
White Paper

Designer/2000

C++ Object Layer Generator
Product Overview

VERSION 1.0: DECEMBER, 1995

Part C

 Part C

December 1995

Author: Dai Clegg

Contributors:

Copyright © 1995 Oracle Corporation.

All rights reserved. Printed in the U.S.A.

This document is provided for informational purposes only and the information herein is subject to change without notice.
Please report any errors herein to Oracle Corporation. Oracle Corporation does not provide any warrants covering and
specifically disclaims any liability in connection with this document.

Table of Contents

Management Summary
The Need for Object & Relational Co-existence
Object oriented (OO) programming languages, such as C++, are being chosen for many development
projects. They have expanded their traditional stronghold in embedded systems via
telecommunications and financial applications into a broad range of commercial applications. For
example:

• for middleware,

• where a purely diagrammatic user interface is needed,

• where existing C++ components are to be integrated,

or simply as a way for an organization to broaden its capabilities and acquire experience in object
technologies (OT). Programmers using an OO language such as C++ with Oracle7, or any relational
database, face the task of writing code to store objects in, and retrieve objects from the database. This
is time-consuming and error-prone, a fact that results from the so-called ‘impedance mismatch’
between set-based relational processing and object-based processing. One response is to use an OO
database (OODBMS). In many cases this is impractical since the very reason that the programmer
needs to store or retrieve data is to share it with other applications, frequently relational-based
enterprise applications.

The need for object oriented programming to co-exist with relational databases is real today and
growing, although it will eventually diminish as successful relational databases extend their capability
to manage objects directly (for example Oracle8). The C++ Object Layer Generator exists now for
C++ programmers who wish to access Oracle7 databases.

Overcoming the Impedance Mismatch
Overcoming the impedance mismatch by mapping from one world-view to the other is not impossible.
In many cases it is relatively trivial (for example a Customer object might correspond to a row in the
Customers table), but it is tedious and needs to be maintained as the data structure evolves (for
example new columns are added to the Customer table). Now C++ developers can use Designer/2000
graphical tools to describe their class structures or type model (the object structure) and how it
should map onto the physical database (the relational structure). They use the Server Generator to
generate the database definition and the C++ Object Layer Generator to create the client-side
representation of those objects.

Figure 1, opposite, illustrates how the C++ Object Layer Generator uses Designer/2000 to create
usable objects for C++ programmers. The Entity Relationship (ER) Diagrammer represents the class
structure, using sub-types, and nested sub-types to represent the hierarchies of classes normally found
in C++ programs. The Data Diagrammer represents the relational schema as implemented. The Data
Design Wizard creates a relational schema from an ER diagram according to the developer’s
preferred mapping. The Server Generator implements the relational schema as a database. The reverse
engineering facilities in Designer/2000 create a data diagram and a default ER diagram from an

already implemented database. In either case the result is a diagrammatic mapping from object
structure to relational data structure. Just as the Server Generator will create the database, the C++
Object Layer Generator creates C++ class definitions for all the object types or classes defined in the
ER diagram.

Figure 1: Generating Classes in the Client and Tables on the Server

The C++ Object Layer Generator

The C++ Object Layer Generator is different to the other Generators in Designer/2000. The other
generators create either server-side data and procedural definitions (the Server Generator) or client-
side program code (the code generators for such targets as Oracle Forms, Visual Basic(tm), etc.). The
C++ Object Layer Generator creates and manages components, used by C++ programmers. It
generates

• class definitions for persistent types,

• public methods to manage storage in and retrieval from Oracle7 for these types

• private methods to manage client-server interaction efficiently.

The Value Proposition
Many commercial enterprises and government agencies run Oracle7 databases that are vital for their
effective operations. Increasingly those organizations want to use tools such as C++ to access that
data. The Designer/2000 C++ Object Layer Generator makes that cost effective.

Many developers with an otherwise strong commitment to object technology are concerned that
OODBMSs are limited in the scalability, interoperability and reliability necessary for mainstream
applications. The C++ Object Layer Generator makes Oracle7, which has no such limitations, a
viable store for those developers.

Objects, Entities, Classes and Tables
Classes are the building blocks of OO programming. The C++ Object Layer Generator needs to know
what classes it is to generate and how these map onto the relational schema. Designer/2000 provides
the tools to define these inputs. The classes are defined by using the Entity Relationship Diagrammer.
An entity definition can be regarded as a sub-set of a full object definition. Entity Relationship
modelling does not provide facilities for capturing behaviour and lifecycle, in traditional modelling
these are not as well integrated as in Object modelling. However, Entity Relationship modelling does
capture data, structure and association.

The C++ Object Layer Generator generates code to manage the persistency of objects, that is to say it
is concerned with storing and retrieving the data and data structures. To do this, data and structure
are precisely what it needs. So although Entity Relationship modelling is not as rich as Object
modelling, it is rich enough to drive the C++ Object Layer Generator. Figure 2, below, shows how
entities and entity sub-types correspond to classes, or types.

