
Oracle Developer/2000 - Beyond
Client/Server Reporting
An Oracle White paper

August 1997

Oracle Developer/2000: Beyond Client/Server Reporting Page 2

Oracle Developer/2000: Beyond Client/Server Reporting Page 3

Introduction

With the development of the desktop computing environment and the graphical
user interface in particular, there has been a corresponding growth in PC centric
reporting tools. These tools have, through simple design environments, made
access to corporate information a relatively simple operation. However, as
productive these development tools have become, it is the limitations of the
client/server environment itself that has prevented most companies from taking
advantage of these tools for their mission critical or operational reporting needs.
That is, the size, complexity and speed requirements of operational reporting for
most organisations dictate the need to be server/host based, and hence it is
difficult to take advantage of the development productivity that PC-desktop
software provides.

The requirement for large scale operational reporting therefore may be simplified
down to two main criteria: performance and scalability.

SQL

Data

Output to
Desktop
printer

Figure 1: The Standard Client/Server Reporting model

Currently, with most client-server implementations, the execution of a report is a
highly client-intensive process. Although the data of a report is extracted from
the database server, all report formatting is still done on the client machine,
which is often a personal computer with limited processing power and memory
capacity. This can lead to the situation where a report being formatted locally
on the client causes local machine resource to be entirely consumed by the
report execution itself. Likewise, the spooling nature of most desktop operating
systems does not lend itself to the printing of large scale reports. That is, the
required spool file created can severely restrict the amount of disk storage
available to the user, causing inconvenience or even operating system errors
(e.g., when using dynamic virtual memory sizing on Windows 95).

Furthermore, if the same report is desired by multiple users, as is generally the
case within an application environment, it will be executed for each user
request. As such, each user will re-execute the query, return the same data
across the network and be formatted independently of all other users of the
application. Hence duplicating the load on the database, network and
workstation in order to allow multiple people to access the same information.
The converse would be to generate the output once, then determine a method of

Oracle Developer/2000: Beyond Client/Server Reporting Page 4

passing it to those to whom it is of interest (sneaker-net?). Neither method is
ideal.

Figure 2: Users Acting in Isolation

This paper will discuss the features available within Oracle’s Developer/2000
that address the requirements for enterprise level reporting and introduce how
the product may take part in a multi-tier environment.

Web Publishing

Static Publishing
It was the need to share information throughout their user community that lead
the Physicists and Engineers at CERN to develop the technology that has
evolved into what is now known as the World Wide Web. The ability to publish
a document in Hyper Text Markup Language (HTML) allowed for a single copy
of a document to be accessed by multiple users simply by use of a browser.
This publishing model is the simplest form of multi-tier reporting, relying as it
does on the pre-creation of the report output based on static criteria.

Oracle’s Developer/2000 has established a solid reputation for the ease of
development and generation of complex reports across multiple platforms.
Release 1.3.2 extended this portability to enable the utilization of Web
technology as a publishing medium by it’s ability to generate report output in the
standard formats used by the World Wide Web. That is, HTML (version 3.0)
and Adobe’s Portable Document format (PDF).

As such, long running/operational reports may be generated periodically, the
output placed on a web server and accessed by many users simultaneously.

Oracle Developer/2000: Beyond Client/Server Reporting Page 5

Client
Browser

Application
Tier

Http

Web Server

Generated Report
output is placed

in Web server
document
Directory

Figure 3: Web Model of Static report publishing

Dynamic Publishing

Whereas the data dynamics required allow many applications to take advantage
of a static publishing methodology (such as Financial reporting or Data
warehouses where the data is only refreshed at a specific point in time), they are
immediately constrained by the need to either restrict the possible queries that
may be issued, or otherwise by the sheer number of static documents that need
to be generated in order to meet user requests. In order to negate these
limitations, Developer/2000 Release 1.4W introduces the ability to define at
runtime the parameters and criteria of a given report.

