CERTIFICATION OBJECTIVES

2.0l

2.02
2.03
2.04

Introduction to the Data Pump
Architecture

Using Data Pump Export and Import
Monitoring a Data Pump Job

Creating External Tables for
Data Population

2.05
2.06

v
Q&A

Defining Your External Table Properties

Transporting Tablespaces Across
Different Platforms

Two-Minute Drill
Self Test

2 Chapter 2: Loading and Unloading Data

Imost every Oracle DBA is familiar with the traditional Oracle data-loading utilities:

export and import. In Oracle Database |0g, you now have a newer and more

refined version of the old export and import utilities, called the Data Pump export
and import utilities. The old export and import utilities continue to be available under Oracle
Database 10g, but Oracle would prefer you to use the Data Pump technology, because it offers
you more sophisticated features than the old export/import technology.

While the Data Pump export and import utilities look quite similar to the traditional
export and import utilities, the new technology is vastly superior in many ways. For
example, you can now interrupt export/import jobs in the middle, and then resume
them. You can even restart failed export and import jobs. You can also remap object
attributes to modify the objects. You can easily monitor your Data Pump jobs from a
different session, and you can even modify job attributes on the fly, during the course
of a job. It is easy now to move massive amounts of data quickly, using parallelization
techniques. Because Oracle provides you the Application Programming Interfaces
(APIs) for the Data Pump technology, you can now easily incorporate export/import
jobs within PL/SQL programs.

on the The Data Pump export and import jobs need more startup time than the
Qob
old export and import utilities. Therefore, you may still want to use the old
export and import utilities for small jobs.

In this chapter, you'll also look at the new features related to transportable tables,
as well as enhancements in the external tables feature, which was first introduced in
Oracle9i. In Oracle Database 10g, you can now write to external tables, instead of being
merely be able to read from them.

Introduction to the Data Pump architecture
Using Data Pump export and import
Monitoring a Data Pump job

Creating external tables for data population
Defining external table properties

Transporting tablespaces across different platforms

Let’s start this very important chapter with a brief introduction to the new Data

Pump technology.

Introduction to the Data Pump Architecture 3

CERTIFICATION OBJECTIVE 2.01

Introduction to the Data Pump Architecture

on the

Qob

The new Oracle Data Pump facility enables DBASs to transfer large amounts of data
and metadata at very high speeds compared to the older export/import technology.
Data Pump manages multiple, parallel streams of data to achieve maximum throughput.
Oracle claims that Data Pump enables you to decrease total export time by more than
two orders of magnitude in most data-intensive export jobs. Imports are supposed to
run 15 to 30 times faster than with the original import utility. Both of the above estimates
are for single-thread operations; parallel threads will make the operations even faster.

Oracle Data Pump is a complete superset of the original export and import utilities.
In addition to all the old capabilities of the export and import utilities, Data Pump
also lets you estimate job times, perform fine-grained object selection, monitor jobs
effectively, and directly load one database from a remote instance.

For compatibility purposes, Oracle still includes the old export and import utilities
in Oracle Database 10g. Thus, you can continue to use your export and import scripts
as usual, without any changes. Oracle Corporation recommends that you use the
Oracle Database10g Data Pump export and import, even though the older export
and import utilities are still available to you, because of the superior performance
provided by the newer tools. Oracle will support the original import utility forever.
This means that you'll always have a way of importing dump files from earlier versions
of Oracle. However, Oracle will eventually deprecate the original export utility.

The new Data Pump technology lets you export data only to disk. You cannot
use a tape drive when performing a Data Pump export.

Oracle Data Pump technology consists of two components: the Data Pump export
utility, to unload data objects from a database, and the Data Pump import utility, to
load data objects into a database. You access the two Data Pump utilities through a
pair of clients called expdp and impdp. As their names indicate, the first of these
corresponds to the traditional export utility and the latter to the import utility. You
can control both Data Pump export and import with the help of several parameters.
Here’s how you invoke the two utilities:

$ expdp username/password (various parameters here)
S impdp username/password (various parameters here)

4 Chapter 2:

on the

Qob

Loading and Unloading Data

I’m sure you are quite familiar with the interactive mode of using the traditional
export and import utilities. In this mode, you enter your choices in response to various
prompts. The parameters are the same for the interactive and command-line modes,
although you can use only a limited set of export and import parameters during an
interactive operation. Unlike in the old export and import utilities, Data Pump
utilities have a set of parameters you can use at the command line and a set of special
commands you can use only in an interactive mode. I'll explain the main parameters,
commands, and the important features of the Data Pump toolset in the following
sections. You can also get a quick summary of all Data Pump parameters and commands
by simply typing expdp help=y or impdp help=y at the command line.

The Data Pump export utility will unload data into operating system files known
as dump files. It writes to these files in a proprietary format, which only the Data Pump
import utility can understand while loading the data in the dump files into the same
or another Oracle database. You can take Data Pump export dump files from an
operating system and import them into a database running on a different type of
platform, as is the case with the older export/import utilities.

The original export and Data Pump dump files aren’t compatible. You can’t
read export dump files with Data Pump and vice versa. The new features of
Oracle Database 10g aren’t supported in the original export utility, which
you’ll still have access to in Oracle Database 10g.

In addition to expdp and impdp, you can have other clients perform Data Pump
export and import as well, by using the Data Pump API. The database uses the Oracle-
supplied package DBMS_DATA PUMP to implement the Data Pump API. Through
this package, you can programmatically access the Data Pump export and import
utilities. This means that you can create powerful custom data-movement utilities
using the Data Pump technology.

The traditional export utility is a normal user process that writes data to its local
disks. The old export utility fetches this data from a server process as part of a regular
session. By contrast, the Data Pump expdp user process launches a server-side process
that writes data to disks on the server node, and this process runs independently of
the session established by the expdp client.

The Data Pump technology is remarkably different from the traditional export
and import utilities. In the following sections, you’ll learn about those differences
as we cover the following topics:

B Benefits of Data Pump technology

B Data Pump components

Introduction to the Data Pump Architecture §

Data-access methods
Data Pump files
The mechanics of a Data Pump job

Benefits of Data Pump Technology

Data Pump technology offers several benefits over the traditional export
and import data utilities. The following are the main benefits of the Data
Pump technology:

Ability to restart data pump jobs You can now easily restart jobs that either
have stalled due to lack of space or have failed for various reasons. You may
also voluntarily stop and restart jobs.

Parallel execution capabilities By simply specifying a value for the
PARALLEL parameter, you can now choose the number of active execution
servers for each export job.

Ability to attach to running jobs You now have the amazing capability to
attach to a running Data Pump job from a different screen or location. This
enables you to monitor jobs, as well as to modify certain parameters interactively.
The jobs continue to run while you are attaching to and detaching from them.
Data Pump is an integral part of the Oracle Database server, and as such, it
doesn’t need a client to run once it starts a job.

Network mode of operation Once you create database links between two
databases, you can perform exports from a remote database straight to a dump
file set. You can also perform direct imports via the network using database
links, without using any dump files. The network mode is a means of transferring
data from one database directly into another database via SQLNET with the
help of database links, without needing to stage it on disk at all.

Fine-grained data import capability Oracle9i offered only one parameter
that gave you the ability to perform data loads at a fine-grained level. This
parameter was QUERY, which enabled you to specify that the export utility
extract only a specified portion of a table’s rows. Now with Data Pump, you
have access to a vastly improved fine-grained options arsenal, thanks to new
parameters like INCLUDE and EXCLUDE.

6 Chapter 2:

Loading and Unloading Data

B Remapping capabilities During a data pump import, you now have the
ability to remap schemas and tablespaces, as well as filenames, by using the
new REMAP__ * parameters. Remapping capabilities enable you to modify
objects during the process of importing data, by changing old attributes to
new values. For example, the REMAP_ SCHEMA parameter enables you to
map all of user HR’s schema to a new user, OE. The REMAP_ SCHEMA
parameter is similar to the TOUSER parameter in the old import utility.

B Ability to estimate space requirements In a Data Pump job, you can now
estimate the space requirements of a job by using either the ESTIMATE or
the ESTIMATE_ONLY parameter.

Data Pump Components

On the surface, expdp and impdp, the clients for the Data Pump export and Data
Pump import utilities, respectively, are quite similar to the exp and imp commands.
However, while they are syntactically similar to the Data Pump clients, exp and imp
are absolutely ordinary user processes that use SQL SELECT, CREATE, and INSERT
commands. In contrast, the new utilities are more like control processes that initiate jobs.

The new Data Pump technology is based entirely on the server; all data movement
occurs on the server. The older export and import utilities acted as clients through
which all the data movement took place. In Data Pump export and import, the
database instance handles the Data Pump utilities.

You can look at the Data Pump technology as consisting of three major components:

B The DBMS_DATA PUMP package
B The DBMS_METADATA package
B The command-line clients, expdp and impdp

The DBMS_DATAPUMP package contains the guts of the Data Pump technology,
in the form of procedures that actually drive the data loading and unloading jobs.
The contents of this package perform the work of both the Data Pump export and
import utilities. In traditional export/import, Oracle uses normal SQL to take the
data in the export dump files and inserts it sequentially into the database tables
during the import process. In the Data Pump technology, the DBMS_DATA PUMP
package performs the export and import of data.

The DBMS_DATA PUMP is the main engine for driving data loading and unloading.
To extract and modify data dictionary metadata, Oracle provides the DBMS_METADATA
package, which has been available since the Oracle9i version. In traditional export

Introduction to the Data Pump Architecture 7

and import utilities, the metadata of the objects is included in the export dump file.
In Data Pump technology, you need to use the DBMS_METADATA package to extract
the appropriate metadata.

Note that both the packages—DBMS_DATA PUMP and DBMS_METADATA—
act as APIs, in the sense that you can use either of them directly in your programs
to load and unload data, without accessing the expdp and impdp clients.

Data-Access Methods

on the

Qob

A Data Pump import or export job can access table data in either of two ways,
depending on which one is faster for the specific case:

B Direct path This access uses the Direct Path API. Direct path exports and
imports lead to improved performance, since the direct path internal stream
format is the same format as the data stored in Oracle dump files. This leads
to a reduced need for data conversions.

B External tables The external tables feature lets Oracle read data from and
write data to operating system files that lie outside the database.

Since direct-path access doesn’t support intra-partition parallelism,
external tables are used for very large data loading or unloading jobs.

It is up to Oracle to decide which access method it will employ for a given job.
Oracle always tries to first use the direct-path method to load or unload data. Under
some conditions, such as the following, it may not able to use the direct method:

B Clustered tables

Presence of active triggers in the tables

Export of a single partition in a table with a global index
Presence of referential integrity constraints

Presence of domain indexes on LOB columns

Tables with fine-grained access control enabled in the insert mode

Tables with BFILE or opaque type columns

In all these cases, the structure of the table and/or the indexes precludes the use
of direct-path access, so Data Pump will use external tables. On the other hand, if
your table has any LONG data, you must use the direct-path access.

8 Chapter 2: Loading and Unloading Data

Datch . . .
The datdfile format is can easily export data with one method
identical in external tables and the and import it with the other method,
direct-access method. Therefore, you if you wish.

Data Pump Files

As in the case of the traditional export and import utilities, Data Pump uses dump files
and other log files, but there are significant differences. You'll use three types of files
for Data Pump operations:

B Dump files These hold the data for the Data Pump job.

B Logfiles These are the standard files for logging the results of Data Pump
operations.

B SQL files Data Pump import uses a special parameter called SQLFILE,
which will write all the Data Definition Language (DDL) statements it will
execute during the import job to a file. Data Pump doesn’t actually execute
the SQL, but merely writes the DDL statements to the file specified by the
SQLFILE parameter. You use SQL files only to hold the output of the SQLFILE
command during a Data Pump import job. This parameter is discussed in the
“Data Pump Import Parameters” section later in this chapter.

In Data Pump, you use directories and directory objects, unlike in the export and
import utilities. The following sections explain how to use directory objects.

Using Directory Objects
Recall that the Data Pump technology is server-based, not client-based. This means
that a Data Pump job creates all its dump files on the server, not on the client machine
where a job may have originated. Oracle background processes are responsible for all
dump file set I/O, on behalf of the privileged user ORACLE. This means that for security
reasons, you can’t let any user be able to specify an absolute file path on the server. In
addition to a possible violation of security, there is the matter of safety, as you can
unwittingly overwrite a server file if you are given the power to write dump files anywhere
on the system. To avoid these problems, Data Pump uses directory objects.

Directory objects are named objects that Data Pump maps to a specific operating
system directory. For example, a directory object named dpump_dirl can point to

Introduction to the Data Pump Architecture ©@

the /u01/app/oracle/admin/export directory on the server. You can then access the
export directory by simply using the dpump_dirl directory object name. Here’s how
you create a directory object:

SQL> CREATE DIRECTORY dpump_dirl as 'c:/oracle/product/10.1.0/oradata/export';
Directory created.

To create a directory, a user must have the DBA role or have the CREATE ANY
DIRECTORY privilege.

In order for a user to use a specific directory, the user must have access privileges
to the directory object. For example, in order to grant user SALAPATI privileges on
the new directory dpump_dirl, you need to grant the following privileges:

SQL> grant read, write on directory dpump_dirl to salapati
Grant succeeded.
SQL>

on the You’ll need the write privilege on all files for Data Pump export. During an
Qob import, you’ll need read access to the export dump file. You’ll also need write
privileges on the directory for import, so that you can write to the log file.

Once you create a directory and grant the necessary rights, all Data Pump export
and import jobs can use the DIRECTORY parameter to specify the name of the
directory object (DIRECTORY=dpump_dir1l). This way, the DIRECTORY
parameter will indirectly point to the actual operating system directories and files.
Here’s an example:

S expdp salapati/password dumpfile=dpump_dirl.testexp0l.dmp

Jatch
You can create a specified as the value for DATA_PUMP_
default directory with the name DIR. Data Pump will write all dump files,
DATA_PUMP_DIR, and then not need SQL files, and log files to the directory

to specify the DIRECTORY parameter in specified for DATA_DUMP_DIR.
your export and import commands. Oracle Nonprivileged users cannot use this
will automatically look for the directory default DATA_PUMP_DIR directory.

