
1

White Paper

Developer/2000 and the NCA:
An Architectural Overview

July 1997

2

Developer/2000 and the NCA:
An Architectural Overview

July 1997

Authors: Mark Doran
Rita Morin
Christin Nowakowski
Carl Zetie

Copyright Oracle Corporation 1997

All rights reserved. Printed in the U.S.A.

This document is provided for informational purposes only

and the information herein is subject to change without

notice. Please report any errors herein to Oracle

Corporation. Oracle Corporation does not provide any

warranties covering and specifically disclaims any liability in

connection with this document

Oracle is a registered trademark, and Developer/2000 is a trademark of Oracle Corporation. Other
trademarks acknowledged.

3

Developer/2000 and the NCA:
An Architectural Overview

Introduction

The Network Computing Architecture (NCA) provides
Developer/2000 applications with a framework for multi-tier,
distributed computing. Through application servers that exploit
standards-based Web interfaces and cartridges that plug into
the “software bus” provided by Oracle’s Web Application
Server, Developer/2000 applications can be deployed with
increased reliability, availability, and scalability (RAS).

This technical white paper explains how Developer/2000
application servers and cartridges fit into the NCA. The paper
explains how current releases of Developer/2000 exploit the
NCA, as well as indicating the direction of future evolution.

The paper addresses each of the Developer/2000 application
servers in turn: Forms, Graphics, and Reports.

Developer/2000 Forms Server

With the introduction of the Forms Server in Release 1.4W,
Developer/2000 introduced support for a distributed three-tier
architecture. The Forms Server allows customers to realize the
advantages of the Web by moving application logic and
processing off of the client and onto a middle layer application
server.

The Forms Server consists of two components:

Listener: The Forms Server Listener initiates the Forms runtime
session and establishes a connection between the Java client (i.e.
Web browser, NC, AppletViewer, etc.) and the Forms Server
Runtime Engine.

Runtime Engine: The Forms Server Runtime Engine is a
modified version of the Forms Runtime Engine, with user
interface functionality redirected to the Java client. It handles all
form functionality, except UI interaction, including trigger and
commit processing, record management, and general database
interaction.

The role of the Forms Server depends on whether or not
Developer/2000 is implemented as an application cartridge.
Below, we have described how the Forms Server works in both
the cartridge and non-cartridge models. This description applies
to both release 4.5 and 5.0 of Forms, as the implementation is
the same in both.

4

Cartridge Model

If you choose to implement Developer/2000 as an application
cartridge, you will create a cartridge in the Oracle Web Request
Broker and register the cartridge with the Forms Cartridge
Handler, a component that interfaces with the Forms Server and
the cartridge you have created.

To start and run a Forms application on the Web, end users will
use a Java-enabled Web browser to access a URL. The following
sequence occurs automatically (Figure 1):

1) The URL corresponds to an application cartridge residing
on the application server. The Web Listener accepts this
URL request and passes it to the Web Request Broker.

2) The Web Request Broker recognizes the cartridge name in
the URL as the name of the Forms cartridge, and initiates
the Forms cartridge.

3) The Forms cartridge dynamically constructs an HTML file
by merging information from three sources: the cartridge’s
parameter settings (defined when the cartridge was
created), information from the application cartridge HTML
file (if any), and parameters and values from the URL. This
HTML file includes an applet tag which points to the Forms
applet.

4) The newly constructed HTML file is downloaded to the
user’s browser via the Web Request Broker. The browser
reads the applet tag, and requests the associated Java applet
from the Web Server.

5) The Java applet sends a request to the Forms Server
Listener asking for a particular Forms application (i.e. an
FMX).

6) The Listener contacts a Forms Server Runtime Engine. (The
Listener maintains a pool of available Runtime Engines to
minimize application startup delays). Each active user
receives a dedicated Runtime Engine.

