123

DSP Builder User Guide Arithmetic Library
Multiply
Accumulate
Block

The Multiply Accumulate block consists of a single multiplier feeding an
accumulator. The input can be in signed integer, unsigned integer, or
signed binary fractional formats.

Table 16 shows the block parameters.

Figure 74 shows an example using the Multiply Accumulate block.

Table 16. Multiply Accumulate Parameters

Name Value Description

Bus Type Signed Integer, Signed
Fractional, Unsigned
Integer

Choose the number format you wish to use for the bus.

Input A [number of bits].[] 1 - 51 Select the number of data input bits to the left of the binary
point, including the sign bit.

Input A [].[number of bits] 0 - 51 Select the number of data input bits to the right of the binary
point. This option is only available when Signed Fractional
is selected.

Input B [number of bits].[] 1 - 51 Select the number of data input bits to the left of the binary
point, including the sign bit.

Input B [].[number of bits] 0 - 51 Select the number of data input bits to the right of the binary
point. This option is only available when Signed Fractional
is selected.

Output Result Bits 1 - 51 Indicate the number of output bits.

Pipeline Register None, Data Inputs,
Multiplier Output, Data
Inputs and Multiplier

Indicate whether you want to add pipelining to the data
inputs, multiplier output, both, or neither.

Accumulator Direction Add, Subtract Indicate whether to add or subtract the result of the multiplier.

Use Control Inputs On or Off Indicate whether you would like to use additional control
inputs (clock enable and reset).

Create Overflow Output
Port

On or Off Indicate whether you want to use an overflow port for the
accumulator adder.

Use Dedicated Circuitry On or Off If you are targeting Stratix devices, turn on this option to
implement the functionality in Stratix DSP blocks. If you are
not targeting Stratix devices, the functionality is implemented
in logic elements.
124 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Figure 74. Multiply Accumulate Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 125

DSP Builder User Guide Arithmetic Library
Multiply Add
Block

The Multiply Add block consists of one or more multipliers feeding a
parallel adder. The input can be in signed integer, unsigned integer, or
signed binary fractional formats. Table 17 shows the block parameters.

Figure 75 shows an example using the Multiply Add block.

Table 17. Multiply Add Parameters

Name Value Description

Number of Multipliers 2, 3, 4 Choose how many multipliers you want to feed the
adder.

Bus Type Signed Integer, Signed
Fractional, Unsigned Integer

Choose the number format you wish to use for the bus.

Inputs [number of bits].[] 1 - 51 Select the number of data input bits to the left of the
binary point, including the sign bit.

Inputs [].[number of bits] 0 - 51 Select the number of data input bits to the right of the
binary point. This option is only available when Signed
Fractional is selected.

Adder Mode Add Add, Add Sub, Sub
Add, Sub Sub

Choose the operation of the adder.

Pipeline Register No Register, Inputs Only,
Multiplier Only, Adder Only,
Inputs and Multiplier, Inputs
and Adder, Multiplier and
Adder, Inputs Multiplier and
Adder

Choose the elements to which you want to add
pipelining.

Use Clock Enable On or Off Indicate whether you would like to use an additional
control input (clock enable).

Use Dedicated Circuitry On or Off If you are targeting Stratix devices, turn on this option to
implement the functionality in Stratix DSP blocks. If you
are not targeting Stratix devices, the functionality is
implemented in logic elements.

One Input is Constant On or Off Turn on this option if one of the inputs is a constant. This
option is used together with the Constant Values
parameter.

Constant Values User Defined Type the constant value in this box as a MATLAB array.
This option is only available if you have turned on the
One Input is Constant option.
126 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Figure 75. Multiply Add Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 127

DSP Builder User Guide Arithmetic Library
Magnitude
Block

The scalar Magnitude block generates the output as the absolute value of
the input. Figure 76 shows an example using the Magnitude block.

Figure 76. Magnitude Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
128 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Parallel Adder
Subtractor
Block

The Parallel Adder Subtractor block takes any input data type. If the input
widths are not the same, the SignalCompiler sign extends the buses so that
they match the largest input width. The VHDL generated has an
optimized, balanced adder tree. Table 18 shows the block parameters.

Figure 77 shows an example using the Parallel Adder Subtractor block.

Table 18. Parallel Adder Subtractor Parameters

Name Value Description

Number of Inputs 2 - 16 Indicate the number of inputs you wish to use.

Add (+) Sub (-) User Defined Specify addition or subtraction operation of each port with the
characters (+) / (-). i.e., for 3 ports +-+ yields a - b + c.
SignalCompiler will not accept two consecutive subtractions (i.e., --);
however, -+- is acceptable.

Pipeline On or Off When this option is turned on, the pipeline delay is equal to
ceil(log2(number of inputs)).

Use Control Inputs On or Off Indicate whether you would like to use additional control inputs (clock
enable and reset).

Clock Phase Selection User Defined Phase selection. Indicate the phase selection with a binary string,
where a 1 indicates the phase in which the block is enabled. For
example:

1—The block is always enabled and captures all data passing
through the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only
the second data out of 4 (sampled at the rate 1) passes through. In
other words, the data on phases 1, 3, and 4 do not pass through the
delay block.
Altera Corporation 129

DSP Builder User Guide Arithmetic Library
Figure 77. Parallel Adder Subtractor Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
130 Altera Corporation

Arithmetic Library DSP Builder User Guide

Arithm
etic

5

Library
Product Block The Product block supports two scalar inputs (no multi-dimensional
Simulink signals).

1 The Simulink software also provides a Product block. If you use
the Simulink Product block in your model, you can only use it for
simulation; SignalCompiler cannot convert it to HDL. If you try
to use the Simulink Product block with SignalCompiler,
SignalCompiler will either treat it as a block box or will generate
an error.

Table 19 shows the block parameters.

Figure 78 shows an example using the Product block.

Table 19. Product Parameters

Name Value Description

Pipeline 0 - 4 The Pipeline value represents the delay.

Use LPM On or Off This parameter is used for synthesis. When the Use LPM option is turned
on, the Product block is mapped to the LPM_MULT library of parameterized
modules (LPM) function and the VHDL synthesis tool uses the Altera
LPM_MULT implementation.

If the option is turned off, the VHDL synthesis tool uses the * native operator
to synthesize the product. If your design does not need arithmetic boundary
optimization—such as connecting a multiplier to constant combinatorial logic
or register balancing optimization—the LPM_MULT implementation generally
yields a better result for both speed and area.

Use Dedicated
Multiplier
Circuitry

On or Off Turn on this option if you want to use the dedicated multiplier circuitry in
Mercury or Stratix devices. This option is ignored if you do not target one of
these devices.

Use Control
Inputs

On or Off Indicate whether you would like to use additional control inputs (clock enable
and reset).

Clock Phase
Selection

User Defined Phase selection. Indicate the phase selection with a binary string, where a 1
indicates the phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled
at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only the
second data out of 4 (sampled at the rate 1) passes through. In other words,
the data on phases 1, 3, and 4 do not pass through the delay block.
Altera Corporation 131

DSP Builder User Guide Arithmetic Library
Figure 78. Product Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
132 Altera Corporation

6

Bu

Altera Corporation
Bus Manipulation Library
s M
anipulation

Library
The blocks in the Bus Manipulation library are used to manipulate signals
and buses to perform operations such as truncation, saturation, bit
extraction, or bus format conversion.

AltBus Block The AltBus block casts a floating-point Simulink bus to a fixed-point bus.
You can insert AltBus into a data or I/O primary path for inputs and
outputs.

When casting a signal to fixed point, you must specify the bit width. You
have the option of truncating, saturating, or rounding the result. If you
choose rounding or saturation, the appropriate logic is inserted.

Table 20 shows the AltBus parameters.

Table 20. AltBus Parameters (Part 1 of 2)

Name Value Description

Node Type Internal Node, Input Port, Output
Port, Constant, Black Box Input,
Black Box Output

Indicate the type of node you wish to create.

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer, or Single Bit

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Saturate On or Off When this option is turned on, if the output is greater
than the maximum positive or negative value to be
represented, the output is forced (or saturated) to the
maximum positive or negative value, respectively.
When this option is turned off, the MSB is truncated.
This option is not valid for the input port or constant
node types.
133

DSP Builder User Guide Bus Manipulation Library
f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

You can use the AltBus block in a Simulink design in any of the following
modes:

■ AltBus Input Port & Output Port Modes
■ AltBus Internal Node Mode
■ AltBus Black Box Input Output Mode
■ AltBus Constant Mode

AltBus Input Port & Output Port Modes

The Input Port and Output Port modes are used to define the boundaries
of the hardware implementation as well as to cast floating-point Simulink
signals (coming from generic Simulink blocks) to signed binary fractional
format (feeding DSP Builder blocks). Table 21 and Figure 79 illustrate
how a floating-point number (4/3 = 1.3333) is cast into SBF format with 3
different binary point locations.

Note:
(1) In this case, more bits are needed to represent the integer part of the number.

Round On or Off When this option is turned on, the output is rounded
away from zero. When this option is turned off, the
LSB is truncated: <int>(input +0.5). This option is not
valid for the input port or constant node types.

Bypass Bus Format On or Off Turn on this option if you wish to perform simulation in
Simulink using floating-point numbers.

Constant Value Double Indicate the constant value that will be formatted with
the bus parameter specified.

Table 20. AltBus Parameters (Part 2 of 2)

Name Value Description

Table 21. Floating-Point Numbers Cast to SBF

Bus Notation Input Simulink VHDL

[4].[1] 4/3 1.00 2.00

[2].[3] 4/3 1.25 10.00

[1].[4] 4/3 -0.6875 (1) -11.00
134 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
Figure 79. Floating-Point Conversion

AltBus Internal Node Mode

This mode is used to convert a Simulink signal from one SBF format to
another. This mode is used to assign the bus width of an internal node that
will be implemented in hardware. Figure 80 illustrates the usage of AltBus
in Internal Node mode (blocks Altbus1, AltBus2, and AltBus3) and Input
Port mode (block AltBus). In this example a 20-bit bus with a ([10].[10])
SBF format is converted to a 4-bit bus with a [2].[2] SBF format.

Figure 80. Internal Node
Altera Corporation 135

DSP Builder User Guide Bus Manipulation Library
In VHDL, this operation results in extracting a 4-bit bus (AltBus(3
DOWNTO 0)) from a 20-bit bus (AltBus(19 DOWNTO 0)) with the
assignment:

AltBus3(3 DOWNTO 0)) <= Altbus(11 DOWNTO 8))

You can also perform additional internal bus manipulation with the
Altera BusConversion, ExtractBit, or BuildBus blocks.

AltBus Black Box Input Output Mode

This AltBus mode is used for hierarchical designs. You should use this
node type if you do not want SignalCompiler to translate the sub-level
design to HDL (i.e., only the top-level symbol appears in the HDL). This
mode is useful when your model has a Simulink block that is associated
with a separate HDL block.

1 The pin names of the HDL block must match the pin names of
the Simulink block.

Figure 81 illustrates the Black Box Input Output mode. Refer to “Black
Boxing” on page 86“Black Boxing” on page 89 for an example.

Figure 81. Black Box Input Output Mode

Simulink
Model File

VHDL
Design File

DSP Builder
Block

Altera
Block

Non-DSP Builder
Block

VHDL
Subdesign

AltBus
(Black Box

Input Output
Mode)

For the VHDL subdesign to
work, the signal names in the
HDL design must be the
same as the signal names
in the Simulink model.

n

n

136 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
AltBus Constant Mode

Use this mode when a bus or bit must be set to a static value.
SignalCompiler translates the static value to a constant STD_LOGIC or
STD_LOGIC_VECTOR in VHDL. During synthesis, the synthesis tool
typically reduces the gate count of any logic fed by this constant signal.

1 If you use the Simulink Constant block in your Altera design,
you can only use it for simulation. If you try to use the Simulink
Constant block with SignalCompiler, SignalCompiler will either
treat it as a block box or will generate an error.
Altera Corporation 137

DSP Builder User Guide Bus Manipulation Library
Input, Output &
Constant
Blocks

The Input, Output, and Constant blocks are derived from the AtlBus
block. These blocks perform a subset of the functionality of the AltBus
block, i.e., input, output, or constant.

Table 22 shows the Input parameters.

Table 23 shows the Output parameters.

Table 22. Input Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer, or Single Bit

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Table 23. Output Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer, or Single Bit

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Saturate On or Off When this option is turned on, if the output is greater
than the maximum positive or negative value to be
represented, the output is forced (or saturated) to the
maximum positive or negative value, respectively.
When this option is turned off, the MSB is truncated.
This option is not valid for the input port or constant
node types.

Round On or Off When this option is turned on, the output is rounded
away from zero. When this option is turned off, the
LSB is truncated: <int>(input +0.5). This option is not
valid for the input port or constant node types.
138 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
Table 24 shows the Constant parameters.

Table 24. Constant Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer, or Single Bit

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Constant Value Double Indicate the constant value that will be formatted with
the bus parameter specified.
Altera Corporation 139

DSP Builder User Guide Bus Manipulation Library
Binary Point
Casting Block

The Binary Point Casting block moves the input bus binary point position.
The output bit width remains equal to the input bit width.

