CERTIFICATION OBJECTIVES

11.01 Enhancements in the MERGE Statement 11.04 Materialized View Enhancements

11.02 Using Partitioned Outer Joins \/ Two-Minute Drill
11.03 Using the SQL MODEL Clause Q&A Self Test

2 Chapter | I: Enhancements in Analytical SQL and Materialized Views

his chapter deals with analytical SQL enhancements to support data warehousing

applications and enhancements to several materialized view features. You'll start off

with a review of the analytical SQL enhancements in Oracle Database 10g. The MERGE
statement is now enhanced, with support for conditional statements. The new partitioned
outer joins help in the densification of data, which will yield better calculation performance for
several analytical queries, especially those dealing with time-series data. The brand-new MODEL
SQL clause provides spreadsheet-like array computations that are highly scalable, directly from
within your Oracle database.

Oracle Database 10g presents several improvements to the management of
materialized views, which are critical in data warehousing environments. Oracle
supports fast refresh for materialized join views under even more conditions now.
You can use the new procedure TUNE_MVIEW of the DBMS_ADVISOR package to
enhance the fast refresh and query rewrite capabilities of your materialized views.
You'll also review several new materialized view enhancements like improvements
to the partition change tracking feature and materialized view refresh when you're
using trusted, instead of enforced, constraints.

Let’s start the chapter with a discussion of the enhancements to the powerful
MERGE statement.

CERTIFICATION OBJECTIVE 11.01

Enhancements in the MERGE Statement

The MERGE statement is primarily of value when you’re moving vast amounts of data
in a data warehousing application. When you are extracting data from a source system
into a data warehouse, not all of the data will be completely new. You may find that some
of the table rows are new, while others are modifications of existing data. Therefore, you'll
need to insert some of the new data and also update some existing data with the new
data from the source. For example, if a sales transaction is completely new, you'll insert
that row into the data warehouse table. If that particular transaction already exists, you'll
merely update the necessary columns.

Oracle9i made available the highly useful MERGE statement, which enables you
conveniently perform both inserts and updates in a single SQL statement. You can
perform an UPDATE-ELSE-INSERT operation using a MERGE statement. Oracle

Enhancements in the MERGE Statement 3

has enhanced the MERGE statement in Oracle Database 10g. Let’s review the MERGE
statement prior to Oracle Database 10g, and then cover its new capabilities in the
following sections.

The Basic MERGE Statement
The basic MERGE statement has the following structure:

merge <hint> into <table name>

using <table_view or_query>

on (<condition>)

when matched then <update_clause>
when not matched then <insert_clause>;

Here’s a simple example of a basic MERGE statement, as of the Oracle9i version:

SQL> merge into sales s using new_sales n
on (s.sales_transaction_id = n.sales_transaction_id)

when matched then update

s_quantity = s_quantity + n_quantity, s_dollar = s_dollar + n_dollar
when not matched then insert (sales_quantity_sold, sales_dollar_amount)
values (n.sales_quantity sold, n.sales_dollar_ amount) ;

The ON condition (s.sales_transaction id=n.sales_transaction
id) determines if an update or an insert operation will take place. The previous
statement will update a row in the new_sales table, if that row already exists (the
sales_transaction_id column identifies the row). If there is no such row, Oracle will
insert a new row with values for the sales_quantity_sold and sales_dollar_amount
columns.

Conditional UPDATE and INSERT Statements

Rather than an unconditional insertion or updating of all the table rows, you may want
to insert or update data only when certain conditions are met. In Oracle Database 10g,
the MERGE statement has been enhanced to allow you to conditionally insert or delete
data. Now, Oracle allows you to use a WHERE clause in a MERGE statement’s UPDATE
or INSERT clause to conditionally update or insert data.

Here’s an example that shows how you can conditionally insert and update data
using a MERGE statement (note the USING clause in the MERGE statement):

SQL> merge using product_cChanges s -- Source table
into products p -- Destination table

4 Chapter |1: Enhancements in Analytical SQL and Materialized Views

on (p.prod_id = s.prod_id) -- Search/Join condition

when matched then update -- Update if join

set p.prod_list_price = s.prod_new_price

where p.prod_status <> “EXPIRED” -- Conditional update

when not matched then

insert -- Insert if not join

set p.prod_list price = s.prod_new_price

where s.prod_status <> “EXPIRED” -- conditional insertNote that Oracle

will skip the insert or update operation if the statement doesn’t satisfy the
WHERE condition. Both the insert and the update operations would occur only if
the product is not an expired item. (where s.prod_status <> “EXPIRED”) .

The DELETE Clause with the MERGE Statement

You can now use the MERGE statement with an optional DELETE clause in a MERGE
statement. However, you can’t use the DELETE clause independently in a MERGE statement,
as with the UPDATE or INSERT clause. You must embed the DELETE statement inside
the UPDATE statement. This means that the DELETE statement isn’t a “global” clause,
but rather works in the confines of the data affected by the UPDATE clause of the MERGE
statement. The following example shows how the DELETE clause is embedded within
the UPDATE clause.

SQL> merge using product_changes s
into products p on (d.prod_id = s.prod_id)
when matched then
update set d.prod_list_price = s.prod_new_price,
d.prod_status = s.prod_new_status
delete where (d.prod_status = “OLD_ITEM”)
when not matched then
insert (prod_id, prod_list_price, prod_status)
values (s.prod_id, s.prod_new_price, s.prod_new_status);

The preceding MERGE statement will first update the prod_list_price and the
prod_status columns of the product table wherever the join condition is true. The
join condition (d..prod_id = s.prod_id) joins the two tables, product (the source
table) and product_changes (the destination table).

Here are a couple of considerations when using the DELETE statement:

B The DELETE clause affects only the rows that were updated by the MERGE
statement.

B The MERGE statement will delete only the rows included in the join condition
specified by the ON clause.

Using Partitioned Outer Joins §

When you use this MERGE statement, the
m UPDATE clause fires first, and it may set some

Tatch of the prod_new_status values to expired. The
The DELETE clause in a DELETE clause will then remove all the rows
MERGE operation will evaluate only the whose prod_new_status value was set to expired
updated values (values updated by the by the UPDATE clause. The DELETE clause will
UPDATE clause) and not the original values not remove any other rows with the expired
that were evaluated by the UPDATE clause. status, unless they are part of the join defined

in the ON clause.

CERTIFICATION OBJECTIVE 11.02

Using Partitioned Outer Joins

Oracle provides a rich set of analytical functions to help you in business reporting.
Using these functions, you can avoid the need to program tedious user-defined functions
and formulas. Prior to Oracle Database 10g, you had access to the following analytical
functions:

B Ranking and percentile functions include cumulative distributions, percentile
ranks, and N-tiles.

Moving window calculations provide the capacity to compute sums and averages.

Lag/lead functions help you compute period-to-period changes.

B First/last functions help you figure out the first and last values in an ordered
group.

B Linear-regression functions help you calculate linear regression and other
related statistics.

Oracle Database 10g provides an extension of the SQL outer join concept to
improve the performance of analytical functions when they encounter data with
missing values for some combinations of dimension values. In the following sections,
I'll introduce you to some basic data warehousing concepts and analytical processing
features, before explaining how to use partitioned outer joins to handle problems
caused by sparse data (data with missing values).

6 Chapter |1: Enhancements in Analytical SQL and Materialized Views

Fact Tables, Measures, and Dimensions

Fact tables contain the business data of an organization. Sales and inventory items are
two common examples of the type of data captured in a fact table. Of course, fact tables
contain facts, but the data is also referred to as a measure. Thus, sales in a sales fact
table and inventory in an inventory fact table are the measures. Literally, a measure
denotes what it is that you are measuring.

Fact tables often contain links to several entities like time, product, and market
region. For example, the fact table might tell you what a firm’s total sales are for the
year 2005. However, you are more likely to want the data to answer more meaningful
questions like, “What are our sales for dish detergents in the New York area during
the first quarter of 2005?” To answer questions like this, you use the concept of
dimensions.

A dimension is a means of dividing your data into meaningful categories. Using
dimensions, you can turn your raw facts into meaningful data. For example, for the
sales fact table, the correct dimensions may be time (year and quarters), product, and
region. It is customary in data warehousing applications to create small tables, called
dimension tables, to describe the various dimensions. These dimension tables serve as
the reference, or lookup, tables. The combination of several dimension values helps
you answer detailed analytical questions. For example, using the time, region, and
product dimension values, you can easily answer complex business questions like the
question posed in the previous paragraph.

The use of a central fact table and a number of dimension tables linked to it through
foreign keys is called a star schema in data warehousing circles. The primary key of
the fact table is usually a composite key that is made up of all of its foreign keys.

Dimension tables are usually organized along a hierarchical basis. Thus, the
detailed data in a dimension, which is normally collected at the lowest possible
level, is aggregated into more useful aggregates. When you move up a hierarchy, it
is called rolling up. Conversely, when you move down a hierarchy of a dimension,
it is called drilling down. For example, in the customers dimension, customers may
roll up to a city. The cities may be rolled up into a division. The division may be rolled
up into a region. Regions may, in turn, be rolled up into a country.