7) The Listener establishes a direct socket connection with the
Runtime Engine, and sends the socket information to the
Java applet. The Java applet then establishes a direct socket
connection with the Runtime Engine. The Java applet and
the Runtime Engine now communicate directly, freeing the
Listener to accept startup requests from other end users. (At
this point, neither the Web Server nor the Forms Listener is
involved in the communication between the applet and the
Runtime Engine.) The Java applet displays the application's
user interface in an applet window outside the main
window of the end user's Web browser.

8) As in a client-server implementation, the Runtime Engine
communicates directly with the database through SQL*Net
or ODBC, depending on the datasource.

5

Figure 1: Cartridge Model

In a cartridge implementation, because the initial HTML file is
built dynamically by the Forms cartridge, you can create a
generic application cartridge containing common parameters,
and then reuse it for each of your applications. To use the
cartridge with another application, you can simply modify the
URL of the application to specify different parameter values,
rather than create a new HTML file.

Non-Cartridge Model

If you choose to run your applications on the Web with a non-
cartridge implementation, you must have a Web Listener
(commonly referred to as the Web Server), but you do not need
a Web Request Broker. Therefore, in the non-cartridge model,
Oracle’s Web Server is not required; any Web Server will
suffice.

6

To start and run a Forms application on the Web, end users will
use a Java-enabled Web browser to access a URL as with the
cartridge implementation above. However, a slightly different
sequence occurs once the URL request is submitted (Figure 2):

Figure 2: Non-Cartridge Model

1) The URL corresponds to a static HTML file residing on the
application server. The Web Listener accepts this URL
request.

2) The Web Listener locates the HTML file on the application
server and downloads it. The browser reads the applet tag,
and requests the associated Java applet from the Web
Server.

3) The Java applet sends a request to the Forms Server
Listener asking for a particular Forms application (FMX) to
be started.

4) The Listener contacts a Forms Server Runtime Engine. As in
the cartridge model, each active user has a dedicated
Runtime Engine.

7

5) The Listener establishes a direct socket connection with the
Runtime Engine, and sends the socket information to the
Java applet. The Java applet then establishes a direct socket
connection with the Runtime Engine. The Java applet and
the Runtime Engine communicate directly, freeing the
Listener to accept startup requests from other end users.
The Java applet displays the application's user interface in
an applet window outside the main window of the end
user's Web browser.

6) As in a client-server implementation, the Runtime Engine
communicates directly with the database through SQL*Net
(or another driver, for non-Oracle datasources).

In a non-cartridge implementation, you must create a static
HTML file for each application. Each static HTML file you
create contains hard-coded information specific to the
individual application. Even a change in the runtime parameters
of an application requires a new HTML file.

Future Releases

In a release after 2.0, the Forms Runtime will be implemented as
a cartridge. The Web Application Server will invoke a Forms
cartridge directly to run a Forms application, eliminating the
need for a separate Listener process and Runtime processes. In
this configuration, the Forms cartridge will be able to exploit all
of the functionality of the Web Application Server, including
Inter-Cartridge Exchange (ICX) and dynamic load balancing.

Initially, each instance of the Cartridge will handle a single
connected user, just as the Forms Runtime does today, but in
later versions a single cartridge will be able to serve multiple
simultaneous users for even greater scalability.

Graphics Cartridge

In this section we will discuss the architecture and details of the
Graphics Cartridge and how this cartridge is configured with
both the Web Server 2.1 and 3.0. This applies to both
Developer/2000 release 1.5 and release 2.0, since the details and
implementation will not change with these releases.

Graphics Cartridge and Web Server 2.1

The Oracle Graphics Cartridge enables users to run existing
Graphics displays from their Web browser, by connecting to
any Web Server that supports the Oracle Web Request Broker
(WRB). The WRB provides the "glue" between the Web Server
and the cartridge and manages the client connections between
them. Below is a diagram of the architecture of the Graphics
cartridge (Figure 3).

8

Figure 3 : Graphics Server architecture

To begin, the user must enter the URL of the requested HTML
page they wish to see. Included in this URL are arguments that
specify which Graphics cartridge should be invoked. Also, any
other parameters that need to be passed to the cartridge can be
included in the URL. The browser sends this URL to the Web
Server where it is parsed. The request is handed to the WRB,
who communicates with the correct cartridge. Once the
Graphics cartridge has received the parameters from the WRB,
it then makes its connection to the database and generates the
appropriate output. This output is generated as an HTML page
that contains a GIF-stream image. The image is returned to the
browser, where it is displayed.