By the implementation of the reports runtime engine as a CGI (common gateway
interface) executable, a URL (Uniform Resource Location) now mimics the
standard command line as used in a client/server two-tier environment.

e.g.:

Http://d2kserv.us.oracle.com/r25cgi32?REPORT=FRED.RDF+
USERID=scott/tiger+DESFORMAT=HTML+EMPNO=10

When a URL of this nature is received, a runtime engine is spawned and the
specified report executed. The output is then returned in the desired format to
the calling browser.

Oracle Developer/2000: Beyond Client/Server Reporting Page 6

Reports
CGI Engine

Reports
CGI Engine Report DefinitionReport Definition

ClientClient

Application
Server

Application
Server

Database
Server

Database
Server

Figure 4: Developer/2000 R1.4 Dynamic web reporting With Reports Web
Interface Component

In order to prevent confidential information from being displayed within the URL
Developer/2000 is able to take advantage of report parameters stored on the
server by use of the CGICMD.DAT command file. This will be discussed in
more detail later in this paper.

Reporting within Developer/2000 Web Cartridge based applications

Many applications developed for client/server utilize Developer/2000’s Forms
component to develop sophisticated parameter forms for their reporting needs.
With the release of the Developer/2000 Web Cartridge those applications may
now be used with the web environment fundamentally unchanged. That is, the
RUN_PRODUCT procedure used to initiate a report from within a form is
supported within the web based framework.

In order to successfully invoke a report from a Web based form the Forms
Server must first know from where to pick up the generated report and in which
default format it was generated. This is done by the setting of the following
environment variables prior to the starting of the forms server process:

FORMS45_OUTPUT Physical directory on the server for report output.

FORMS45_MAPPING The virtual directory defined to the web server which
points to the physical directory defined above.

FORMS45_REPFORMAT The output format for the generated report.

When the RUN_PRODUCT command is issued from the Forms module, the
report is generated as normal with the output being directed based on the value
of destination type (DESTTYPE). If this is set to FILE, the generated report is
sent to the directory specified in FORMS45_OUTPUT. If, however, this is set to

Oracle Developer/2000: Beyond Client/Server Reporting Page 7

either SCREEN or PREVIEW, a temporary file is created (also in
FORMS45_OUTPUT) and passed to the web server via it’s virtual mapping
(FORMS45_MAPPING). Based on the value of FORMS45_REPFORMAT, the
web server will then display the report on the user’s browser window.

Scaleable Multiple-Tier Reporting

Use of the Common Gateway Interface has enabled the World Wide Web to
become a much more dynamic place. However, as this dictates spawning a
new process for each request, it limits the effective scalability of the application,
while at the same time increasing server overhead and subsequently decreasing
performance.

Developer/2000 Releases 1.5 & 2.0 introduce a true multi-tier architecture for
executing and distributing your reports. The centerpiece of this new architecture
is the Developer/2000 Multi-tier Report Server. With this, reports may be
executed remotely on much more capable UNIX or NT server platforms where
resources are greater, and at the same time significantly reduce the load on the
client machine.

The Multi-tier Report Server is a multithreaded executable which generates
report output dynamically based on requests received from clients. These
requests may be issued from end user PCs, from an interface with any web
server, or from third-party applications via the Reports ActiveX Control. The
Reports Server handles client requests by entering all report submissions into a
job queue, as one of the server’s runtime engines becomes available, the next
job in the queue is dispatched to that engine and executed.

R30Run
R30Run

R30Run

R30Srv

R30Run
++

S
e
r
v
e
r

Figure 5: Developer/2000 Report Server Architecture

.