Table 25 shows the Binary Point Casting parameters.

Figure 82 shows a design example using the Binary Point Casting block.

Figure 82. Binary Point Casting Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 25. Binary Point Casting Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer, or Single Bit

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Output Binary Point
Position

0 - 51 Specify the binary point location of the output.
140 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
BusBuild Block The BusBuild block is used to construct buses from single-bit inputs. The
output bus is defined in signed binary fractional representation. You can
choose the bus type that you wish to use, and specify the number of bits
on either side of the binary point. The BusBuild and ExtractBit blocks are
typically used when mixing bit-level Boolean operation with arithmetic
operations. The HDL mapping of BusBuild is a simple wire.

The input MSB (which is the sign bit of the signed binary fractional bus) is
shown at the bottom left of the symbol and the input LSB is displayed at
the top left of the symbol. Table 26 shows the block parameters.

Figure 83 shows a design example using the BusBuild block.

Table 26. BusBuild Parameters

Name Value Description

Bus Type Signed Integer, Signed
Fractional, or Unsigned
Integer

Choose the number format of the bus.

Output [number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary point,
including the sign bit.

Output [].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary point.
This parameter only applies to signed binary fractional
buses.
Altera Corporation 141

DSP Builder User Guide Bus Manipulation Library
Figure 83. BusBuild Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
142 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
Bus
Concatenation
Block

This block concatenates two buses. The result is A + B bits wide, where A
is the most significant bit (MSB) slice of the output bus and B is the least
significant bit (LSB) slice of the output bus. Table 27 shows the block
parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 27. Bus Concatenation Parameters

Name Value Description

Bus A Width 1 - 51 Enter the width of the first bus to concatenate.

Bus B Width 1 - 51 Enter the width of the first bus to concatenate.

Output Is Signed On or Off Indicate whether the output bus is signed.
Altera Corporation 143

DSP Builder User Guide Bus Manipulation Library
BusConversion
Block

This block converts a bus from one node type to another. Table 28 shows
the block parameters.

Figure 84 shows a design example using the BusConversion block.

Table 28. BusConversion Parameters

Name Value Description

Input Bus Type Signed Integer, Signed
Fractional, Unsigned
Integer

Choose the input bus type for the simulator, VHDL or both.

Input [number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary point
including the sign bit.

Input [].[number of bits] 1 - 51 Indicate the number of bits to the right of the binary point. This
parameter only applies to signed binary fractional buses.

Output Bus Type Signed Integer, Signed
Fractional, Unsigned
Integer

Choose the output bus type for the simulator, VHDL or both.

Output [number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary point

Output [].[number of bits] 1 - 51 Indicate the number of bit on the right side of the binary point.
This parameter only applies to signed binary fractional buses.

Input Bit Connected to
Output MSB

0 - 51 Indicate which slice of the input bus to use. This parameter
designates the starting point (LSB) of the slice.

Input Bit Connected to
Output LSB

0 - 51 Indicate which slice of the input bus to use. This parameter
designates the ending point (MSB) of the slice.

Round On or Off Indicate whether rounding should be turned on or off.

Saturate On or Off Indicate whether saturation should be turned on or off.
144 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
Figure 84. BusConversion Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 145

DSP Builder User Guide Bus Manipulation Library
ExtractBit Block The ExtractBit block reads a Simulink bus in signed binary fractional
format and outputs the bit specified with the Extracted Bit parameter.
Table 29 shows the block parameters.

Figure 85 shows a design example using the ExtractBit block.

Figure 85. ExtractBit Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 29. ExtractBit Parameters

Name Value Description

Input [number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary point, including the
sign bit.

Input [].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary point.

Extracted Bit 0 - 32 Indicate which bit to extract.
146 Altera Corporation

Bus Manipulation Library DSP Builder User Guide

6

Bus M
anipulation

Library
GND Block The GND block is a single bit that outputs a constant 0.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 147

DSP Builder User Guide Bus Manipulation Library
VCC Block The VCC block is a single bit that outputs a constant 1.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
148 Altera Corporation

Altera Corporation
Complex Signals Library
7

Com
plex Signals
Library
Like Simulink, DSP Builder supports native complex signal types. Using
complex number notation simplifies the design of applications such as
FFT, I-Q modulation, and complex filters.

1 When connecting DSP Builder blocks to blocks from the
Complex Signals library (e.g., connecting AltBus to Complex
AddSub), you must use Real-Imag to Complex or Complex to
Real-Imag blocks between the blocks. See Figure 87 for an
example.

Butterfly
Operator Block

The Butterfly Operator block performs the following arithmetic operation
on complex signed integer numbers:

A = a + bW
B = a - bW

where a, b, W, A, and B are complex numbers (type signed integer) such
as:

a = x + jX
b = y+jY
W = v + jV
A = (x + yv) - YV + j(X + Yv + yV)
B = (x - yv) + YV + j(X - Yv - yV)

This function operates with full bit width precision. The full bit width
precision of A andB is 2 x [input bit width] + 2. The output bit width and
output LSB bit parameters are used to specfy the bit slice used for the
output ports A and B. For example, if the input bit width is 16, the output
bit width is 16, and the output LSB is 4, the full precision is 34 bits and the
output ports are A[19:4] and B[19:4]

Table 30 shows the Butterfly Operator parameters.
149

DSP Builder User Guide Complex Number Library
Figure 86 shows a design example using the Butterfly Operator block.

Figure 86. Butterfly Operator Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 30. Butterfly Operator Parameters

Name Value Description

Input Bit Width (a, b, W) 4 - 51 Specify the bit width of the complex signed integer inputs a,
b, and W.

Output Bit Width (A and
B)

4 - 51 Specify the bit width of the complex signed integer outputs A
and B.

Output LSB Bit 4 - 51 Specify the LSB bit of the output bus slice of the full resolution
computation.
150 Altera Corporation

Complex Number Library DSP Builder User Guide

7

Com
plex Signals
Library
Complex
AddSub Block

The Complex AddSub block performs output addition or subtraction of
two scalar complex inputs.

Table 31 shows the Complex AddSub parameters.

Figure 87 shows a design example using the Complex Add Sub block.

Figure 87. Complex Add Sub Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 31. Complex AddSub Parameters

Name Value Description

Arithmetic Operation Add or Subtract Choose which operation to perform.
Altera Corporation 151

DSP Builder User Guide Complex Number Library
Complex
Product Block

The Complex Product block performs output multiplication of two scalar
complex inputs.

Table 32 shows the Complex Product parameters.

Figure 87 on page 151 shows a design example using the Complex
Product block.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 32. Complex Product Parameters

Name Value Description

Arithmetic Operation Multiply Choose which operation to perform.
152 Altera Corporation

Complex Number Library DSP Builder User Guide

7

Com
plex Signals
Library
Complex
Multiplexer
Block

The Complex Multiplexer block is a 2 to 1 multiplexer for complex
numbers. The select line (port number 3) is a non-complex scalar.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 153

DSP Builder User Guide Complex Number Library
Complex
Conjugate
Block

The Complex Conjugate block outputs the conjugate or the inverse of the
scalar complex inputs.

Table 33 shows the Complex Conjugate parameters.

Figure 88 shows a design example using the Complex Conjugate block.

Figure 88. Complex Conjugate Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 33. Complex Conjugate Parameters

Name Value Description

Operation Conjugate, Inverse Choose which operation to perform.
154 Altera Corporation

Complex Number Library DSP Builder User Guide

7

Com
plex Signals
Library
Complex Delay
Block

The Complex Delay block delays the incoming data by the amount
specified by the Depth parameter. The input must be a complex number.

Table 34 shows the Complex Delay parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 34. Complex Delay Parameters

Name Value Description

Depth User Defined Indicate the delay length of the block.
Altera Corporation 155

DSP Builder User Guide Complex Number Library
Complex
Constant Block

The Complex Constant block outputs a fixed-point complex constant
value.

Table 35 shows the Complex Constant parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 35. Complex Constant Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
or Unsigned Integer

Choose the number format of the bus.

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary
point, including the sign bit. This parameter does not
apply to single-bit buses.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary
point. This parameter only applies to signed fractional
buses.

Real Value User Defined Indicate the value of the real part of the constant.

Imaginary Value User Defined Indicate the value of the real part of the constant.
156 Altera Corporation

Complex Number Library DSP Builder User Guide

7

Com
plex Signals
Library
Complex to
Real-Imag
Block

The Complex to Real-Imag block constructs a fixed-point real and fixed-
point imaginary output from a complex input.

Table 36 shows the Complex to Real-Imag parameters.

Figure 89 shows a design example using the Complex to Real-Imag block.

Figure 89. Complex to Real-Imag Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 36. Complex to Real-Imag Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer

Choose the number format you wish to use for
the bus.

Inputs [number of bits].[] 1 - 51 Select the number of data input bits to the left of
the binary point, including the sign bit.

Inputs [].[number of bits] 0 - 51 Select the number of data input bits to the right of
the binary point. This option is only available
when Signed Fractional is selected.
Altera Corporation 157

DSP Builder User Guide Complex Number Library
Real-Imag to
Complex Block

The Real-Imag to Complex block constructs a fixed-point complex output
from real and imaginary inputs.

Table 37 shows the Real-Imag to Complex parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 37. Real-Imag to Complex Parameters

Name Value Description

Bus Type Signed Integer, Signed Fractional,
Unsigned Integer

Choose the number format you wish to use for
the bus.

Inputs [number of bits].[] 1 - 51 Select the number of data input bits to the left of
the binary point, including the sign bit.

Inputs [].[number of bits] 0 - 51 Select the number of data input bits to the right
of the binary point. This option is only available
when Signed Fractional is selected.
158 Altera Corporation

Altera Corporation
DSP Board Library
DSP

8

Board Library
APEX DSP
Board
EP20K1500EBC
652-1X Library

The APEX DSP development board (professional version) is a prototyping
platform that provides system designers with an economical solution for
hardware and software verification. This rapid prototyping board enables
the user to debug and verify both functionality and design timing. With
two analog input and output channels per board and the ability to
combine boards easily with right angle connectors, the board can be used
to construct an extremely powerful processing system. Combined with
DSP IP from Altera and the Altera Megafunction Partners Program
(AMPP™) partners, the user can solve design problems that formerly
required custom hardware and software solutions.

1 Refer to the APEX DSP Development Kit Getting Started User Guide
for information on setting up the board and connecting it to your
PC.

The blocks in this library provide a connection to analog-to-digital (A/D)
converters, digital-to-analog (D/A) converters, LEDs, and switches on the
APEX DSP development board (professional version). With these blocks,
you do not have to make pin assignments to connect to these board
components. When targeting the DSP development board
EP20K1500EBC652-1X, the design must contain the DSP Board
EP20K1500EBC652-1X configuration block at the top hierarchical level, to
specify global clock and reset board connections. This library contains the
following blocks (see Figure 90):

■ DSP Board EP20K1500EBC652-1X Configuration—Board
configuration

■ A2D_0—Controls A/D converter 0 (J2)
■ A2D_1—Controls A/D converter 1 (J3)
■ D2A_0—Controls D/A converter 0 (J5)
■ D2A_1—Controls D/A converter 1 (J6)
■ LED0—Controls user LED 0 (D6)
■ LED1—Controls user LED 1 (D7)
■ LED2—Controls user LED 1 (D8)
■ SWITCH0—Controls push-button switch 0 (SW0)
■ SWITCH1—Controls push-button switch 1 (SW1)
■ SWITCH2—Controls push-button switch 2 (SW2)
■ SWITCH3—Controls slider switch 3 (SW3)
■ SWITCH4—Controls slider switch 4 (SW3)
■ SWITCH5—Controls slider switch 5 (SW3)
159

DSP Builder User Guide DSP Board Library
■ SWITCH6—Controls slider switch 6 (SW3)
■ Digital I/O Connectors—Choose to which bit in the bank of jumpers

you want to connect

Figure 90. APEX DSP EP20K1500EBC652-1X Blocks

Figure 91 shows an example switch controller design using the
SignalTap II and board blocks. Based on the user-controlled switches and
the value of the incrementer, an LED on the APEX DSP development
board turns on or off.
160 Altera Corporation

DSP Board Library DSP Builder User Guide

DSP

8

Board Library
Figure 91. Switch Controller Design Using DSP Board Blocks
Altera Corporation 161

DSP Builder User Guide DSP Board Library
APEX DSP
Board
EP20K200EBC6
52-1X Library

The APEX DSP development board (starter version) is a prototyping
platform that provides system designers with an economical solution for
hardware and software verification. This rapid prototyping board enables
the user to debug and verify both functionality and design timing. With
two analog input and output channels per board and the ability to
combine boards easily with right angle connectors, the board can be used
to construct an extremely powerful processing system. Combined with
DSP IP from Altera and the Altera Megafunction Partners Program
(AMPP™) partners, the user can solve design problems that formerly
required custom hardware and software solutions.

1 Refer to the APEX DSP Development Kit Getting Started User Guide
for information on setting up the board and connecting it to your
PC.