Figure 2: Identifying Entities with Classes

Designer/2000 hence provides basic, but adequate, object structure modelling. It also provides, in the
Data Diagrammer, a much more comprehensive modelling environment for relational structures. In
addition, the Designer/2000 repository maintains the mapping from entities to relational
implementation. Unlike the correspondence of classes to entities, which is one-to-one, the mapping
from entities onto the relational structures that implement them need not be one-to-one. This is vital
because the end-user wishes to see the data in terms of her business perspective and the database
designer wants to implement it in the most efficient way available. By supporting alternative
implementations of the entity model, Designer/2000 is allowing the business view of the world to be
different from the implemented database schema. So the C++ programmer constructs an effective
user interface, using classes based on the end-user view point, and the hard work of mapping this
onto the implemented database schema is finessed by the C++ Object Layer Generator.

Figure 3, overleaf, illustrates an example mapping.

Figure 3: An Example Implementation Mapping

Even for the simple example in

Figure 3 there are alternative implementations:

• A single table for all super- and sub-types.

• A separate table for each super- and sub-type.

• One table for the super-type and one each for the sub-types.

Depending on the mix of applications, each might be the best from the database designer’s viewpoint,
but for each of the alternatives the user has the same viewpoint.

Transparent Client/Server Processing
Class definitions are generated from entity definitions. These classes have public methods for storage
and retrieval operations. There is also library code that implements the mapping from classes to
tables and optimizes the client/server transfers.

For example a program may create a new Employee. This is not written to the database unless
explicitly requested. The program then assigns the Employee to a Project. If the database row
representing that specific Project is already in the client-side cache, that is if it has already been
retrieved for some other purpose, the association is made in the cache, but still no network or
database overhead is incurred. Finally another Employee is allocated to the Project. This Employee
is not in the cache, so a network transfer is required and all the buffered operations outstanding are
effected in a single message pair.

From the view point of the C++ programmer this was a series of operations on a number of objects.
Whether or not any of the objects had to be fetched from the server in order to complete the
operation is not apparent. At what point updates are transferred to the server is irrelevant. The library
code manages all this transparently. The generation of this library is dependent on the Entity-to-Table
mappings, associations between entities (relationships) and the corresponding associations between
the implemented tables (foreign keys). A more detailed view of the client-side generation process is
illustrated in Figure 4, below.

Figure 4: Generating the Object Layer Library

The Development Process
Pre-requisite Definitions and Delivered Components
The Designer/2000 C++ Object Layer Generator allows C++ programmers to use Oracle7 as a
persistent store. It also provides a transparent means of using that store. In order to exploit this
capability, there are three definitions that must be created:

• an entity relationship model to represent the persistent classes,

• a relational schema to represent the persistent store,

• a mapping from one to the other.

From these definitions Designer/2000’s Server Generator and C++ Object Layer Generator create the
client and server components:

• C++ native classes with full function public methods for persistency,

• C++ object layer library code to process client/server efficiently and transparently,

• Oracle7 database definitions to store the object instances.

Figure 5 below, shows the definitions, transformations and delivered components.

Figure 5: The Full Picture

Development Tasks and Dependencies
There are inter-dependencies indicated by Figure 5. For example we need all the definitions before we
can generate the client-side components. These dependencies imply a sequence of tasks, but in reality
there is more than one way to arrive at the required definitions.

The Server Generator’s reverse engineering capabilities create a relational schema model from an
already implemented Oracle7 database. The retrofit capability of the Data Design Wizard creates an
entity model from a relational schema definition. By using these facilities, developers can create the
definitions necessary in reverse order. Clearly, the entity model created in this way represents only a
simplistic mapping from entity (class) to table, but developers can refine to the mapping to match the
user model more accurately.

The design recovery facilities mean that Designer/2000 and the C++ Object Layer Generator can
support developers adding new C++ applications to an existing database as well as supporting
development of application and persistent store in parallel. Figure 6 below, shows this alternative
development process.

Figure 6: Design Recovery

Evolving the Schema and Object Model
Creating and synchronising the C++ object model and the Oracle7 persistent model is necessary to
initiate development. However, in all non-trivial development projects the models will change.
Users will require:

• changes to match their world-view more accurately,

• new data to be stored and new formats for data already defined.

Developers will identify

• improvements to tune the database design,

• more efficient ways to deliver the features that users demand.

All these can cause changes to the object model and the underlying relational schema. Typically by the
time the changes have been identified the generated class definitions will have been customised to add
user-interface behaviour and other processing. It would not be acceptable to lose these modifications,
so the C++ Object Layer Generator can recreate its own code without altering custom code.