Oracle Developer/2000: Beyond Client/Server Reporting Page 8

Intelligent Load Management
Requests issued from clients will be distributed to a dynamic and configurable
number of Report Server runtime engines, hence multiple reports may be
executed concurrently from a given Developer/2000 Reports Server. As the
number of jobs in the queue increases, the Multi-tier Report Server will
dynamically invoke additional engines to execute queued jobs as necessary up
to a maximum limit [maxengine] set in a Report Server configuration file.
During idle periods in which there are more server engines than job requests in
the Report Server queue, idle reports runtime engines can be automatically to
conserve machine resources. The maximum idle period [maxidle] along with
several other parameters may be defined in the Report Server configuration file
servername.ora .

maxconnect=20 Number of maximum concurrent
process that can connect to
the server (client + runtime
engines).

sourcedir="/WORK/REPSRC" Directory containing report
source files (server will look
here first then along the path
defined by REPORT30_PATH) .

cachedir="/ORACLE/OWS20/DOCS” Where the cache should be
stored. (NOTE: This must
point to the Web Server
Document directory if using
the Web interface).

cachesize=50 Maximum size of the cache in
MB.

minengine=1 Minimum number of report
engines running at any one
time.

maxengine=3 Maximum number of engines that
will be started as load on the
server increases .

initengine=1 The number of engines started
up when the server is first
started.

maxidle=30 Length of time (mins) before
an idle engine is shutdown.

security=1 Defines the access privilege
level to retrieve documents
from the queue (e.g., via
queue manager) 1=owner, 0=all.

Table1:Typical Servername.ora file with descriptions of entries

Oracle Developer/2000: Beyond Client/Server Reporting Page 9

Cached Report Output

The benefits of the static model for web publishing was the immediacy of the
returned output (being pre-generated). The disadvantage, as previously
mentioned, being the administration and lack of a current view of the data. The
Developer/2000 Report Server solves many of these issues by use of an output
cache for generated reports. If a given report has had multiple submission
requests with the same parameters and is within a defined time period (as
defined by the command line argument TOLERANCE=#min), the server will
determine that they are duplicates and deliver to the requestor the output from
the cache instead of executing the report multiple times. (NOTE: the server
determines a duplicate request based on the following parameters: report,
userid, desformat or desname where it specifies output format, paramform,
currency, thousands, decimal, pagesize, orientation, mode, and all user
parameters.)

Submitting Reports to the Server
Client requests for reports will be prioritized on a first-come, first served basis
and my be submitted to the server via the following methods:

• • Lightweight Client [R30CLI] - A lightweight executable - r30cli is all that is
needed on a client machine to submit a report to the Report Server. The
following is a typical command line for submitting a report to the Report Server
using r30cli.

r30cli REPORT=trades.rdf MODE=character DESTTYPE=file
DESNAME=C:\out\tradenew.lis SERVER=d2kserv

• • Web Server CGI Interface [R30CGI] - Web Server independent interface to the
Report Server that takes a given URL as input and communicates to the Report
Server. Hence allowing users of any web server to generate and receive
dynamic reports from their web browser.

• • Web Application Server Cartridge Interface - Plug-in cartridge for Oracle’s

Web Application Server, has a similar syntax to the CGI based interface.

• • Reports ActiveX Control - Submit and displays reports from any third party

application development tool that supports the use of ActiveX (OCX) controls.

• Direct Developer/2000 Forms Interface

Oracle Developer/2000: Beyond Client/Server Reporting Page 10

Command Line: R30CLI userid=scott ~Command LineCommand Line:: R30CLI userid=scott ~

ActiveX
Control

World
Wide
WebDeveloper/2000

Figure 6: Client Interfaces to Reports Server

Note the new command line argument SERVER=<name>. The purpose of this
is to specify to which Report Server process the report should be submitted.
The remote procedure call (RPC) mechanism, which is used to communicate
between client and application server, uses SQL*Net version 2.3 as it’s transport
layer and hence is able to take advantage of all the Domain Name Services and
Fail Over benefits which are inherent with in it. As such, the naming of a
Report Server is managed in the same manner as a SQL*NET V2 alias to a
database. That is via the TNSNAME.ORA file.