1 O Chapter2:

Loading and Unloading Data

Specifying Directory Objects

In order for the Data Pump utilities to know where to place or get data for their export
and import jobs, you need to specify location information when you use the expdp and
impdp clients. As you know by now, you can’t use absolute directory path location for
Data Pump jobs; you must always use a directory object. However, there is more than
one way to specify this directory object name during an actual job, as explained in the
following sections.

Using the DIRECTORY Parameter Earlier in this section, you learned how to
create a directory object. During a Data Pump export job, you can specify the directory
object by using the DIRECTORY parameter, as shown in the following example.

$ expdp hr/hr DIRECTORY=dpump_dirl ..

Using the DIRECTORY:FILE Notation You may also specify the directory
object without using the DIRECTORY parameter. You can do this by specifying the
directory object’s name as part of the value for a specific Data Pump file (the dump
file, log file, or SQL file). You may then use the specific directory object for a log file
in the following manner:

$ expdp LOGFILE=dpump_dir2:salapati.log ..

Note that the colon (:) separates the directory and filenames in the log file
specification. In this example, dpump_dir2 is the name of the directory object.
The Data Pump filename is salapati.log.

Using the DATA_DUMP_DIR Environment Variable You can also use
the environment variable DATA_DUMP_DIR to point to a file location. In order to
use the DATA_DUMP_DIR environment, you must have first created a specific directory
object on the server. In this example, it is the dpump_dirl directory described
earlier. Once you have this directory, you can then use the DATA_DUMP_DIR
environment variable on the client to point to the directory object on the server.

In the following example, I first create a new directory object on the server, using the
variable DATA_DUMP_DIR. | then use the export command to save the value of the
DATA_DUMP_DIR variable in the operating system environment. Once I do that, I can
just specify a dump file for my export job, without specifically stating the directory location.

SQL> create_directory dump_dir2 AS '/usr/apps/dumpfiles2';
Sexport DATA_PUMP_DIR dump_dir2
Sexpdp salapati/password TABLES=employees DUMPFILE=employees.dmp

Introduction to the Data Pump Architecture | ||

Once you have made the DATA_DUMP_ DIR variable part of your operating system
environment, you don’t need to specify the actual directory name (dump_dir2)
explicitly (by using the DIRECTORY parameter) when you invoke a Data Pump
export, as shown in the previous example. You merely need to specify the name, not
the location, for the DUMPF ILE parameter.

Understanding the Order of Precedence for File Locations

Now that we have reviewed the various ways you can specify a directory object

for a Data Pump job, you may wonder how Oracle knows which location to use in
case there is a conflict. You can have a situation where you muight have specified a
DATA_DUMP_DIR environment variable, but you then also specify a DIRECTORY
parameter for the export job. Which directory will Oracle choose to use? Here’s the
order of precedence for directory objects:

I. Oracle will look to see if a directory name is used as part of a file parameter
(for example, the LOGFILE parameter). Remember that in these cases, the
directory object is separated from the filename by a colon (:).

2. Oracle’s second choice would be to use the directory objects assigned to the
DIRECTORY parameter during the export or import job. If you explicitly
specify the DIRECTORY parameter, you don’t need to use the directory
name as part of the file parameter.

3. Finally, Oracle looks to see if there is a default server-based directory object
named DATA_PUMP_DIR. You must have explicitly created this directory

object beforehand. Note that the default DATA_DUMP_DIR object is
available only to DBAs and other privileged users.

The directory object name resolution simply means that Oracle knows which
directory it should be using to read or write datafiles. However, you must have
already granted the database read/write privileges at the operating system level,
in order to enable the database to actually use the operating system files.

The Mechanics of a Data Pump Job

The Data Pump export and import utilities use several processes to perform their jobs,

p €xXp p p p]
including the key master and worker processes, as well as the shadow process and client
processes. Let’s look at these important Data Pump processes in detail.

I 2 Chapter 2:

Loading and Unloading Data

The Master Process

The master process, or more accurately, the Master Control Process (MCP),
has a process name of DMnn. The full master process name is of the format
<instance>_DMnn_<pid>.

There is only one MCP for each job, and this process controls the execution
and sequencing of the entire Data Pump job. More specifically, the master process
performs the following tasks:

B Creates jobs and controls them
Creates and manages the worker processes
Monitors the jobs and logs the progress

Maintains the job state and restart information in the master table

Manages the necessary files, including the dump file set

The master process uses a special table called the master table to log the location
of the various database objects in the export dump file. The master table is at the
heart of every Data Pump export and import job. The master process maintains the
job state and restart information in the master table. Oracle creates the master table
in the schema of the user who is running the Data Pump job at the beginning of every
export job. The master table contains various types of information pertaining to the
current job, such as the state of the objects in the export/import job, the location
of the objects in the dump file set, the parameters of the job, and the status of all
worker processes.

The master table has the same name as the export job, such as SYS_EXPORT_
SCHEMA_O01.

The master process uses the master table only for the duration of the export. At
the very end of the export, as the last step in the export job, it writes the contents
of the master table to the export dump file and automatically deletes the master
table from the database. The deletion of the master table will occur automatically,
as long as the export completed successfully (or if you issue the KILL,_JOB command).
However, if you use the STOP_JOB command to stop a job or the export fails for
some reason, the master table isn’t deleted from the database. (Data Pump job
commands are described in the “Data Pump Export Parameters” section later in
this chapter.) When you restart the export job, it will then use the same master
table. Since the master table tracks the status of all the objects, Data Pump can
easily tell which objects are in the middle of an export and which have been
successfully exported to the dump files.

Introduction to the Data Pump Architecture | 3

The master process will re-create the master table saved by the export utility in the
dump file, in the schema of the user who is performing the import. This is the first step
in any Data Pump import job. (Note that you don’t need to create any tables, because
the import utility will automatically do this for you.) The Data Pump import utility
reads the contents of the master
table to verify the correct
sequence in which it should
import the various exported $atch
database objects. As in the case

The master table contains
all the necessary information to restart
a stopped job. It is thus the key to Data
Pump’s job restart capability, whether the
job stoppage is planned or unplanned.

of Data Pump export, if the
import job finishes successfully,
Oracle will automatically
delete the master table.

The Worker Process

The worker process is the process that actually performs the heavy-duty work of loading
and unloading data, and has the name DWnn (<instance>_DWnn_<pid>). The
MCP (DMnn) creates the worker process. The number of worker processes that the
master process will create depends on the degree of parallelism of the job. If you choose
the PARALLEL option for a load, Oracle splits up the worker processes into several
parallel execution coordinators.

The worker processes maintain the object rows of the master table. As the worker
processes export or import various objects, they update the master table with information
about the status of the various jobs: completed, pending, or failed.

Shadow Process

When a client logs in to an Oracle server, the database creates an Oracle foreground
process to service Data Pump API requests. This shadow process creates the job consisting
of the master table as well as the master process. Once a client detaches, the shadow
process automatically disappears.

Client Processes

The client processes call the Data Pump’s API. You perform export and import with the
two clients, expdp and impdp. Later in this chapter, you'll learn about the various
parameters you can specify when you invoke these clients.

I 4 Chapter 2: Loading and Unloading Data

CERTIFICATION OBJECTIVE 2.02

Using Data Pump Export and Import

The Data Pump export utility corresponds to the traditional export utility, and you
invoke it with the client expdp. The Data Pump import utility corresponds to the old
import utility, and you invoke it with the client impdp. In this section, you will learn
how to use both Data Pump utilities.

Data Pump export will load row data from database tables as well as object metadata
into dump file sets in a proprietary format that only the Data Pump import utility can
read. The dump file sets, which are operating system files, will contain data, metadata,
and control information. Dump file sets usually refer to a single file, such as the default
export dump file expdat.dmp.

Quite a few of the Data Pump import utility’s features are mirror images of the
Data Pump export utility. However, there are some features that are exclusive to
the new Data Pump Import utility.

In the following sections, we’ll look at Dump Pump export and import types,
modes, and parameters, as well as some examples.

Data Pump Export Types

By Data Pump export types, I simply mean the various ways in which you can run the
Data Pump utility. You can interface with the Data Pump export and import utilities
through the command line, using a parameter file, or interactively.

Using the Command Line

You can use the Data Pump export utility from the command line in a manner similar
to the traditional export utility. Here’s a simple example:

$ expdp system/manager directory=dpump_dirl dumpfile=expdatl.dmp

As you can see, the command-line option would quickly get tiring if you were
doing anything but the simplest type of exports.

Using a Parameter File

Rather than specifying the export parameters on the command line, you can put them
in a parameter file. You then simply invoke the parameter file during the actual export.
When you use parameter files, you don’t need to retype the same parameters.

Using Data Pump Export and Import | §

For example, you could create a small file called myfile.txt, with the following
export parameters:

userid=system/manager
directory=dpump_dirl
dumpfile=systeml.dmp

The file myfile.txt will be your export parameter file. Now, all you need to do in
order to export the system schema is invoke expdp with just the PARFILE
parameter, as follows:

S expdp parfile=myfile.txt

Datch

You can use all command- parameter file. The only exception is
line export parameters in an export the parameter PARFILE itself!

Using Interactive Data Pump Export

Since this is a certification upgrade book, I assume you have experience with previous
versions of the export and import utilities. You also must be quite familiar with the
interactive feature of the export and import utilities. All you need to do during an
interactive export or import is merely type exp or imp at the command line, and
Oracle will prompt you for the rest of the information. Interactive Data Pump export
is quite different from the interactive mode of the older utilities. As you'll see in the
following sections, Data Pump interactive mode isn’t meant to be used in the same
way as the exp/imp interactive mode.

In Data Pump export, you use the interactive method for one purpose only:
when you decide you need to change some export parameters midstream, while the
job is still running. The way to get into the interactive mode is by pressing the
CONTROL-C combination on your keyboard, which interrupts the running job and
lets you participate in the export job in an interactive fashion. When you press
CONTROL-C during an export job, the running job will pause, and you'll see the
export prompt (Export>) displayed on your screen. At this point, you can deal
interactively with the export utility, with the help of a special set of interesting
commands, which I'll explain later in this chapter, in the “Interactive Mode Export
Parameters” section. As you'll see, you can also enter the interactive mode of operation
by using the ATTACH command.

I & Chapter2:

Loading and Unloading Data

$atch
In Data Pump, the import) prompt. You can enter the special
interactive mode means that the export interactive commands at this point. Note
or import job stops logging its progress that the export or import job keeps running
on the screen and displays the export (or throughout, without any interruption.

on the

()ob

You can also perform Data Pump export and import operations easily through
the OEM Database Control interface. To use this feature, start the Database Control
and go to the Maintenance | Ultilities page. On that page, you can see the various
choices for performing export and import of data.

You cannot start an interactive job using Data Pump export (or import).
You can use the interactive mode only to intervene during a running job.

Data Pump Export Modes

As in the case of the regular export utilities, you can perform Data Pump export in

several modes. The following four modes in which you can perform an export do not
differ from the traditional modes of operation using the older export utility:

B Full export mode You use the FULL parameter when you want to export

the entire database in one export session. You need the EXPORT_FULL_
DATABASE role to use this mode.

Schema mode If you want to export a single user’s data and/or objects only,
you must use the SCHEMA parameter.

Tablespace mode By using the TABLESPACES parameter, you can export
all the tables in one or more tablespaces. If you use the TRANSPORT_
TABLESPACES parameter, you can export just the metadata of the objects
contained in one or more tablespaces. You may recall that you can export
tablespaces between databases by first exporting the metadata, copying the
files of the tablespace to the target server, and then importing the metadata
into the target database.

Table mode By using the TABLES parameter, you can export one or tables.
The TABLES parameter is identical to the TABLES parameter in previous
versions of Oracle.

Using Data Pump Export and Import | 7

Data Pump Export Parameters

Some of the Data Pump export commands are familiar to you from the traditional
export utility. Others are quite new. Here, I'll briefly run through the set of Data
Pump export parameters, providing detailed explanations for only the new and
unfamiliar parameters. For this discussion, the parameters are grouped into the
following categories:

B File- and directory-related parameters
Export mode-related parameters
Export filtering parameters
Estimation parameters

The network link parameter

Interactive mode export parameters

Job-related parameters

You can use all the following parameters at the command line or in parameter
files, except those listed in the “Interactive Mode Export Parameters” section.

File- and Directory-Related Parameters

You can specify several file- and directory-related parameters during a Data Pump
export job. Let’s look at these parameters in the following sections.

DIRECTORY The DIRECTORY parameter specifies the location of the
dump and other files. A detailed discussion of how you can use this parameter
was presented in the “Using Directory Objects” section earlier in this chapter.

DUMPFILE The DUMPFILE parameter provides the name of the dump file to
which the export dump should be written. The DUMPFILE parameter replaces the
FILE parameter in the old export utility. You can provide multiple dump filenames
in several ways:

B You can create multiple dump files by specifying the %U substitution variable.

B You can provide multiple files in a comma-separated list.

B You can specify the DUMPFILE parameter multiple times for a single
export job.

1 8 Chapter2:

on the

oob

Loading and Unloading Data

If you specify the %U notation to indicate multiple dump files, the number
of files you can create is equal to the value of the PARALLEL parameter.

If you don’t specify the DUMPFILE parameter, Oracle will use the default name
expdat.dmp for the export dump file, just as it does when you use the traditional
export utility.

FILESIZE The FILESIZE parameter is purely optional, and it specifies the size
of the dump file. If you don’t specify this parameter, the dump file has no limits on
its size. If you use the FILESIZE parameter by specifying, say 10MB as the maximum
dump file size, your export will stop if your dump file reaches its size limit, and you
can restart it after correcting the problem.

PARFILE The PARFILE parameter stands for the same thing it did in
traditional export utility: the parameter file, wherein you can specify export
parameters in a file, instead of entering them directly from the command line.

LOGFILE and NOLOGFILE You can use the LOGFLE parameter to specify
a log file for your export jobs. Here’s what you need to remember regarding this
parameter:

If you just specify the parameter without the directory parameter, Oracle will
automatically create the log file in the location you specified for the DIRECTORY
parameter.