With Web Server 2.1, interactive graphics such as drill down are
not supported.

Graphics and Web Application Server 3.0

With the introduction of Oracle Web Application Server 3.0
(WAS), a “farm” of Graphics cartridges can be maintained. A
number of cartridges can be pre-started so that incoming
requests can be handled quickly. Also, with the load balancing
features of WAS, new cartridges can be started as needed to

9

handle the request load, up to a predefined limit set by the
cartridge administrator. In addition, idle cartridges may be
automatically terminated to free resources. This architecture
allows for many more connections and satisfies the users’ needs
of quick display generation.

With WAS 3.0, the HTML page has a special construct in it that
allows it to detect when the user performs a mouse click in the
display region of the page. Also included in the HTML page is
the session ID of the cartridge connection. This ID is used for
subsequent requests to the cartridge, such as a mouse click, so
that the correct state information is used. If the user does click
on the display, a request is sent back to the cartridge via the
Web Server with the coordinates of the mouse click event. If an
action is required, the Graphics cartridge then generates a new
GIF-stream which is then returned to the browser. This type of
architecture allows fully interactive Graphics displays on the
web.

Developer/2000 Multi-tier Report Server

In this section we will discuss the capabilities of the Multi-tier
Report Server and how those capabilities enable you to run
reports on a remote application server. Note that the Reports
Server differs significantly in this respect from the Forms and
Graphics Servers. When used in conjunction with the Reports
Web CGI or Web Cartridge, the Reports Server enables you to
run dynamic reports from a Web Browser using standard URL
syntax. Unlike the Forms and Graphics Servers, however, the
Reports Server can also be used in a non-Web environment, for
example to deliver highly scalable server-based reporting in a
client/server environment.

Developer/2000 Release 1.4

Although not strictly related to the Report Server, it is useful to
briefly recap how Reports delivered Web (HTML) output in
earlier releases. Release 1.4 introduced the ability to define at
runtime the parameters and criteria of a given report through a
URL. By the implementation of the reports runtime engine as a
CGI (common gateway interface) executable, a URL mimics the
standard command line as used in a client/server two-tier
environment, for example, :

http://rptserv.us.oracle.com/r25cgi32?REPORT=QTR.RDF+
USERID=scott/tiger+DESFORMAT=HTML+EMPNO=10

When a URL of this nature is received, the web server spawns a
runtime engine and the specified report is executed. The output
is then returned in the desired format to the calling browser
(Figure 4). This simple architecture allowed reports to be run on
the server rather than the client, and the output to be delivered
in a browser in HTML format.

10

Reports
CGI Engine

Reports
CGI Engine Report DefinitionReport Definition

ClientClient

Application
Server

Application
Server

Database
Server

Database
Server

Web Server

Figure 4: R1.4 Dynamic Web Reporting with Reports CGI
Interface

Note that this is not a true Server implementation, and has none
of the scalability characteristics of the Server described below. It
is simply a way of executing the report on the server machine
and delivering the output in HTML.

Developer/2000 R1.5 & R2.0

Release 1.5 introduces a true multi-tier architecture for
executing and distributing reports. The centerpiece of this new
architecture is the Developer/2000 Multi-tier Report Server.
With the Report Server, reports may be executed remotely on
much more powerful UNIX or NT server platforms where
resources are greater, and at the same time significantly reduce
the load on the client machine.

The Multi-tier Report Server is a multithreaded executable
which generates report output dynamically based on requests
received from “clients”. In this context a client is not necessarily
an end user’s PC; requests may be issued from end user PCs,
from an interface with any web server on the middle tier, or
from third-party applications via the Reports ActiveX Control.
The Reports Server handles client requests by entering all report
submissions into a job queue. As one of the Server’s Runtime
Engines becomes available, the next job in the queue is
dispatched to that Engine and executed (Figure 5).