e.g.
For a report server called ‘d2kserv’ the entry would, assuming a domain of world,
look like the following;

d2kserv.world=(
ADDRESS=

 (PROTOCOL=tcp)
(HOST=d2kserv.us.oracle.com)
(PORT=1949)
)

With high performance, document caching and easy access methods the
Developer/2000 Report Server lends itself to the implementation of an
application server, particularly in the area of high end printing. At the present,
this type of large scale report generation is generally the domain of procedural
tools/languages and hence many of the benefits of the graphical development
environment are not available. With the Report Server the user is able to take
advantage of the appropriate technology for the task. GUI development on a
client work station, performance and scaleable deployment.

Oracle Developer/2000: Beyond Client/Server Reporting Page 11

Scaleable Web Publishing

The enterprise reporting needs of an organization generally requires access by
a large number of concurrent users, hence scaleablity is a major concern.
However it is in the confines of a dynamic web site that scaleability becomes an
even greater criteria. Unlike an application aimed at a user community within an
organization, the user base for a web site is not necessarily a known quantity.
Nor are the times of peak load as easily determined.

If a web site is to be successful it must be sufficiently informative, visually
pleasing, and most importantly performant enough to entice the user to a given
web page. The use of dynamic load balancing of job requests and especially the
report output cache with Developer/2000 means that web requests may be
processed instantaneously (in the case of cached reports) or at least processed
without being impacted by the number of requests coming from other web users.

As more and more users access their reports via a web browser from the server,
the administration of the application server becomes more difficult. If a user is
required to enter all report arguments as part of the calling URL the likelihood of
error increases. Likewise the need to return confidential information (such as
username/password) as part of that URL is a possible security issue. The
Developer/2000 Reports Server addresses these issues through the following
mechanisms;

1) Use of a protected server side configuration file CGICMD.DAT.

This file is used to map KEYWORDS with appropriate command strings,
such that if a given keyword is issued as the first argument of the URL the
CGI component will substitute it for the corresponding command line.

rfund: REPORT=rfund USERID=scott/tiger@NTO8 SERVER=d2kserv
TOLERANCE=0 DESTTYPE=cache DESFORMAT=PDF %*

rfundht: REPORT=rfund USERID=scott/tiger@NTO8
SERVER=d2kservTOLERANCE=0 DESTTYPE=cache
DESFORMAT=HTML %*

rfundcss: rfund scott/tiger@NTO8 server=d2kservNT tolerance=0
destype=cache desformat=htmlcss %*

mailmrg: REPORT=mailmrg USERID=scott/tiger@NTO8
SERVER=d2kservNT TOLERANCE=60 DESTTYPE=CACHE
DESFORMAT=PDF %*

mailcust: REPORT=mailmrg USERID=scott/tiger@NTO8
SERVER=d2kservNT TOLERANCE=0 DESTTYPE=CACHE
DESFORMAT=PDF %P

Table 2: Example CGICMD.DAT file

Oracle Developer/2000: Beyond Client/Server Reporting Page 12

By use of the URL keyword mapping available with the Developer/2000
Report server, a complex URL such as:

HTTP://d2kserv.us.oracle.com/r30cgi32?REPORT=rfund+
USERID=scott/tiger@NTO8+SERVER=d2kserv+TOLERANCE=0+
DESTTYPE=cache+DESFORMAT=PDF

Becomes:

HTTP://d2kserv.us.oracle.com/r30cgi32?rfund

The %* at end of the command line entries within the CGICMD.DAT file
further indicates to the Report Server Web Interface Component (WIC) to
additionally add any arguments that the user may have entered via the
URL, with any duplicates being ignored.

2) Using a automatically generated HTML parameter form to allow the end user
to see and fill in the required parameters themselves at runtime. Note: This
feature is available with the 2.0 release of the Developer/2000 Reports
server.

In order to notify the server that a runtime parameter form is required, an
extra command argument is added to the command line within the
CGICMD.DAT key map file. The addition of ‘%P’ as seen above is all that is
required to have the server generate an HTML parameter submission form
equivalent to the parameter form defined in the report itself.