B If you don’t specify this parameter, Oracle will create a log file named
export.log. A subsequent export job will overwrite this file, because Oracle
always names the default log file simply export.log.

B If you specify the parameter NOLOGFILE, Oracle will not create its log file
(export.log). You'll still see the progress of the export job on the screen, but
Oracle suppresses the writing of a separate log file for the job.

Export Mode-Related Parameters

The export mode-related parameters are the FULL, SCHEMAS, TABLES,
TABLESPACES, TRANSPORT_TABLESPACES, and TRANSPORT _FULL_CHECK
parameters. You've already seen all these parameters except the last one, in the “Data

Using Data Pump Export and Import | @

Pump Export Modes” section. The TRANSPORT_FULIL_CHECK parameter simply
checks to make sure that the tablespaces you are trying to transport meet all the
conditions to qualify for the job.

Export Filtering Parameters

There are several new parameters related to export filtering. Some of them are
substitutes for old export parameters, and others offer new functionality. Let’s look
at these important parameters in detail.

CONTENT By using the CONTENT parameter, you can filter what goes into the
export dump file. The CONTENT parameter can take three values:

B ALL exports both table data and table and other object definitions
(metadata).

B DATA_ONLY exports only table rows.
B METADATA_ONLY exports only metadata.

Here’s an example:

S expdp system/manager dumpfile=expdatl.dmp content=data_only

Note that the CONTENT=METADATA_ONLY option is equivalent to the rows=n
option in the original export utility. However, there is no equivalent to the CONTENT=
DATA_ONLY option in Data Pump.

EXCLUDE and INCLUDE The EXCLUDE and INCLUDE parameters are
two mutually exclusive parameters that you can use to filter various kinds of objects.
Remember how in the old export utility you used the CONSTRAINTS, INDEXES,
GRANTS, and INDEXES parameters to specify whether you wanted to export
those objects? Using the EXCLUDE and INCLUDE parameters, you now can
include or exclude many other kinds of objects besides the four objects you

could previously.

20 Chapter2:

Loading and Unloading Data

Simply put, the EXCLUDE parameter helps you omit specific database object types
from an export or import operation. The INCLUDE parameter, on the other hand,
enables you to include only a specific set of objects. Following is the format of the
EXCLUDE and INCLUDE parameters:

EXCLUDE=object typel[:name clause]
INCLUDE=object typel:name clause]

For both the EXCLUDE and INCLUDE parameters, the name clause is optional.
As you know, several objects in a database—such as tables, indexes, packages,
and procedures—have names. Other objects, such as grants, don’t have names.
The name clause in an EXCLUDE or an INCLUDE parameter lets you apply a
SQL function to filter named objects.

Here’s a simple example that excludes all tables that start with EMP:

EXCLUDE=TABLE: "LIKE 'EMP%'"

In this example, "LIKE 'EMP%' " is the name clause.

The name clause in an EXCLUDE or INCLUDE parameter is optional. It’s purely
a filtering device, allowing you finer selectivity within an object type (index, table,
and so on). If you leave out the name clause component, all objects of the specified
type will be excluded or included.

In the following example, Oracle excludes all indexes from the export job, since
there is no name clause to filter out only some of the indexes.

EXCLUDE=INDEX

You can also use the EXCLUDE parameter to exclude an entire schema, as shown
in the following example.

EXCLUDE=SCHEMA:"="'HR"'"

The INCLUDE parameter is the precise opposite of the EXCLUDE parameter: it
forces the inclusion of only a set of specified objects in an export. As in the case of
the EXCLUDE parameter, you can use a name clause to qualify exactly which objects
you want to export. Thus, you have the ability to selectively choose objects at a fine-
grained level.

The following three examples show how you can use the name clause to limit the
selection of objects.

INCLUDE=TABLE: "IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX: "LIKE 'EMP%'"

Using Data Pump Export and Import 2 ||

The first example is telling the Data Pump job to only include two tables: employees
and departments. In the second example, the INCLUDE parameter specifies that
only procedures should be

included in this export job. mmllllmmm
The third example shows

how you can specify that Qatch
only those indexes that
start with EMP should be
part of the export job.

The EXCLUDE and
INCLUDE parameters are mutually
exclusive. You can use one or the other,
not both simultaneuously in the same job.

QUERY The QUERY parameter stands for the same thing as it does in traditional
export: it lets you selectively export table row data with the help of a SQL statement.
However, the parameter is enhanced for Oracle Database 10g by permitting you to
qualify the SQL statement with a table name, so that it applies only to a particular
table. Here’s an example:

QUERY=OE.ORDERS: "WHERE order_id > 100000"

In this example, only those rows in the orders table where the order_id is greater than

100000 are exported.

Estimation Parameters

Two interesting parameters enable you to estimate how much physical space your
export job will consume. Let’s look at both these parameters in detail.

ESTIMATE The ESTIMATE parameter will tell you how much space your new
export job is going to consume. The space estimate is always in terms of bytes. By
default, Oracle will always estimate the space requirements in terms of blocks. It
simply takes your database block size and multiplies it with the amount of blocks all
the objects together will need. Here is an example of what you’ll see in your log file
(and on the screen):

Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 654 KB

Since the space estimation in terms of blocks is the default behavior, you don’t
need to specify the ESTIMATE parameter during the export. However, if you have
analyzed all your tables recently, you can ask the Data Pump export utility to

272 Chapter 2: Loading and Unloading Data

estimate the space requirements by using the statistics the database has already
calculated for each of the tables. In order to tell the database to use the database
statistics (rather than use the default BLOCKS method), you need to specify the
ESTIMATE parameter in the following manner:

ESTIMATE=statistics

Here’s what you'll see in your log file when you use the ESTIMATE=statistics
parameter:

Estimate in progress using STATISTICS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

estimated "SYSTEM"."HELP" 35.32 KB
Total estimation using STATISTICS method: 65.72 KB

ESTIMATE_ONLY While the ESTIMATE parameter is operative only
during an actual export job, you can use the ESTIMATE_ONLY parameter
without starting an actual export job. Here’s an example:

C:\>expdp system/manager estimate_only=y
Export: Release 10.1.0.2.0 - Production on Saturday, 17 April, 2004 14:30

Total estimation using BLOCKS method: 288 KB
Job "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully completed at 14:30

Although the log indicates that the export job “completed successfully,” all the
job really did was to estimate the space that you will need for the export job.

The Network Link Parameter
The expdp utility provides you with a way to initiate a network export. Using the
NETWORK_LINK parameter, you can initiate an export job from your server and have
Data Pump export data from a remote database to dump files located on the instance
from which you initiate the Data Pump export job.

Here’s an example that shows you how to perform a network export:

expdp hr/hr DIRECTORY=dpump_dirl NETWORK_LINK=finance@prodl
DUMPFILE=network_export.dmp LOGFILE=network_export.log

In the example, the NETWORK_ LINK parameter must have a valid database link as its
value. This means that you must have created the database link ahead of time. You are
exporting data from the finance database on the prod1 server.

on the

Qob

Using Data Pump Export and Import 2.3

You can’t use Data Pump in the normal way to export data from a read-only

database. This is because Data Pump can’t create the necessary master table

or create external tables on a read-only tablespace. Using the network mode,

however, you can export data from a read-only database on server A to dump
files on server B, where Data Pump is running.

Interactive Mode Export Parameters

As I mentioned earlier in this chapter, the interactive mode of Data Pump is quite
different from the interactive export and import mode that you know. Traditionally, the
interactive mode gave you the chance to enter a limited set of export/import parameters
at the command line in response to the queries made by the export or import utility.
You use the interactive mode in the new Data Pump technology only to intervene in
the middle of a running job, to either suspend the job or modify some aspects of it.
You can enter the interactive mode of Data Pump export in either of two ways:

B You can use the CONTROL-C keyboard combination during a Data Pump
export job, if you want to enter the interactive mode from the same session
where you are running the Data Pump job.

B You can either use a separate session or even a separate server to “attach”
yourself to a running session by using—what else?—the ATTACH command.
(You can also attach to a stopped job.) When you successfully attach yourself
to a job, you'll be able to use specific export parameters in an interactive mode.

Datch
In the Data Pump export opening another session and “attaching”
(and import), the only way to get into yourself to that session. You cannot start
an interactive mode of operation is by an interactive Data Pump session from the
using the CONTROL-C sequence or by command line.

Let’s examine when you might use the interactive mode in Data Pump export.
Suppose that you started a job in the evening at work and left for home. At midnight,
you check the status of the job and find that it’s barely moving. You can easily start
another session, and then “connect” to the running job and monitor it by simply
using the ATTACH command. When you do this, the running job does not pause.

24 Chapter 2: Loading and Unloading Data

Instead, it opens an interactive window into the running session, so you can change
some parameters to hasten the crawling export job by running one of a special set
of interactive Data Pump export commands. Here’s an example of the usage of the
ATTACH parameter:

C:\>expdp salapati/sammyyl attach=SALAPATI.SYS_EXPORT_ SCHEMA_01
Export: Release 10.1.0.2.0 - Production on Saturday, 17 April, 2004 11:47

State: EXECUTING

Export>

on the You may attach multiple clients to a single job.

Qob
Once you attach yourself to a running job by using the ATTACH command or
by using the CONTROL-C sequence on the server where the job is actually running,
you get the interactive export prompt (Export>), indicating that Data Pump is
awaiting your interactive commands. From the interactive prompt, you can use
several interesting parameters to influence the progress of the currently executing
Data Pump job. Here are some examples of interactive commands:

Export> parallel=4
Export> kill_job
Export> stop_job
Export> continue_client

mmmm“mm I'll explain these and other interactive

Jatch You must be a DBA, or Data Pump parameters in the following
must have EXP FULL DATABASE or IMP sections, grouped in the categories of
FULL DATABASE roles, in order to attach client-related parameters, job-related
and control Data Pump jobs of other users. parameters, and other parameters.

Client-Related Interactive Parameters The CONTINUE_CLIENT
parameter will take you out of the interactive mode and resume the running
export job. Your client connection will still be intact, and you’ll continue to
see the export messages on your screen. However, the EXIT_CLIENT parameter
will stop the interactive session, as well as terminate the client session. In both of
these cases, the actual Data Pump export job will continue to run unhindered.

Using Data Pump Export and Import 2. §

Job-Related Interactive Parameters You can use several job-related parameters
from any interactive session you open with an export session using the ATTACH
command. You can use the STOP_JOB command to stop the export job in an orderly
fashion. To stop it at once, use the STOP_JOB=immediate command. You can
choose to resume any export jobs you've stopped in this manner, with the help of
the START_JOB parameter.

If you decide that you don’t really want to continue the job you’ve just attached
to, you can terminate it by using the KILIL,_JOB parameter. Unlike the EXTT_
CLIENT parameter, the KILI,_JOB parameter terminates the client as well as the
export job itself for good.

To summarize, the job-related interactive parameters work as follows:

B STOP_JOB stops running Data Pump jobs.
B START_JOB resumes stopped jobs.
B KILL_JOB kills both the client and the Data Pump job.

Match

You can restart any job or due to a system crash, as long as you
that is stopped, whether it’s stopped have access to the master table and an
because you issued a STOP _JOB command uncorrupted dump file set.

Other Interactive Parameters From the interactive prompt, you can use

the ADD_FILE parameter to add a dump file to your job. You can also use the HELP
and STATUS parameters interactively, and both of these parameters function the
same way as their command-line counterparts.

Job-Related Parameters

Several Data Pump export parameters can be classified as job-related parameters.
I'll briefly discuss the important ones here.

JOBNAME You can use the JOBNAME parameter to provide your own job
name for a given Data Pump export/import job (for example, JOBNAME=myjobl).
The JOBNAME parameter is purely optional, however. If you don’t use it, Data
Pump will generate a unique system name, of the format <USER>_<OPERATION>_
<MODE>_%N. For example, if the user SYSTEM is performing an export of the

26 Chapter 2:

Loading and Unloading Data

database (FULL mode), the automatically generated job name will be SYSTEM__
EXPORT_FULL_01. In this job name, SYSTEM is the user that is performing the
Data Pump job. EXPORT tells you it’s an export, not an import job. FULL indicates
that this is full database export. The last part of the job name is a number, indicating
the sequence number of the job. This was my first job in a new database, so my job
number happens to end with O1.

Remember that Oracle gives the master table, which holds critical information
about your export job, the same name as the name of the job.

STATUS The STATUS parameter is useful while you're running long jobs, as it
provides you with an updated status at intervals that you can specify. The parameter
takes integer values that stand for seconds. For example, an anxious DBA (like me)
might want to get an update every minute regarding an ongoing Data Pump export
job. Here’s what you need to do to get your reassuring minutely updates:

$ expdp system/manager status=60 ..

Worker 1 Status:
State: EXECUTING
Object Schema: SYSTEM
Object Name: SYS_EXPORT_SCHEMA_O01
Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA
Completed Objects: 1
Total Objects: 65
exported "SYSTEM"."REPCATS_SITES_NEW"
Job: SYS_EXPORT_SCHEMA_01
Operation: EXPORT
Mode: SCHEMA
State: EXECUTING
Bytes Processed: 69,312
Percent Done: 99
Current Parallelism: 1
Job Error Count: 0
Dump File: C:\ORACLE\PRODUCT\10.1.0\ADMIN\EXPORT\EXPDAT6 .DMP
bytes written: 1,748,992

The STATUS parameter shows the overall percentage of the job that is
completed, the status of the worker processes, and the status of the current
data objects being processed.

PARALLEL PARALLEL is the mighty parameter that lets you specify more
than a single active execution thread for your export job. Note that the Data Pump

Using Data Pump Export and Import 27

PARALLEL parameter has nothing to do with the other Oracle parallel features,

but they can work together. The default value of the PARALLEL parameter is 1,
meaning a single thread export operation writing to a single dump file. If you specify
anything more than 1 as the value for the PARALLEL parameter, you also should
remember to specify the same number of dump files, so the multiple execution threads
can simultaneously write to the multiple dump files. Here’s an example that shows
how you can set the level of parallelism to 3, forcing the export job to write in
parallel to three dump files:

expdp system/manager DIRECTORY=dpump_dirl DUMPFILE=par_exp%u.dmp PARALLEL=3

on the

Qob

on the

Qob

If you specify the PARALLEL parameter, make sure you allocate the same
number of dump files as the degree of parallelism. The higher the degree
of parallelism, the higher will be the memory, CPU, and network bandwith
usage as well.