11

Runtime
Runtime

Runtime

R25Srv/R30Srv

Runtime
++

S
e
r
v
e
r

Figure 5 : Report Server Architecture (Release 1.5/2.0)

Submitting Requests to the Server

Client requests for reports will be prioritized on a first-come,
first served basis and my be submitted to the Report Server via
the following methods:

Lightweight Client [R25CLI/R30CLI] - A lightweight
executable, known as the Command Line Interface (CLI) is all
that is needed on a client machine to submit a report to the
Report Server; for example, in Release 2.0:

r30cli REPORT=rptname.rdf MODE=character DESTYPE=file
DESNAME=outputfile.lis SERVER=rptserv

Notice the new command line argument SERVER=<name>.
The purpose of this is to specify to which Report Server process
the report should be submitted. The remote procedure call
(RPC) mechanism, which is used to communicate between client
and application server, uses SQL*Net 2.3 as it’s transport layer
and hence is able to take advantage of all the Domain Name
Services and Fail Over benefits which are inherent within it.
The naming of a Report Server is managed in the same manner
as a SQL*NET V2 alias to a database, using the
TNSNAME.ORA file.

Web Server CGI Interface [R25CGI/R30CGI] - A Web
Server -independent interface to the Report Server that takes a
URL as input and communicates to the Report Server, allowing
users of any web server to generate and receive dynamic
reports from their web browser (Figure 6).

12

Figure 6 : Reports CGI Architecture (Release 1.5/2.0)

When the client submits a URL, the Web Server runs the
Reports Web CGI. The Web CGI then does the following (for
example, in Release 1.5):

 http://rptserv.us.oracle.com
/your_virtual_cgi_dir/r25cgi32?arg1+arg2+argsN

1) Parses the client request.

2) Converts the request to a Reports Multi-tier Server
command line.

3) Submits the command line to the Reports Multi-tier Server
(synchronously).

4) After the report is finished, retrieves the name of the report
output from the server and creates an HTTP redirection
("Location:") to the output file. After that, it is up to the Web
Server to manage this redirection (typically by displaying
the file back in the Web client browser).

5) Terminates.

Web Application Server Cartridge Interface - Plug-in cartridge
for Oracle’s Web Application Server that has a similar syntax to
the CGI based interface (Figure 7).

13

Figure 7 : Reports Web Cartridge Architecture (Release 1.5/2.0)

After URL submission from the client, the Web server invokes
the R25OWS Web Cartridge. The Web Cartridge then does the
following: (for example, Release 1.5):

http://rptserv.us.oracle.com/report_cartridge?arg1+arg2+argsN

1) Parses the client request.

2) Converts it to a Reports Multi-tier Server command line.

3) Submits the command line to the Reports Multi-tier Server
(synchronously).

4) After the report is finished, retrieves the name of the report
output from the server and creates HTTP redirection
("Location:") to the output file. After that, it is up to the Web
Server to manage this redirection (typically by displaying
the file back in the Web client browser).

5) Terminates.

Reports ActiveX Control - Submits and displays reports from
any third party application development tool that supports the
use of ActiveX (OCX) controls.

Direct Developer/2000 Forms Interface - Submits reports
directly from the Developer/2000 Form Builder via
RUN_PRODUCT or RUN_REPORT.

Cached Report Output

The Developer/2000 Multi-Tier Report Server enables the use
of an output cache for generated reports. If a given report has
had multiple submission requests with the same parameters
and is within a defined time period, the Report Server will
determine that they are duplicates and deliver to the user the

14

output from the cache instead of executing the report multiple
times.

Load Balancing

Up to this point, we have only considered the case where a
single server supports all connected users. For a truly scalable
solution supporting larger numbers of users, the system needs
to be able to distribute user requests dynamically across several
servers; in other words, to perform load balancing. In this
section we will discuss the capabilities of the Web Server (Web
Application Server) and how those capabilities can be used by
the application servers to provide load balancing.