How Analytical Functions Process Data

Analytical SQL functions efficiently deliver complex summary, aggregation, and other
analytical results. In order to produce these results, analytical functions follow a methodical
processing order. Analytical processing usually follows a three-step sequence:

Using Partitioned Outer Joins 7

B Grouping In the preliminary grouping step, Oracle performs the various
joins, WHERE, GROUP BY, and similar grouping operations.

B Calculation (analysis) In this middle stage of analytical processing, the
result sets from the grouping step are divided into sets of rows called partitions.
The result set from the previous step could be broken into one, a few, or many
partitions. Oracle then hands the result set of the grouping process from the
previous step to the analytical functions. The middle stage is at the heart of
analytical function usage, since this where the analytical functions process
the rows of each of the partitions.

B Output ordering Finally, Oracle hands you the output in the precise order
specified by any ORDER BY clause that you may specify at the end of your
query.

Data Densification

The concept of data densification has to do with the fact that you may view your
data in two different forms:

B Dense data is when you have rows for all possible combinations of dimension
values, even when you don’t have any data (facts) for certain combinations.

B You have sparse data when you don’t show any values for certain combinations of
dimension values, if you don’t have any data (facts) for those combinations.
In real life, data is usually sparse.

To understand why dense data is better, let’s say that you are dealing with time-
series data. If you have sparse data, you'll have the problem of an inconsistent number
of rows for groups of dimensions. This makes it harder for you to use some SQL
analytical functions such as the lag and lead functions, which help you compute
period-to-period changes. These functions perform slowly, and the report formatting
would be uneven. Performance takes a big hit when you don’t have a row for each
combination of the dimensions.

Partitioned outer joins help turn sparse data into
dense data, thus helping you avoid the drawbacks
of using sparse data for analytical computations.
When you use a partitioned outer join, Oracle
replaces the missing values along any dimensions.
You thus have faster performance and a better

Datch . .
The partitioned outer join

is ideal for time dimensions, but it can be
used for any kind of dimensions.

8 Chapter II: Enhancements in Analytical SQL and Materialized Views

reporting format when you use partitioned outer joins. We'll look at how partitioned
outer joins work after a quick review of Oracle’s join methods.

A Review of Oracle Join Methods

Let’s quickly review Oracle’s join methods before plunging into the partitioned outer
join concepts. Join queries combine rows from two or more tables, views, or materialized
views. Oracle performs a join whenever multiple tables appear in the query’s FROM
clause. The query’s SELECT list can select any columns from any of these tables.
The WHERE clause, also called the join condition, compares two columns, each from a
different table. To execute the join, Oracle combines pairs of rows, each containing
one row from each table for which the join condition evaluates to TRUE.

Oracle joins are of the following types:

B Natural joins A natural join is based on all columns that have the same
name in the two tables. It selects rows from the two tables that have equal
values in the relevant columns.

B Inner joins An inner join (also called a simple join) is a join of two or more
tables that returns only those rows that satisfy the join condition. An inner
join is the default join type for a join operation.

B Outer joins An outer join extends the result of an inner join. An outer join
returns all rows that satisfy the join condition and also returns some or all of
those rows from one table for which no rows from the other satisfy the join
condition.

B A left outer join performs an outer join of tables A and B and returns all
rows from table A. For all rows in table A that have no matching rows in
table B, Oracle returns NULL for any SELECT list expressions containing
columns of table B.

B A right outer join performs an outer join of tables A and B and returns all
rows from table B. For all rows in table B that have no matching rows in
table A, Oracle returns NULL for any SELECT list expressions containing
columns of table A.

B A full outer join performs an outer join and returns all rows from A and B,
extended with NULLSs if they do not satisfy the join condition.

Using Partitioned Outer Joins ©

Partitioned Outer Joins

A partitioned outer join is nothing but an extension of an Oracle outer join. You use
partitioned outer joins to fill the gaps in sparse data. In order to use a partitioned outer
join, you add the PARTITION BY clause to the outer join clause. The PARTITION
BY clause partitions the rows in your query output on the basis of the expression you
provide within the clause.

Here’s the syntax of a partitioned outer join:

select

from table_reference

partition by (expr [, expr]...)
right outer join table_reference
and

select

from table_reference
left outer join table_reference
partition by {expr [,expr]...)

For example, suppose your SELECT list consists of three columns: product, time_
id, and quantity. The logical partitioning can be done on the basis of the following
condition:

partition by product order by time_id

The query output will be partitioned into groups by the product column. If there were
two products—bottles and cans—there would be two partitions. Once Oracle logically
partitions the query output, it applies the outer join to each of the logical partitions.
You can thus view the output of a partitioned outer join as a UNION of several outer
joins, consisiting of a join of each of the logical partitions with the other table in the
join. In the example, the bottle and can partitions are joined to the other table by
using the time_id column.

Sparse Data

Let’s look at a typical set of sparse data by using the following example, which shows the
weekly and year-to-date sales for the same set of 11 weeks in two years (2004 and 2005).

Select substr (p.prod_Name, 1l,15) product_name, t.calendar_year year,
t.calendar week_ number week, SUM(amount_sold) sales
from sales s, times t, products p

I O Chapter Il: Enhancements in Analytical SQL and Materialized Views

where s.time_id = t.time_id and s.prod_id = p.prod_id AND
p.prod_name in ('Bounce') and
t.calendar_year in (2004,2005) and
t.calendar_week_number between 20 and 30

group by p.prod_name, t.calendar_year, t.calendar_ week_ number;

PRODUCT_NAME YEAR WEEK SALES
Bounce 2004 20 801
Bounce 2004 21 4062.24
Bounce 2004 22 2043.16
Bounce 2004 23 2731.14
Bounce 2004 24 4419.36
Bounce 2004 27 2297.29
Bounce 2004 28 1443.13
Bounce 2004 29 1927.38
Bounce 2004 30 1927.38
Bounce 2005 20 1483.3
Bounce 2005 21 4184.49
Bounce 2005 22 2609.19
Bounce 2005 23 1416.95
Bounce 2005 24 3149.62
Bounce 2005 25 2645.98
Bounce 2005 27 2125.12
Bounce 2005 29 2467.92
Bounce 2005 30 2620.17

We should normally have a total of 22 rows (11 weeks for each year) of sales data.
However, we have a set of sparse data, with only 18 rows. Four rows are missing,
because we have no data for weeks 25 and 26 in the year 2004 and weeks 26 and 28
in the year 2005.

Making the Data Dense

Using the query with the partitioned outer join produces the following output, which
gets rid of the sparse data we had in the earlier query output. Instead of blanks, we now
have zero values. In the following query, let’s call our original query v, as we select
data from the table times, which we’ll refer to as t. Note that all 22 rows are retrieved
this time, leaving no gaps in our time series.

select product_name, t.year, t.week,

NVL (sales, 0) dense_sales from
(select substr(p.prod_name,1l,15) product_name,
t.calendar_vyear year, t.calendar_week_number week,

Using Partitioned Outer Joins | ||

SUM (amount_sold) sales
from sales s, times t, products p
where s.time_id = t.time_id and s.prod_id = p.prod_id and
p.prod_name in ('Bounce') and
t.calendar_vyear in (2004,2005) and
t.calendar_week_number between 20 and 30
group by p.prod_name, t.calendar_year, t.calendar_week_number) v
partition by (v.product_name)
right outer join
(select distinct calendar_week number week, calendar_year year
from times
where calendar_year IN (2004, 2005) and
calendar_week_number between 20 AND 30) t

on (v.week = t.week AND v.Year = t.Year)

order by t.year, t.week;

PRODUCT_NAME YEAR WEEK DENSE_SALES
Bounce 2004 20 801
Bounce 2004 21 4062 .24
Bounce 2004 22 2043.16
Bounce 2004 23 2731.14
Bounce 2004 24 4419.36
Bounce 2004 25 0
Bounce 2004 26 0
Bounce 2004 27 2297.29
Bounce 2004 28 1443.13
Bounce 2004 29 1927.38
Bounce 2004 30 1927.38
Bounce 2005 20 1483.3
Bounce 2005 21 4184.49
Bounce 2005 22 2609.19
Bounce 2005 23 1416.95
Bounce 2005 24 3149.62
Bounce 2005 25 2645.98
Bounce 2005 26 0
Bounce 2005 27 2125.12
Bounce 2005 28 0
Bounce 2005 29 2467.92
Bounce 2005 30 2620.17

For the four added rows that had no sales data, the NVL function transformed the
NULL values to 0. This is how partitioned outer joins convert sparse data into a
dense form. You may also choose to replace the NULL values with the most recent
non-NULL values. To do this, you can add the TGNORE NULLS clause to the Oracle
LAST_VALUE and FIRST_VALUE functions.

I 2 Chapter Il: Enhancements in Analytical SQL and Materialized Views

CERTIFICATION OBJECTIVE 11.03

Using the SQL MODEL Clause

[t is common for Oracle users to process data using third-party tools, since Oracle SQL
has traditionally lacked sophisticated modeling capabilities to produce complex reports.
A basic example is the use of spreadsheets, which apply formulas to transform data into
new forms. In previous versions of Oracle, in order to produce these spreadsheet-like
reports, you needed to either download data into spreadsheet programs like Microsoft
Excel or use dedicated multidimensional online analytical processing (OLAP) servers
such as Oracle Express. For example, you might use Excel to convert your business
data into rule-based business models, with the help of various macros. But third-party
spreadsheet tools are cumbersome to use, and you need to expend considerable effort
and time to constantly import updated Oracle data into the spreadsheet programs.