In the previous example, the DUMPFILE parameter uses the substittion varable $u
to indicate that multiple files should be generated, of the format par_expNN. dmp,
where NN is a two-character integer starting with 01. Since the PARALLEL parameter
is set to 3, the substitution variable will create three files with the following names:
par_expOl.dmp, par_exp02.dmp, and par_exp03.dmp.

Note that you don’t need to use the %u substition variable to generate multiple
dump files when you choose a value of greater than 1 for the PARALLEL parameter.
You could simply use a comma-separated list of values, as follows:

expdp system/manager DIRECTORY=dpump_dirl PARALLEL 3
DUMPFILE= (par_exp0l.dmp, par_exp02.dmp, par_exp03.dmp)

If you don’t have sufficient /O bandwidth, you may actually experience a
degradation in Data Pump performance with the PARALLEL parameter.

Data Pump Export Examples

Let’s look at some simple Data Pump export job specifications that demonstrate some
of the new concepts you've learned in this chapter. The next example creates an
export dump file of just two tables: employees and jobs.

expdp hr/hr TABLES=employees, jobs DUMPFILE=dpump_dirl:table.dmp NOLOGFILE=y

28 Chapter 2: Loading and Unloading Data

The following example shows how to use a parameter file, as well as how to
use the CONTENT and EXCLUDE parameters. The CONTENT=DATA_ONLY
specification means you are exporting just rows of data and excluding all object
definitions (metadata). The EXCLUDE parameter requries that the countries,
locations, and regions tables be omitted from the export. The QUERY parameter
stipulates that all the data in the employees table, except that belonging to
location_id 20, be exported. The parameter file, exp.par, has the following
information:

DIRECTORY=dpump_dirl

DUMPFILE=dataonly.dmp

CONTENT=DATA_ONLY

EXCLUDE=TABLE: "IN ('COUNTRIES', 'LOCATIONS', 'REGIONS')"
QUERY=employees: "WHERE department_id !=20 ORDER BY employee_id"

You can then issue the following command to execute the exp . par parameter file:

$ expdp hr/hr PARFILE=exp.par

The following example illustrates a schema mode export. You don’t see any
mention of the SCHEMA parameter; that’s because Data Pump will export a schema
(of the exporting user) by default.

$ expdp hr/hr DUMPFILE=dpump_dirl:expschema.dmp
LOGFILE=dpump_dirl:expschema.log

on the By default, Data Pump export will run the export in the schema mode.

Qob
Here’s an interesting Data Pump export example, showing how to use the
PARALLEL, FILESIZE, and JOB_NAME parameters. It also illustrates the use
of the DUMPFILE parameter when there are multiple dump files.

$ expdp hr/hr FULL=y DUMPFILE=dpump_dirl:fulll®U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dirl:expfull.log JOB_NAME=expfull

Now that you’ve seen how the Data Pump export utility works, you're ready to
look at the Data Pump import features.

Data Pump Import Types and Modes

As in the case of exporting data, you can perform a Data Pump import job from the
command line or use a parameter file. Interactive access to the import utility is
available, but it is different from what you are used to when working with the

Using Data Pump Export and Import 2.9

traditional export/import utilities. The interactive framework is analogous to the
interactive access to the Data Pump export utility, as you'll see shortly.

You can use Data Pump import in the same modes as Data Pump export:
table, schema, tablespace, and full modes. In addition, you can also employ the
TRANSPORTABLE_TABLESPACES parameter to import the metadata necessary
for implementing the transportable tablespaces feature.

You must have the IMPORT_FULIL_DATABASE role in order to perform one of
the following:

B Full database import MIIIIIIIIIIMW“M

B Import of a schema Datch
other than your own

You’ll need the TMPORT _
FULL DATABASE role to perform an

B Import of a table that import if the dump file for the import
you don’t own was created using the EXPORT FULL
DATABASE role.

Data Pump Import Parameters

As in the case of the Data Pump export utility, you control a Data Pump import
job with the help of several parameters when you invoke the impdp utility. For
this discussion, the import parameters are grouped as follows:

B File- and directory-related parameters
Filtering parameters

Job-related parameters

Import mode-related parameters
Remapping parameters

The network link parameter

The transform parameter

The flashback time parameter

File- and Directory-Related Parameters

The Data Pump import utility uses the PARFILE, DIRECTORY, DUMPFILE,

LOGFILE, and NOLOGFILE commands in the same way as the Data Pump export

utility. However, SQLFILE is a file-related parameter unique to the import utility.
The SQLFILE parameter is similar to the old import utility’s INDEXFILE

parameter. When you perform a Data Pump import, you may sometimes wish to

30 Chapter2: Loading and Unloading Data

extract the DDL from the export dump file. The SQLFILE parameter enables
you to do this easily, as shown in the following example.

$ impdp salapati/sammyyl DIRECTORY=dpump_dirl DUMPFILE=finance.dmp
SQLFILE=dpump_dir2:finance.sqgl

In this example, the SQLFILE parameter instructs the Data Pump import job to write
the DDL to the finance.sql file, located in the directory dpump_dir2. Of course, you
must have created dpump_dir2 prior to this, using the CREATE DIRECTORY AS
command. The DTIRECTORY=dpump_dirl parameter value tells Data Pump import
where to find the dump file finance.dmp. This example also shows how you can use
multiple directories in a single Data Pump job.

[t’s important to remember that the SQLFILE parameter just extracts the SQL
DDL to the specified file—no actual data import whatsoever takes place. By using
this parameter, you can extract a SQL script with all the DDL from your export
dump file. The DDL in SQLFILE lets you peek at what the import job will execute.

The other import file-related parameter is the new REUSE_DATAFILES
parameter. This parameter tells Data Pump whether it should use existing datafiles
for creating tablespaces during an import. If you specify REUSE_DATAFILES=y,
the import utility will write over your existing datafiles.

Filtering Parameters

You use the CONTENT parameter, as in the case of a Data Pump export, to determine
whether you'll load just rows (CONTENT=DATA_ONLY), rows and metadata
(CONTENT=ALL), or just metadata (CONTENT=METADATA_ONLY).

The EXCLUDE and INCLUDE parameters have the same meaning as in an export,
and they are mutually exclusive. If you use the CONTENT=DATA_ONLY option, you
cannot use either the EXCLUDE or INCLUDE parameter during an import.

You can use the QUERY parameter during import as well, in order to filter data
during an import. In the older export/import utilities, you could use the QUERY
parameter only during an export. You can use the QUERY parameter to specify an
entire schema or a single table. Note that if you use the QUERY parameter during
import, Data Pump will use only the external table data method, rather than the
direct-path method, to access the data.

What will Data Pump import do if there is a table creation script in the export
dump file, but the table already exists in the target database? You can use the
TABLE_EXISTS_ACTION parameter to tell Data Pump what to do when a table

Using Data Pump Export and Import 3 ||

already exists. You can provide four different values to the TABLE_EXISTS_
ACTION parameter:

B With SKIP (the default), Data Pump will skip a table if it exists.
B The APPEND value appends rows to the table.

B The TRUNCATE value truncates the table and reloads the data from the
export dump file.

B The REPLACE value drops the table if it exists, re-creates, and reloads it.

Job-Related Parameters

The JOB_NAME, STATUS, and PARALLEL parameters carry identical meanings
as their Data Pump export counterparts. Note that if you have multiple dump files,
you should specify them either explicitly or by using the %$u notation, as shown in
the Data Pump import section.

Import Mode-Related Parameters

You can perform a Data Pump import in various modes, using the TABLE, SCHEMAS,
TABLESPACES, and FULL parameters, just as in the case of the Data Pump export
utility. You can use the TRANSPORTABLE_TABLESPACES parameter when you
wish to transport tablespaces between databases.

Remapping Parameters

The remapping parameters are brand-new features in the Oracle Database 10g Data
Pump import utility, and they clearly mark the superiority of this utility over the
traditional import utility. Let’s briefly discuss each of these three parameters: REMAP__
SCHEMA, REMAP_DATAFILE, and REMAP_TABLESPACE.

REMAP_SCHEMA Using the REMAP_SCHEMA parameter, you can move
objects from one schema to another. You need to specify this parameter in the
following manner:

S impdp system/manager dumpfile=newdump.dmp REMAP_SCHEMA=hr:oe

In this example, HR is the source schema, and Data Pump import will import all of
user HR’s objects into the target schema OE. The import utility can even create the
OE schema, if it doesn’t already exist in the target database. Of course, if you want to

32 Chapter 2:

on th?

Qob

S impdp hr/hr

Loading and Unloading Data

just import one or more tables from the HR schema and import them into the OE
schema, you can do that as well, by using the TABLES parameter.

The REMAP SCHEMA parameter provides the same functionality as the
FROMUSERITOUSER capability in the old export and import utilities.

REMAP_DATAFILE When you are moving databases between two different
platforms, each with a separate filenaming convention, the REMAP_DATAFILE
parameter comes in handy to change file system names. The following is an example
that shows how you can change the file system from the old Windows platform to
the new UNIX platform. Whenever there is any reference to the Windows file system

in the export dump file, the import utility will automatically remap the filename to
the UNIX file system.

FULL=y DIRECTORY=dpump_dirl DUMPFILE=db_full.dmp

REMAP_DATAFILE='DB1$: [HRDATA.PAYROLL]tbs6.f':'/dbl/hrdata/payroll/tbs6.f"

REMAP_TABLESPACE Sometimes, you may want the tablespace into which
you are importing data to be different from the tablespace in the source database.
The REMAP_TABLESPACE parameter enables you to move objects from one
tablespace into a different tablespace during an import, as shown in the following
example. Here, Data Pump import is transferring all objects from the tablespace
example_tbs to the tablespace new_tbs.

$ impdp hr/hr REMAP_TABLESPACE='example_tbs': 'new_tbs'
DIRECTORY=dpump_dirl
PARALLEL=2 JOB_NAME=cfln02 DUMPFILE=employees.dmp NOLOGFILE=Y

The Network Link Parameter

Using the new NETWORK_I,INK parameter, you can perform an import across the
network, without using dump files. The NETWORK_LINK parameter enables import to
connect directly to the source database and transfer data to the target database. Here’s
an example:

$ impdp hr/hr TABLES=employees DIRECTORY=dpump_dirl
NETWORK_LINK=finance@prodl EXCLUDE=CONSTRAINT

In this example, finance@prod1 is the network link. It is a valid database link, created
by you beforehand using the CREATE DATABASE LINK command. Thus, the database
shown in the database link is your source for the import job. Data Pump will import

Using Data Pump Export and Import 3 3

the table employees from the remote database finance to your instance where you
run the Data Pump import job. In a network import, the Metadata API executes on
the remote instance, and extracts object definitions and re-creates necessary objects
in your local instance. It then fetches data from the remote database tables and loads
them in your local instance, using the INSERT AS SELECT command, as follows:

insert into employees (emp_name,emp_id) .. select (emp_name,emp_id) from
finance@remote_service_name

Note that a Data Pump network import doesn’t involve a dump file, as Data Pump
will import the table from the source to the target database directly.

EXERCISE 2-1

Using the NETWORK_LINK Parameter

Using the following information as your guidelines, perform an an import using the
NETWORK_LINK parameter.

SQL> create database link L1
connect to system identified by oracle
using 'db_name';
SQL> create directory dl as 'e:\tmp';
E:\> impdp userid=system/oracle tables=hr.regions network_link=L1
remap_schema=HR:0E directory=D1

The TRANSFORM Parameter

Suppose you are importing a table from a different schema or even a different database.
Let’s say you want to make sure that you don’t also import the objects’ storage attrributes
during the import—you just want to bring in the data that the table contains. What
can you do? The new TRANSFORM parameter lets you specify that your Data Pump
import job should not import certain storage and other attributes. Using the TRANSFORM
parameter, you can exclude the STORAGE and TABLESPACE clauses, or just the
storage clause, from a table or an index.

During a Data Pump (or traditional) import, Oracle creates objects using the DDL
that it finds in the export dump files. The TRANSFORM parameter instructs the Data
Pump import job to modify the DDL that creates the objects during the import job.

34 Chapter 2: Loading and Unloading Data

The TRANSFORM parameter has the following syntax:

TRANSFORM = transform name:valuel:object type]

Here’s an example to help you understand the TRANSFORM parameter:

impdp hr/hr TABLES=hr.employees \
DIRECTORY=dpump_dirl DUMPFILE=hr_emp.dmp \
TRANSFORM=SEGMENT_ATTRIBUTES:n:table

The TRANSFORM parameter syntax elements correspond to the following items

in the example:

B Transform name You can modify two basic types of an object’s

characteristics using TRANSFORM: segment attributes and storage. Segment
attributes include physical atttributes, storage attributes, tablespaces, and
logging. The transform name represents exactly which of these two object
attributes you want to modify during the import job. In the example, the
TRANSFORM=SEGMENT_ATTRIBUTES specification indicates that you
want the import job to modify all the segment (the employees table in the
HR schema) attributes.

Value The value of the TRANSFORM parameter can be Y (yes) or N (no).
By default, the value is set to Y. This means that, by default, Data Pump
imports an object’s segment attributes and storage features. If you assign a
value of N as your choice, you specify not to import the original segment
attributes and/or the storage attributes.

Object type The object type specifies which types of objects should be
transformed. Your choices are limited to TABLE and INDEX. You may omit
this part of the TRANSFORM parameter specification, in which case Data
Pump import will transform both tables and indexes.

The Flashback Time Parameter

The FLASHBACK_TIME parameter enables you to import data consistent as of the
flashback time you specify in your import job. For example, look at the following
import statement:

$ impdp system/manager flashback_time=2004-06-01 07:00

The import job will ensure that the data is consistent as of the time you specified.

Note that the FLASHBACK_TIME parameter does the same thing as the old
CONSISTENT parameter in the traditional import utility.