The blocks in this library provide a connection to analog-to-digital (A/D)
converters, digital-to-analog (D/A) converters, LEDs, and switches on the
APEX DSP development board (starter version). With these blocks, you
do not have to make pin assignments to connect to these board
components. When targeting the DSP development board
EP20K2000EBC652-1X, the design must contain the DSP Board
EP20K200EBC652-1X configuration block at the top hierarchical level, to
specify global clock and reset board connections. This library contains the
following blocks (see Figure 92):

■ DSP Board EP20K200EBC652-1X Configuration—Board
configuration

■ A2D_0—Controls A/D converter 0 (J2)
■ A2D_1—Controls A/D converter 1 (J3)
■ D2A_0—Controls D/A converter 0 (J5)
■ D2A_1—Controls D/A converter 1 (J6)
■ LED0—Controls user LED 0 (D6)
■ LED1—Controls user LED 1 (D7)
■ LED2—Controls user LED 1 (D8)
■ SWITCH0—Controls push-button switch 0 (SW0)
■ SWITCH1—Controls push-button switch 1 (SW1)
■ SWITCH2—Controls push-button switch 2 (SW2)
■ SWITCH3—Controls slider switch 3 (SW3)
■ SWITCH4—Controls slider switch 4 (SW3)
■ SWITCH5—Controls slider switch 5 (SW3)
■ SWITCH6—Controls slider switch 6 (SW3)
■ Digital I/O Connectors—Choose to which bit in the bank of jumpers

you want to connect
162 Altera Corporation

DSP Board Library DSP Builder User Guide

DSP

8

Board Library
Figure 92. APEX DSP EP20K200EBC652-1X Blocks

Figure 93 shows an example switch controller design using the
SignalTap II and board blocks. Based on the user-controlled switches and
the value of the incrementer, an LED on the APEX DSP development
board turns on or off.
Altera Corporation 163

DSP Builder User Guide DSP Board Library
Figure 93. Switch Controller Using DSP Board Blocks
164 Altera Corporation

DSP Board Library DSP Builder User Guide

DSP

8

Board Library
Stratix DSP
Board EP1S25
Library

The Stratix EP1S25 DSP development board is a prototyping platform that
provides system designers with an economical solution for hardware and
software verification. This rapid prototyping board enables the user to
debug and verify both functionality and design timing. With two analog
input and output channels per board and the ability to combine boards
easily with right angle connectors, the board can be used to construct an
extremely powerful processing system. Combined with DSP IP from
Altera and the Altera Megafunction Partners Program (AMPP™)
partners, the user can solve design problems that formerly required
custom hardware and software solutions.

1 Refer to the DSP Development Kit, Stratix Edition Getting Started
User Guide for information on setting up the board and
connecting it to your PC.

The blocks in this library provide a connection to analog-to-digital (A/D)
converters, digital-to-analog (D/A) converters, LEDs, and switches on the
Stratix EP1S25 DSP development board. With these blocks, you do not
have to make pin assignments to connect to these board components.
When targeting the DSP development board EP1S25F780C5, the design
must contain the Stratix DSP Board 1S25 Configuration block at the top
hierarchical level, to specify global clock and reset board connections. This
library contains the following blocks (see Figure 94):

■ DSP Board EP1S25F780C5 Configuration—Board configuration
■ A2D_0—Controls A/D converter 0 (J2)
■ A2D_1—Controls A/D converter 1 (J3)
■ D2A_0—Controls D/A converter 0 (J5)
■ D2A_1—Controls D/A converter 1 (J6)
■ LED0—Controls user LED 0 (D6)
■ LED1—Controls user LED 1 (D7)
■ LED2—Controls user LED 1 (D8)
■ SWITCH0—Controls push-button switch 0 (SW0)
■ SWITCH1—Controls push-button switch 1 (SW1)
■ SWITCH2—Controls push-button switch 2 (SW2)
■ SWITCH3—8 dipswitches
■ DEBUG_A—Controls debugging port A
■ DEBUG_B—Controls debugging port B
■ PROTO—Controls the prototyping area I/O
■ EVALIO_IN
■ EVALIO_OUT
■ RS2323 TIN—RS-232 serial port transmit input
■ RS2323 ROUT—RS-232 serial port receive output
Altera Corporation 165

DSP Builder User Guide DSP Board Library
Figure 94. Stratix DSP Board EP1S25 Blocks

Figure 95 shows an example switch controller design using the
SignalTap II and board blocks. Based on the user-controlled switches and
the value of the incrementer, an LED on the Stratix EP1S25 DSP
development board turns on or off.
166 Altera Corporation

DSP Board Library DSP Builder User Guide

DSP

8

Board Library
Figure 95. Switch Controller Using DSP Board Blocks
Altera Corporation 167

Altera Corporation
Gates Library
9

Gates Library
This library contains boolean operators, which you can use for
combinatorial functions.

Case Statement
Block

The Case Statement block compares the input signal (which must be a
signed or unsigned integer) with a set of case values. For each case, a
single-bit output is generated. You can implement as many cases as you
wish; append a comma (,) after each case. Additionally, you can have
multiple conditons for each case; use a pipe (|) to separate the conditions.
For example, for four cases with the first of which having 2 conditions,
you would enter 1|2,3,4,5, in the Case Values box. Table 38 shows the
Case Statement block parameters.

Figure 96 shows an example model using the Case Statement block.

Table 38. Case Statement Parameters

Name Value Description

Default Case On or Off Turn on this option if you want the default output signal to go high
when the other outputs are false.

Case Values User
Specified

Indicate the values with which you want to compare the input. Include
a comma after each value.
169

DSP Builder User Guide Gates Library
Figure 96. Case Statement Example

Figure 97 shows an excerpt of the VHDL that SignalCompiler generates
from the model.
170 Altera Corporation

Gates Library DSP Builder User Guide

9

Gates Library
Figure 97. Combinatorial Case Statement VHDL Output
p0:process(A1W)

begin
case A1W is

when "000001"|"000010"|"000011" =>
A0W <= ’1’;
A2W <= ’0’;
A6W <= ’0’;
A5W <= ’0’;
A4W <= ’0’;
A3W <= ’0’;

when "000100" =>
A0W <= ’0’;
A2W <= ’1’;
A6W <= ’0’;
A5W <= ’0’;
A4W <= ’0’;
A3W <= ’0’;

.

.

.
when "001000"|"001001"|"001010"|"001011" =>

A0W <= ’0’;
A2W <= ’0’;
A6W <= ’0’;
A5W <= ’0’;
A4W <= ’1’;
A3W <= ’0’;

when others=>
A0W <= ’0’;
A2W <= ’0’;
A6W <= ’0’;
A5W <= ’0’;
A4W <= ’0’;
A3W <= ’1’;

end case;
end process;

1 In Simulink, each wire is named A<number>W where <number> is
auto-generated.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 171

DSP Builder User Guide Gates Library
If Statement
Block

The If Statement block returns a boolean result based on the IF condition
equation. The input arguments—a, b, c, d, e, f, g, h, i, or j—must be signed
or unsigned integers. You can use any number of parentheses. The
operators are given in Table 39.

Table 40 shows the If Statement block parameters.

Figure 98 on page 173 shows an example using the If Statement block.

Table 39. Supported If Statement Operators

Operator Operation

+ OR

& AND

$ XOR

= Equal To

~ Not Equal To

> Greater Than

< Less Than

Table 40. If Statement Parameters

Name Value Description

Number of Inputs 2 - 10 Indicate the number of inputs to the If Statement.

IF User Defined Indicate the if condition using any of the following operators: +, &, $, =,
~, >, or < and the variables a, b, c, d, e, f, g, h, i, or j.

ELSE Output On or Off This option turns on the false output signal, which goes high if the
condition evaluated by the If Statement is false.

ELSE IF Input On or Off This option enables the n input signal (where n is the ELSE IF input),
which you can use to cascade multiple IF Statement blocks together.
172 Altera Corporation

Gates Library DSP Builder User Guide

9

Gates Library
Figure 98. If Statement Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 173

DSP Builder User Guide Gates Library
Logical Bit
Operator Block

This block performs logical operation on single-bit inputs. You can specify
a variable number of inputs. If the integer is positive, it is interpreted as a
boolean 1, otherwise it is interpreted as 0. The number of inputs is
variable.Table 41 shows the block parameters.

Figure 99 shows an example using the Logical Bit Operator block.

Figure 99. Logical Bit Operator Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 41. Logical Bit Operator Parameters

Name Value Description

Logical Operator AND, OR, XOR, NAND, NOR, or
NOT

Indicate which operator you wish to use.

Number of Inputs 1 - 16 Indicate the number of inputs. This parameter
defaults to 1 if the NOT logical operator is
selected.
174 Altera Corporation

Gates Library DSP Builder User Guide

9

Gates Library
Logical Bus
Operator Block

This block performs logical operations on a bus such as AND, OR, XOR,
or invert. You can perform masking by entering in decimal notation or
shifting. Table 44 shows the block parameters.

Figure 100 shows an example using the Logical Bus Operator block.

Figure 100. Logical Bus Operator Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 42. Logical Bus Operator Parameters

Name Value Description

[number of bits].[] 1 - 51 Indicate the number of bits to the left of the binary point,
including the sign bit.

[].[number of bits] 0 - 51 Indicate the number of bits to the right of the binary point.

Logic Operation AND, OR, XOR, Invert, Shift
Left, Shift Right, Rotate Left,
Rotate Right

Indicate the logical operation to perform.

Number of Bits to
Shift

User Defined Indicate how many bits you wish to shift.
Altera Corporation 175

DSP Builder User Guide Gates Library
LUT Block The LUT block stores data as 2(address width) words of data in a look-up
table. The values of the words are specified in the data vector field as a
MATLAB array.

Depending on the look-up table size, the synthesis tool may use logic cells
or embedded array blocks (EABs)/embedded system blocks
(ESBs)/TriMatrix memory. You should use a manual synthesis and
compilation flow (see “Manual Synthesis & Compilation” on page 45) if
you want to control the memory implementation.

1 If you want to use a Hexadecimal File (.hex) to store data, use the
ROM EAB block not the LUT block.

Table 43 shows the block parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 43. LUT Parameters

Name Value Description

Output Data [number of
bits].[]

1 - 51 Indicate the number of data bits stored on the left side of the binary
point including the sign bit.

Output Data [].[number
of bits]

0 - 51 Indicate the number of data bits stored on the right side of the binary
point.

Address Width 2 - 16 Indicate the address width.

MATLAB Array User Defined This field must be a one-dimensional MATLAB array with a length
smaller than 2 to the power of the address width. You can specify the
array in the MATLAB Command Window using a variable, or you can
specify it directly in the MATLAB Array box.

Use LPM On or Off If you turn on the Use LPM option, the SignalCompiler will implement
the look-up table using the lpm_rom library of parameterized modules
(LPM) function. If you turn off this option, SignalCompiler implements
the look-up table using Case conditions.

Altera recommends that you turn on the Use LPM option for large look-
up tables, e.g., greater than 8 bits.

Register Address On of Off When on, the input address bus is generated. If you are targeting either
Stratix or Cylone devices and using the Use LPM option, you must turn
on the register address option.
176 Altera Corporation

Gates Library DSP Builder User Guide

9

Gates Library
n-to-1
Multiplexer
Block

The n-to-1 Multiplexer block is a n-to-1 full binary bus multiplexer with
one select control. The output width of the multiplexer is equal to the
maximum width of the input data lines. The block works on any data type
and sign extends the inputs if there is a bit width mismatch. Table 44
shows the block parameters.

Figure 101 shows an example using the n-to-1 Multiplexer block.

Figure 101. n-to-1 Multiplexer Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 44. n-to-1 Multiplexer Parameters

Name Value Description

Number of Input
Data Lines

2 to 10 Choose how many inputs you want the multiplexer to
have.

One Hot Select Bus On or Off Indicate whether you want to use one-hot selection for
the bus select signal instead of full binary.
Altera Corporation 177

Altera Corporation
Rate Change Library
R
ate Change

10

Library
This library contains the blocks that allow you to control the clock
assignment to registered DSP Builder blocks, such as Delay or Increment
Decrement blocks.

To maintain cycle accuracy between Simulink and the VHDL domain,
make the following settings in the Solver tab of the Simulink block:

■ Choose Fixed-step from the Type list box under Solver options.
■ Choose discrete (no continuous state) under Solver options.
■ Choose Single Tasking from the Mode list box.

See Figure 102.

Figure 102. Set the Simulation Parameters
179

DSP Builder User Guide Rate Change Library
PLL Block The DSP Builder uses the PLL block to synthesize a clock signal that is
based on a reference clock. PLLs have become an important building
block of most high-speed digital systems today. Their use ranges from
improving timing as zero delay lines to full-system clock synthesis. Stratix
devices offer the most advanced on-chip PLL features, which were
previously offered only by the most complex discrete devices.