There will be such changes where custom code is affected, for example if the definition of the US
numeric Zip Code in a postal address is broadened to accommodate European alphanumeric postal
codes. Manual changes will be necessary in any client-side methods that validate, display and edit
postal codes. However the persistency of the new definition is managed automatically by the C++
Object Layer Generator and the Server Generator, which generates changes to existing databases.

Full Life-Cycle Support
Projects starting in a ‘green-field’ situation; projects adding to existing applications; projects
maintaining existing code. All these can benefit from the Designer/2000 C++ Object Layer Generator.

Using the Generated Components
The C++ Object Layer Generator Transparency Layer
There are many interfaces available to a C++ programmer to access an Oracle7 database. These
include:

• Pro*C,

• Pro*C++,

• OCI,

• ODBC,

• Oracle Objects for OLE,

• Microsoft DAO

These are programmatic interfaces. Programmatic interfaces simplify the task of accessing a set based
SQL database, such as Oracle7, from a procedural language, such as C++. They achieve this by
hiding or bypassing the need to handle such complexities as bind variables and cursors directly.
The transparency layer of the C++ Object Layer Generator has a higher level of ambition. For specific
operations, it seeks to make the presence of the database transparent to the developer. One way to
achieve this would be to cache all objects on the client at runtime. This would be impossible in
memory requirements and transfer times, so the transparency layer manages the same effect by
maintaining a client-side cache. Objects are retrieved into the cache only as necessary. Cache objects
are updated - insertion, deletion, properties and associations - corresponding to program operations.
Some operations that the transparency layer covers are:

• Creating objects,

• Deleting objects,

• Updating object properties (e.g. DepartmentName),

• Updating object associations (e.g. The Department that the Employee works in),

• Traversing associations (e.g. through the set of Employees in a Department).

Other functionality is provided as part of the interface, functionality that does recognise the database.
This includes:

• Database connection and disconnection

• Server-based query of objects based on some criteria (e.g. Age > 30)

• Explicit object locking

• Transaction Control

The transparency layer in the C++ Object Layer Generator does not completely replace a
programmatic interface. Some database operations cannot be transparent. These are typically the
ones that affect the database itself, for example data definition language operations such as create new
table. So an application will normally use both the C++ Object Layer Generator and a programmatic

interface. The transparency layer itself uses a programmatic interface to access Oracle7, a C++
encapsulation of OCI, and this interface is available to application programmers.
Figure 7, below, shows the architecture of a typical application program:

Figure 7: Application Program Architecture

Browsing the Stored Instances
The mapping from generated C++ classes to implemented tables may not be isomorphic, indeed it
may be very complex. Standard browsing tools (for example Discoverer/2000 or SQL Plus) query the
database as implemented, so the data retrieved by such browsers may not be meaningful to a C++
programmer. For example in Figure 2 on page 4, all the classes might have been implemented in a
single table. The programmer trying to check that the property values of a newly created instance of
Contractor will be unable to find any database object corresponding to Contractor. To resolve this
difficulty the C++ Object Layer Generator includes an Instance Browser that retrieves from the
relational tables, but presents classes to the user.

Figure 8 below, shows the user interface to the Instance Browser.

Figure 8: The Instance Browser

Controlling the Generation Process

The C++ Object Layer Generator operates on fragments of code, using template files as its source
and inserting and replacing code in appropriate source files. In a major project, such as is most likely
to use the C++ Object Layer Generator, the management of source files and adherence to house style
for code is of great importance. For this reason, at generate time, the user can specify which types of
code are to be inserted into which files. The C++ Object Layer Generator keeps track of what has
been generated and into which files. However, this may be overridden by the user, and source files
can be browsed as part of the generation process to ensure that the appropriate actions are being
taken, or have been taken. Figure 9 , below, shows the interface the developer uses to partition
source code amongst source files, on a class by class basis, if required.

Figure 9: Directing the Generation Process

Conclusions

The Designer/2000 C++ Object Layer Generator can be useful to any C++ programming project that
needs a persistent store for objects. Because the persistent store is an Oracle7 database, C++
programmers have access to the industry leading database, giving them scalability and security, and
data sharing with all the other applications implemented on any connected database:

1. C++ developers using Designer/2000 for business modelling and implementation already
have, in the form of their entity relationship model and data model, a basic type model and
relational schema mapping.

2. C++ developers who wish to access an existing Oracle7 database, can reverse engineer the
database schema and default type model into the Designer/2000 repository.

3. C++ developers who need a reliable persistent store, can use Designer/2000 to define types
and their relational mapping before generating the database definition.

They can each then generate native C++ classes that will have all the necessary persistency methods,
optimised for client/server operation. The regenerate capability means that even though developers
will add their own methods (for example for user interface, for client-side integrity checking etc.),
when the schema or object models change, the generator will ripple these changes through to the
class definitions without jeopardising user custom code. Control remains with the developer but the
generator takes on much of the hard work.