Monitoring a Data Pump Job 3 §

CERTIFICATION OBJECTIVE 2.03

Monitoring a Data Pump Job

There are two new views—DBA_DATA PUMP_JOBS and DBA_DATA PUMP_
SESSIONS—which are crucial for monitoring Data Pump jobs. In addition, you
can also use the VSSESSION_ LONGOPS view and the old standby V$ SESSION,
to obtain session information. In most cases, you can join two or more of these
views to gain the necessary information about job progress. Let’s look at some

of the important data dictionary views that help you manage Data Pump jobs.

Viewing Data Pump Jobs

The DBA_DATA PUMP_JOBS view shows summary information of all currently
running Data Pump jobs. It has the following structure:

SQL> desc dba_data pump_jobs

Name Null? Type
OWNER_NAME VARCHAR?2 (30)
JOB_NAME VARCHAR2 (30)
OPERATION VARCHAR2 (30)
JOB_MODE VARCHAR2 (30)
STATE VARCHAR2 (30)
DEGREE NUMBER
ATTACHED_SESSIONS NUMBER

Since the dynamic DBA_DATA PUMP_JOBS view shows only the active jobs, you
can easily find the JOB_NAME value for any job that is running right now. As you
know, you'll need to know the job name for a job if you want to attach to a running
job in midstream.

Because the name of the master table is the same as the JOB_NAME value, you
can thus determine the name of the master table through this view.

The JOB_MODE column can take the values FULL, TABLE, SCHEMA, or
TABLESPACE, reflecting the mode of the curently executing export or the import job.

The STATE column can take the values UNDEFINED, DEFINING, EXECUTING,
and NOT RUNNING, depending on which stage of the export or import you execute
your query. The Data Pump job enters the NOT RUNNING state immediately before
it completes the import or export. Of course, when there aren’t any active jobs running,
the view DBA_ DATA PUMP_JOBS returns no rows whatsoever.

36 Chapter 2: Loading and Unloading Data

Viewing Data Pump Sessions

The DBA_DATA PUMP_SESSIONS view identifies the user sessions currently
attached to a Data Pump export or import job. You can join the SADDR column
in this view with the SADDR column in the V$SESSTION view to gain useful
information about user sessions that are currently attached to a job. The following
query shows this:

SQL> select sid, serial#
from v$session s, dba_data pump_sessions d
where s.saddr = d.saddr;

Viewing Data Pump Job Progress

The V$SESSION_LONGOPS dynamic performance view is not new to Oracle Database
10g. In Oracle 9, you could use use this view to monitor long-running sessions.

In the V$SESSION_LONGOPS view, you can use the columns TOTALWORK,
SOFAR, UNITS, and OPNAME to monitor the progress of an export/import job.

This is what these four key columns represent:
B TOTALWORK shows the total estimated number of megabytes in the job.
B SOFAR shows the megabytes transferred thus far in the job,
B UNITS stands for megabytes.
B OPNAME shows the Data Pump job name.

Here’s a typical SQL script that you can run to show how much longer it will take
for your Data Pump job to finish:

SQL> select sid, serial#, sofar, totalwork
from v$session_longops
where opname = 'MY_ EXPORTJOBL1'

CERTIFICATION OBJECTIVE 2.04

Creating External Tables for Data Population

External tables are tables that do not reside in the database itself, and they can have
any format defined by an access driver. An external table is merely a representation of
external data in a file—data that’s never actually loaded into an Oracle table. In some

Creating External Tables for Data Population 37

ways, external tables are like a view, but the data physically exists in a flat file outside
the database.

External tables aren’t a new feature of Oracle Database 10g. Oracle9: first introduced
the concept of external tables. However, in Oracle9i, you could only read from
external tables. Now, in Oracle Database 10g, you can also to write to external tables.

We'll look at the following areas regarding external table creation in the following
sections:

B An overview of external table population features
B The process for creating external tables

B How to load and unload data
[

Parallel population of external tables

Features of External Table Population Operations

In reality, an external table isn’t really a table, but rather an interface to an external
datafile. However, you may query this external table like a virtual table, just as you would
query any regular Oracle table, which makes it a very powerful tool for data warehouse
extraction, transformation, and loading (ETL) activities. You can query external tables
or join them with regular tables, without ever loading the external data into your
database. In addition, you may create other regular tables or views from the external
tables, so this feature comes in very handy during the population of data warehouses.

You can’t perform all the normal table Data Manipulation Language (DML)
actions on an external table. You can query the external table data, but you can’t
perform an update, delete, or an insert on an external table. You also can’t build
an index on external tables.

Prior to Oracle Database 10g, you could use external tables to load data into
a database from external flat files. Now, for the first time, you can unload data
from an Oracle database into an external table. That is, whereas you could only
read from an external table before, now you can write to an external table as

well. The technique simply
uses the CREATE TABLE AS MIIIIIIIIIIM“WM
SELECT (CTAS) command to

. Datch
populate external tables with W The same limitations
data that actually resides in in earlier versions—inability to create
operating system text files and indexes and perform DML on the external

not in regular datafiles. tables—still apply to all external tables.

38 Chapter 2: Loading and Unloading Data

When you create an external table, you can use the TYPE attribute to select
between two types of external tables: the ORACLE_LOADER type and the
ORACLE_DATAPUMP type. Each of these external tables comes with its own
access driver. In Oracle9i, you used the ORACLE_LOADER access driver to create
external tables; however, the ORACLE_LOADER access driver can load data only
into an external table; that is, it can extract data from external flat files to load an
Oracle (external) table. The ORACLE_LOADER access driver is the default access
driver in Oracle Database 10g.

The ORACLE_DATAPUMP access driver is new to Oracle Database 10g. The

ORACLE_DATA PUMP access driver can load as
mmmmmmm well extract data; that is, it can both load an

Tatch external table from a flat file and extract data
If you want to create from a regular database table to an external flat
indexes on a staging table, you are better file. This external flat file data is written in a
off using the SQL*Loader utility to load proprietary format, which only the ORACLE_
data into the table. You cannot index an DATA PUMP access driver can read. You can then
external table! use this newly created file to create an external

table in the same database or a different database.
Here’s a summary of the main features of external table population operations:

B You can use the ORACLE_LOADER or ORACLE_DATA PUMP access drivers
to perform data loads. You can use only the new ORACLE_DATA PUMP
access driver for unloading data (populating external tables).

B No DML or indexes are possible for external tables.

B You can use the datafiles created for an external table in the same database
or a different database.

Match

The new Oracle unload. The older ORACLE LOADER access
Database |0g ORACLE DATA PUMP access driver can only load an external table using
driver can perform a data load as well as an data in operating system text files.

Creating External Tables

In this section, I'll briefly describe the mechanics of creating an external table. This
basic background will help you to understand the enhancements in this area in Oracle
Database 10g. The three main steps—create the datafile, create the directory object,
and then create the external table—are demonstrated in the following sections.

Creating External Tables for Data Population 3©Q

Create the Datafile

Create a flat file with some data that you’ll load into your external table. Let’s call this
datafile dept.dmp. Later, you’ll be defining this flat file as an external table. The file
will always remain in the operating system directories, and you may edit it as you wish.
Here’s the datafile structure:

10000001, nina, FINANCE, 04-APR-2000
10000002,nicholas, FINANCE, 04-APR-2000
10000007, shannon, HR, 02-FEB-1990
10000008,valerie,HR,01-JUN-1998

Create the Directory Object
Create a directory object to hold the external datafiles, as shown here:

SQL> CREATE OR REPLACE DIRECTORY employee_data AS 'C:\employee_data';
Directory created.

Create the External Table
Use the CREATE TABLE ... ORGANIZATION EXTERNAL statement to create your
external table, as follows:

SQL> CREATE TABLE emplovee_ext
(
empid NUMBER(8),
emp_name VARCHAR2 (30),
dept_name VARCHAR2 (20),
hire_date date
)
ORGANIZATION EXTERNAL
(
TYPE ORACLE_LOADER
DEFAULT DIRECTORY employee_data
ACCESS PARAMETERS
(
RECORDS DELIMITED BY NEWLINE
FIELDS TERMINATED BY ','
MISSING FIELD VALUES ARE NULL
)
LOCATION ('emp.dat')
)
REJECT LIMIT UNLIMITED;
Table created.
SQL>

40 Chapter2: Loading and Unloading Data

There are several important components of this CREATE TABLE statement that
you need to be aware of:

B ORGANIZATION EXTERNAL Indicates to Oracle that the table you are
creating is an external table, not a regular database table.

B TYPE Specifies the type of access loader: ORACLE_LOADER or ORACLE_
DATA PUMP. The default type is ORACLE_LOADER. However, only the
ORACLE_DATA PUMP access loader can perform a data unload. Both access
drivers can perform a data load. The records delimited by newline
clause indicates that each line in the datafile is a new row in the external
table. The fields terminated by ',' clause tells Oracle that each
column is seperated by a comma in the datafile. If there are missing values,
the clause missing field values are null instructs Oracle to treat
them as null.

B DEFAULT DIRECTORY Allows you to specify a file system as the directory,
by first using the CREATE DEFAULT DIRECTORY AS statement.

B ACCESS PARAMETERS Describes the structure of the external data. The
access parameters ensure that the data from the data source is processed
correctly to match the definition of the external table.

B LOCATION Refers to the actual dump file location. You must specify a
dump filename at least. In addition, you may specify an optional directory
name as well. If you furnish just a dump filename and no directory name,
Oracle will automatically place the dump file in the default dump directory.
Note that both of the following location specifications are valid:

LOCATION (‘dept_xt.dmp"')
LOCATION (dept_xt_dir.dep_xt.dmp)

B REJECT LIMIT UNLIMITED Specifies that there is no limit on the
number of errors that occur during the querying of the external tables.

Loading and Unloading Data

The terms loading and unloading in the context of external tables can be confusing, so
let’s pause and make sure you undertand these terms without any ambiguity. When
you deal with external tables, this is what these terms mean:

B Loading data means reading data from an external table and loading it into
a regular Oracle table. Oracle first reads the data stream from the files you

Creating External Tables for Data Population 4 ||

specify. Oracle will then convert the data from its external representation to
an Oracle internal datatype and pass it along to the external table interface.

Unloading data means reading data from a regular Oracle table and putting it
into an external table. You couldn’t do this in the Oracle9i database.

As I explained earlier, only the ORACLE_DATA PUMP access driver can perform an
external table population (unloading data). Why is the new functionality (unloading
data into external tables) important? Following are some of the benefits of this new
Oracle Database 10g feature:

Loading table data into flat files means that you can now store data or move
it to different databases easily. If you want to move large volumes of data
across platforms, external tables provide a means of doing so, since the
external files are platform-independent.

During the population of data warehouses, there are many situations where
you need to perform complex ETL jobs. You can use SQL transformations to
manipulate the data in the external tables before reloading them into the
same or other databases.

Once you create an external table and populate it using the CTAS
statement, you can move the text files containing data and create new
external tables in the same or a different database.

Note that when you talk about to writing to external tables, you are really referring
to writing to an external file. You use a SELECT statement to extract table data to
this operating sytem file. The ORACLE_DATA PUMP access driver writes data to this
file in a binary Oracle-internal Data Pump format. You can then use this file to load
another external table on a different database.

The following example shows how you can create an external table and populate it
with data from an external flat file. The only difference between this example and the
preceding external table creation statement is that it uses the ORACLE_DATAPUMP
access driver rather than the ORACLE_LOADER driver.

SQL> CREATE TABLE inventories_xt2

2

3
4
5
6
7

(
product_id NUMBER (6) ,
warehouse_id NUMBER (3) ,
quantity_on_hand NUMBER (8)

)
ORGANIZATION EXTERNAL

472 Chapter2: Loading and Unloading Data

8
9 TYPE ORACLE_DATA PUMP
10 DEFAULT DIRECTORY def_dirl
11 LOCATION ('inv_xt.dmp')
12);
Table created.
SQL>

The CREATE TABLE ... ORGANIZATION EXTERNAL statement creates an external
table. There is no data in this table at this point. The external table inventories_xt2
is then populated using the flat file inv_xt.dmp, located in the directory def_dirl.
You could do all this in Oracle9i. The feature shown in the next example—writing
to an external table—is a brand-new Oracle Database 10g external tables enhancement.

SQL> CREATE TABLE dept_xt

2 ORGANIZATION EXTERNAL

3 (

4 TYPE ORACLE_DATA PUMP

5 DEFAULT DIRECTORY ext_tab_dirl

6 LOCATION ('dept_xt.dmp')

7)

8% AS SELECT * FROM scott.DEPT
SQL> /

Table created.

Qatch

Remember that when you ..SELECT clause. When you populate an
load an Oracle table from an external table external table using Oracle table data, you
(data loading), you use the INSERT INTO use the CREATE TABLE AS SELECT clause.

If you now go look in the location specified for the default directory (ext_tab_
dirl), you'll see a dump file named dept_xt.dmp, which contains the data from the
DEPT table. You can then use this dump file in the same database or a different
database to load other tables. Note that you must create the default directory ext_
tab_dirl beforehand for this external table creation statement to succeed. You are
creating the external table dept_xt as an external table. The table structure and
data both come from the regular Oracle DEPT table. The CTAS method of table
creation will load the data from the DEPT table into the new external table dept_xt.

Creating External Tables for Data Population 43

Where will the data for the dept_xt be located? You’ll be wrong if you answer
something like “in a table segment”! Since the dept_xt table is defined as an external
table, the CTAS command simply stores the table data in the external file called
dept_xt_dmp. Thus, the external table is really composed of proprietary format,
operating system-independent flat files.

Match . .
When you use the external = metadata using external tables. If you wish

tables feature to extract table data to a file, to extract the metadata for any object, just
you export only the data. You can’t export use DBMS METADATA, as shown here:

SET LONG 2000
SELECT DBMS_METADATA.GET _DDL('TABLE', 'EXTRACT_CUST') FROM DUAL;

Parallel Population of External Tables

Since external tables can be quite frequently very large, it’s nice to know that you can
load external tables in a parallel fashion, simply by using the keyword PARALLEL
when creating the external table. Here’s the catch with the PARALLEL command
while creating an external table: your use of the PARALLEL parameter will make
sense only if you have more than one file specified as values for the LOCATION
variable. Otherwise, the PARALLEL command really can’t do anything in parallel
(the degree of parallelism defaults to 1)! The reason for this is that Oracle will allocate
exactly only one parallel execution server for each file. If you specify PARALLEL=4
and specify two datafiles for Oracle to write to, your degree of parallelism is automatically
lowered to 2. Thus, the degree of parallelism is constrained by the number of dump
files you specify under the LOCATION parameter.