Each PLL has multiple outputs that can source any of the 40 system clocks
in the Stratix devices, which gives you complete control over your
clocking needs. The PLLs offer full frequency synthesis capability (the
ability to multiply up or divide down the clock frequency) and phase
shifting for optimizing I/O timing. Additionally, the PLLs have high-end
features such as programmable bandwidth, spread spectrum, and clock
switchover.

The PLL block generates internal clocks that operate at frequencies that
are multiples of the frequency of the system clock. The Cyclone and Stratix
PLLs can simultaneously multiply and divide the reference clock. The
PLL block checks the parameters’ validity on the fly.

The PLL block supports the following device families:

■ Stratix
■ Cyclone

For more information on the built-in PLLs, see AN 200: Using PLLs in
Stratix Devices PLL & Timing Glossary.

Table 45 shows the number of clock outputs that are available for each
family.

If you use the PLL block, the following restrictions apply:

■ The design must contain a single PLL instance at the top level
■ Each output clock of the PLL has a zero degree phase shift and 50%

duty cycle
■ All DSP Builder block Simulink sample times must equal one of the

PLL’s output clock periods

Table 46 shows the PLL parameters.

Table 45. Device Clock Outputs

Device Number of Clock Outputs

Stratix 6

Cyclone 6
180 Altera Corporation

Rate Change Library DSP Builder User Guide

R
ate Change

10

Library
f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 46. PLL Parameters

Name Value Description

Input Clock Frequency See AN 200 Input reference clock.

Number of Output Clocks 1 to 6 Number of PLL clock outputs.

Clock Frequency multiplication
factor

See AN 200 Multiply the reference clock by this value.

Clock Frequency division factor See AN 200 Divide the reference clock by this value.
Altera Corporation 181

DSP Builder User Guide Rate Change Library
Multi-Rate DFF
Block

The DSP Builder uses the multi-rate DFF block to synchronize data path
intersections involving multiple rates.

Table 47 shows the multi-rate DFF parameters.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 47. Multi-Rate DFF Parameters

Name Value Description

Use Control Inputs On or off Indicate whether you want to use additional control inputs (clock enable and
reset).

Clock Source 1 to 6 Specify PLL output clock source to the clock pin of the multi-rate DFF block.

When the design does not contain PLLs, the DSP Builder connects the
multi-rate DFF block clock pin to the main single clock.
182 Altera Corporation

Rate Change Library DSP Builder User Guide

R
ate Change

10

Library
Tsamp Block The DSP Builder uses the Tsamp block to specify the sample time period
of the internal data path source.

Table 48 shows the Tsamp parameters.

Figure 103 shows an example design with the Tsamp block. The design is
available in the /designexamples/cicfiletr/ directory.

Figure 103. Tsamp Example

Figure 104 shows the Tsamp example design in the LeonardoSpectrum
software.

Table 48. Tsamp Parameters

Name Value Description

Sample Time Period Any Specified the sample time period in seconds.
Altera Corporation 183

DSP Builder User Guide Rate Change Library
Figure 104. LeonardoSpectrum Representation of Tsamp Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
184 Altera Corporation

S

11

Altera Corporation
SOPC Ports Library
O
PC Ports

Library
The Nios® embedded processor is an industry-leading soft-core
embedded processor optimized for the high-performance, high-
bandwidth needs of network, telecommunications, and mass storage
applications. Part of the Excalibur™ embedded processor solutions, the
Nios embedded processor offers a variety of features to expand the
performance and flexibility of system-on-a-chip (SOPC) designs. The Nios
embedded processor includes a RISC CPU and the industry-standard
GNUPro software from Cygnus, a Red Hat company.

You can use the blocks in the SOPC Ports library to build a custom logic
block that works with the SOPC Builder and Nios embedded processor
designs. The SOPC Builder supports two general types of custom logic
blocks:

■ Peripherals that use the Avalon bus
■ Custom instructions that extend the function of the Nios arithmetic

logic unit (ALU) and instruction set
185

DSP Builder User Guide SOPC Ports Library
Avalon Ports This section contains a description of the Avalon Ports library and a
walkthrough.

Avalon Ports Block Description

You use the blocks in the Avalon Ports library to build Nios peripherals
that connect to the Avalon bus. The Avalon Ports blocks automate the
process of specifying slave ports that are compatible with the Avalon bus.
After you build a model of your DSP Builder peripheral, add blocks from
the Avalon Ports library to control the peripheral’s inputs and outputs.
Figure 105 shows the blocks in the Avalon Ports library.

Figure 105. Avalon Ports Library

When you convert your model to VHDL, the SignalCompiler creates a file,
class.ptf, in your working directory. The class.ptf file is a text file that
decribes:

■ Parameters that define the peripheral’s structure and/or
functionality

■ The peripheral’s slave role
■ The peripheral’s ports (such as read enable, read data, write enable,

write data)
186 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
■ The arbitration mechanism for each slave port that can be accessed by
multiple master ports

f For more information on the Avalon bus and PTF files, refer to the Avalon
Bus Specification Reference Manual.

After you synthesize your model and compile it in the Quartus II
software, you can add it to your Nios system using the SOPC Builder.
Your peripheral appears in the SOPC Builder peripherals listing.
Figure 106 shows the SOPC Builder with a Nios CPU, a DSP Builder-
created peripheral named top, and a DMA peripheral that connects to top.

Figure 106. SOPC Builder with DSP Builder Peripheral

1 For the peripheral to appear in the SOPC Builder, the working
directory for your SOPC Builder project must be the same as
your DSP Builder working directory.

f Refer to the Nios Tutorial for information on using the SOPC Builder to
create Nios designs.

Figure 107 shows the design flow using DSP Builder and SOPC Builder.

DSP Builder
Peripheral, top

top is connected to
the DMA via the
Avalon bus
Altera Corporation 187

DSP Builder User Guide SOPC Ports Library
Figure 107. DSP Builder & SOPC Builder Design Flow

Figure 108 shows an example model using blocks from the Avalon Ports
library.

Master/Slave
Avalon Modules

DSP Builder
Modules

Custom Instruction
Modules

SOPC
Builder

HDL
Simulation

Quartus II
188 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Figure 108. Avalon Ports Example

Avalon Ports Walkthrough

This walkthrough describes how to interface your design built using the
Avalon Ports library as a custom peripheral to the Nios embedded
processor in SOPC Builder. In this walkthrough, the toparc.mdl design is
included as a peripheral to the Avalon bus.

The design consists of a 4-tap FIR filter with variable coefficients. The
coefficients are loaded using the Nios embedded processor while the
input data is supplied by an off-chip source through an A/D converter.
The filtered output data is sent off-chip through a D/A converter.
Altera Corporation 189

DSP Builder User Guide SOPC Ports Library
This walkthrough involves the following steps:

1. “Open the Walkthrough Example Design” on page 190.

2. “Turn On the SOPC Option in SignalCompiler & Generate VHDL &
PTF Files” on page 191.

3. “Instantiating your Design as a Custom Peripheral to the Nios
Embedded Processor in SOPC Builder” on page 193.

Open the Walkthrough Example Design

To open the example design, perform the following steps:

1. Choose Open (File menu) in the MATLAB software.

2. Browse to the C:\DSPBuilder\DesignExamples\SOPCPort
directory.

3. Select the toparc.mdl file and click Open.

Figure 109 shows toparc.mdl.
190 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Figure 109. toparc.mdl Example Design

Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files

When you use the Avalon Ports blocks in your design, the SignalCompiler
can generate a class.ptf file for use in SOPC Builder. To generate a
class.ptf file within the SignalCompiler, perform the following steps:

1. Double-click the SignalCompiler block.

2. Click Analyze.

3. Click the right arrow to scroll the tabs to the right.

4. Click the SOPC Info tab (see Figure 110).
Altera Corporation 191

DSP Builder User Guide SOPC Ports Library
Figure 110. SOPC Info Tab in the SignalCompiler

5. Turn on the Generate PTF SOPC File option. When you turn on this
option, the SignalCompiler generates a class.ptf file for your design
that SOPC Builder detects automatically.

6. Choose Use Quartus II Synthesis from the Synthesis Tool list box.

7. Click 1 – Convert MDL to VHDL. SignalCompiler generates a
VHDL and a class.ptf file for your design.

8. Click 2 – Quartus II Compilation.

9. When the compilation has completed successfully, click OK.

The VHDL file for this design is in the directory:

C:\DSPBuilder\DesignExamples\SOPCPort

The class.ptf file is located in the directory:

C:\DSPBuilder\DesignExamples\SOPCPort\DSPBuilder_topach
192 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Instantiating your Design as a Custom Peripheral to the Nios Embedded
Processor in SOPC Builder

To instantiate your design as a custom peripheral to the Nios embedded
processor in SOPC Builder, perform the following steps:

1. Choose Open Project (File menu).

2. Browse to the C:\DSPBuilder\DesignExamples\SOPCPort
directory.

3. Select the topach.quartus project.

4. Choose SOPC Builder (Tools menu).

5. Enter nios32 as your System Name.

6. Select Verilog or VHDL for your HDL Language.

7. Click OK.

8. Click the System Contents tab.

9. The topach module is listed under DSP Builder Designs. Double-
click the topach module to include it in your Nios system (see
Figure 111). The class.ptf file, which was generated by
SignalCompiler, enabled SOPC Builder to detect the topach design
and include it as a module in SOPC Builder.

10. Select an appropriate base address for the topach module.
Altera Corporation 193

DSP Builder User Guide SOPC Ports Library
Figure 111. Including your DSP Builder Design Module in SOPC Builder

You can now design the rest of your Nios embedded processor system
using the standard Nios embedded processor design flow.

f For more information, refer to the following sources:

■ For information on using SOPC Builder to create a custom Nios
embedded processor, refer to the SOPC Builder Data Sheet.

■ For more information on using the Nios embedded processor, refer to
the Nios Processor literature page.
194 Altera Corporation

http://www.altera.com/literature/ds/ds_sopc.pdf
http://www.altera.com/literature/lit-nio.html
http://www.altera.com/literature/lit-nio.html

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Custom
Instruction

This section contains a description of the Custom Instruction library and
a walkthrough.

Custom Instruction Block Description

You use the blocks in the Custom Instruction library to build custom
instructions for Nios systems. The Custom Instruction blocks automate
the process of specifying ports that are compatible with the SOPC Builder:
the blocks correspond to the custom instruction ports used by the SOPC
Builder. After you build a model of your custom instruction, add blocks
from the Custom Instruction library to control the instruction’s inputs and
outputs. Figure 112 shows the blocks in the Custom Instruction library.

1 The DSP Builder does not support the Nios custom instruction
prefix port. All other ports are supported.

Figure 112. Custom Instruction Library

1 For non-combinatorial custom instructions, you must include
the start and clk_en blocks as inputs at the top level
Altera Corporation 195

DSP Builder User Guide SOPC Ports Library
With custom instructions, system designers can add custom-defined
functionality to the Nios embedded processor’s arithmetic logic unit
(ALU) and instruction set. Custom instructions consist of two essential
elements:

■ Custom logic block—Hardware that performs the operation. The Nios
embedded processor can include up to five user-defined custom logic
blocks. The blocks become part of the Nios microprocessor’s ALU.

■ Software macro—Allows the system designer to access the custom
logic through software code.

f For more information on Nios custom instructions, refer to AN 188:
Custom Instructions for the Nios Embedded Processor.

Figure 113 shows an example model using blocks from the Avalon Ports
library.

Figure 113. Custom Instruction Example

When you generate VHDL of your model that uses Custom Instruction
blocks, the SignalCompiler creates a wrapper file for use with the SOPC
Builder. See Figure 114 for an example wrapper file.
196 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Figure 114. Example Wrapper File for Use with SOPC Builder

You can specify that the Nios embedded processor use this wrapper file
as a custom instruction. Refer to AN 188: Custom Instructions for the Nios
Embedded Processor for instructions on how to specify the file as a custom
instruction. Figure 115 shows the Nios CPU Custom Instruction tab and
the Design Import Wizard.

1 When you import the custom instruction in the SOPC Builder,
you must specify the number of clock cycles that your design
uses.
Altera Corporation 197

DSP Builder User Guide SOPC Ports Library
Figure 115. Importing a Nios Custom Instruction

Custom Instruction Walkthrough

This walkthrough describes how to interface your design built using the
Custom Instruction library as a custom instruction to the Nios embedded
processor in SOPC Builder. In this walkthrough, the complexmult.mdl
design is included as a custom instruction.

The hardware design consists of a complex multiplier. When this
hardware is interfaced to a Nios embedded processor as a custom
instruction, the Nios embedded processor can complete a complex
multiplication in one instruction. Without the dedicated hardware to
perform the computation, a processor could take several instructions to
complete a similar computation entirely in software.

This walkthrough involves the following steps:

1. “Open the Walkthrough Example Design” on page 199.

2. “Turn On the SOPC Option in SignalCompiler & Generate VHDL &
PTF Files” on page 199.

Click Import to Open the
Design Import Wizard
198 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
3. “Including your Design as a Custom Instruction to the Nios
Embedded Processor in SOPC Builder” on page 201.