Oracle Database 10g offers the extremely powerful MODEL clause, which enables the
use of SQL statements to categorize data and apply sophisticated formulas to produce
fancy reports directly from within the database itself. You can now produce highly
useful Oracle analytical queries, overcoming several drawbacks of Oracle SQL. With
the new MODEL clause, you can use normal SQL statements to create multidimensional
arrays and conduct complex interrow and interarray calculations on the array cells.
Here, you'll learn how the MODEL clause produces its powerful results.

How the MODEL Clause Works

Oracle professionals commonly make heavy use of multiple table joins and unions when
dealing with complex data warehousing data. These techniques help you peform very
complex computations, but they are usually slow and computationally expensive. The
MODEL enhancement enables you to perform complex enterprise-level computations.

The MODEL clause provide interrow calculation functionality by enabling you to
create multidimensional arrays of your query data and letting you randomly access
the cells within the arrays. The way the MODEL clause addresses individual cells is
called symbolic cell addressing. The MODEL clause also performs symbolic array computation,
by transforming the individual cells using formulas, which it calls rules.

The MODEL clause enables you to apply business models to your existing data.
When you use the MODEL clause as part of a query, Oracle feeds the data retrieved
by the query to the MODEL clause. The MODEL clause rearranges the data into a

Using the SQL MODEL Clause | 3

multidimensional array and applies your business rules to the individual elements of
the array. From the application of various user-specified business rules, Oracle derives
updated as well as newly created data. However, you won'’t actually see an array as
your final form of the output, since Oracle will format the new and updated data
into a row format when it delivers the MODEL clause’s output to you.

The first step in a MODEL-based query is the creation of the multidimensional array.
The following section explains the basis of the arrays created by the MODEL clause.

Creating the Multidimensional Arrays

The MODEL clause creates the multidimensional arrays that are at the heart of its
functionality by mapping all the columns of the query that contains a MODEL clause
into the following three groups.

B Partitions These are similar to the analytical function partitions described
earlier in this chapter. Basically, a partition is a result handed to the MODEL
clause by previous grouping operations. The MODEL clause is always
separately applied to the data within each partition.

B Dimensions These are the same dimensions that you saw earlier in this
chapter; for example, they might be time, region, and product.

B Measures Measures are the fact table data on which you are modeling your
report, such as sales or inventories. You can look at the aggregate measure as
consisting of a bunch of measure cells, with each of the cells identified by a
unique combination of dimensions. For example, if sales is your measure, then
the sales of detergents for the third quarter of 2004 in the New York region is
one cell of the measure, since you can have only one such unique combination
of your three dimensions: product (detergents), time (third quarter of 2004),
and region (New York region).

The next section looks at how the MODEL feature uses rules to modify your
multidimensional array data.

Transforming Array Data with Rules

A rule in the context of the MODEL clause is any business rule or formula you want
to apply to the array data created by the MODEL clause. You may, for example, use a
formula to forecast next year’s sales on the basis of the preceding two years’ sales data.
You create a simple forecasting formula that expresses your business reasoning, and
then pass it along to the MODEL clause as a rule.

I 4 Chapter |I: Enhancements in Analytical SQL and Materialized Views

You use the keyword RULES to indicate that you are specifying the rules that the
MODEL clause must apply to its multidimensional array data. For example, you could
specify a simple rule as follows:

MODEL
RULES

(sales['Kleenex', 2005] = sales['Kleenex',6 2003] + sales['Kleenex', 2004]

This rule specifies that the sales of Kleenex for the year 2005 would be the sum of the
sales of Kleenex in the years 2003 and 2004.

When you specify the RULES keyword, you may also want to indicate whether the
rules you are specifying will be transforming existing data or inserting new rows of
data. By default, the RULES keyword operates with the UPSERT specification. That
is, if the measure cell on the left hand of a rule exists, Oracle will update it. Otherwise,
Oracle will create a new row with the measure cell values. Here’s an example:

MODEL

RULES UPSERT
sales (‘Kleenex, 2005) = sales (‘Kleenex, 2003’) + sales (‘Kleenex, 2004)

(MORE RULES HERE)

In this rules specification, if there is already a table or view row that shows the sales for
Kleenex in the year 2005, Oracle will update that row with the values derived from
applying the rule formula. If there is no such row, Oracle will create a new row to show
the forecasted sales of Kleenex for the year 2005.

If you don’t want Oracle to insert any new rows, but just update the existing rows,
you can change the default behavior of the RULES clause by specifying the UPDATE
option for all the rules, as shown here:

MODEL

RULES UPDATE
Sales (‘Kleenex, 2005) = sales (‘Kleenex, 2003’) + sales (‘Kleenex, 2004)

(MORE RULES HERE)

The previous two examples demonstrated how to apply different rule options at
the MODEL clause level. You may also specify rule options at the individual rule
level, as shown here:

RULES
(UPDATE sales (‘Kleenex, 2005) = sales (‘Kleenex, 2003’) + sales (‘Kleenex, 2004)

Using the SQL MODEL Clause | §

When you specify a rule option at the individual rule level as shown in this example,
the use of the RULES keyword is optional.

Datch
If you specify a rule option level, the MODEL level option applies to all
at the rule level, it will overrirde the RULES the rules. If you don’t specify an option
specification at the MODEL clause level. If at the MODEL level, the default UPSERT
you don’t specify a rule option at the rule option will prevail.

You can specify that Oracle should evaluate the rules in either of the following
two ways:

B sequential order Oracle will evaluate a rule in the order it appears
in the MODEL clause.

B automatic order Rather than evaluating a rule based on its order
of appearance in a list of several rules, Oracle will evaluate the rule on the
basis of the dependencies between the various rules in the MODEL clause.
If rule A depends on rule B, Oracle will evaluate rule B first, even though
rule A appears before rule B in the list of rules under the RULES keyword.

on t "'?, ob Sequential order is the default order of processing rules in a MODEL clause.
Producing the Final Output
As its output, the MODEL clause will give the results of applying your rules to the
multidimensional arrays it created from your table data. A MODEL-based SQL analytical
query typically uses an ORDER BY clause at the very end of the query to precisely order
its output.

You can use the optional RETURN UPDATED ROWS clause after the MODEL keyword

to specify that only the new values created by the MODEL statement should be returned.
These new values may either be updated values of a column or newly created rows.

Jatch . .
When | say that the MODEL doesn’t update or insert rows into the table

clause will create or update rows, | strictly or views. To change the base table data, you
mean that the changes are shown in the must use the traditional INSERT, UPDATE,
MODEL clause output. The MODEL clause or MERGE statements.

I & Chapter I1: Enhancements in Analytical SQL and Materialized Views

A MODEL Clause Example

Let’s look at a simple SQL example that demonstrates the capabilities of the MODEL
clause. Here’s the query:

SQL> select country, product, year, sales
from sales_view
where country in ('Mexico', 'Canada')
MODEL
partition by (country) DIMENSION BY (product, year)
measures (sale sales)

rules
(sales|['Kleenex', 2005] = sales['Kleenex', 2004] + sales|['Kleenex',620037,
sales|['Pampers', 2005] = sales|['Pampers', 20047,

sales['All_Products', 2005] = sales['Kleenex', 2005] + sales|['Pampers',b2005])
order by country, product, year;

Sales units are the measure in this example. The query partitions the data by country
and form the measure cells consists of product and year combinations. The three rules
specify the following:

B Total sales of Kleenex in 2005 are forecast as the sum of Kleenex sales in

the years 2003 and 2004.

B Total sales of Pampers in the year 2005 are forecast to be the same as the
sales in 2004.

B Total product sales in 2005 are computed as the sum of the Kleenex and
Pampers sales in 2005.

Here’s the output generated by using the preceding SQL statement with the MODEL
clause (the new data created by the MODEL clause is shown in boldface here):

COUNTRY PRODUCT YEAR SALES

Mexico Kleenex 2002 2474.78
Mexico Kleenex 2003 4333.69
Mexico Kleenex 2004 4846.3
Mexico Kleenex 2005 9179.99
Mexico Pampers 2002 15215.16
Mexico Pampers 2003 29322.89
Mexico Pampers 2004 81207.55
Mexico Pampers 2005 81207.55

Mexico All Products 2005 90387.54

Materialized View Enhancements | 7

Canada Kleenex 2002 2961.3
Canada Kleenex 2003 5133.53
Canada Kleenex 2004 6303.6
Canada Kleenex 2005 11437.13
Canada Pampers 2002 22161.91
Canada Pampers 2003 45690.66
Canada Pampers 2004 89634.83
Canada Pampers 2005 89634.83
Canada All_Products 2005 101071.96

The SELECT clause first retrieves the product, year, and sales data for the two
countries (Mexico and Canada) and feeds it into the MODEL clause. The MODEL
clause takes this raw data and rearranges it into a multidimensional array, based on
the values of the PARTITION BY (country) and DIMENSION BY (product and
year) clauses. After the MODEL clause creates the array, it applies the three formulas
listed under the RULES clause to the data. It finally produces the resulting row data,
after ordering it by country, product, and year.