Here’s an example of how to use the PARALLEL command while creating
external tables:

SQL> CREATE TABLE inventories_xt
2 ORGANIZATION EXTERNAL
3
4 TYPE ORACLE_DATA PUMP
5 DEFAULT DIRECTORY def_dirl
6 LOCATION ('inv_xt.dmpl', 'inv_xt.dmp2’,inv_xt.dmp3’)
)
PARALLEL
8 AS SELECT * FROM inventories;

~J

44 Chapter2: Loading and Unloading Data

CERTIFICATION OBJECTIVE 2.05

Defining External Table Properties

The data dictionary view DBA_EXTERNAL_TABLES describes features of all external
tables in your database:

SQL> desc dba_external_tables

Name Null? Type

OWNER NOT NULL VARCHAR2 (30)
TABLE_NAME NOT NULL VARCHAR2 (30)
TYPE_OWNER CHAR (3)
TYPE_NAME NOT NULL VARCHAR2 (30)
DEFAULT_DIRECTORY_OWNER CHAR (3)
DEFAULT_DIRECTORY_NAME NOT NULL VARCHAR2 (30)
REJECT_LIMIT VARCHAR2 (40)
ACCESS_TYPE VARCHAR2 (7)
ACCESS_PARAMETERS VARCHAR2 (4000)
PROPERTY VARCHAR2 (10)

Pay particular attention the last three columns in the DBA_EXTERNAL_
TABLES view:

B The ACCESS_TYPE column refers to whether you have BLOB or CLOB

type of access parameters for your external table.

B The ACCESS_PARAMETERS column shows all the access parameters

you used in creating the external table.

B The PROPERTY column, which refers to the property of the projected
columns, could take two values: REFERENCED or ALL.

The default value for the PROPERTY column for all external tables is ALL. This
tells the access driver to always process all the columns of an external table, not just
some. This means that, regardless of which columns you select in a query, the access
driver will process all column values. The access driver will validate only those columns
without data errors. The access driver will also eliminate any rows that have erroneous
column values, even if those columns aren’t a part of the SELECT query.

If the PROPERTY column shows the value REFERENCED, this means that only
those columns referenced by a SQL statement are processed (parsed and converted)

by the Oracle access driver. When would you want to specify the REFERENCED

Transporting Tablespaces Across Different Platforms 4. §

property? You do this when you are quite sure about the quality of your data fields
and expect no data rejections due to data format errors. For example, you may have
a column called emp_id, which you define as a number (5) column. When Oracle
encounters a row in the datafile where the emp_id has six digits, it would normally
reject this row, since the default value for the property is ALL. This means that even
if you issue a query that selects a different column, say social_security_num from the
employee table, Oracle will reject all rows that have bad data in the emp_id column.

How do you change the default ALL property value for an external table to
REFERENCED? Say that you want to change this property for your external table
dept_xt, which now has the default ALL property.

SQL> select table_name,property from dba_external_ tables;
TABLE_NAME PROPERTY

DEPT_XT ALL

To do this, you use the ALTER TABLE command in the following manner.

SQL> alter table dept_xt
2 project column referenced;
Table altered.
SQL> select table_name,property from dba_external_tables;

TABLE_NAME PROPERTY
DEPT_XT REFERENCED
SQL>

Changing the PROPERTY column to REFERENCED is a good idea if you know
your data is clean, because it provides better performance, since only the projected
columns are parsed and converted. If your data is clean, flagging an external table as
REFERENCED will provide better performance when you query only a subset of the
columns.The default ALL property projects all columns and will guarantee consistent
results, but all of the data is queried for every type of query, thus hindering performance.

CERTIFICATION OBJECTIVE 2.06

Transporting Tablespaces Across Different Platforms

Suppose you need to move a large amount of data between two databases. What'’s the
fastest way to do this? You can use the Data Pump export and import utilities, of

46 Chapter2:

on the

Qob

Loading and Unloading Data

course, to perform the job. However, there is a much faster way to perform the data
transfer: use transportable tablespaces. Transportable tablespaces simply involve moving
tablespaces from one database to another. All you really need to do is to copy the
datafiles (containing tables, indexes, and other Oracle database objects) that comprise
the tablespace, from the target to the source server (if the two databases reside on
different servers) and just import the metadata of the objects in the tablespace to the
target database.

Transportable tablespaces are ideal for moving large amounts of data quickly
between two databases. The transportable tablespaces feature, of course, has been
available for a while now, but both the source and target databases needed belong
to the same operating system platform. In Oracle Database 10g, for the first time,
you can transport tablespaces between different platforms. Now the onerous requirement
of identical operating system platforms is gone, and you can easily transport a
tablespace from pretty much any platform to any other. This is a great feature, as
it enables you to take tablespaces from a data warehouse and plug them into data
marts, even though your data warehouse runs on an UNIX platform and the data
marts are located on smaller Windows servers. As you have probably already figured
out, the key here is Oracle Database 10g’s ability to convert one set of datafiles from
one operating system format to another, so the target database can read the source
database files.

Transportable tablespaces are a good way to migrate a database between
different platforms.

Transporting a Tablespace Between Identical Platforms

Although the procedure of transporting tablespaces hsn’t really changed in Oracle

Database 10g, let’s recap the steps involved in transporting tablespaces, so you can

understand the new changes better. Transporting a tablespace from one database to

another when both databases belong to the same platform consists of the following steps:
I. Ensure that the tablespaces are self-contained.

Make the tablespaces read-only.

Export the metadata using Data Pump export.

Copy the datafiles over to the target system.

ik W

Use Data Pump import to import the metadata.

Transporting Tablespaces Across Different Platforms 4.7

Following are the general requriements for transporting tablespaces between two
databases:

B Both platforms should use the same character sets.

B Both databases must be using Oracle8i or a higher version, but the database
version does not need to be identical.

B You cannot transport the SYSTEM tablespaces or any objects owned by the
user SYS.

B If you want to transport a partitioned table, all the partitions must be
included in the transportable table set. If you are transporting indexes, you
also need to transport the tablespaces containing the respective tables as well.

B You can transport tablespaces to a target database only if it has the same or
higher compatiblity setting than the source database.

Datch

If either the source or the 10.0.0, you cannot transform a tablespace
target database compatibility level is less than across different operating sytem platforms.

Determining the Supported Platforms

Note that you can’t transport tablespaces between all operating system platforms
automatically, even in Oracle Database 10g. How do you know which platforms are
supported for cross-platform tablespace transport? All you need to do to get this
information is to query the new VSTRANSPORTABLE_PLATFORM view:

SQL> col platform _name format a30
SQL> select * from vStransportable platform;
PLATFORM_ID PLATFORM_ NAME ENDIAN FORMAT
1 Solaris[tm] OE (32-bit) Big
2 Solaris[tm] OE (64-bit) Big
7 Microsoft Windows IA (32-bit) Little
10 Linux IA (32-bit) Little
6 AIX-Based Systems (64-bit) Big
3 HP-UX (64-bit) Big
5 HP Tru64 UNIX Little

48 Chapter 2: Loading and Unloading Data

4 HP-UX IA (64-bit) Big
11 Linux IA (64-bit) Little
15 HP Open VMS Little
8 Microsoft Windows IA (64-bit) Little
9 IBM zSeries Based Linux Big
13 Linux 64-bit for AMD Little
16 Apple Mac 0OS Big
12 Microsoft Windows 64-bit for A Little
MD
15 rows selected.
SQL>
The VSTRANSPORTABLE_
PLATFORM view shows all BMIIIIIIIIMWW“L
platforms supported for Tatch
transporting tablespaces. The In order to transport

PLATFORM_NAME column tablespaces across different platforms,
shows all the platforms that are the character sets in both databases

eligible for transporting across should be identical.

platforms. If both your source
and target platforms are in this list, you can conduct the transportable tablespaces
operation between the databases running on those platforms.

You can find out your own platform name, in case you aren’t sure, by running the
following simple query:

SQL> select platform _name from vSdatabase;

PLATFORM_NAME

Microsoft Windows IA (32-bit)
SQL>

If you need to transport read-only tablespaces to ensure that your datafile headers
can identify the operating system platform, you must first make the datafile read/
write at least once (after setting the database compatibility level at 10.0.0 or higher).
If your source database is operating at a 9.2.0 compatibility level, for example, you
need to first advance the compatibility level to 10.0.0 before you can transport any
tablespaces for this database.

Transporting Tablespaces Across Different Platforms 4.©Q

Converting to Match Datafile Endian Formats

Even if your source and target operating system platforms are identical, you may
still not be able to perform a tablespace transport directly. Remember that the most
time-consuming job during a tablespace transport is the copying of the files that
belong to the tablespace. If the endian format of two operating system platforms is
different, you need to perform a conversion of the datafiles, either before or after
you copy the files to the target system.

What does the ENDIAN FORMAT column, which you can see in the following

query, stand for?

SQL> select * from vStransportable_platform;

PLATFORM_ID PLATFORM_NAME ENDIAN FORMAT
1 Solaris[tm] OE (32-bit) Big
2 Solaris[tm] OE (64-bit) Big
7 Microsoft Windows IA (32-bit) Little
10 Linux IA (32-bit) Little
SQL>

Endian format refers to byte ordering in the datafiles of a given platform. Byte
ordering affects the way data is written and read in different platforms. There are
only two types of endian formats: little or big. In order for the datafiles between
two compatible platforms to be transported directly from one another, their endian
format (also known as endianness) should be the same. Both the source and target
platforms should have an identical endian format—either both are in the big format
or both are in the little format.

If you have two platforms that are in the compatible list for transporting tablespaces,
but their endian formats are different, you need to convert the datafiles belonging
to the tablespaces that you are exporting, using the RMAN utility.

Datch

Being compatible for isn’t the same thing as having identical
the purpose of transporting tablespaces endian formats.

B0 Chapter2:

Loading and Unloading Data

Transporting a Tablespace Across Platforms

The steps for transporting tablespaces across platforms are the same as for transporting
tablespaces across identical platforms, with an additional step if the source and target
database file endian format are different. The following sections provide an example of
these steps.

Ensure the Tablespaces Are Self-Contained

Ensure that the tables you want to transport all are placed in their own separate
tablespaces. To ensure that your tablespaces are self-contained, you need to use the
TRANSPORT_SET_PROCEDURE in the Oracle-supplied package DBMS_ TTS.

Make the Tablespaces Read-Only

Alter the tablespace to make it read-only. Once you complete the export of the
metadata in the next step, you can make the tablespace read/write again.

Export the Metadata Using Data Pump Export

Export the metadata describing the objects in the tablespace(s), by using the
TRANSPORTABLE_TABLESPACES parameter.

Convert the Datafiles to Match Endian Format

If your platforms are compatible, but the endian formats are different, you need to
convert the datafiles. You may perform the conversion before transporting the tablespace
set or after finishing the transport. You can convert the datafiles before transporting
the tablespaces, using the following CONVERT TABLESPACE command in the RMAN:

RMAN> convert tablespace finance tbs01

2> to platform 'HP-UX (64-bit)"

3> format '/temp/%U';

Starting backup at 09-MAY-04

using channel ORA_DISK_ 1

channel ORA_DISK_1: starting datafile conversion
input datafile fno=00011 name=C:\ORACLE\TESTO02.DBF

converted datafile=C:\TEMP\DATA D-FINANCE_ I-2343065311_TS-TODAY_ FNO-11_O05FLAUM6
channel ORA_DISK_1: datafile conversion complete, elapsed time:

Transporting Tablespaces Across Different Platforms § ||

Finished backup at 09-MAY-04
RMAN> exit
Recovery Manager complete.

In this example, I show how you can use the FORMAT parameter to tell Oracle
what format the newly converted file should be and in which directory to put it. But
as you can see, Oracle gives the file a name. If you want to specify the datafile name
youself, perform the conversion using the DB_FILE_NAME_CONVERT clause, as
follows. (Remember that you use the following command when you convert the files
directly on the source system, before transporting them.)

RMAN> convert tablespace today

2> to platform 'HP-UX (64-bit)’

3> db_file_name_convert = 'c:\oracle\test02.dbf', 'c:\temp\test02.dbf"';
Starting backup at 10-MAY-04

using target database controlfile instead of recovery catalog
allocated channel: ORA_DISK 1

channel ORA_DISK_1: sid=151 devtype=DISK

channel ORA_DISK_1: starting datafile conversion

input datafile fno=00011 name=C:\ORACLE\TESTO02.DBF

converted datafile=C:\TEMP\TESTO02.DBF

channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:16
Finished backup at 10-MAY-04

RMAN>

The DB_FILE_NAME_CONVERT clause performs the following functions for you:

B Takes a given filename and converts it to any filename you specify

B DPlaces the converted file in the location you specify

Copy the Files to the Target System

At this point, you need to copy both the converted datafile that is part of the tablespace
(finance_tbsO1 in this example) as well as the expdp dump file, sales2003.dmp, over
to the target server where your target database is running.

If you chose to transport the tablespaces (the datafiles that constitute the tablespaces)
first, you must convert the datafiles on the target platform at this point, before trying
to perform the import of the metadata in the tablespace. Here’s an example that

B2 Chapter 2: Loading and Unloading Data

on the

Qob

shows how you can take a datafile that belongs to the HP-UX operating system
platform and convert it into a Windows platform:

RMAN> convert datafile

2> 'c:\audit_d0l_01.dbf'

3> to platform 'Microsoft Windows IA (32-bit)'
4> from platform='HP-UX (64-bit)"

5> FORMAT '\export';

As in the previous case where you performed the file conversion on the source
sytem, you may use the DB_FILE_NAME_CONVERT clause when performing the
data file conversion on the target system. Your datafile conversion statement would
then have the format CONVERT DATAFILE ..FROM PLATFORM ..DB_FILE_
NAME_CONVERT = ...

By default, Oracle places the converted files in the Flash Recovery Area,
without changing the datafile names.