Open the Walkthrough Example Design

To open the example design, perform the following steps:

1. Choose Open (File menu) in the MATLAB software.

2. Browse to the
C:\DSPBuilder\DesignExamples\SopcCustomInstruction
directory.

3. Select the complexmult.mdl file and click Open.

Figure 116 shows the design that you will be using in this walkthrough.

Figure 116. complexmult.mdl Example Design

Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files

When you use the Custom Instruction blocks in your design the
SignalCompiler can generate a VHDL wrapper file of your Simulink
design for use in SOPC Builder. To generate the class.ptf file within the
SignalCompiler, perform the following steps:

1. Double-click the SignalCompiler block.

2. Click Analyze.

3. Click the right arrow button to scroll the tabs to the right.
Altera Corporation 199

DSP Builder User Guide SOPC Ports Library
4. Click the SOPC Info tab (see Figure 117).

Figure 117. SOPC Info Tab in the SignalCompiler

5. Turn on the Generate PTF SOPC File option. The SignalCompiler
generates a VHDL wrapper file for your design so that you can
instantiate it as a custom instruction in SOPC Builder. The wrapper
file is named <design name>_ci.vhd.

6. Choose Use Quartus II Synthesis from the Synthesis Tool list box.

7. Click 1 – Convert MDL to VHDL. The SignalCompiler generates a
VHDL and a class.ptf file for your design.

8. Click 2 – Quartus II Compilation.

9. When the compilation has completed successfully, click OK.

The VHDL design file and the complexmult_ci.vhd wrapper file for this
design are located in the directory:

C:\DSPBuilder\DesignExamples\SopcCustomInstruction
200 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Including your Design as a Custom Instruction to the Nios Embedded
Processor in SOPC Builder

To include your design as a custom instruction to the Nios embedded
processor in SOPC Builder, perform the following steps:

1. Choose Open Project (File menu).

2. Browse to the
C:\DSPBuilder\DesignExamples\SopcCustomInstruction
directory.

3. Select the complexmult.quartus project.

4. Choose SOPC Builder (Tools menu).

5. Enter nios32 as your System Name.

6. Select Verilog or VHDL for your HDL Language.

7. Click OK.

8. Click the System Contents tab.

9. Double-click Altera Nios 2.2 CPU. The Altera Nios 2.2 Wizard
dialog box is displayed (see Figure 118).

Figure 118. Altera Nios 2.2 Wizard Dialog Box
Altera Corporation 201

DSP Builder User Guide SOPC Ports Library
10. Turn on the Enable advanced configuration controls option.

11. Click the Custom Instructions tab (see Figure 119).

Figure 119. Altera Nios 2.2 Wizard – Custom Instructions Tab

12. Click the USR0 under Opcode to select the row.

13. Click Import.

14. The Interface to User Logic Dialog Box is displayed (see
Figure 120).
202 Altera Corporation

SOPC Ports Library DSP Builder User Guide

SO
PC Ports

11

Library
Figure 120. Interface to User Logic Window

15. Click Add.

16. Browse to the
C:\DSPBuilder\DesignExamples\SopcCustomInstruction
directory and select the complexmult_ci.vhd file.

17. Click Populate Port Table.

18. Click Add to System. Your DSP Builder design is added as a custom
instruction named comp.

19. Type a 1 in the Cycle Count column for comp. The SOPC Builder
cycle count column sets the design latency, which is the number of
clock cycles required to compute a valid output.

20. Click Finish.
Altera Corporation 203

DSP Builder User Guide SOPC Ports Library
You can now design the rest of your Nios embedded processor system
using the standard Nios embedded processor design flow.

f For more information, refer to the following documentation:

■ For implementing Nios Custom Instructions in SOPC Builder, refer to
AN188: Custom Instructions for the Nios Embedded Processor.

■ For using SOPC Builder to create a custom Nios embedded processor,
refer to the SOPC Builder Data Sheet.

■ For using the Nios embedded processor, refer to the Nios Processor
literature page.
204 Altera Corporation

http://www.altera.com/literature/an/an188.pdf
http://www.altera.com/literature/ds/ds_sopc.pdf
http://www.altera.com/literature/lit-nio.html

Altera Corporation
State Machine Functions
Library
State M
achine

12

Library
State Machine
Table Block

The State Machine Table block allows you use a state transition table to
build a one-hot Moore state machine where the output is equal to the
current state (see Figure 121).

Figure 121. State Transition Table for a FIFO Controller

The default State Machine Table symbol is shown in Figure 122. The
default state machine has five inputs and five states. Each state is
represented by an output. While the state machine is operating, an output
is assigned a logic level 1 if its respective state is equal to the current state.
All other outputs get assigned a logic level 0. In Simulink, the input and
output are represented as signed integers. In VHDL, the input and output
are represented as standard logic vectors.

Figure 122. Default State Machine Table Block
205

DSP Builder User Guide State Machine Library
The following sections describe the design flow used to implement a state
machine in DSP Builder. The sections use an example design,
fifo_control_logic.mdl, which contains a simple state machine used to
implement the control logic for a FIFO. The state machine feeds the
control inputs of a dual port RAM block and the inputs of an address
counter. The operation of the state machine is as follows:

■ When the push input is asserted and the address counter is less than
250, the address counter is incremented and a byte of data is written
to memory.

■ When the pop input is asserted and the address counter is greater
than 0, the address counter is decremented and a byte of data is read
from memory.

■ When the address counter is equal to 0, the empty flag is asserted.
■ When the address counter is equal to 250, the full flag is asserted

Table 49 shows the state transition table for the FIFO controller.

Figure 123 shows the top-level schematic for the FIFO design example.

Table 49. Idle State Condition Priority

Current State Condition Next State

empty (push=1)&(count_in!=250) push_not_full

empty (push=0)&(pop=0) idle

full (push=0)&(pop=0) idle

full (pop=1) pop_not_empty

idle (pop=1)&(count_in=0) empty

idle push=1 push_not_full

idle (pop=1)&(count_in!=0) push_not_empty

idle (push=1)&(count_in=250) full

pop_not_empty (push=0)&(pop=0) idle

pop_not_empty (pop=1)&(count_in=0) empty

pop_not_empty (push=1)&(count_in!=250) push_not_full

pop_not_empty (pop=1)&(count_in!=0) pop_not_empty

pop_not_empty (push=1)&(count_in=250) full

push_not_full (push=0)&(pop=0) idle

push_not_full (pop=1)&(count_in=0) empty

push_not_full (push=1)&(count_in!=250) push_not_full

push_not_full (push=1)&(count_in=250) full

push_not_full (pop=1)&(count_in!=0) pop_not_empty
206 Altera Corporation

State Machine Library DSP Builder User Guide

State M
achine

12

Library
Figure 123. FIFO Design Example Top-Level Schematic

When you install the DSP Builder software, the design files are installed
in the directory structure shown in Figure 124.

Figure 124. Directory Structure for the FIFO Design Example

The design flow using the State Machine Table block involves the
following steps:

1. Add a State Machine Table block to your Simulink design and assign
it a name. Figure 125 shows the State Machine Table block. In this
example, the block is fifo_controller.

StateMachineTable
Contains the design example for the state machine table design flow section.

DesignExamples
Contains the design examples.

StateMachine
Contains the state machine library design examples.

DSPBuilder
Altera Corporation 207

DSP Builder User Guide State Machine Library
Figure 125. fifo_controller State Machine Block

1 You must change the default name of the State Machine
Table block, before defining the state machine properties.

2. Double-click the State Machine Table block to define the state
machine properties. The State Machine Builder GUI appears with the
Inputs tab selected. The Inputs tab displays the input names defined
for your state machine and provides an interface to allow you to add,
change, and delete input names. Figure 126 shows the Inputs tab
after the inputs have been defined for the FIFO design example.

Figure 126. State Machine Builder Inputs Tab

3. Click the States tab. The States tab displays the state names defined
for your state machine and provides an interface to allow you to add,
change, and delete state names. The States tab also allows you to
select the reset state for your state machine. The reset state is the
state to which the state machine transitions when the reset input is
asserted.

1 You must define at least two states for the state machine.

Figure 127 shows the State Machine Builder States tab. The states
have been edited for the FIFO design example.
208 Altera Corporation

State Machine Library DSP Builder User Guide

State M
achine

12

Library
Figure 127. State Machine Builder States Tab

4. After specifying the input and state names, click the Conditional
Statements tab and describe the behavior of your state machine (see
Figure 128 on page 210).

The Conditional Statements tab displays the state transition table,
which contains the conditional statements that define your state
machine. A conditional statement consists of a current state, a
condition that causes a transition to take place, and the next state to
which the state machine transitions. The current state and next state
values must be state names defined in the States tab. Table 50 shows
the priority of the conditional operators used to define a conditional
expression.

At least one conditional statement must be defined in the
Conditional Statements tab.

1 To indicate in a conditional statement that a state machine
always transitions from the current state to the next state,
specify the conditional expression to be 1.
Altera Corporation 209

DSP Builder User Guide State Machine Library
Figure 128 shows the Conditional Statements tab, after defining the
conditional statements for the FIFO controller.

Figure 128. State Machine Builder Conditional Statements Tab

When a state machine is in a particular state, it may have to evaluate
more than one condition to determine the next state to which it
transitions. The conditions are evaluated in the order that you list
them in the conditional statements table. For example, Table 51
shows the conditional statements when the current state is idle.
Because the condition (pop=1) & (count_in=0) is higher in the table
than the condition (push=1) & (count_in=250), it has higher priority.
The condition (pop=1) & (count_in!=0) has the next highest priority
and (push=1) & (count_in=250) has the lowest priority.

Table 50. Supported Operators in Conditional Expressions

Comparison Operator Description Priority Example

- (unary) Negative 1 -1

(...) Brackets 1 (1)

= Numeric equality 2 in1=5

!= Not equal to 2 in1!=5

> Greater than 2 in1>in2

>= Greater than or equal to 2 in1>=in2

< Less than 2 in1<in2

<= Less than or equal to 2 in1<=in2

& AND 2 (in1=in2)&(in3>=4)

| OR 2 (in1=in2)|(in1>in2)
210 Altera Corporation

State Machine Library DSP Builder User Guide

State M
achine

12

Library
Figure 129 shows the VHDL code that is generated from the states in
Table 51. The extension _sig is added to the input names in the
VHDL file.

Figure 129. Idle State VHDL Code

IF ((pop_sig=1) AND (count_in_sig=0)) THEN
next_state <= empty_st;

ELSIF (push_sig=1) THEN
next_state <= push_not_full_st;

ELSIF ((pop_sig=1) AND (count_in_sig/=0)) THEN
next_state <= pop_not_empty_st;

ELSIF ((push_sig=1) AND (count_in_sig=250)) THEN
next_state <= full_st;

ELSE
next_state <= idle_st;

END IF;

You can use the Move Up and Move Down buttons to change the
order of the conditional statements. For example, if you move the
condition push=1 down, as shown in Table 52, the State Machine
Builder generates the VHDL code shown in Figure 130.

Table 51. Idle State Condition Priority

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle push=1 push_not_full

idle (pop=1)&(count_in!=0) push_not_empty

idle (push=1)&(count_in=250) full

Table 52. Idle State Condition Priority (Reordered)

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle (push=1)&(count_in=250) full

idle (pop=1)&(count_in!=0) push_not_empty

idle push=1 push_not_full
Altera Corporation 211

DSP Builder User Guide State Machine Library
Figure 130. Idle State VHDL Code (Reordered)

IF ((pop_sig=1) AND (count_in_sig=0)) THEN
next_state <= empty_st;

ELSIF ((pop_sig=1) AND (count_in_sig/=0)) THEN
next_state <= pop_not_empty_st;

ELSIF ((push_sig=1) AND (count_in_sig=250)) THEN
next_state <= full_st;

ELSIF (push_sig=1) THEN
next_state <= push_not_full_st;

ELSE
next_state <= idle_st;

END IF;

5. Click the Design Rule Check tab and verify that the state machine
you defined in the previous steps does not violate any of the design
rules. Click Analyze to evaluate the design rules for your state
machine. If a design rule is violated, an error message, highlighted in
red, is listed in the Analysis Results box. Figure 131 shows the
Design Rule Check tab after clicking Analyze. If error messages
appear in the analysis results, fix the errors and re-run the analysis
until no error messages appear before simulating and generating
VHDL for your design.

Figure 131. State Machine Builder Design Rule Check Tab

6. To save the changes made to your state machine, click OK. State
Machine Builder closes and returns you to your Simulink design file.
The design file is automatically updated with the input and output
names defined in the previous steps. Figure 132 shows the updated
State Machine Table block for the FIFO design example.
212 Altera Corporation

State Machine Library DSP Builder User Guide

State M
achine

12

Library
Figure 132. State Machine Table Block after Specifying the State Machine

Figure 133 shows the VHDL code generated by the State Machine
builder.
Altera Corporation 213

DSP Builder User Guide State Machine Library
Figure 133. VHDL Code Generated by the State Machine Builder

7. Connect the State Machine Table block to the rest of your design.

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
214 Altera Corporation

Altera Corporation
Storage Library

Storage Library

13
Delay Block The Delay block delays the incoming data by the amount specified by the
Depth parameter. The block accepts any data type as inputs. Table 53
shows the block parameters.