Note that the MODEL clause shows the original table or view data, as well as the
new data that the MODEL clause has calculated from the three rules supplied in the
MODEL clause. The MODEL clause applies the rules within each partition of data.

CERTIFICATION OBJECTIVE 11.04

Materialized View Enhancements

Materialized views have storage structures like regular Oracle tables, and they are used
to hold aggregate or summary data. One of the biggest advantages of materialized views
is that you can use them to precompute joins on commonly used tables, called the detail
tables. Expensive joins and aggregates are precomputed and stored by Oracle in materialized
views, also referred to as summaries. These materialized views are transparent to the end
users, who still address the detailed base tables in their queries. The Oracle optimizer
knows when a materialized view would offer superior results compared with addressing
the base tables directly. Oracle uses the query-rewriting mechanism behind the scenes
to automatically rewrite a user’s query if it thinks that using a materialized view would
give faster results.

A materialized view can include aggregations like SUM, COUNT (*), MAX, MIN,
and any number of joins. You may index materialized views as well. If you aren’t sure

I 8 Chapter I1: Enhancements in Analytical SQL and Materialized Views

which materialized view to create, you can use the SQL Access Advisor to help you
design and evaluate materialized views.
Once you create a materialized view, you have two main concerns:

B Refreshing the materialized views so they contain the latest data

B Ensuring that your query rewrite mechanism will use the materialized view
to rewrite queries

In the next two sections, we'll look at the fast refresh feature and query rewriting
mechanisms, and then look at the new Oracle Database 10g procedure that helps
you optimize your materialized views.

Materialized View Fast Refresh Feature

Data in the base (detail) tables of a materialized view changes over time, due to various
DML operations. Thus, a materialized view should be refreshed frequently to keep up with
the changes in the underlying tables. There are several ways to refresh a materialized view.
One of the best ways is to use the fast refresh method, which applies incremental changes
to refresh materialized views. The fast refresh method of updating materialized views
relies on the use of materialized view logs. Materialized view logs are created on the
underlying base tables, not on the materialized views themselves.

Here is a basic materialized view log creation statement:

SQL> CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity sold, amount_sold)
INCLUDING NEW VALUES;

The following are some of the important
restrictions on using the fast refresh method
Datch For fast refresh of (note that some restrictions are general; others
materialized views, the definition of
the materialized view logs must normally
specify the ROWID clause. B The materialized view must not use SYSDATE,
ROWNUM, RAW, or LONG datatypes.

B A materialized view can’t have GROUP BY clauses.

B You must include the ROWID:s of all the tables in the FROM list in the
SELECT list of the query.

are specific to the type of materialized view—
whether it is based on aggregates or joins):

B You must have materialized view logs with ROWIDs for all the base tables.

Materialized View Enhancements | ©

The Query Rewrite Feature

Automatic query rewriting is the key feature that makes materialized views a faster means
of processing complex data warehousing-type queries compared to the direct use of the base
tables. Oracle takes your query against the base tables and rewrites it to use the underlying
materialized views, if Oracle’s query optimizer decides it’s a faster way to return the query
results. However, query rewriting is not guaranteed, and Oracle fails to rewrite queries on
occasion. When this happens, Oracle can’t use the underlying materialized views.

In order to ensure a query rewrite, a query must meet the following conditions:

Jatch
In Oracle Database 10g, ENABLE initialization parameter is set to
the ENABLE QUERY_ REWRITE parameter 10.0.0 or higher. The QUERY REWRITE
is TRUE by default. You must, however, INTEGRITY initialization parameter still
ensure that the OPTIMIZER FEATURES. has the same default value (ENFORCED).

QUERY_REWRITE_ENABLED = TRUE (the default value in Oracle
Database 10g)

The underlying materialized views must be enabled for query rewrite, by
using the ENABLE QUERY REWRITE clause. You can specify this clause
either with the ALTER MATERIALIZED VIEW statement or when you
create the materialized view.

You must set the query rewrite integrity level appripriately by specifying
the relevant value for the QUERY_REWRITE_INTEGRITY parameter.
For example, if a materialized view is not fresh you set query rewrite integrity
to ENFORCED, then Oracle won’t use the materialized view. To enable
query rewrite in this situation and cases where you have constraints that
haven’t been validated, you need to set the integrity level to a less restrictiv
level of granularity such as TRUSTED or STALE_TOLERATED.

The database must be able to drive either all or part of the results requested
by the query from the precomputed result stored in the materialized view.

Here’s a brief list of the important restrictions on using the query rewrite feature:

You can’t refer to any RAW or LONG RAW datatypes and object REFs.
You can’t use any nonrepeatable expressions like SYSDATE and ROWNUM.

If you include a column or expression in the GROUP BY clause, it must also
be a part of the SELECT list.

20 Chapter II:

Enhancements in Analytical SQL and Materialized Views

The SQL Access Advisor can help you by suggesting ideal materialized views for
the detail tables in a query, and this advisor can also help you create the materialized
views. Once you create the materialized views, you can use various procedures of

the DBMS_MVIEW package to optimize your materialized views. Here is a summary
of the two key procedures of the DBMS_MVTEW package that help in understanding
the capabilities of materialized views and potential materilaized views, especially

concerning rewrite availability:

B EXPLAIN MVIEW This procedure tells you what kinds of query rewrites
are posible. It will also tell you why a certain materialized view isn’t fast

refreshable.

B EXPLAIN REWRITE This procedure tells you why a query failed to
rewrite. If the query rewrites, the procedure will tell you which materialized

views will be used

Jatch
The DBMS ADVISOR

. TUNE_MVIEW procedure recommends
materialized views with optimized defining
queries, decomposition of nonrefreshable
materialized views, and fixes for materialized
view log problems.

The DBMS_ADVISOR package offers you the
new procedure TUNE_MVIEW, which you can
use in the SQL Access Advisor. This is a new
Oracle Database 10g procedure that helps you
alter a materialized view to ensure query rewriting
wherever it is possible. The procedure will let
you decompose a materialized view into two
or more materialized views or to restate the
materialized view in a way that is more conducive
to a fast refresh and query rewrite.

The DBMS_ADVISOR . TUNE_MVIEW procedure will optimize the materialized
view in such a way that it can use several types of query rewrites. This procedure will
also provide you with the necessary statements to ensure a fast refresh. Let’s look at
the DBMS_ADVISOR . TUNE_MVIEW procedure in detail in the following section.

Materialized View Optimization

with the TUNE MVIEW Procedure

The new Oracle Database 10g TUNE_MVTIEW procedure of the DBMS_ADVISOR
package helps you in fixing problematic materialized views, where either a fast refresh
or a query rewrite is not happening as you would like. The procedure takes a CREATE

on th?

Qob

Materialized View Enhancements 2 ||

MATERIALIZED VIEW as its input and performs the following materialized view
tuning functions:

B Redefine materialized views so they refresh fast as well as use query rewrite, if
the materialized views are currently not using these features for some reason.

B Fix materialized view log problems that may be keeping the view from using
the fast refresh mechanism. These problems include verifying that a materialized
view log exists in the first place. If the materialized view log exists, it may have
problems, like missing columns, which prevent its use by a materialized view.

B [f a materialized view turns out to be nonrefreshable, break it up into
submaterialized views that are eligible for a fast refresh. The parent materialized
view can then reference the submaterialized views, thus getting around its
inability to refresh fast.

If a materialized view isn’t fast refreshable, the data in the materialized view will
become stale, thus making your queries progressively worthless. When you find that
a materialized view isn’t fast refreshable, it’s usually because one or more of the fast
refresh restrictions aren’t satisfied. The DBMS_ADVISOR . TUNE_MVIEW procedure
provides you with the necessary SQL statements that you need to implement to ensure
that you can fast refresh your materialized views.

The DBMS_MVIEW.EXPLAIN MVIEW procedure tells you why you can’t refresh
a materialized view. The DBMS ADVISOR.TUNE MVIEW procedure tells you
how to make the materialized view eligible for a fast refresh. In addition, the
DBMS ADVISOR.TUNE_MVIEW procedure also makes recommendations to
enable a query rewrite.