Reports
Intelligent

Server

Web Server

RDBMS

Web Server
Web Interface

Component (WIC)

(1) Iniatial Call to Report

(2) Generated HTML
Parameter Form

(3) Second call to
Report with
completed
Parameter
Form

(4) Report
Output
returned to
browser

Figure 7: Sequence of steps to generate a report with an HTML parameter form.

Step(1) The initial call to the report via the URL executes the report, the
%P flag indicates to server that a parameter form should be generated.

Step(2) HTML parameter form is generated containing information indicating
that this is the initial call to the server for this report. All specified
parameter fields containing pop lists are populated (either statically or
from the database).

Oracle Developer/2000: Beyond Client/Server Reporting Page 13

Step(3) User submits completed parameter form. Server interrogates the
submitted URL information to determine if this is the initial call to the
server.

Step(4) Having determined that the URL contains the appropriate flag to indicate
that it was submitted from the parameter form, the server generates the
report output and passes it back to the calling browser.

NOTE: the use of the %P flag requires that a CGICMD.DAT file exist. If such a
file is not being used then the use of the parameters
PARAMFORM=HTML or PARAMFORM=HTMLCSS in the URL itself
will have the same result. That is a parameter form (in the specified
format) will be generated.

The Developer/2000 Report server further enhances scalablity of the web based
reporting environment by allowing the Report Server to reside on a different
machine than the web server itself (as shown in Figure 7). Hence spreading the
load on machine resources.

Reports
Intelligent

ServerWeb Server

(1) File Generated to Report Cache

(2) File
Transferred
to Web
Server
machine

CGI
or

Cartridge

(3) Single File Streamed to Browser

(3) Multiple Files saved to Document directory, then
served to browser

By the definition of two environment variables on the web server platform the
WIC is able to tell the web server from which directory it should retrieve the
generated document.

The WEBLOC variable defines the virtual directory (as specified within the web
server) where report output will be placed and hence read by the web server.
This variable is mandatory even if the two servers reside on a single machine.

The setting of WEBLOC_TRANSLATED to the physical path specified by
WEBLOC, has the effect of informing the WIC that the report output is
physically located on a separate server platform, and hence should be
automatically copied to the directory specified by this environment variable.
Note, If the report output is in a format where it is within a single file (e.g., PDF),
a file is not created on the Web Server, but rather redirected (streamed) to the
calling browser.

Oracle Developer/2000: Beyond Client/Server Reporting Page 14

Whereas using a shared file system would also allow for the two server
processes to physically reside on different platforms, the use of
WEBLOC_TRANSLATED allows the two servers to be totally independent of
each other. As such the web server could reside outside a company’s network
firewall while the Report Server (and it’s file cache) could reside within it’s
security umbrella (requires firewall to support SQL*Net pass through).

Extended WEB Publishing with Developer/2000 Release 2.0

Whereas the use of HTML has enabled the publishing of vast amounts of data
on the web, the limitations of the original language specification are now
becoming more apparent. Users are requesting more and more that their web
applications have a similar look and feel as those in the client/server
environment. If their desktop application supported multiple font types then it
was reasonable to assume that the same should be available under the web, and
so on.

In order to rectify this limitation the W3 committee (the organization which
directs the specification of the HTML standard) is extending the specification of
HTML to further the publishing capabilities of the standard. The draft
specification of HTML 3.2 introduces the concept of an HTML style sheet. With
this web page format authors will not only have greater access to many more
fonts than the eight currently supported by HTML, but also much greater control
over the physical placement of objects on a page and their text and fill colours
(standard HTML currently has very limited support for background colours on
individual text items). Support for style sheets is currently found in Microsoft’s
Internet Explorer 3.0 and is expected to be included in the upcoming release of
Netscape 4.0 and other Browsers.