Figure 134 shows an example using the Delay block.

Table 53. Delay Parameters

Name Value Description

Depth User Defined Indicate the delay length of the block.

Use Control Inputs On or Off Indicate that you wish to use the additional control inputs, clock enable,
and resets.

Clock Phase
Selection

User Defined Phase selection. Indicate the phase selection with a binary string, where a
1 indicates the phase in which the block is enabled. For example:

1—The delay block is always enabled and captures all data passing
through the block (sampled at the rate 1).

10—The delay block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The delay block is enabled on the second phase out of 4 and only
the second data out of 4 (sampled at the rate 1) passes through. In other
words, the data on phases 1, 3, and 4 do not pass through the delay block.
215

DSP Builder User Guide Storage Library
Figure 134. Delay Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
216 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Down Sampling
Block

The Down Sampling block decreases the output sample rate from the
input sample rate. The output data is sampled at every mth cycle where m
is equal to the down sampling rate. The input sample rate is normalized
to 1 in Simulink (see “Frequency Design Rule” on page 64 for a description
of how to normalize the frequency). Table 54 shows the block parameters.

Figure 135 shows an example using the Down Sampling block.

Figure 135. Down Sampling Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 54. Down Sampling Parameters

Name Value Description

Down Sampling Rate 1 - 20 Indicate the down sampling rate.
Altera Corporation 217

DSP Builder User Guide Storage Library
Dual-Port RAM
Block

When you use the Dual-Port RAM block, SignalCompiler maps data to the
embedded RAM (EABs or ESBs) in Altera devices; the contents of the
RAM are pre-initialized to zero. The Dual-Port RAM block accepts any
data type as input. All input ports are registered; all output ports are
unregistered. Table 55 shows the block parameters.

The Dual-Port RAM block has the following ports:

■ d—Input data
■ q—Output data
■ rdad—Read address bus
■ wrad—Write address bus
■ wren—Write enable

Figure 136 shows an example using the Dual-Port RAM block.

Table 55. Dual-Port RAM Parameters

Name Value Description

Address Width 2 - 20 Indicate the address width.

Clock Phase
Selection

User Defined Phase selection. Indicate the phase selection with a binary string, where a
1 indicates the phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only the
second data out of 4 (sampled at the rate 1) passes through. In other
words, the data on phases 1, 3, and 4 do not pass through the delay block.
218 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Figure 136. Dual-Port RAM Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 219

DSP Builder User Guide Storage Library
Parallel to
Serial Block

The Parallel to Serial block implements a parallel (input d) to serial bus
conversion (output sd). Table 56 shows the block parameters.

Figure 137 shows an example using the Parallel to Serial block.

Figure 137. Parallel to Serial Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 56. Parallel to Serial Parameters

Name Value Description

Data Bus Type Signed Integer, Signed
Fractional, Unsigned
Integer

Choose the bus type format.

[number of bits].[] 1 - 51 Indicate the number of bits stored on the left side of the
binary point including the sign bit.

[].[number of bits] 0-51 Indicate the number of bits stored on the right side of the
binary point including the sign bit. This option only applies to
signed fractional formats.

Serial Bit Order MSB First, LSB First Indicate whether the most significant bit (MSB) or least
significant bit (LSB) should be transmitted first.
220 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Pattern Block The Pattern block generates a repeating periodic bit sequence in time. For
example, 01100 yields
0110001100011000110001100011000110001100 in time. You can
change the output data rate for a registered block by feeding the clock
enable input with the output of the Pattern block. Table 57 shows the
block parameters.

Figure 138 shows an example using the Pattern block.

Figure 138. Pattern Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 57. Pattern Parameters

Name Value Description

Binary Sequence User Defined Indicate the sequence that you wish to use.

Use Control Inputs On or Off Indicate that you wish to use additional control inputs (clock
enable and reset).
Altera Corporation 221

DSP Builder User Guide Storage Library
ROM EAB Block The ROM EAB block is used to read out pre-loaded data. The data input
must be specified as a hexadecimal file. To use the embedded memory in
an Altera device as ROM, use the ROM EAB block to read in an Intel-
format Hexadecimal File (.hex) containing the ROM data.

You can use the Quartus II software to generate a Hex File. Search for
“Creating a Memory Initialization File or Hexadecimal (Intel-Format)
File” in Quartus II Help for instructions on creating this file.

1 If you use the Quartus II software to generate a Hex File, you
must save the Hex File in your DSP Builder working directory.

Table 58 shows the block parameters.

Figure 139 shows an example using the ROM EAB block.

Table 58. ROM EAB Parameters

Name Value Description

Data Bus Type Signed Integer,
Signed
Fractional,
Unsigned Integer

Choose the bus type format.

[number of bits].[] 1 - 51 Indicate the number of bits stored on the left side of the binary point
including the sign bit.

[].[number of bits] 1-51 Indicate the number of bits stored on the right side of the binary point
including the sign bit. This option only applies to signed fractional
formats.

Address Width 2 - 20 Indicate the address width.

Clock Phase
Selection

User Defined Phase selection. Indicate the phase selection with a binary string, where
a 1 indicates the phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through
the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase out of 4 and only the
second data out of 4 (sampled at the rate 1) passes through. In other
words, the data on phases 1, 3, and 4 do not pass through the delay
block.

Input Hex File User Defined;
<filename>.hex

Indicate the name of the HEX File to use.
222 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Figure 139. ROM EAB Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
Altera Corporation 223

DSP Builder User Guide Storage Library
Serial to
Parallel Block

The Serial to Parallel block implements a serial (input sd) to parallel bus
conversion (output d). Table 59 shows the block parameters.

Figure 140 shows an example using the Serial to Parallel block.

Figure 140. Serial to Parallel Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 59. Serial to Parallel Parameters

Name Value Description

Data Bus Type Signed Integer, Signed
Fractional, Unsigned
Integer

Choose the bus type format.

[number of bits].[] 1 - 51 Indicate the number of bits stored on the left side of the
binary point including the sign bit.

[].[number of bits] 0-51 Indicate the number of bits stored on the right side of the
binary point including the sign bit. This option only applies to
signed fractional formats.

Serial Bit Order MSB First, LSB First Indicate whether the most significant bit (MSB) or least
significant bit (LSB) should be transmitted first.
224 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Shift Taps
Block

The Shift Taps block implements a shift register that you can use for filters
or convolution. In the Altera device, the block implements a RAM-based
shift register that is useful for creating very large shift registers efficiently.
The block outputs occur at regularly spaced points along the shift register
(i.e., taps). In Stratix devices, this block is implemented in the small
memory. Table 60 shows the block parameters.

Figure 141 shows an example using the Shift Taps block.

Table 60. Shift Taps Parameters

Name Value Description

Number of Taps User Defined Specifies the number of regularly spaced taps along the shift register

Distance Between Taps User Defined Specifies the distance between the regularly spaced taps in clock
cycles. This number translates to the number of RAM words that will
be used.

Use Shift Out On or Off Indicate whether you want to create an output from the end of the
shift register for cascading.

Use Clock Enable On or Off Indicate whether you would like to use an additional control input
(clock enable).

Use Dedicated
Hardware

On or Off If you are targeting Stratix devices, turn on this option to implement
the functionality in Stratix small memory.
Altera Corporation 225

DSP Builder User Guide Storage Library
Figure 141. Shift Taps Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.
226 Altera Corporation

Storage Library DSP Builder User Guide

Storage Library

13
Up Sampling
Block

The Up Sampling block increases the output sample rate from the input
sample rate. The output data is sampled every l cycles where l is equal to
the up sampling rate. Table 61 shows the block parameters.

Figure 142 shows an example using the Up Sampling block.

Figure 142. Up Sampling Example

f See “Block I/O Formats” on page 78 for information on the block I/O
formats.

Table 61. Up Sampling Parameters

Name Value Description

Up Sampling Rate 1 - 20 Indicate the up sampling rate.
Altera Corporation 227

Altera Corporation
Troubleshooting

Troubleshooting

14
This section contains the following troubleshooting information:

■ “Fixing “Unresolved Width” Error When Converting a Model File to
VHDL” on page 229

■ “Bit Widths in VHDL Are Different than the Expected Bit Width
Based on the Simulink Model File” on page 231

■ “Simulink Simulation Results for the Pattern &
Increment/Decrement Blocks Does Not Match the Results from
ModelSim” on page 231

■ “Passing Pin Constraints to the AltBus Block” on page 232
■ “ModelSim Error for Missing “lpm_components” when Running

DSP Builder Tcl Script” on page 232
■ “Integrating VHDL Components into Simulink Model Files (Black

Boxing)” on page 232
■ “Read Previous DSP Builder Designs with DSP Builder v2.1.0” on

page 233
■ “The Altera DSP Builder Folder Does Not Appear in the Simulink

Library Browser” on page 233
■ “Automated Flow Does Not Run Properly” on page 234
■ “APEX DSP Development Board Troubleshooting” on page 236
■ “Error Message: SignalCompiler Is Unable to Check a Valid License”

on page 236
■ “ModelSim Fails with the SignalCompiler-Generated Tcl Scripts” on

page 239
■ “The Simulink Library Browser Does Not Show Altera MegaCore

Blocks” on page 240
■ “Specifying LeonardoSpectrum, Synplify & Quartus II Path

Information for SignalCompiler” on page 240
■ “The Wizard for an IP MegaCore Block Does Not Launch” on

page 241

Fixing “Unresolved Width” Error When Converting a Model File
to VHDL

You may get an unresolved width error if you have a feedback loop in
your design and the feedback loop’s bit width is not defined explicitly.
For example, Figure 143 exhibits this error.
229

DSP Builder User Guide Troubleshooting
Figure 143. Feedback Loop with Unresolved Width Error

To avoid this error, include an AltBus block configured as an internal
node to specify the bit width in the feedback loop explicitly, as shown in
Figure 144.

Figure 144. Feedback Loop with AltBus Block as an Internal Node
230 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
Bit Widths in VHDL Are Different than the Expected Bit Width
Based on the Simulink Model File

DSP Builder propagates bit widths by assuming that bit width
information from a source block passes to the destination block.
Sometimes, this propagation involves automatic sign extension, which
applies to arithmetic operations (adders, multipliers, etc.) and logical
operators (multiplexers, etc.). Propagation works across data types,
including signed integer, signed binary fractional (SBF), and unsigned
integer.

DSP Builder sign extends unsigned numbers with an additional MSB
stuck to zero. For SBF, the MSB is signed extended, while the LSB is zero-
extended. For example, if you multiply the SBF operands:

A[4].[4] x B[2].[2]

DSP Builder automatically sign extends B to B[4].[4] such that

B(0) = B(1) = 0
B(7) = B(6) = B(5)

The Signal Compiler Report File provides complete bit width information.

Simulink Simulation Results for the Pattern &
Increment/Decrement Blocks Does Not Match the Results from
ModelSim

You may experience this problem if you are using blocks that do not have
the sample time explicitly specified. DSP Builder inherits the sample time
from source blocks. However, some blocks, such as the Pattern and
Increment/Decrement blocks, may not have source blocks. You must
explicitly specify the sample time for these blocks using one of the
following options:

■ Turn on the Use Control Inputs option to add the Tsamp block to the
control inputs.

■ Specify Fixed Step Size as 1 instead of auto in the Simulation
Parameters window (choose Simulation Parameters from the
Simulation menu).
Altera Corporation 231

DSP Builder User Guide Troubleshooting
Passing Pin Constraints to the AltBus Block

To pass pin constraints to the ports in your Simulink Model File, associate
the design with a specific board library. SignalCompiler must detect a
board configuration block in the Model File before it can pass pin
constraints to the Tcl script for the Quartus II project.

ModelSim Error for Missing “lpm_components” when Running
DSP Builder Tcl Script

You may receive the error:

(vcom-11) Could not find lpm.lpm_components.

because of the ModelSim settings on your machine. There are two ways to
work around this problem:

■ Delete the lpm and work libraries in your project directory, and rerun
the Tcl script, tb_<filename>.tcl.

■ Manually compile the 220pack.vhd and 220model.vhd libraries
found in the <path to DSP Builder>\Altlib directory into the lpm
library.

Integrating VHDL Components into Simulink Model Files (Black
Boxing)

You can use the SubSystem Builder block with the Create Black Box
SubSystem option. This setting uses the AltBus block in Black Box Input
Output mode to specify the port description.