You use the DBMS_ADVISOR.TUNE_MVIEW procedure as follows, either before
creating a new materialized view or when you are tuning an existing materialized view:

begin

dbms_advisor.tune_mview (:task_name,

‘CREATE MATERIALIZED VIEW test_mv

REFRESH FAST WITH ROWID ENABLE QUERY REWRITE
AS SELECT DISTINCT prod_name, prod_type

From products’) ;

end;

272 Chapter |1: Enhancements in Analytical SQL and Materialized Views

The preceding code will populate the new DBA_TUNE_MVIEW view, which you must
query to see how you can change your materialized view to make it fast refreshable as
well as capable of using query rewrite. The DBA_TUNE_MVIEW view has the following
structure:

SQL> desc dba_tune_mview

Name Null? Type

OWNER VARCHAR2 (30)
TASK_NAME VARCHAR2 (30)
ACTION_ID NOT NULL NUMBER
SCRIPT_TYPE VARCHAR2 (14)
STATEMENT CLOB
SQL>

You use the TASK_NAME column value to identify and query a particular TUNE_
MVIEW recommendation. (Make sure you provide a value for the TASK_NAME
variable that I highlighted in the previous PL/SQL code block.) The ACTION_ID
column shows the command order number. The SCRIPT TYPE column can take
values of CREATE or DROP (or UNKNOWN). The CREATE value is for the new
materialized view recommendation. The DROP value shows the materialized view
that the TUNE_MVIEW procedure wants you to drop. The STATEMENT column of
the view shows the recommended materialized view changes that make your materialized
view eligible for a fast refresh and a query rewrite. If you wish, you can use the DBMS_
ADVISOR.GET_ TASK_SCRIPT procedure to output the recommendations to a
text file.

Here’s the basic syntax of a query on the DBA_TUNE_MVIEW view:

SQL> select statement
from dba_tune_mview
where task_name = :task_name
order by script_type, action_id;

If the original materialized view statement isn’t eligible for fast refresh, the DBMS__
ADVISOR.TUNE_MVIEW procedure suggests an alternate way of defining your
materialized view. In this case, the DBMS_ADVISOR. TUNE_MVIEW procedure
might recommend the following changes to make your materialized view eligible
for a fast refresh of its materialized view logs. (Note that the new materialized view
recommendation replaces the DTSTINCT clause in the original materialized view
with the COUNT (*) and GROUP BY clauses.)

Materialized View Enhancements 2.3

SQL> create materialized view test_mv
refresh fast with rowid enable query rewrite
as select prod_type t,
prod_name p, count(¥*)
from products
group by prod_type, prod_name

Let’s look at a couple of examples that illustrate how you can use the DBMS_
ADVISOR.TUNE_MVIEW procedure to enable the fast refresh of a recalcitrant
materialized view.

Creating Materialized View Logs

As you know, one of the restrictions on the fast refresh feature is that you must include
the ROWID:s of all tables that are in the FROM list in your SELECT list. Thus, if a
certain statement fails due to noninclusion of the ROWIDs of the tables in the FROM
list, the DBMS_ADVISOR . TUNE_MVIEW procedure will suggest the inclusion of the
ROWIDs, as shown in the following example.

SQL> create materialized view test_mv
build immediate refresh fast enable query rewrite
as select e.ROWID rl, d.ROWID r2,
e.first_name, d.department_name
from departments d, employees e
where e.department_id = d.department_id;

The third line shows how you can use the ROWIDs to modify the materialized
view. This materialized view will now be eligible for query rewrite, as long as you
make sure that you create the following pair of materialized view logs, one for each
of the tables in the materialized view.

SQL> create materialized view log onemployees
with sequence, rowid
including new values;

SQL> create materialized view log on departments
with sequence, rowid including new values

Decomposing Materialized Views

Sometimes, a materialized view isn’t fast refreshable because it violates one of the
restrictions for a fast refresh, like having an unflattenable inline view. In cases like
this, the TUNE_MVIEW procedure helps you by making recommendations for the
decomposition of the materialized view into two nested submaterialized views.

24 Chapter |1: Enhancements in Analytical SQL and Materialized Views

The parent materialized view will refer to the submaterialized view that you create.
Again, you must create materialized view logs on each of the tables in the materialized
view in order to make it eligible for the fast refresh feature. The following types of situations
call for a materialized view decomposition:

B A subquery in the WHERE clause
B Use of set operations like UNION, UNION ALL, INTERSECT, and MINUS

B Use of inline views

Partition Change Tracking Enhancements

on the

Oob

You generally use materialized views in a data warehouse setting. Thus, it’s no surpise
that many materialized views will have partitioned base tables, since data warehouse
tables are large, and hence, usually partitioned. Oracle’s partition change tracking (PCT)
feature lets you figure out which rows of a materialized view are affected by a change in
a base table’s partitioning. Why is this ability important? Well, Oracle doesn’t perform
a query rewrite on a materialized view it considers stale, and it considers a materialized
view stale if the base table partitioning has changed.

The PCT feature, by maintaining links to table partitions and materialized view
rows, helps the materialized views handle the aftermath of a partitioning change in
the base tables. By enabling Oracle to consider only a part of a materialized view as
stale, PCT will enable the use of the query rewrite feature by letting it use those rows
that are still fresh, provided you use the QUERY_REWRITE_INTEGRITY=ENFORCED
or TRUSTED mode.

Any time you change a base table’s partition scheme, the relevant
materialized view rows become stale.

In Oracle Database 10g, there are several
e)ram enhancements with regard to the PCT feature.

"

Datch A PCT-based materialized Let’s briefly review these enhancements in the
view refresh will minimize the amout of following sections.
refreshes and maximize the use of the
query rewrite feature. List-Partitioning Scheme

In previous versions, you could use the PCT
feature only for partitioned base tables using the range and range-hash partitioning
schemes. Now, you can also use it for detail tables using the list-partitioning scheme.

Materialized View Enhancements 2 §

ROWID Columns as Partition Markers

Materialized view joins sometimes make ROWID references in their defining queries
You can now use a ROWID column as a PCT column in order to help identify table
partitions during a PCT refresh.

e am Join Dependency

®atch You can now use a PCT-based refresh if your MV
Oracle Database 10g contains a join-dependent expression of one of its
extends the use of PCT to list-partitioned tables. A table is a join-dependent table if you
tables, enables the use of ROWID columns equijoin it with a partitioned base table on its
as partition markers, and lets you use a partioning key column. An expression consisting
PCT refresh if a materialized view contains | f columns from the resulting equijoin is a join-
a join-dependent expression. dependent expression.

Truncating Materialized View Partitions

In previous versions, PCT used DELETE statements to remove materialized views. In
Oracle Database 10g, the database truncates materialized view partitions, as long as the
following conditions apply:

B You are limited to range partitioning only (for both the base tables and
the materialized view), and the partitioning bounds must be the same for the
materialized view and its base tables.

B There should be a one-to-one relationship between the two sets of partitions
(base table paritions and the materialized view partitions).

B You must partition the materialized view on its single PCT key column.

B You shouldn’t refresh on the basis of atomic transactions.

Forcing a Refresh

The PCT feature automatically refreshes your materialized view when there are partition
maintenance operations in the underlying base tables. However, you may sometimes wish
to manually use a PCT-based refresh, even in the absence of any base table partitioning
scheme modifications. The DBMS_MVIEW. REFRESH procedure has a new option, P,
to indicate a forced PCT-based refresh. Here’s the syntax:

execute dbms_mview.refresh (mview_name, method =>’P’)

26 Chapter |I: Enhancements in Analytical SQL and Materialized Views

Other Materialized View Enhancements

In addition to the introduction of the TUNE_MVIEW procedure to help with the fast
refresh and query rewrite features, and improvements to the PCT feature, Oracle
Database 10g provides several other enhancements related to materialized views.

[summarize these enhancements in the following sections.

Materialized View Execution Plans

In Oracle Database 10g, both the plan tableused by the explain plan feature and the
V$SQL_PLAN view will show you if a particular query is using a materialized view.

In Oracle Database 10g, you can find out if a materialized view was accessed directly
or if Oracle rewrote the query in order to use the materialized view. The new feature

Datch .
The explain plan feature

shows you whether a materialized view
is being accessed as a result of a query
rewrite or because you specified direct
materialized view access.

Query Plan
SELECT STATEMENT
SORT ORDER BY

here is that now you can clearly tell if Oracle is
using a materialized view as a result of a query
rewrite or because the programmer specified it.
Here'’s an example that shows an execution
plan that indicates how a materialized view is
being used as result of the query rewrite. If you
don’t see the keyword REWRITE, it means that
the materialized view was accessed directly.

MATERIALIZED VIEW REWRITE ACCESS FULL EMP_INFO

Jatch

The REWRITE OR_
ERROR hint stops the execution of a SQL
statement if a query doesn’t rewrite.

The REWRITE_OR_ERROR Hint

If a planned query rewrite doesn’t take place,
Oracle will end up running the original query.
Since the whole point of rewriting the query was
to make a slow query fast, you may not want this
to happen. Oracle Database 10g contains a new

optimizer hint called REWRITE_OR_ERROR, which forces a query to error out if it

can’t rewrite the query:

select /*+ REWRITE_OR_ERROR */

Instead of running the original query, the hint throws the following error and
stops the execution of the SQL statement.

ORA-30393: A guery block in the statement did not rewrite

on the

Qob

Materialized View Enhancements 27

New Columns in the REWRITE_TABLE

In the previous section, you saw how a REWRITE_OR_ERROR hint will stop the
execution of a query that failed to rewrite. In cases like this, you can use the DBMS_
MVIEW.EXPLAIN_REWRITE procedure to find out why the query failed to rewrite
(the procedure also tells you which materialized view will be used if the query does
rewrite). Using the output from the execution of this procedure, you can find out
what you need to do in order to make the query rewrite, if that is at all possible.