Developer/2000 Reports is at the forefront of database publishing for the web
and will, with Release 2.0, support the use of HTML style sheets as output. In
order to take advantage of this emerging HTML standard the user need only
change the value of the DESFORMAT command line argument.

DESFORMAT=HTML Output based on HTML 3.0 tables
DESFORMAT=HTMLCSS Output based on the draft HTML 3.2 style

sheets.

DESFORMAT=PDF Will create the output in Adobe’s portable
document format for desktop publishing
quality output on the web (requires Adobe’s
Acrobat plug-in).

Oracle Developer/2000: Beyond Client/Server Reporting Page 15

Figure 8: Style Sheet based report with embedded ActiveX controls, Java Applets & Animated GIFs

With release 2.0, Developer/2000 will allow web developers to further enhance
the interactive nature of web pages generated by Reports by supporting the
automatic in place publishing of both images based on an image source tag, as
well as user defined HTML script.

Developer/2000 Reports has always had the ability to ‘READ FROM FILE’ a
given data column specified within a query. That is, rather than returning the
character string that is name of file, actually load the contents of the file at that
point in the report. The ability to read from URL now allows for the use of such
things as animated GIF images to be included in a report (e.g. Animated Logo)
or having the image files themselves on a separate machine from where the
report was generated.

e.g.
Source File Format : URL
Source File Location: HTTP://www.oracle.com/tools/images/image.gif

Likewise, in order to allow for interactively within the generated web output, the
author may wish to take advantage of either JAVA Applets or Active X controls
(or both) within the report itself. By setting the property ‘HTML Tag’ on the field
(or boilerplate text object) the developer is indicating that the contents are to be
treated as user defined HTML and not formatted as standard text. Further-
more, as external boilerplate may contain field/column references like any other
boilerplate text item, any user defined HTML may contain references to data
within the report. The upshot being that any applets/controls which are
embedded within the report may change dynamically altered to reflect the
current data within the report.

e.g., text field containing the following:

<APPLET CODE=animator.class
WIDTH=&<ObjectWidth> HEIGHT=&<ObjectHeight>
<PARAM NAME=imagesource VALUE=&<LOCATION>>
<PARAM NAME=deptno VALUE=&<DEPTNO>>

</APPLET>

Oracle Developer/2000: Beyond Client/Server Reporting Page 16

would create an applet scaled to the size specified within the report layout and
displaying the current value of both DEPTNO and LOCATION columns. As the
area defined to hold the external applet/control may be different to it’s ultimate
size within the browser, the system variables ObjectWidth and ObjectHeight
may be used to force the applet/control to scale to the correct fixed size.

NOTE: whereas the example used shows the use of a JAVA class, an ActiveX
control may be inserted in the same manner.

CONCLUSION

As the reporting needs of most organisations increase, and the realization that
the client/server model of reporting is not suited for enterprise level reporting,
more and more organizations are looking to both application server architectures
and/or the web to solve some of the scalability and performance issues that
plague them. With Developer/2000 Report Server organisations now have
avaliable a highly scaleable reporting engine which allows for a choice of clients,
whether they be traditional client server applications or the World Wide Web.

Oracle Developer/2000: Beyond Client/Server Reporting Page 17

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.415.506.7000
Fax +1.415.506.7200
http://www.oracle.com

Developer/2000 - Beyond Client/Server Reporting
An Oracle Technical White Paper
Author: Barry Hiern

Copyright ©© Oracle Corporation 1997
All Rights Reserved

This document is provided for informational purposes
only, and the information herein is subject to change
without notice. Please report any errors herein to
Oracle Corporation. Oracle Corporation does not provide
any warranties covering and specifically disclaims any
liability in connection with this document.

Oracle is a registered trademark and SQL*Net, PL/SQL,
Oracle 8, Oracle7, Developer/2000 are trademarks of Oracle
Corporation.

All other company and product names mentioned are used
for identification purposes only and may be trademarks of
their respective owners.