Use Data Pump Import to Import the Metadata

Once you move the converted files files over to the target system (or move the files
over first and convert them later), use the Data Pump import utility as follows to
import the metadata into the target database—that is, just plug in the tablespaces and
use the Data Pump import to integrate the datafiles and their metadata (found in the
test.dmp file):

impdp system/manager TRANSPORT_TABLESPACE=y
DATAFILES='/u0l/app/oracle/datall.dbf"
TABLESPACES=test FILE=test.dmp

Understanding Exceptions to File Conversions

There is an important exception to the file conversions that the RMAN performs for
you in order to enable the transporting of tablespaces between two platforms with
different endian formats. RMAN doesn’t automatically convert CLOB data for you
during file conversion. Here’s what you need to know about CLOBs and file conversion
for transportable tablespaces:

B If your CLOBs were created in an operating system with the big-endian
format, you don’t need to convert the CLOB data.

B If you are transporting little-endian CLOB data to a big-endian system, a
conversion must be done. But even here, Oracle can automatically convert

Transporting Tablespaces Across Different Platforms

the CLOB data to the big-endian format dynamically, whenever a user
accesses the data. However, if you wish to do all the conversion yourself,
you may do so by re-creating the table on the target database.

Here’s the reasoning for the variation in the treatment of CLOB data in big-
endian and little-endian systems: prior to Oracle Database 10g, CLOBs were stored
in the UCS2 format, which is endian-dependent, but Oracle Database 10g stores
them as AL16UTF16, which is endian-independent. However, big-endian UCS2
is the same as AL1I6UTF16. So if your source system was big-endian, there isn’t any
difference. If it wasn’t, Oracle will convert the datafiles on demand.

INSIDE THE EXAM

The exam will test your knowledge of the new
Data Pump import and export parameters. You
must understand the new parameters like the
remapping parameters of Data Pump import.
What are the different levels at which you can
perform transformations during an import? Pay
particular attention to the new parameters like
ESTIMATE, ESTIMATE_ONLY, NETWORK_
LINK, INCLUDE, and EXCLUDE. You must
know the levels at which you can perform
Data Pump import and export.

You can expect questions on the interactive
import and export commands. How do you
attach to a running job? What happens to a
job and a client session when you stop a job?
Review the Data Pump dictionary views like
DBA_DATAPUMP_JOB_STATISTICS and
DBA_DATAPUMP_JOBS.

There will be a question on the Data Pump
architecture. You must know the difference
between the External Table API and Direct

Path API. You can expect some questions
on the DBMS_DATAPUMP and the DBMS_
METADATA packages. You must understand
the importance of the master table.

There will be questions on the external
table population feature. You must remember
the syntax for performing an external table
population (CREATE TABLE AS SELECT).
Review the parallel feature, putting special
emphasis on the relationship between the degree
of parallelism and the number of dump files.

The test will contain questions on the new
features related to transportable tablespaces.
What is an endian format, and what role does
it play in transporting tablespaces across
platforms? You must remember the RMAN
commands to convert the endian formats of
files. What is the difference in the file
conversion commands when you convert files
on the target platform and when you convert
them on the source platform?

53

B4 Chapter2: Loading and Unloading Data

CERTIFICATION SUMMARY ‘

This chapter introduced you to the new Data Pump technology in Oracle Database 10g.
You saw how Data Pump offers sophisticated new features to run large export and import
jobs faster, while offering exceptional data-filtering techniques. You also learned about
the powerful interactive Data Pump features. You learned how to monitor your Data
Pump jobs.

You learned how to populate external tables. You also saw how the new options
you have in Oracle Database10g regarding external table properties. You learned
how to transport tablespaces across server platforms, even when the file semantics
are different between two operating sytem platforms.

Two-Minute Drill §§

TWO-MINUTE DRILL

Introduction to the Data Pump Architecture

a

a

(I A

The new Data Pump technology is a much more efficient way of moving large
amounts of data than the old export/import utilities.

You can still continue to use the traditional export and import utilties in
Oracle Database 10g.

Data Pump technology is entirely server-based; all work takes place on the server.

The Data Pump export utility exports data out of the database, and the Data
Pump import utility imports data into a database.

There are two kinds of parameters: a set of command-line parameters and a
special set of interactive commands in both the Data Pump import and
export utilities.

The Oracle-supplied package DBMS_DATA PUMP is used to implement the
Data Pump APL

The clients for the Data Pump export and import utilities are expdp and
impdp, respectively.

DBMS_METADATA, an older Oracle-provided package, is used to extract and
modify data dictionary metadata.

Data Pump export can access data in two ways: direct-path access using the
Direct Path API or through external tables. Data Pump itself makes the
decision as to the access choice, based on which will be faster in a given case.

Direct-path access is the first method Oracle will try to use. Under some
conditions, Oracle cannot use the direct-path method, and it must use the
external tables access method.

You can export data using either direct path or external tables and import the
data back with either of the two methods.

There are three types of Data Pump files: dump files, log files, and SQL files.
Data Pump export dump files are created on the server, using directory objects.

Directory objects are named objects that are mapped to an operating system
directory.

Once you create a directory, you can access that file system by simply
referring to the dirctory name.

B6 Chapter2:

Loading and Unloading Data

In order to create a directory, you must have the DBA role. In order to use a
directory, you must have the appropriate read and/or write privileges on the
directory.

DATA_PUMP_DIR is the default directory object for Data Pump jobs. Only
privileged users can use this default directory object.

The order of precedence for file locations is the following: the directory name
as part of a file parameter name, the value assigned to the DIRECTORY
parameter, the directory name specified by DATA_PUMP_DIR environemnt
variable, and finally, the default value for the DATA_PUMP_DIR object.

All Data Pump jobs consist of a master and several worker processes. The
master process controls jobs and the worker processes as well. The master
process is also responsible for monitoring the progress of jobs.

The master process uses the master table to store the database object location.
The master table is created during the export process. If the job completes
successfully, the master table is automatically deleted from the database.

During Data Pump import, the master table is consulted to verify the correct
sequencing of objects during import.

If you choose the PARALLEL option, the worker processes become parallel
execution coordinators.

The benefits of the Data Pump technology include the ability to restart jobs,
parallel execution capabilities, ability to attach to a running job, ability to
estimate space requirements, fine-grained export and import capabilities, and
remapping capabilities.

You can perform both network mode exports and imports.

You can perform Data Pump export/import from the command line or with
the help of parameter files.

In Data Pump export/import, you use the interactive mode to intervene
during a running job. There are several special commands you can use in
this interactive mode.

You can start the interactive mode either by using the CONTROL-C
combination or by using the ATTACH command from a different session.

Using Data Pump Export and Import

U You can perform Data Pump export and import in full, tablespace, table, or

schema modes. You can also perform Data Pump jobs in the transportable
tablespaces mode.

Two-Minute Drill §7

The CONTENT parameter can take the values ALL, DATA_ONLY, or
METADATA_ONLY. The ALL parameter enables the export of both data and
metadata. The DATA_ONLY parameter lets you export data only. The
METADATA_ONLY option enables the export of only the object definitions.

The EXCLUDE parameter forces the exclusion of specific objects, and the
INCLUDE parameter requries the inclusion of specified objects.

The EXCLUDE and INCLUDE parameters are mutually exclusive.

You use the QUERY parameter to filter table row data with the help of a
SQL statement.

The ESTIMATE parameter provides an estimate of the size of the export job. It
uses BLOCKS by default. You can specify ESTIMATE=STATISTICS to make
the parameter use database statistics instead of the default blocks method.

The ESTIMATE_ONLY parameter just gives you a size estimate, without
performing an export.

You can connect to a running export or import job by using the ATTACH
command.

The CONTINUE_CLIENT parameter takes you out of the interactive mode
but keeps the job running. The EXIT_CLIENT command will terminate the
interactive session and the client session. The KILL_JOB command will
terminate the export or import job in addition. The STOP_JOB command
stops running Data Pump jobs.

The STATUS parameter will provide you with periodic job progress updates.

The default value of the PARALLEL parameter is 1. In practice, it is limited
by the number of dump files you provide for the export job.

By default, a Data Pump export job will export the entire schema of the user
running it.

The SQLFILE parameter is used during a Data Pump Import to extract DDL
to a specified file, without conducting an import of the data in the export
dump file.

If you specify REUSE_DATAFILES=Y, Data Pump will overwrite your
existing datafiles.

Remapping parameters are used during a Data Pump import job to remap
database objects. You can remap datafiles, tablespaces, and entire schemas.

B8 Chapter2:

Loading and Unloading Data

Q

a

The NETWORK_L.INK parameter enables you to import data directly from as
target database, without using any dump files. You must first create a database
link before performing a network import.

The TRANSFORM parameter enables you to modify storage and
tablespace clauses during an import.

Monitoring a Data Pump Job

Q

Q
Q

Q

You can monitor Data Pump jobs with the help of the views DBA_DATA
PUMP_JOBS, DBA_DATA PUMP_SESSIONS, and VSSESSION_
LONGOPS.

The DBA_DATAPUMP_JOBS view shows all active Data Pump jobs.

The DBA_DATAPUMP_SESSIONS view shows all the user sessions attached
to an import or export job.

The V$SESSTION_LONGOPS view tells you how far a Data Pump job has
progressed.

Creating External Tables for Data Population

Q

Q

You can now populate external tables by using the ORACLE_DATA PUMP
access loader.

The main parameters you need to specify in the creation of external tables are
type, default_directory, location,and access_parameters.
Loading data refers to reading data from external tables. Unloading data refers
to populating external tables.

You use the CREATE TABLE AS SELECT (CTAS) statement to populate
external tables.

The ORACLE_LOADER access driver permits only the loading of external
tables.

The ORACLE_DATAPUMP access loader will permit both the loading and
the unloading of data (reading as well as writing to external tables).

You can load external table creation faster by using the PARALLEL
parameter. If you use the PARALLEL parameter, you must specify more than
one datafile for writing the data. The degree of parallelism is limited by the
number of datafiles you provide.

Two-Minute Drill §9Q

Defining External Table Properties

a

a

External tables could have either of two values for the PROPERTY column:
ALL or REFERENCED.

The default value fo the PROPERTY column is ALL.

If your data is known to be clean (no data formatting errors), you should use
the REFERENCED value for the PROPERTY column, for better performance.

You can use the ALTER TABLE command to change the PROPERTY
column of an external table.

Transporting Tablespaces Across Different Platforms

a

a

You can now transport tablespaces across different operating system
platforms.

In order to qualify for a cross-platform tablespace transport, both platforms
should set to the compatibility equal to 10.0.0, use an identical character set,
and be in the compatible platforms list.

The view VSTRANSPORTABLE_ PLATFORM will let you know if a pair of
operating system platforms are compatible.

The endian format of an operating system platform refers to the byte-ordering
format of the files on that platform.

If the endian format of two compatible platforms is the same, you don’t need
to convert the datafiles for transporting them across different platforms.

If the endian format of two compatible platforms is different, you must
convert the datafiles either before or after you physically transport the
tablespaces.

You use the DB_FILE_NAME_CONVERT option to convert file formats from
one endian format to another.

If your CLOBs were created in an operating sytem with the big-endian
format, you don’t need to convert the CLOB data.

If you are transporting little-endian CLOB data to a big-endian system, you
must convert the data.

60 Chapter 2: Loading and Unloading Data

SELF TEST

The following questions will help you measure your understanding of the material presented in
this chapter. Read all the choices carefully because there might be more than one correct answer.
Choose all correct answers for each question.

Introduction to the Data Pump Architecture

I. Which of the following are part of the new Data Pump technology?
A. DBMS_METADATA, DBMS_DATA PUMP, Direct Path API
B. DBMS_METADATA, DBMS_DATA PUMP, Indirect Path API
C. DBMS_METADATA, DBMS_DATA PUMP, SQL Loader API
D. DBMS_METADATA, DBMS_DATA PUMP, Export API

2. What is the DBMS_METADATA package used for?

A. Transport tablespaces between two databases

B. Load and unload metadata

C. Perform a cross-platform transport of tablespaces
D. Load external tables

3. Assume the following is the first import job you are performing in your database:

$ impdp system/manager parfile=imp.par

What would be the default name of your master table?
A. IMPORT_FULL_01

B. SYS_IMPORT_FULL_01

C. SYSTEM_IMPORT_FULL_01

D. DATA PUMP_JOB_FULL_01

4. Which of the following statements is correct?

A. The master table is created during a Data Pump export job and written to the dump file at
the very beginning of the export job.

B. The master table is created during a Data Pump export job and written to the dump file at
the very end of the export job.

C. The master table is created during a Data Pump import job and written to the dump file at
the very beginning of the import job.

D. The master table is created during a Data Pump import job and written to the dump file at
the very end of the import job.

Self Test @ |l

Using Data Pump Export and Import

5. The DBA has just performed a full database Data Pump export. She must now perform a full
database import using the dump file set created by the export job. Which one of the following
statements would be correct under the circumstances?

A. impdp system/manager dumpfile=expdata.dmp FULL=Y

B. impdp system/manager dumpfile=expdata .dmp

C. impdp system/manager FULL=Y

D. impdp system/manager dumpfile=expdata.dmp FROMUSER=TOUSER

6. Which of the following parameters enables you to perform a data-only unloading of data?

A. EXCLUDE
B. INCLUDE
C. CONTENT

D. DATA_ONLY

7. Which of the following statements is correct?
A. If you stop a job using the STOP_JOB command, the master table is retained for use in
restarting the job.

B. If you stop a job using the KILL_JOB command, the master table is dropped and the job
cannot be restarted.

C. If you stop a job using the KILL_JOB command, the master table is retained and you can
restart the job later.

D. Ifajob terminates unexpectedly, the master table is dropped automatically.

8. Which of the following occurs when you start an interactive session with Data Pump?
A. The currently running export job is interrupted briefly.
B. The current job continues normally.
C. The current job is stopped and you need to restart it later.
D

. You cannot start an interactive session when a Data Pump job is running.