Following is the syntax for using the EXPLATN_REWRITE procedure. Note that
this version is for when you want to create a table to hold the procedure’s output.
You can also use a VARRAY instead of a table if you want to access the procedure’s
output directly.

dbms_mview.explain_rewrite (

query IN [VARCHAR2 | CLOBI],
mv IN VARCHAR2,
statement_id IN VARCHAR2;

To obtain the output into a table, you must run the utixrw.sql script (located
in the $ORACLE_HOME/rdbms/admin directory) before calling EXPLAIN
REWRITE. This script creates a table named REWRITE_TABLE in the current
schema.

In order to view the results of the EXPLAIN_REWRITE procedure, first create
the REWRITE_TABLE table, using the utlxrw.sql script, as shown here:

SQL> @c:\oracle\product\10.1.0\Db_1\RDBMS\ADMIN\utlxrw.sqgl
Table created.
SQL>

Here’s the structure of the REWRITE _TABLE:

SQL> desc rewrite_table

Name Null? Type
STATEMENT TID VARCHAR?2 (30)
MV_OWNER VARCHAR?2 (30
MV_NAME VARCHAR?2 (30)
SEQUENCE NUMBER (38)
QUERY VARCHAR2 (2003)
MESSAGE VARCHAR?2 (512)
PASS VARCHAR?2 (3)
MV_IN_MSG VARCHAR?2 (30)
MEASURE_IN_MSG VARCHAR?2 (30)
JOIN BACK_TBL VARCHAR?2 (30)
)

JOIN_BACK_COL VARCHAR2 (30

28 Chapter |I: Enhancements in Analytical SQL and Materialized Views

ORIGINAL_COST NUMBER (38)
REWRITTEN_COST NUMBER (38)
FLAGS NUMBER (38)
RESERVED1 NUMBER (38)
RESERVED2 VARCHAR2 (10)

Four REWRITE_TABLE columns are new in Oracle Database 10g:

B JOIN_BACK_TBL provides the name for the table with which a join back

operation was performed in the materialized view.

B JOIN_BACK_COL provides the name of the column involved in the join
back operation.

ORIGINAL_COST shows the cost of the prematerialized view query.
B REWRITTEN_COST is the cost of the rewritten query, if there was one.

If not, this column will be zero.

The MESSAGE column shows the EXPLAIN_REWRITE procedure error
message. If it contains multiple materialized views, you'll see a separate row for
each materialized view.

Tatch
The REWRITTEN_COST show a zero if there was no rewrite of a

column of the REWRITE_TABLE shows the query or if a diffent materialized view was
cost for any materialized view that was used, even if there was a query rewrite.
used in a query rewrite. The column will

Materialized Join View Enhancements
Oracle Database 10g contains enhancements to materialized join views (M]JVs), which

contain only joins (and not aggregates). In Oracle Database 10g, you can now conduct
a fast refresh of a materialized join view, under the following conditions:

B If the materialized join view contains a self join in its FROM clause, you must
include the ROWID columns for each instance in the SELECT list. The
materialized join view log must contain all the ROWID coumns as well.

B If the materialized join view has an inline view (or a named view), the
database must be able to perform complete view merging. Once the view
merging is done, the SELECT list must have the ROWID columns for all the
tables in the FROM clause.

Materialized View Enhancements 29

B If you are dealing with remote tables in materialized join views, make sure
that all of the tables are on the same site. The SELECT list must have the
ROWID columns for all the tables in the FROM clause.

Jatch L.
For a fast refresh of each of the base tables. The materialized
materialized join views—whether they use view logs must also contain the ROWID
self joins, inline views, or remote tables— column.

you must create materialized view logs on

Partition Maintenance Operations

In previous versions of Oracle, when dealing with partitioned materialized views, you
needed to perform partition maintenance operations by using the ALTER TABLE
commands against the materialized view container tables, rather than the materialized
views themselves. In Oracle Database 10g, you can issue commands that truncate,
exchange, or drop partitions by using the ALTER MATERIALIZE VIEW statement.
For example, you can drop a partition from a partitioned materialized view in the
following manner:

alter materialized view <mv_name>
drop partition <partition_name>

Materialized View Refresh Using Trusted Constraints

Oracle doen’t enforce functional dependencies in dimensions. Similarly, it doesn’t
enforce primary key and foreign key relationships that are RELY constraints. As a
result of this behavior, when you refresh a materialized view, you may end up with
inconsistent results.

When you create a materialized view, you can specify the policy that Oracle
should adopt when it encounters constraints during a materialized view refresh.
If you use the ENFORCED option, Oracle won’t refresh any materialized view with
constraint violations. If you use the TRUSTED constraints option, on the other

hand, Oracle will perform a materialized view
e ¢ a m refresh. However, Oracle will set the new column

Tatch UNKNOWN_TRUSTED_FD in the DBA_

If you use the TRUSTED MVIEWS view to a value of Y following the
option, the resulting materialized views refresh. This indicates that the materialized view
are in an unknown state, and you can use is now in an unknown state, because it used
them for a query rewite in a TRUSTED or trusted functional dependencies that were not
a STALE_TOLERATED mode only. enforced by Oracle during the refresh process.

30 Chapter |I: Enhancements in Analytical SQL and Materialized Views

INSIDE THE EXAM

The exam will test your knowledge of the The MODEL clause is too important not to
enhancements to the DBMS_ADVISOR be touched by the exam. You must thoroughly
package. You must understand how the new understand the concepts of partitions, measures,
TUNE_MVIEW procedure helps fast refresh and dimensions. What role do rules play in a
and query rewrite when you use materialized MODEL clause? What are the default semantics
views. You must remember the specific ways of rules in a MODEL clause (UPSERT)? What
in which the TUNE_MVIEW procedure can is the difference between sequential order and

help in tuning materialized views (decomposition automatic order when you are evaluating a set
of nonwritable materialized views, for example). ~of rules?

Under what conditions is it good to decompose Expect a question about the PCT feature

a materialized view? How does the TUNE_ on the exam. What enhancements has Oracle
MVIEW procedure contributein promoting introduced for PCT in Oracle Database 10g?
a fast refresh of a query? You must also be What are the preconditions for using the

conversant with the important procedures of =~ TRUNCATE PARTITION command when
the DBMS_MVIEW package. What does the you are performing PCT operations?

EXPLAIN_MVIEW procedure help you do? You must know how to enable the automatic

The exam will test your knowledge of the query rewriting feature in Oracle Database 10g
MERGE statement enhancements. Exactly (hint: it is automatic!). What hint will stop
what rows will the DELETE clause delete in query execution if the query fails to rewrite?
a MERGE statement’ Expect a query on materialized join views as

You most likely are going to encounter a well. What are the conditions under which
question on the new partitioned outer join Oracle supports fast refresh for materialized
feature. Know that it is simply an extension join views?

of the outer join feature in previous versions.

CHAPTER SUMMARY

This chapter started by reviewing the two new enhancements to the MERGE command
in a SQL statement. You then learned about the difference between dense and sparse
data, and how to densify data using the new partitioned outer join enhancement.

The SQL MODEL clause offers you tremendous analytical capabilities when dealing
with interrow calculations in a data warehouse setting. This chapter provided a basic
review of the MODEL clause enhancement, after first reviewing some essential data
warehousing concepts.

Materialized View Enhancements 3 ||

There are several important Oracle Database 10g enhancements pertaining to
materialized views. Important among these is the new TUNE_MVIEW procedure of
the DBMS_ADVISOR package. You saw how you can ensure (almost!) a fast refresh
of materialized views, as well as increase query rewrites using the DBMS_ADVISOR
. TUNE_MVTIEW procedure. You also reviewed materialized join view enhancements,
materialized view refreshing using trusted constraints, and PCT enhancements.

32 Chapter |I: Enhancements in Analytical SQL and Materialized Views

TWO-MINUTE DRILL

Enhancements in the MERGE Statement

Q

a

The MERGE statement enables you to perform conditional update and insert
operations when loading data from a source table into another table.

In Oracle Database 10g, you can use a WHERE clause in a MERGE statement’s
UPDATE or INSERT clause to conditionally update or insert data.

In addition to the INSERT and UPDATE clauses, you can now use a DELETE
clause in a MERGE statement.

The DELETE clause in a MERGE statement will delete only rows included in
join condition (specified by the ON clause).

The DELETE clause of the MERGE statement evaluates only the post-updated
values of rows.

Using Partitioned Outer Joins

a
Q

The partitioned outer join is an extension of the Oracle SQL outer join concept.

Fact tables contain the data of an organization, and dimension tables contain
descriptions of the dimensions you use to categorize data into meaningful entities.

Dimension tables are organized on a hierarchical basis, enabling you to perform
roll up and drill down operations.

The analytical process follows a processing order consisting of the grouping,
calculation (analysis), and output ordering steps.

Dense data doesn’t contain gaps in any of the dimensional cells.

Sparse data is data that contains no values for some combinations of dimension
values.

Sparse data presents analytical and report formatting problems.

Dense data leads to better-performing analytical queries, especially when you're
dealing with time-series data.

Partitioned outer joins help turn sparse data into dense data by replacing missing
values in the data.