If you have an existing VHDL design with a clock signal, you have to
create a wrapper file with an input port named simulink_clock. This
port automatically maps to the Simulink system clock. The symbol created
by SubSystem Builder still has a isimulink_clock port, which must be
connected. However, the port is disregarded in the actual design during
the VHDL conversion.

f For details, refer to “Black Boxing” on page 86.
232 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
Read Previous DSP Builder Designs with DSP Builder v2.1.0

DSP Builder version 2.1.0 has a new library format. You must use the
libupd utility to convert the library format of a Model File made using
blocks from DSP Builder version 2.0.0 or earlier before opening the file in
version 2.1.0. To use the libupd utility, perform the following steps:

1. At the MATLAB prompt type libupd r. The DSP Builder Library
Update dialog box appears (see Figure 145).

Figure 145. Library Update Window

2. Click Load Mdl File

3. Select the Model File to convert.

4. Click Convert MDL to DSP Builder to 2.1.0 Format.

The Altera DSP Builder Folder Does Not Appear in the Simulink
Library Browser

If, after installation, the Altera DSP Builder folder does not appear in the
Simulink Library Browser, perform the following steps in MATLAB:

1. Close Simulink.

2. At the MATLAB prompt in the MATLAB Command Window,
change directory to <installation path>\DSPBuilder\Altlib. The
default is c:\DSPBuilder\Altlib.

3. Type the command Setup_DSPBuilder r.

4. Open the Simulink Library Browser; the Altera DSP Builder folder
should appear.
Altera Corporation 233

DSP Builder User Guide Troubleshooting
Automated Flow Does Not Run Properly

The DSP Builder automated flow allows you to control your entire
synthesis and compilation flow from within the MATLAB/Simulink
environment using the SignalCompiler block. With the automated flow,
the SignalCompiler block outputs VHDL files and Tcl scripts and then
automatically begins synthesis in the LeonardoSpectrum, Synplify, or
Quartus II software and compilation in the Quartus II software.

If the LeonardoSpectrum, Synplify, or Quartus II software does not run
automatically, perform the following steps:

1. Check software paths

2. Change the system path settings

Check the Software Paths (Registry Settings)

If you have multiple versions of the same software product on your PC
(e.g., Quartus II Limited Edition and a full version of the Quartus II
software), your registry settings may point to the wrong version.

DSP Builder obtains the paths to the software from the registry settings.
To check which paths DSP Builder is using, type the following commands
in the MATLAB Command Window:

cd <DSP Builder install path>\DSPBuilder\Altlib r
dos(’vhdlconv’); r

This command outputs the status of SignalCompiler. See Figure 146.

Figure 146. SignalCompiler Status Output

DSP Builder
Quartus II development tool and MATLAB/Simulink Interface
Version 1.0.0$Revision: 14.24 $
Copyright © 2001 Altera Corporation. All rights reserved.
EDA Information

Quartus II : C:\quartus\bin\quartus_cmd -f
Synplicity : C:\synplicity\synplify\bin\synplify_pro -batch
LeonardoSpectrum : C:\Exemplar\LeoSpec\v2001_1a_28_OEM_Altera\bin\win32\spectrum

-product ls1 -nosession_file -file
License Information
 DSP Builder license is valid 16dok(1)
234 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
Change the System Path Settings

If the paths to the software are incorrect, fix them by performing the
following steps:

1. Choose Run (Windows Start Menu).

2. Type regedit in the Open box and click OK.

3. Expand HKEY_LOCAL_MACHINE by clicking the plus symbol
next to it.

4. Expand SOFTWARE.

5. Expand Altera Corporation.

6. Click Quartus.

7. Verify that the Quartus Install Directory is set to the location in
which you installed the version of Quartus II software you want to
use (e.g., c:\quartus). If it is not set to the correct installation
directory:

a. Double-click the text Quartus Install Directory.

b. Type the correct path into the Value data box.

c. Click OK.

8. Check the registry settings for the LeonardoSpectrum or Synplify
software.

a. The registry key that contains path information for
LeonardoSpectrum is Exemplar. For the Leonardo-Spectrum-
Altera software it is located in the Exemplar Logic >
LeonardoSpectrum > <version>_OEM_Altera folder.

b. The registry key that contains path information for Synplify is
Synplify and Synplify Pro.

The keys are located in the Synplicity > currentversion folder.

9. Close the Registry Editor when you are done making changes.
Altera Corporation 235

DSP Builder User Guide Troubleshooting
APEX DSP Development Board Troubleshooting

If the SignalCompiler does not appear to have configured the device on
the DSP development board, refer to the following troubleshooting
information:

■ Ensure that the board is set up and connected to your PC and you
have installed any necessary drivers. Refer to the DSP development
board’s getting started user guide for instructions.

■ When the board is powered up, the CONF_DONE LED is
illuminated. The CONF_DONE LED turns off and then on when
configuration completes successfully. If you do not observe the LED
operating in this way, configuration was unsuccessful.

■ You can configure the DSP board manually using an SRAM Object
File (.sof), a ByteBlasterMV download cable, and the Quartus II
Programmer in JTAG mode. SignalCompiler generates the .sof in
your working directory. Refer to any of the lab white papers included
with the Stratix or APEX DSP development kit for instructions on
using a .sof to configure the board.

Error Message: SignalCompiler Is Unable to Check a Valid
License

You will receive this error message if you try to generate VHDL files and
Tcl scripts (or try to generate VHDL stimuli) without having installed a
license for DSP Builder. Refer to “Set Up Licensing” on page 22 for
information on how to obtain a license. Additionally, refer to “Verifying
that Your DSP Builder Licensing Functions Properly” on page 236.

Verifying that Your DSP Builder Licensing Functions Properly

Type the following command in the MATLAB Command Window:

dos(’lmutil lmdiag C4D5_512A’) r

This command outputs the status of the DSP Builder license. See
Figure 147.
236 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
Figure 147. Example DSP Builder License Status Output

lmutil - Copyright (C) 1989-1999 Globetrotter Software, Inc.
FLEXlm diagnostics on Wed 10/24/2001 14:36

License file: c:\qdesigns\license.dat

"C4D5_512A" v0000.00, vendor: alterad
uncounted nodelocked license, locked to Vendor-defined "GUARD_ID=T000001297" no expiration date

1 You will receive the message about the hostid if you are using
an Altera software guard for licensing.

If the command does not work as described above, your license file may
not be set up correctly. Refer to “Automated Flow Does Not Run
Properly” on page 234 for information on how to check your system path
and registry settings. Additionally, refer to “Verifying that the
LM_LICENSE_FILE Variable Is Set Correctly” on page 238.

If your license file has a SERVER line, type the following command in the
MATLAB Command Window:

dos(’lmutil lmstat -a’) r

This command outputs the status of the DSP Builder license. See
Figure 148.

Figure 148. Example DSP Builder License Status Output (Server)

lmutil - Copyright (C) 1989-1999 Globetrotter Software, Inc.
Flexible License Manager status on Fri 8/3/2001 15:36
License server status: 1501@shama,1501@mogul,1501@newton
License file(s) on shama: /usr/licenses/quartus/license.dat:

shama: license server UP (MASTER) v7.0
mogul: license server UP v7.0
newton: license server UP v7.0

Vendor daemon status (on shama):
alterad: UP v7.0
Feature usage info:
Users of C4D5_512A: (Total of 100 licenses available)

If the command does not work as described above, your license file may
not be set up correctly. Refer to “Automated Flow Does Not Run
Properly” on page 234 for information on how to check your system path
and registry settings. Additionally, refer to “Verifying that the
LM_LICENSE_FILE Variable Is Set Correctly” on page 238.
Altera Corporation 237

DSP Builder User Guide Troubleshooting
Verifying that the LM_LICENSE_FILE Variable Is Set Correctly

The LM_LICENSE_FILE system variable must point to your license.dat
file that includes the DSP Builder FEATURE line for the DSP Builder to
operate properly. Perform the steps below for your platform to set the
variable.

1 If you have multiple versions of software that uses a license.dat
file (e.g., Quartus II Limited Edition and a full version of the
Quartus II software), make sure that the LM_LICENSE_FILE
variable points to the version of software you want to use with
DSP Builder.

Other software products, such as LeonardoSpectrum, also use
the LM_LICENSE_FILE variable to point to a license file. You
can combine several license.dat files into one or you can specify
multiple license.dat files in the steps below.

Windows NT

Perform the following steps:

1. Choose Settings > Control Panel (Windows Start menu).

2. Double-click the System icon in the Control Panel window.

3. In the System Properties dialog box, click the Environment tab.

4. Click the System Variable list to highlight it, and then in the
Variable box, type LM_LICENSE_FILE.

5. In the Value box, type <path to license file>\license.dat.

6. Click OK.

Windows 2000

Perform the following steps:

1. Choose Settings > Control Panel (Windows Start menu).

2. Double-click the System icon in the Control Panel window.

3. In the System Properties dialog box, click the Advanced tab.

4. Click the Environment Variables button.
238 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
5. Click the System Variable list to highlight it, and then click New.

6. In the Variable Name box, type LM_LICENSE_FILE.

7. In the Variable Value box, type <path to license file>\license.dat.

8. Click OK.

Windows 98

Perform the following steps:

1. With a text editor, open your PC’s autoexec.bat file.

2. Type the following environment variable on its own line in the
autoexec.bat file:

set LM_LICENSE_FILE=<path to license file>\license.dat

3. Save the autoexec.bat file.

4. Restart the PC.

I've Tried Everything but It Still Doesn’t Work

■ Try running the setup_DSPBuilder command (see “The Altera DSP
Builder Folder Does Not Appear in the Simulink Library Browser” on
page 233.

■ Try adding the following paths to your system path:
– quartus/bin
– matlab/bin

■ Uninstall and reinstall DSP Builder. After uninstalling DSP Builder,
use the Windows Explorer to delete any DSP Builder files or
directories that remain in the file system manually.

ModelSim Fails with the SignalCompiler-Generated Tcl Scripts

The SignalCompiler testbench reads (vsim) data files for each of the
inputs of the design (extension .salt) during simulation. If these files are
not present in the working directory, the simulation fails. The data files
are created in Simulink during Simlink simulation when the
SignalCompiler Generate Stimuli for VHDL Testbench option is turned
on (Testbench tab).
Altera Corporation 239

DSP Builder User Guide Troubleshooting
The Simulink Library Browser Does Not Show Altera MegaCore
Blocks

The Simulink Library Browser may not display Altera MegaCore
functions if you installed DSP Builder before you installed the MATLAB
software.

There are two ways to fix this problem.

■ At the MATLAB prompt, change directory to <DSP Builder
installation directory>/Altlib.

Type setup_dspbuilder r.

■ After installing MATLAB, you need to modify the files (or create
them if they do not exist) the files startup.m and
StartupAlteraDspBuilder.m, which should be located in the
directory <MATLAB root>\toolbox\local.

startup.m should contain the following lines:

run(’StartupAlteraDspBuilder’);

StartupAlteraDspBuilder.m should contain the following lines:

path(path, ’c:\DSPBuilder\Altlib’);

dos(’"c:\DSPBuilder\Altlib\GetAlteraPath"

"c:\DSPBuilder\Altlib"’);

SetAlteraMegaCorePath;

Specifying LeonardoSpectrum, Synplify & Quartus II Path
Information for SignalCompiler

To launch the LeonardoSpectrum, Synplify, or Quartus II software,
SignalCompiler retrieves the software’s path information from your PC’s
registry file. In DSP Builder version 2.0.0 or higher you can specify a
different path for SignalCompiler to use for each of the tools. The
<installation path>\DSPBuilder\Altlib directory contains an XML
configuration file (edaconfig.xml) containing the paths. You can modify
the file with a text editor or any XML editor such as XML Notepad.

The XML configuration file has three tags for each tool:

■ <GetPathFromRegistry><on or off></GetPathFromRegistry>
■ <ForcedPath><path></ForcedPath>
■ <ToolVersion><version></ToolVersion>
240 Altera Corporation

Troubleshooting DSP Builder User Guide

Troubleshooting

14
The <GetPathFromRegistry> tag takes the values on and off. When
it is on (default), SignalCompiler reads the path from the registry file.
When it is off, SignalCompiler reads the path from the <ForcedPath>
tag. Figure 149 shows an example.

Figure 149. Example XML Code Specifying EDA Tool Paths

<EdaConfig>
 <synplicity>
 <GetPathFromRegistry>on</GetPathFromRegistry>
 <ForcedPath>C:\synplicity\Synplify_71\bin</ForcedPath>
 <ToolVersion>7.1</ToolVersion>
 </synplicity>
 <quartus>
 <GetPathFromRegistry>on</GetPathFromRegistry>
 <ForcedPath>c:\quartus\bin</ForcedPath>
 <ToolVersion>2.0</ToolVersion>
 </quartus>
 <leonardospectrum>
 <GetPathFromRegistry>on</GetPathFromRegistry>
 <ForcedPath>C:\Exemplar\LeoSpec\OEM2002a_Altera_NIGHTLY_14\bin\win32</ForcedPath>
 <ToolVersion>2002a</ToolVersion>
 </leonardospectrum>
</EdaConfig>

For example, SignalCompiler runs LeonardoSpectrum from the
C:\Exemplar\LeoSpec\OEM2002a_Altera_NIGHTLY_14\bin\win32
directory.

1 If you modify the XML settings, ensure that the value for
<ToolVersion> is the correct version for the software located at
<ForcedPath>.

The Wizard for an IP MegaCore Block Does Not Launch

For the IP MegaCore wizards to operate properly, you must include the
SignalCompiler block in the model. Set the top-level model file (i.e.,
working directory) so that it includes the path to your model.