Web Server 2.0 & 2.1

In Web Server 2.0 & 2.1, the Web Server can be pictured as
consisting of a listener, a dispatcher, and a number of cartridges
communicating through a standard interface layer called the
WRBX. All of these components must run on a single machine
(Figure 8). Note that this diagram has been simplified slightly;
for a complete description, refer to the Web Server
documentation.

Figure 8 : Web Server 2.x architecture

The listener, commonly called the Web Server, is responsible for
accepting an incoming URL and returning the resulting HTML.
For a simple static HTML page, no other component is
involved: the listener finds the HTML page in the virtual file
system and returns it to the browser. If the URL does not refer
to an HTML page, the listener passes it to the dispatcher. This
component determines which cartridge should handle the
request, and passes the request to that cartridge. The WRBX is
the standard interface that provides communication between
the dispatcher and the cartridge. The dispatcher and WRBX
together constitute the Web Request Broker (WRB).

In this context, we can think of a Web Server cartridge as a
software component that knows how to run a certain kind of
application. The Java cartridge runs Java programs, the PL/SQL
cartridge runs PL/SQL programs, and the Forms cartridge runs
Forms applications.

In this model, each instance of a cartridge processes only one
request at a time, and the Web Server assumes that the cartridge
is busy until it exits, having completed the request. If the

15

requested cartridge is busy, the Web Server returns an error to
the browser. It is also possible to have multiple instances of a
particular cartridge; for example, you might have multiple
Graphics cartridges. Each instance can handle a single request.

Release 2.0/2.1 of Web Server has no load balancing
capabilities. When a user requests a URL from a particular
listener, the request is always serviced on that listener; there is
no capability for the Web Server to pass the request to a
different machine.

Web Application Server 3.0 & 3.1

In the 3.x releases, the picture becomes more sophisticated. The
connection between the listener/dispatcher and the cartridge is
no longer a “hard link” on a single machine. Instead, the
connection is mediated by a set of intermediary services that
allow a single URL to refer to many cartridges distributed
across many machines. This architecture brings with it the
capability to perform load balancing by “intelligently”
distributing incoming requests. The listener/dispatcher,
services, and cartridges can all be placed on separate machines,
or even duplicated across multiple machines (Figure 9).

Figure 9 : Web Application Server 3.x architecture

In this version, the various components of the Web Application
Server are distributed across multiple machines and

16

communicate through CORBA services (represented here by the
Interface Definition Language, or IDL, layers on each
component.) The services, such as the Virtual Path Manager and
the Resource Manager, can potentially be distributed across
multiple machines, but normally they will be on a single
machine. Although only Forms Server machines are shown in
this diagram, there could potentially be many machines capable
of running the Forms, Reports, and Graphics Servers, and each
machine could have more than one type of cartridge.

When a URL arrives at the listener from a browser, the listener
passes it to the dispatcher just as in the case for the 2.x Web
Server. The dispatcher dynamically resolves the URL to a
particular server machine through the intermediary services
including the Authorization Service, the Resource Manager, and
the Virtual Path Manager. If more than one machine is capable
of handling the request, the Resource Manager can choose the
least loaded one. The URL is handed to the cartridge factory on
the chosen machine, which starts or activates the cartridge to
handle the request. This dynamic allocation of requests across
machines allows the Web Application Server to balance the load
across all available servers.

In release 3.0 the load balancing that the Resource Manager
performs is a “card deal” or “round robin”. For each cartridge
type, the Resource Manager is told how many instances of that
cartridge can be run on each machine. The Resource Manager
hands requests to each machine, in turn, as long the machine
has available cartridges to run them. If a machine becomes so
heavily loaded that all its cartridges of a given type are busy,
the Resource Manager will skip that machine until one or more
of the cartridges completes its current request.

Note that this load balancing takes no account of how heavily
loaded each machine actually is, nor of how powerful each
machine is. It depends solely on how many instances of a given
cartridge are running, and makes no distinction as how many
instances a server is capable of running. Release 3.1 will add the
ability to specify the “Quality of Service” of each machine,
which will allow the administrator to specify such factors as a
weighting factor per machines, the number of cartridge
instances per machine, etc., to more effectively balance the
workload.