You create a partitioned outer join by adding the PARTITION BY clause to
the outer join clause.

Two-Minute Drill 3 3

Using the SQL MODEL Clause
0 The SQL MODEL clause provides you with spreadsheet-like output capabilities.
U The MODEL clause provides interrow and interarray analytical capabilities.

U The MODEL clause enables you to perform symbolic cell addressing and symbolic
array computations.

U The MODEL clause doesn’t change table data, unless you explicitly use a
separate UPDATE, INSERT, or MERGE statement to modify table data with
the MODEL clause’s output.

U The MODEL clause first creates multidimensional arrays from the raw data
derived from using the initial SELECT statement.

U Oracle uses partitions, measures, and dimensions to derive the multidimensional
data arrays from table data.

U The MODEL clause then applies simple or complex business rules to the array
data, using rules that you can specify.

U A rule is any business rule or formula that you apply to the array data derived
by the MODEL clause.

U A rule can update or insert data. The default rule semantics at the MODEL
level use the UPSERT operation.

U You can use UPDATE instead of the default UPSERT rule semantics.

U If you specify a rule level option, it will override an option specified at the
rules level.

U You can specify sequential order or automatic order for evaluating multiple
rules in a MODEL clause.

U sequential order is the default rule processing order.

U The RETURN UPDATED ROWS clause will return only any new values created
by the MODEL clause.

U The MODEL clause output shows both the original data and the data that the
MODEL clause has inserted or updated.

Materialized View Enhancements
U Oracle Database 10g enables query rewriting by default.

U The DBMS_MVIEW.EXPLAIN_REWRITE procedure tells you why Oracle
isn’t rewriting a query to take advantage of an existing materialized view.

34 Chapter II:

Enhancements in Analytical SQL and Materialized Views

The DBMS_ADVISOR. TUNE_MVIEW procedure helps fast refresh a materialized
view, as well as enhance query rewriting.

The DBMS_ADVISOR . TUNE_MVIEW procedure helps in fixing problems
with materialized view logs.

The DBMS_ADVISOR . TUNE_MVIEW procedure also can suggest breaking
up a materialized view into submaterialized views to ensure a fast refresh of
the parent materialized view.

The DBA_TUNE_MVIEW view contains the results of executing the TUNE_
MVIEW procedure.

The STATEMENT column of the DBA_TUNE_MVIEW view shows the
recommended materialized view changes.

The DBMS_ ADVISOR . TUNE_MVIEW procedure can suggest that you include
the ROWID:s of all tables in the SELECT list of a materialized view.

A materialized view decomposition into parent and submaterialized views
may be called for when you have subqueries in the WHERE clause or use an
inline view which you can’t flatten.

The EXPLAIN PLAN statement will now show you if the materialized view
use is because of a query rewrite or developer specification.

The new REWRITE_OR_ERROR hint stops the execution of a SQL statement
if query rewriting doesn’t take place.

There are four new columns in the REWRITE_TABLE to help you figure out
the cost of an original and rewritten query.

Once you create materialized view logs with a ROWID column, you can now
conduct a fast refresh of a materialized view join that contains self joins, inline
views, or remote tables.

You can directly use the ALTER MATERTALIZED VIEW statement to perform
partitioning maintenance operations on partitioned materialized views.

Oracle will conduct a fast refresh when dealing with trusted constraints, but it
will put the materialized view into an unknown state.

You must use the TRUSTED or STALE_TOLERATED mode when dealing

with materialized views that are in an unknown state due to the use of trusted
functional dependencies and constraints.

Two-Minute Drill 3 §

The partition change tracking (PCT) feature is now applicable to list-partitioned
tables or when your materialized view contains join-dependent expressions.

PCT operations truncate data now, instead of deleting it.

You can now manually use a PCT-based refresh, even in the absence of partition
operations, by specifying the new option when executing the DBMS_MVIEW
.REFRESH procedure.

36 Chapter |I: Enhancements in Analytical SQL and Materialized Views

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer.
Choose all correct answers for each question.

Enhancements in the MERGE Statement

I. What does the MERGE statement do if an identical row already exists in the table?
A. It deletes the existing row first.
B. It inserts the duplicate row.
C. The MERGE operation fails with an error message.
D. It performs an update, although there won’t be any difference in the row ultimately.

2. When using the MERGE statement, what will the DELETE clause delete?

A. All rows that satisfy the DELETE clause’s WHERE condition

B. All rows that satisfy the DELETE clause’s WHERE condition, provided they have been
updated by the UPDATE clause

C. All rows that satisfy the DELETE clause’s WHERE condition, provided they have been
newly inserted by the INSERT clause

D. All rows that fail to satisfy the UPDATE clause
3. Which one of the three clauses—INSERT, DELETE, and UPDATE—fires first in a MERGE
statement if all three of them are present?
A. INSERT clause
B. DELETE clause
C. UPDATE clause
D. Depends on the order in which you specify the three operations

4. Which rows will the DELETE clause in a MERGE statement delete?
A. Rows modified by the UPDATE clause
B. Rows inserted by the INSERT clause
C. Rows neither updated nor inserted by the MERGE statement
D. Rows selected by the WHERE clause embedded inside the INSERT clause

Self Test 37

Using Partitioned Outer Joins

5. The partitioned outer join is especially beneficial for which type of data?
A. Time-series data
B. Cross-section data
C. Summary data
D. Analytical data

6. What can the output of a partitioned outer join be considered as?

A. UNION of several outer joins, each join being between a partition and the other table(s) in
the join

B. UNION of several equijoins, each join being between a partition and the other table(s) in
the join

C. UNION of several self joins, each join being between a partition and the other table(s) in
the join

D. UNION of several inner joins, each join being between a partition and the other table(s) in
the join

7. Which of the following is true when you densify sparse data by using partitioned outer joins?
A. The missing data must be filled in by zeros.

B. You can use the IGNORE NULLS clause with the LAST_VALUE function to replace the
missing values with the most recent non-NULL value in that column.

C. The missing data must be filled in by NULLs.
D. You must provide the missing data by updating the column with the missing values.
8. What will the PARTITION BY clause in a partitioned outer join statement do?

A. Partition the underlying table, using Oracle’s partitioning option
B. Partition the output rows into equal segments

C. Partition the table into equal subpartitions
D

Partition the rows in the output based on the expression your provide within the clause

Using the SQL MODEL Clause
9. What is symbolic cell addressing?

A. The way the MODEL clause makes statistical calculations
B. The way the MODEL clause addresses statistical symbols

38 Chapter | I: Enhancements in Analytical SQL and Materialized Views

C. The way the MODEL clause addresses the individual cells of an array
D. The way the MODEL clause addresses the rules

10. What can you derive by using a MODEL clause?
A. Both updated and deleted data
B. Both updated and newly created data
C. Only updated data
D. Only newly changed data

Il. By default, the RULES keyword operates with which specification?
A. UPDATE specification
B. INSERT specification
C. UPDATE and UPSERT specifications
D. UPSERT specification

12. What will the RETURN UPDATED ROWS keyword in a MODEL clause do?
A. Return only the new rows, not the updated rows
B. Return only the updated rows, not the new rows
C. Return both the updated and the new rows
D. Return all rows that are going to be deleted

Materialized View Enhancements

13. What does the fast refresh method of updating materialized views always use?

A. Incremental changes

B. Decomposed submaterialized views
C. Query rewrite

D. Materialized view logs

14. Under some conditions, for fast refresh to occur, which of the following must be true?

A. Materialized view logs must specify the ROWID clause.
B. The materialized view must use GROUP BY clauses.

C. The materialized view must use ROWIDs.

D. The materialized view must use ROWNUMs.

15. Which of the following will tell you why a certain materialized view isn’t fast refreshable?

16.

17.

18.

19.

20.

Self Test 39

EXPLAIN_REWRITE procedure
TUNE_MVIEW procedure
MVIEW_EXPLAIN procedure
EXPLAIN_MVIEW procedure

oo w >

What does the TUNE_MVIEW procedure do?

A. Automatically creates any necessary materialized view logs
B. Recommends the creation of any necessary materialized view logs
C. Automatically creates the materialized view

D. Automatically conducts a fast refresh of a materialized view

What does the DBA_TUNE_MVIEW view show?

A. The results of executing the TUNE_MVIEW procedure

B. The output of the CREATE_MVIEW procedure

C. The output of the EXPLAIN_MVIEW procedure

D. The output of both the TUNE_MVIEW and EXPLAIN_MVIEW procedures

Which of the following helps you identify your statement in the DBA_ TUNE_MVIEW view?
A. The STATEMENT variable

B. The STATEMENT ID column

C. The VIEW _ID column

D. The TASK NAME variable

What does the REWRITE_OR_ERROR hint do?

A. Rewrites the query if it doesn’t lead to any errors

B. Stops executing a query if it can’t rewrite it

C. Sends out a report of all the rewrite errors

D. Enforces a query rewrite even if it leads to an error

In Oracle Database 10g, which of the following is true regarding the partition change tracking
feature?