1 Paths in the MATLAB and Simulink software are case sensitive.
Therefore, the path must be exactly as it appears in your system,
including the case.
Altera Corporation 241

Altera Corporation
Appendix—Example Tcl
Scripts
Appendix

15
Figures 150 through 153 show sample Tcl scripts created by the
SignalCompiler block for the amplitude modulation design example. See
“DSP Builder Tutorial” on page 24 for information on how these files were
generated.

Figure 150. Example LeonardoSpectrum Tcl Script
243

DSP Builder User Guide Appendix
Figure 151. Example Synplify Tcl Script
244 Altera Corporation

Appendix DSP Builder User Guide

Appendix

15
Figure 152. Example Quartus II Tcl Script
Altera Corporation 245

DSP Builder User Guide Appendix
Figure 153. Example ModelSim Tcl Script
246 Altera Corporation

Appendix DSP Builder User Guide

Appendix

15
Figure 154. Example ModelSim Script
Altera Corporation 247

Appendix

15

Appendix—Creating Custom
Library Blocks
Overview This appendix describes how to build a custom library block for use with
Simulink and DSP Builder. Custom blocks are HDL subsystems in which
the block functionality is described using DSP Builder primitives or IP.
With this method, you can create a single design representation that can
be used in Simulink and as VHDL RTL.

This appendix uses the design example top.mdl (see Figure 155), which is
provided in <DSP Builder path>\designexample\customlibrary.

Figure 155. top.mdl Example

RamBasedDelay, which is used in top.mdl, is a paramerizable Simulink
block that is compatible with DSP Builder flows (see Figure 156).
RamBasedDelay has two parameters, Data bit width and Delay.

Figure 156. RamBasedDelay Block
Altera Corporation 249

DSP Builder User Guide Appendix-Creating Custom Libraries
Create a
Custom Block

To create a custom block, perform the following steps. The following
sections describe these steps in greater detail.

1. Create a Library Model File with the HDL Subsystem Block

2. Build the HDL Subsystem Functionality

3. Create Parameters & Functionality Using the Mask Editor

4. Generate the MATLAB Initialization Script

Create a Library Model File with the HDL Subsystem Block

Create a Model File for your custom block by performing the following
steps in the Simulink software:

1. Choose New > Library (File menu).

2. Choose Save (File menu).

3. Save the file, e.g, as MyLib.mdl.

4. Open the Simulink Library Browser.

5. Expand the DSP Builder library.

6. Expand the Altlab library.

7. Drag and drop the HDL Subsystem block into your model.

8. Click the text HDL Subsystem.

9. Rename the block as DelayFIFO.

10. Choose Save (File menu).

Build the HDL Subsystem Functionality

To add functionality to the DelayFIFO block, perform the following steps:

1. Double-click the DelayFIFO block. The MyLib/DelayFIFO window
opens.

2. Remove the connection line between the AltBus and AltBus1 blocks.
250 Altera Corporation

Appendix-Creating Custom Libraries DSP Builder User Guide

Appendix

15
3. Drag and drop the DSP Builder Shift Taps block from the Storage
library into the MyLib/DelayFIFO window.

4. Position the block between the AltBus and AltBus1 blocks.

5. Double-click the Shift Taps block to open the block parameters
dialog box.

6. Set the following parameters:

– Number of TAPs: 1
– Distance Between Taps: 10
– Use Clock Enable: turn on
– Use Deicated Circuitry: turn on

7. Click OK.

8. Select the In1 and AltBus blocks.

9. Copy and paste the blocks.

10. Rename the blocks as described below:

– Shift Taps: DRB
– In1: InDin
– Altbus: Din
– In2: InEna
– AltBus2: Ena
– AltBus1: Dout
– Out1: OutDout

11. Draw connection lines from Din to the top of DRB, from Ena to the
ena port on DRB, and from DRB to Dout. Figure 157 shows the
completed design.
Altera Corporation 251

DSP Builder User Guide Appendix-Creating Custom Libraries
Figure 157. DelayFIFO Design

12. Choose Save (File menu).

13. Close the MyLib/DelayFIFO window.

Create Parameters & Functionality Using the Mask Editor

Create parameters for the DelayFIFO block using the Mask Editor by
performing the following steps:

1. Right-click DelayFIFO in the MyLib model.

2. Choose Edit Mask from the pop-up menu.

3. Click the Initialization tab.

4. Make the following settings:

– Prompt: Data Bit Width
– Variable: bwl

5. Click Add.

6. Make the following settings:

– Prompt: Delay
– Variable: d

7. Type RamDelay(gcb, bwl, d); in the Initialization commands
box. Figure 158 shows the tab after you have made these settings.
252 Altera Corporation

Appendix-Creating Custom Libraries DSP Builder User Guide

Appendix

15
Figure 158. Initialization Tab

8. Click the Icon tab.

9. Add the symbol information shown in Figure 159. (Optional)

Figure 159. Icon Tab

10. Click the Documentation tab.

11. Add symbol documentation information as shown in Figure 160.
(Optional)
Altera Corporation 253

DSP Builder User Guide Appendix-Creating Custom Libraries
Figure 160. Documentation Tab

12. Click OK.

13. Choose Save (File menu).

f Refer to The MathWorks documentation on using Simulink for additional
information on the Mask Editor.

Generate the MATLAB Initialization Script

To pass parameters from the symbol’s mask into the block, you use a
MATLAB initialization script, DelayFIFOScript.m. To create this file,
perform the following steps:

1. In the MATLAB window, choose New > M-file (File menu).

2. Type in the code shown in Figure 161.
254 Altera Corporation

Appendix-Creating Custom Libraries DSP Builder User Guide

Appendix

15
Figure 161. DelayFFOScript.m File

The set_param command passes a parameter to a block, for
example to specify that the input bit width is 8. For example:

set_param(s_Din, ‘bwl’, num2str(symbol_width));

Where:

– symbol_width is the input bit width
– s_Din is a string (the name of the block Din)
– bwl is the parameter name of the Din block (which is the DSP

Builder block)

3. For your custom block to work properly, make sure that the files
(MyLib.Mdl, and DelayFIFOScript.m) are either located in the
working directory or in the MATLAB system path (refer to MATLAB
help for information on setting the path).

f For more information on M-files, search for the Simulink model
construction command name in MATLAB online help (e.g., get_param,
set_param, bdroot, gcb, gcs, etc.).
Altera Corporation 255

DSP Builder User Guide Appendix-Creating Custom Libraries
256 Altera Corporation

	About this User Guide
	How to Find Information
	How to Contact Altera
	Typographic Conventions
	Abbreviations & Acronyms

	About DSP Builder
	Features
	General Description
	MegaCore Functions
	High-Speed DSP with Programmable Logic

	Getting Started
	Software Requirements
	Design Flow
	Install the DSP Builder
	Obtaining the DSP Builder
	Installing the DSP Builder
	DSP Builder Directory Structure

	Set Up Licensing
	Appending the License to Your license.dat File
	Specifying the DSP Builder License File in the Quartus II Software

	DSP Builder Tutorial
	Creating the Amplitude Modulation Model
	Create a New Model
	Add the SignalCompiler Block
	Add the Sine Wave Block
	Add the SinIn Block
	Add the Delay Block
	Add the SinDelay Block
	Add the Mux Block
	Add the Random Number Block
	Add the Noise Block
	Add the BusBuild Block
	Add the GND Block
	Add the Product Block
	Add the StreamMod Block
	Add the Scope Block
	Simulate Your Model in Simulink

	Performing RTL Simulation
	Synthesizing & Compiling the Design
	Automated Flow (within Simulink)
	Manual Flow (Outside Simulink)
	Automated Synthesis & Compilation
	Manual Synthesis & Compilation
	Manual Synthesis
	Compile the Design Manually in the Quartus II Software

	Create a Quartus II Symbol of Your DSP Builder Design

	Using MegaCore Functions
	MegaCore Functions in MATLAB/Simulink
	MegaCore Simulation Options

	Performing SignalTap�II Logic Analysis
	Open the Walkthrough Example Design
	Specify the Nodes to Analyze
	Turn On the SignalTap II Option in SignalCompiler
	Generate VHDL, Synthesize, Compile & Download the Design to the DSP Board
	Specify Trigger Conditions
	Specify the Radix for the Bus Groups
	Perform SignalTap�II Analysis

	DSP Builder Design Rules
	About the DSP Builder Blocks
	Bit Width Design Rule
	Frequency Design Rule
	Single Clock Domain
	Multiple Clock Domains
	Using Advanced PLL Features

	DSP Builder Naming Conventions
	SignalCompiler Design Rules
	Fixed-Point Notation
	Binary Point Location in SBF
	Block I/O Formats
	Goto & From Block Support
	MegaCore Function Support
	Hierarchical Design
	Black Boxing
	Using DSP Builder Modules in External RTL Designs

	AltLab Library
	HDL SubSystem Block
	SignalCompiler Block
	Data Width Propagation
	Tapped Delay Line
	Arithmetic Operation

	Clock Assignment
	DSP Builder Report File

	SignalTap II Analysis Block
	Design Flow
	Nodes
	Trigger Conditions

	Node Block
	SubSystem Builder Block

	Arithmetic Library
	Comparator Block
	Divider Block
	Gain Block
	Increment Decrement Block
	Multiply Accumulate Block
	Multiply Add Block
	Magnitude Block
	Parallel Adder Subtractor Block
	Product Block

	Bus Manipulation Library
	AltBus Block
	AltBus Input Port & Output Port Modes
	AltBus Internal Node Mode
	AltBus Black Box Input Output Mode
	AltBus Constant Mode

	Input, Output & Constant Blocks
	Binary Point Casting Block
	BusBuild Block
	Bus Concatenation Block
	BusConversion Block
	ExtractBit Block
	GND Block
	VCC Block

	Complex Signals Library
	Butterfly Operator Block
	Complex AddSub Block
	Complex Product Block
	Complex Multiplexer Block
	Complex Conjugate Block
	Complex Delay Block
	Complex Constant Block
	Complex to Real-Imag Block
	Real-Imag to Complex Block

	DSP Board Library
	APEX DSP Board EP20K1500EBC 652-1X Library
	APEX DSP Board EP20K200EBC6 52-1X Library
	Stratix DSP Board EP1S25 Library

	Gates Library
	Case Statement Block
	If Statement Block
	Logical Bit Operator Block
	Logical Bus Operator Block
	LUT Block
	n-to-1 Multiplexer Block

	Rate Change Library
	PLL Block
	Multi-Rate DFF Block
	Tsamp Block

	SOPC Ports Library
	Avalon Ports
	Avalon Ports Block Description
	Avalon Ports Walkthrough
	Open the Walkthrough Example Design
	Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files
	Instantiating your Design as a Custom Peripheral to the Nios Embedded Processor in SOPC Builder

	Custom Instruction
	Custom Instruction Block Description
	Custom Instruction Walkthrough
	Open the Walkthrough Example Design
	Turn On the SOPC Option in SignalCompiler & Generate VHDL & PTF Files
	Including your Design as a Custom Instruction to the Nios Embedded Processor in SOPC Builder

	State Machine Functions Library
	State Machine Table Block

	Storage Library
	Delay Block
	Down Sampling Block
	Dual-Port RAM Block
	Parallel to Serial Block
	Pattern Block
	ROM EAB Block
	Serial to Parallel Block
	Shift Taps Block
	Up Sampling Block

	Troubleshooting
	Fixing “Unresolved Width” Error When Converting a Model File to VHDL

	Bit Widths in VHDL Are Different than the Expected Bit Width Based on the Simulink Model File

	Simulink Simulation Results for the Pattern & Increment/Decrement Blocks Does Not Match the Resul...
	
Passing Pin Constraints to the AltBus Block

	
ModelSim Error for Missing “lpm_components” when Running DSP Builder Tcl Script

	Integrating VHDL Components into Simulink Model Files
 (Black Boxing)
	Read Previous DSP Builder Designs with DSP Builder v2.1.0
	The Altera DSP Builder Folder Does Not Appear in the Simulink Library Browser
	Automated Flow Does Not Run Properly
	Check the Software Paths (Registry Settings)
	Change the System Path Settings

	APEX DSP Development Board Troubleshooting
	Error Message: SignalCompiler Is Unable to Check a Valid License
	Verifying that Your DSP Builder Licensing Functions Properly
	Verifying that the LM_LICENSE_FILE Variable Is Set Correctly
	Windows NT
	Windows 2000
	Windows 98

	I've Tried Everything but It Still Doesn’t Work

	ModelSim Fails with the SignalCompiler-Generated Tcl Scripts
	The Simulink Library Browser Does Not Show Altera MegaCore Blocks
	Specifying LeonardoSpectrum, Synplify & Quartus�II Path Information for SignalCompiler
	The Wizard for an IP MegaCore Block Does Not Launch

	Appendix—Example Tcl Scripts
	Appendix—Creating Custom Library Blocks
	Overview

	Create a Custom Block
	Create a Library Model File with the HDL Subsystem Block

	Build the HDL Subsystem Functionality

	Create Parameters & Functionality Using the Mask Editor

	Generate the MATLAB Initialization Script