Monitor a Data Pump Job

9. How can you see the amount of work performed so far by your Data Pump import job?

A. Query the VSJOB_STATUS view

B. Query the VSSOFAR view

C. Query the VSSESSION_LONGOPS view
D. Query the DBA_DATAPUMP_JOBS view

62 Chapter 2: Loading and Unloading Data

10. Which is the sequence of commands you must use if you want to suspend and then resume your
Data Pump job?
A. START_JOB, ATTACH, CONTINUE_CLIENT
B. ATTACH, KILL_SESSION, CONTINUE_CLIENT
C. ATTACH, STOP_JOB, START JOB
D. STOP_JOB, ATTACH, CONTINUE_CLIENT

Il. What information do you need to supply to attach to a running job from a different session?
A. The location of the dump file
B. Username and password, job name
C. Username and password onl

D. Username and password, master table name

12. What does the column SOFAR in the monitoring view V$SESSION_LONGOPS tell you?

A. How many megabytes have been transferred thus far in the job
B. What percentage of the job has been completed thus far

C. What percentage of the job remains to be done

D. The estimated number of megabytes left to be transferred

Creating External Tables for Data Population

13. Which two of the following statements is true?
A. You use the ORGANIZATION EXTERNAL clause during an external table unloading
operation.

B. You use a CREATE TABLE AS SELECT statement during an external table loading
operation.

C. Youuse a CREATE TABLE AS SELECT from statement during an external table
unloading operation.

D. You use the ORGANIZATION EXTERNAL clause only for reading data into an external
table from an operating system file.

14. What does unloading of data refer to?

A. The reading of data from external datafiles into external tables.
B. The writing of data from Oracle tables to external datafiles.

C. The writing of data from external datafiles into external tables.
D. The reading of data from Oracle tables into external datafiles.

Self Test @3

I15. Why should you use the NETWORK_LINK export parameter when you perform a Data Pump
export of a read-only database?

16.

A

B.

C.

D.

You can’t write to a read-only database.
The export is faster if you use the NETWORK_ L INK parameter.

You don’t need to use export dump files when you use the NETWORK_L.INK parameter
during export

You can’t use the traditional export utility to export a read-only database.

If the number of files in the LOCATION clause is different from the degree of parallelism that
you specify, which two statements below would be correct?

A

B.

C.

D.

Oracle will ignore the PARALLEL parameter.

Oracle will perform the table population with the same degree of parallelism as the number

of files.

Oracle ignores any extra files (files greater than the degree of parallelism) that you may
specify.

You can instruct the parallel execution server to write to multiple files simultaneously.

Defining External Table Properties

17. The DBA knows that the database may reject certain columns in an external table, due to data
format errors. In this case, what should the DBA do to get consistent query results?

18.

A

B.

C.
D.

Clean up the data so the rows with data format errors are taken out of the table.
Alter the external table to set the PROJECT COLUMN attribute to ANY.

Alter the external table to set the PROJECT COLUMN attribute to ALL.

Alter the external table to set the PROJECT COLUMN attribute to REFERENCED.

Which of the following is true in Oracle Database 10g?

A

B.

C.

The default value for an external table PROJECT COLUMN attribute projects all columns.
The default value for an external table PROJECT COLUMN attribute projects no

columns.

The default value for an external table PROJECT COLUMN attribute projects only

columns with no data errors.

The default value for an external table PROJECT COLUMN attribute projects only

columns with data errors.

64 Chapter 2: Loading and Unloading Data

19. Which of the following is true if your data is clean (without any formatting errors)?
A. Using the ALL value for the PROJECT COLUMN attribute always provides the same
results.

B. Using the REFERENCED value for the PROJECT COLUMN attribute always provides the
same results.

C. Using the default value for the PROJECT COLUMN attribute always provides the same
results.

D. Using the ALL value for the PROJECT COLUMN attribute always provides different

results.

20. Of the following, which statement is true of the external table properties?

A. REFERENCED is better because you need to parse and convert only some columns.
B. ALL is better because you need to parse and convert only some columns.

C. ALL is better because you need to parse and convert all columns.
D

REFERENCED is better because you need to parse and convert all columns.

Transporting Tablespaces Across Different Platforms
21. Which of the following interfaces can you use to convert your database files when the endian
formats are incompatible between a source and a target database?
A. SQL*Plus
B. RMAN
C. OEM Database Control
D. Oracle PL/SQL procedures and packages

22. Which of the following do you need to do when the endian formats of the target and source
database files are different?

A. Convert the source files on the source system, copy them to the target system, and import
the metadata.

B. Convert the source files on the source system, copy them to the target system, and export
the metadata.

C. Copy the source files to the target system, convert the datafiles, and export the metadata.
D. Copy the source files to the target system, convert the datafiles, and import the metadata.

Lab Question @5

23. To find out if two databases are cross-transportable compliant, which data dictionary view do
you need to use!

24,

A

B.

C.
D.

VSTRANSPORTABLE_PLATFORM
VSENDIAN FORMAT
VS$PLATFORM
VSCOMPATIBILITY_ LEVEL

Which of the following can you do if you find both the target and source operating system
platforms in the VSTRANSPORTABLE_TABLESPACES view!

A

B.
C.
D

Automatically transport tablespaces between the two platforms
Transport tablespaces only after you perform a mandatory file conversion first
Transport tablespaces between the two platforms only if their endian format is different

Transport tablespaces between the two platforms, provided you always perform a file
conversion first if the file endian formats are different

LAB QUESTION

Start a Data Pump export job as the user SYSTEM. Export the entire database. Show the commands
you would enter to perform the following actions:

Start an interactive session by using the ATTACH command.

Find out the name of the master table.

Parallelize the export (four streams).

Resume the export job.

66 Chapter 2: Loading and Unloading Data

SELF TEST ANSWERS

Introduction to the Data Pump Architecture

4.

M A. The DBMS_METADATA and DBMS_ DATAPUMP packages are the main Oracle
PL/SQL packages that the Data Pump technology uses. The Direct Path API is a part of
Data Pump as well.

& B, C, and D all contain the name of an invalid APL.

M B. As the name of the package indicates, DBMS_METADATA is used to load and unload
metadata.

A and C are not correct because the package doesn’t play a role in transporting
tablespaces. D is wrong because the package isn’t related to external tables.

M C. The default name of the master table is of the format: USERNAME_OPERATION _
TYPE_N. In this case, since you know user SYSTEM is performing a full import, it shouldn’t
be that hard to pick this answer.

& A and D are wrong since they don’t have either user’s name. B is wrong since it contains
the username SYS instead of SYSTEM.

M B. The master table is created during an export job. The creation of the master table is the
last thing that the Data Pump export utility does, before finishing the job.

[XI A is wrong since it says that the master table is created at the beginning of the export job.
C and D are incorrect since they state that the master table is created during the import job.

Using Data Pump Export and Import

5.

7.

M A. This answer provides all the necessary parameters: username, dump filename, and the
FULL parameter to perform the full import.

B is wrong because it is missing the FULL parameter—the default mode for import is the
schema level, not a full database import. C is wrong because it is missing the dump filename.
D is incorrect because there isn’t a FROMUSER/TOUSER option in Data Pump.

M C. This is a slightly tricky question. The CONTENT parameter offers the option of
exporting just the data in the tables, by using DATA_ONLY as the value for the parameter.

A and B are incorrect since these parameters enable you to specify only the type of objects
you want to include or exclude. D is wrong since DATA_ONLY is not an export parameter—
it’s an option for the CONTENT parameter.

M A and B. A is correct because using the STOP_JOB command doesn’t drop the master
table. B is correct because using the KILIL,_JOB command terminates the job and drops the
master table.

Self Test Answers @7

C is incorrect since the use of the KILIL, JOB command removes the master table. D is
incorrect since an unexpected termination of a job doesn’t automatically drop the master table.

8. M B. You can start an interactive session in Data Pump only when an export job is already
running. Thus, when you log interactively in to a Data Pump job using either the CONTROL-C
sequence or the ATTACH command, the job is already running.

& A and C are wrong since the export job is neither interrupted nor stopped when you log in
interactively. D is wrong since the Data Pump job must be running for you to log in interactively.

Monitor a Data Pump Job

9. M C.The SOFAR column in the V$SESSION_LONGOPS view tells you how much of Data
Pump job (in megabytes) has been completed thus far.
A, B, and D cannot tell you anything about the progress of your Data Pump jobs.

10. M C. First, you need to use the ATTACH command to attach to the interactive session. To
suspend the job, you should use the STOP_J0OB command. The START _JOB command will
resume the job.

& A, B, and D provide various wrong sequences of commands.

IlI. M B. You need to provide both the username/password and the job name before you can
attach to a running job.
& A is wrong because you don’t need to specify the dump file location. C is wrong because
the username/password is inadequate to attach to a session. D is wrong because you don’t need
the master table’s name to attach to a Data Pump session.

12. M A.The SOFAR column tells you how many megabytes have been transferred thus far.
& B and C are incorrect because the SOFAR column doesn’t deal with the percentage of
work—it deals with the work in terms of megabytes. D is wrong because it talks about work
still to be done, not work already completed by the job.

Creating External Tables for Data Population

13. M A and C. A is correct because you must use the ORGANIZATION EXTERNAL clause
whether you are loading or unloading data. C is correct because you have to use the CREATE
TABLE AS SELECT (CTAS) clause when you populate an external table.

& B is incorrect because you don’t need to use the CTAS statement during external table
loading. D is incorrect since you need the ORGANIZATTION EXTERNAL clause for both
reading from and writing to external tables.

68 Chapter 2: Loading and Unloading Data

14. M B. Unloading of data is the writing of Oracle table data to external datafiles, in the
form of external tables.
X A and D are clearly wrong since unloading of data involves writing of data, not reading
of data. C is wrong since it states the opposite of what’s true.

I5. M A is correct because you can’t use Data Pump export if you are exporting a read-only
database, since you can’t create the master table in a read-only database. The NETWORK_
LINK parameter provides a way to solve this problem.

X B is wrong because this isn’t the reason why you need to use the NETWORK_ L INK
parameter. C is incorrect because you do need to create an export dump file, no matter what
parameters you specify. D is wrong because you can export a read-only database using the
traditional export utility.

16. M B andC. B is correct because Oracle will set the degree of parallelism to the number of

files. C is correct because when the number of datafiles is more than the degree of parallelism,
Oracle will ignore the extra files.
& A is incorrect since Oracle doesn’t ignore the PARALLEL parameter if the number of files
is different from the degree of parallelism. B is incorrect since Oracle doesn’t adjust the degree
of parallelism to match the number of datafiles. D is wrong since the parallel execution server
will not write to multiple files simultaneously.

Defining External Table Properties

17. 4 C. The DBA should make sure that the PROJECT COLUMN attribute value is set to
ALL, which is the default value for the column as well.
A is incorrect since the DBA isn’t responsible for cleaning up the data format errors in
the data. B is wrong since there isn’t a value of ANY for the PROJECT COLUMN. D is
wrong since setting the column value to REFERENCED will give you inconsistent query
results, depending on the columns you specify in each query.

18. M A. The default value for the PROJECT COLUMN attribute is ALL, which means Oracle
will project all columns out.
Xl B is wrong since the default behavior, as answer A shows, is to project out all columns.
C and D are wrong since the projection of the columns has nothing to do with whether the
columns have data errors or not.

19. M A, B, and C. If your data is clean, it doesn’t make a difference if the PROJECT COLUMN
attribute has the value ALL or REFERENCED, since the results are going to be consistent with
either value.

D is incorrect since the use of the ALL column will produce the same results for any query,
if your data doesn’t have any formatting errors.

Lab Answer 69

20. M A.REFERENCED is better because you need to parse and convert only the selected
columns in the query, not all the columns in the table.
X B is incorrect because you need to parse and convert all columns, not just some, if you
choose the ALL value for the PROPERTY column. C is incorrect since ALL forces the parsing
and conversion of all columns; it isn’t better than using the REFERENCED value for the
PROPERTY column. D is incorrect since REFERENCED means that Oracle doesn’t parse

and convert all columns.

Transporting Tablespaces Across Different Platforms

21. M B. You need to use the RMAN interface to convert database files when the endian
formats are different between platforms.
A, C, and D are wrong since you can’t use any of these interfaces or tools to convert
your datafiles.

22. M A and D. You may convert the datafiles either on the source or on the target system,
and perform a Data Pump import afterwards.
B and C are incorrect since they mention exporting of the metadata instead of importing.

23. M A. The VSTRANSPORTABLE_PLATFORM view shows you all the platforms that are
compatible with each other. You join this view with the VSDATABASE view to determine
platform compatibility.

X B, C, and D are incorrect since there are no such views.

24. M D. You can transport tablespaces across platforms even if the endian formats are different,
as long as you convert the datafiles during the transport process.
Xl A is wrong since you can’t automatically transport tablespaces between two platforms if
they both are in the V$TRANSPORTABLE_TABLESPACES view. If the endian formats of
the two platforms vary, you need to perform a file conversion first. B is incorrect because file
conversions aren’t mandatory for transporting tablespaces—you need to convert datafiles only
if the file semantics (endian formats) are different between the two platforms, since the endian
formats cannot be different for implementing transportable tablespaces. C is incorrect because
the opposite is true—you can automatically transport tablespaces across platforms if the endian
formats are identical.

LAB ANSWER

B You can start an interactive session and attach to a running export job by using the following
command at the expdp prompt:

S expdp salapati/sammyyl attach=SALAPATI.SYS_EXPORT_SCHEMA_ 01

70 Chapter 2: Loading and Unloading Data

To stop the running job, you issue the following command at the expdp prompt (if you want
an immediate rather than an orderly stoppage of the export job, you can use the command
STOP_JOB=IMMEDIATE):

expdp> STOP_JOB

B The name of the master table is always the same as the job name. In this case, it is

SYS_EXPORT_SCHEMA.

B Once you attach to the running export session, you can issue various comamnds at the
operating system prompt. To make your export session perform an export to four dump
files simultaneously, you issue the following command:

expdp> PARALLEL=4

B To resume your export job after making the changes, you issue the following command:
expdp> START_JOB
The START_JOB command doesn’t “start” a new job—it resumes a job you stopped by attaching

to it first. If you have both the dump file and the master table (which is in the export dump file),
you can always resume a stopped export job without any data loss or corruption of data.