A. It has been extended to Oracle partitions.

B. It has been extended to rule partitioning.

C. It has been extended to hash partitioning.

D. It has been extended to list partitioning.

40 Chapter |I: Enhancements in Analytical SQL and Materialized Views

LAB QUESTION

Compare the results of a regular outer join with the new partitioned outer join. For this lab exercise,
you need to use the SH schema in the sample schemas supplied by Oracle as part of your Oracle
software.

2
3.
4

Create a small table with sales data for various years for two products.
Create another table with just time data, so you can join the first table with this one.
Use a traditional outer join and check the results.

Use a partitioned outer join and compare its results with those from step 3.

Self Test Answers 4 ||

SELF TEST ANSWERS

Enhancements in the MERGE Statement

I. M D.The MERGE statement will perform the update, but the row will not change its values.
A is wrong because the MERGE statement always performs an UPDATE operation first. B is
wrong because the INSERT statement doesn’t fire. C is wrong because the existence of an identical
row will not lead to any errors.

2. M B. The DELETE clause in a MERGE statement will delete all rows that meet the WHERE
condition, subject to the important provision that these rows must have been updated by the
UPDATE clause in the MERGE statement.

A is wrong because the DELETE clause will not delete all rows that satisfy the WHERE
clause, but only those that have been updated prior to the DELETE operation. C and D
indicate the wrong rows.

3. M C.InaMERGE statement, the UPDATE operation always takes place first.
A, B, and C are wrong because the UPDATE operation is performed first.

4. M A.The DELETE clause in a MERGE statement will delete only those rows that are modified
by the UPDATE clause.
B and D are wrong because the DELETE clause will not delete any rows that are inserted
as a result of the INSERT operation. C is wrong because the DELETE clause will lead to the
deletion of only those rows that have been updated because of the UPDATE operation.

Using Partitioned Outer Joins

5. M A. Partitioned outer joins help you transform sparse data into dense data. Since having
dense data is very important for time-series based data, this is the right answer.
Although you can use partitioned outer joins with the data mentioned in B, C, and D,
they are most useful for time-series data. Alternative D could confuse some, since you might
argue that analytical data includes time-series data.

6. M A. You could view the output of a partitioned outer join as a union of several smaller
outer joins between each of the partitions and the other table(s) in the join operation.
& B, C, and D are wrong since they refer to equijoins, self joins, and inner joins, whereas
the partitioned outer join performs only outer joins.

7. M B. You can use the IGNORE NULLS clause with the LAST_VALUE function to replace
the missing values with the most recent non-NULL value in that column.

472 Chapter | I: Enhancements in Analytical SQL and Materialized Views

A and C are wrong because you are not required to use zeros or NULLSs to fill in missing
values. D is wrong because you don’t provide the values for the missing data—you use the
partitioned outer joins to do that job for you.

8. M D. The PARTITION BY clause will partition the rows in the output based on the
expression you provide inside the PARTITION BY clause.
A and C are wrong because the PARTITION BY clause doesn’t actually partition the
tables. B is wrong because the output isn’t partitioned into equal segments, but rather is
partitioned on the basis of the expression you provide within the PARTITION BY clause.

Using the SQL MODEL Clause

9. M C. Symbolic cell addressing is the way the MODEL clause handles the individual cells of
a multidimensional array.
X A, B, and D are wrong because symbolic cell addressing deals only with addressing cells
within the array.

10. M B. Using a MODEL clause, you can derive both updated and new data.
X A is wrong since you don’t see and deleted data in the output produced by the MODEL
clause. C and D are wrong since you can derive both updated and new data when you use
the MODEL clause.

Il. @ D. By default, the RULES keyword operates with the UPSERT specification.
X A, B, and C offer the wrong specifications.

12. M C. The RETURN UPDATED ROWS clause ensures that the MODEL clause outputs both the
updated and the new rows.
X A and B are wrong since you drive both updated as well as new data. D is wrong since the
MODEL clause doesn’t delete data.

Materialized View Enhancements

13. M A and D. A is correct since a fast refresh is accomplished by using incremental changes.
D is also correct, since the materialized view logs hold the incremental change data.
B is wrong because the fast refresh method doesn’t depend on decomposing your materialized
views. C is wrong since the fast refresh method is a method of freshening the data and doesn’t
have anything to with query rewriting.

14. M A and C. Under some conditions, both the materialized views and the materialized view
logs must use ROWIDs to ensure a fast refresh.
B is wrong because a GROUP BY operation is something you must avoid in order to force
a fast refresh. D is wrong because ROWNUM don’t force a fast refresh either.

Self Test Answers 4.3

I5. M D. The EXPLAIN_MVIEW procedure tells you why a materialized view isn’t fast refreshable.
& A is wrong because the EXPLAIN_REWRITE procedure tells you if a materialized view
will or won’t rewrite a query. B is wrong because the TUNE_MVIEW procedure helps you in
making a materialized view fast refreshable. C is wrong because it refers to a nonexistent procedure.

16. ¥ B.The TUNE_MVIEW procedure only makes recommendations, including the creation of
necessary materialized view logs, to make a query fast refreshable.
& A, B, and D are wrong since the TUNE_MVIEW procedure doesn’t automatically create
any views, logs, or a fast refresh of a materialized view. It’s a purely advisory view. You can
implement the changes recommended by the view.

17. M A.The DBA_TUNE_MVIEW view holds the output of the TUNE_MVIEW procedure.
B, C, and D are wrong since they refer to the wrong procedures as the source of the view.

18. M D.The TASK_NAME variable helps you identify your query in the DBA_TUNE_MVIEW
view (WHERE TASKNAME = : TASK_NAME).
X A, B, and C refer to the wrong variables or columns.

19. ¥ B.The REWRITE_OR_ERROR hint will stop any query that fails to rewrite and issues an
automatic error.
X A is wrong because the hint doesn’t rewrite the query if it doesn’t have errors. C is wrong
since the hint doesn’t send a report of the errors—it merely sends a single error message when
a query fails to rewrite. D is wrong since the hint does not force a query rewrite when there are
errors—it terminates the execution of the query when the query fails to rewrite and issues an error.

20. M D. In Oracle Database 10g, the PCT feature has been extended to materialized views based
on list-partitioned tables.
X A is wrong because you could use the PCT feature with partitioned tables in earlier versions
of Oracle. Similarly, B and C are wrong since you could use the PCT feature in both rule- and
hash-partitioned tables.

Lab Answer

I. Create the tables to show sales data for two products and check the data in the new table,
as in this example:

SQL> create table sl as
2 select distinct time_id, prod_id, quantity_sold
3 from sales
4 where time_id between '02-JAN-2005"
5 and '05-JAN-2005"
6* and prod_id < 15;
Table created.

44 Chapter ||I: Enhancements in Analytical SQL and Materialized Views

SQL> select * from sl;

TIME_ID PROD_ID QUANTITY_SOLD
02_JAN-2005 13 1
02_JAN-2005 14 1
03_JAN-2005 14 1
04_JAN-2005 13 1

2. Create a second table with four rows in it, one for each day of January 2005, and check the
data in the table after creating it, as in this example:

SQL> begin
2 for i in 0..3 loop
3 insert into tl values (to_date('02-JAN-2005") + 1i);
4 end loop;
5* end;
PL/SQL procedure successfully completed.
SQL> select * from tl;
TIME_ ID
02_JAN-2005
03_JAN-2005
04_JAN-2005
05_JAN-2005

3. Create a regular outer join between tables s1 and t1. The following example uses the Oracle
function CUMULATIVE, to produce cumulative values for each day, from the quantity_sold
column values. The regular outer join will show a day, even if there aren’t any matching values
for it in the sl table. This query shows a row for the 05-Jan-2005 date, even though there are
no product sales for that date (shown in table s1).

SQL> select prod_id, time_id, quantity_sold,
2 sum(quantity_sold) over
3 (partition by prod_id
4 order by time_id)
5 as cumulative
6 from sl
7 right outer join tl
8 wusing (time_id)
9 order by prod_id, time_id;
PROD_ID TIME_ID QUANTITY_ SOLD CUMULATIVE
13 02_JAN-2005 1 1
13 04_JAN-2005 1 2
14 02_JAN-2005 1 1
14 03_JAN-2005 1 2
05_JAN-2005

Self Test Answers 4.8

4. Finally, use a partitioned outer join, to see how you can improve over the results obtained with
just a regular outer join. The partitioned outer join in this example partition-joins the data by
the prod_id column, and shows rows for each day one of the products wasn’t sold. Product ID 13
didn’t sell on the third and fifth of January 2005. Product ID 14 didn’t sell on the fourth and
fifth. However, the partitioned outer join ensures that you see rows for both the products, for

all the days.

SQL> select prod_id, time_id, quantity_sold,
2 sum (quantity sold) over
(partition by prod_id
order by time_id)
as cumulative
from sl
partition by (prod_id)
right outer join tl
using (time_id)

* order by prod_id, time_id;

PROD_ID TIME_ID QUANTITY_SOLD CUMULATIVE
13 02_JAN-2005 1
13 03_JAN-2005
13 04_JAN-2005 1
13 05_JAN-2005
14 02_JAN-2005 1
14 03_JAN-2005 1
14 04_JAN-2005
14 05_JAN-2005

8 rows selected

SQL>

O W O J o Ul W

NNNRE NN