Since the Reports Server and Forms Server currently perform
most of their processing outside of their respective cartridges,
they will very rarely be busy enough to be affected by the limit
on the number of cartridge instances. However, this dynamic
mechanism will allow requests to a single URL to be
automatically distributed across a number of machines, which
increases the scalability of the architecture. In the future, when
the Reports and Forms servers perform the processing in their
respective cartridges, they will automatically inherit this load
balancing feature.

17

Forms and Load Balancing

Since the Forms Server currently performs most of its
processing outside of the cartridges, a Forms Server machine
will very rarely be busy enough to be affected by the limit on
the number of cartridge instances. However, this dynamic
mechanism will allow requests to a single URL to be
automatically distributed across a number of machines, which
increases the scalability of the architecture. In the future, when
the Forms Servers perform the processing within the cartridges,
they will automatically inherit this load balancing feature.

As the above explanation has shown, it will not be possible to
achieve full load balancing using the Web Application Server
for Forms Servers with the flexibility that the most demanding
applications require until Web Application Server 3.1 is
available, and until the Forms Server is implemented entirely as
a cartridge. In order to provide an intermediate solution,
Developer/2000 will be providing a Forms-specific mechanism
for load balancing. This solution will be available with release
1.6 of Developer/2000 and will work with Web Server 2.1 as
well as Web Application Server 3.0 and 3.1.

This solution consists of two pieces: a Master Metric Server
(MMS) and a Slave Metric Server (SMS). The SMS is a very
simple process that periodically, every few seconds, sends a
network packet to the MMS reporting the number of processes
running on its host, as a measure of how loaded that host is.
The MMS is a process that keeps track of these messages to
determine how busy each host is. The MMS runs on the
machine that hosts the Web Request Broker or Web Application
Server and the Forms cartridge. A SMS runs on each machine
where a Forms Server is available; a Web Server (not necessarily
Oracle Web Application Server) must also be running on that
machine.

When a URL requesting a Forms application is sent to the Web
Server on the MMS host machine, the dispatcher hands it to the
Forms cartridge as normal. The Forms cartridge communicates
with the MMS to determine the least busy Forms Server host.
The cartridge then creates dynamic HTML to launch the Forms
applet, in the same way as in R1.4W, with one important
exception. In R1.4W, the dynamic HTML always directed the
browser to load the applet from the machine originating the
HTML and connect back to a Forms Server on that same
machine. With R1.6, the dynamic HTML can direct the browser
to load the applet from any machine with a Forms Server. In
this way, the request can be directed to the least loaded
machine, as determined by the SMS and MMS processes.

Note that the master machine must be running Oracle Web
Server or Oracle Web Application Server, because that is where
the cartridge is installed, but the slave machine can be running
any Web Server that can service the dynamically generated
HTML request.

18

Graphics and Load Balancing

Graphics already processes requests within the cartridge, so it
will immediately benefit from Web Application Server load
balancing.

Reports and Load Balancing

The Reports Server performs sophisticated load balancing
independently of the Web Application Server. Requests issued
from clients will be distributed to a dynamic and configurable
number of Report Server runtime engines, hence multiple
reports may be executed concurrently from a given
Developer/2000 Reports Server.

As the number of jobs in the queue increases, the Report Server
will dynamically invoke additional engines to execute queued
jobs as necessary up to a maximum limit set in a Report Server
configuration file. During idle periods in which there are more
server engines than job requests in the Report Server queue, idle
reports runtime engines can be shutdown automatically to
conserve machine resources. The maximum idle period along
with several other parameters may be defined in the Report
Server configuration file, servername.ora .

Summary

Oracle’s Networking Computer Architecture provides a robust,
scalable framework for enterprise solutions. Developer/2000
combines this deployment architecture with proven, market-
leading development tools to deliver solutions for the largest,
most demanding environments.

Developer/2000 already provides the market’s most complete,
robust, and scalable environment for multi-tier solutions.
Forthcoming releases will extend Developer/2000’s lead even
further.

