
White Paper®

Designing Multilingual Applications Using
Developer/2000 and Oracle7

November 1995

2

Summary
This paper illustrates how Developer/2000 and Oracle7 can be used to develop
multilingual applications. Design techniques are described that enable a single
application to process multilingual data while adapting its end-user interface to
the language and national conventions of each end-user. Such a ‘single-source’
solution significantly reduces the cost of development and maintenance of
applications deployed globally. Emphasis is given to describing design
techniques that minimise the complexity of application design. Also, the process
of translating Developer/2000-based applications is explained.

Introduction
For an organization operating in a multi-lingual and/or multi-country environment,
a multilingual application can present many advantages. Only one application
need be developed, providing all the features needed to configure itself to the
specific language and country conventions of each end-user. These features
address the following basic requirements:

• adaption to language and data-format conventions
• catering for different character encoding schemes
• processing multilingual data
• displaying end-user interface text in the user’s language

Each of these features is discussed in the context of how they can be met by a
Developer/2000-based application that takes advantage of the National Language
Support Architecture provided by Oracle7. Where relevant, future planned
enhancements to these capabilities are also mentioned.

National Language Support Architecture
A multilingual application requires an underlying National Language Support
Architecture capable of supporting all languages and character encoding
schemes used on computer systems. Also, such an Architecture has to provide
an extensive range of National Language Support (NLS) features such as date
and number formatting and sorting of character data. Oracle7 provides such an
Architecture, capable of supporting all ‘groups’ of languages:

• European Languages: English, French, German, Greek, Russian, ...
- alphabets encoded with single-byte encoding schemes

• Semitic Languages: Arabic, Hebrew, ...
- alphabets encoded with single-byte encoding schemes
- dual writing direction

• Asian Languages: Chinese, Japanese, Korean ...

3
- alphabets encoded with multi-byte encoding schemes

Language-dependent features operate at runtime according to the NLS
environment specified for each end-user. By taking advantage of this capability,
the design of a multilingual application can be greatly simplified compared to
‘hard-coding’ such features as part of the application design itself. Also, the same
Oracle product versions can used at all locations where the application is
installed.

Language Adaption
A user’s NLS environment is specified by defining the parameter NLS_LANG
using the syntax <language>_<territory>.<character encoding>, for example on a
UNIX system:

$setenv NLS_LANG French_France.WE8ISO8859P1

This controls, in addition to other features, the default formatting of numbers and
dates, for example:

select ename, hiredate, round(sal/12,2) sal
from emp;

ENAME HIREDATE SAL
Müller 01/04/89 3795,83
Höscht 10/05/90 2933,33
Hélène 01/11/91 4066,67

Another user could specify a different NLS_LANG value, for example:

$setenv NLS_LANG American_America.WE8ISO8859P1

in which case, the default formatting would change to:

select ename, hiredate, round(sal/12,2) sal
from emp;

ENAME HIREDATE SAL
Müller 01-APR-89 3795.83
Höscht 10-MAY-90 2933.33
Hélène 01-NOV-91 4066.67

This ‘automatic’ adaption is transparent to the application design in the sense that
it is transparent to the SQL statements used. If specific formats are required,
language-independent format masks can be used to achieve the same degree of
transparent adaption, for example:

4
 NLS_LANG

American_America French_France
to_char(<date>,'DD/Mon/YY') 7/Feb/93 17/Fev/93
to_char(<num>,'99G999D99') 74,195.83 74.195,83

The number of characters in a default date format can change for different
<territory> conventions, hence the application design does need to ensure that
they are correctly displayed for the range of <territory> values the application
supports. This is not normally an issue with number formats, since only the
characters used for the radix and group separator change.

A multilingual application must avoid the use of language-dependent date and
number literals in SQL statements, for example:

create view staff as select * from emp
where hiredate > ‘1-JAN-89’
and sal > ‘69999.00’;

Such a view evaluates correctly only if the user’s NLS environment is compatible
with the date and number formats. Such SQL statements should instead use
language-independent formats, for example:

create view staff as select * from emp
where hiredate > TO_DATE ('1-JAN-89', 'DD-MON-YY',

 'nls_date_language = American')
and sal > TO_NUMBER ('69999.00', '99G999D99',

 'nls_numeric_characters = ''.,''');

This view evaluates correctly independent of the NLS environment in force for the
user session.

In the 7.2 Server release, additional calendars will be supported, for example the
Japanese Imperial and Arabic Hijrah. Where these use fixed formats, they will
override the Gregorian format mask specified. Hence, while it will be possible to
build an application that adapts to different calendars for input and display of
dates, differences in length will need to be taken into account in the application
design.

Adaption also applies to sorting sequences. Each <language> specifies a default
sort sequence used in ORDER BY queries, for example:

5

$setenv NLS_LANG German $setenv NLS_LANG Swedish

select letter from letters select letter from letters
order by letter; order by letters;

LETTER LETTER
a a
ä b
b z
z ä

Again, the change in sort sequence is transparent to the application design. In
addition to setting the NLS environment prior to logon, it can also be changed
during a session using the ALTER SESSION statement, for example:

alter session set NLS_DATE_LANGUAGE = German
NLS_DATE_FORMAT = 'DD.MON.YY'
NLS_NUMERIC_CHARACTERS = '.,';

In the 7.2 Server release, all NLS parameters can be specified in addition to
NLS_LANG to provide greater flexibility in defining the desired combination of
language and territory conventions prior to logon.

Language Customization
Linguistic and cultural conventions are not ‘standardised’. The example above
illustrates the different sorting conventions in German and Swedish. Even where
the same language is used, usage can be different, for example French in France
and Canada. To cater for this multiplicity, Oracle7 provides a wide range of pre-
defined language and territory conventions and sorting sequences. The latter can
also cater for special cases relating to digraphs, or ‘double’ characters, such as
the German ‘ß’ and Spanish ‘ch’ and ‘ll’.

A further complexity is the multitude of different character encoding schemes used
on computer systems. These have been devised both by computer
manufacturers and standards organizations, mostly based on either the 7-bit
ASCII standard or IBM's 8-bit EBCDIC. Multi-byte schemes are used for Asian
languages since these use thousands of characters. In order for data processing
operations, for example converting a character from lowercase to uppercase,
testing whether a character is a valid alphanumeric, to give the correct result, the
Oracle software must know which encoding scheme the data is in, and the
detailed specification of that encoding scheme. Oracle7 includes a pre-defined
set such specifications, identified by an acronym in the general form:

<language grouping><number of bits><originator>

6
For example, WE8ISO8859P1 refers to the ISO 8859/1 8-bit encoding scheme
that supports many West European languages.

The NLS_LANG parameter is used to specify the character encoding scheme
being used for input and output of data by the application. SQL functions used for
character manipulation (for example SUBSTR) operate per-character, not per
byte. (Oracle7 provides some additional SQL functions - for example SUBSTRB
that do operate per-byte). Hence, a single application can be designed to operate
with both single-byte and multi-byte encoding schemes. However, column length
specifications in table definitions refer to bytes, not characters. For example,

create table emp (ename varchar2(10));

allows at most 10 bytes to be stored in the column ename. For a multi-byte
encoding scheme, the number of characters would be less than 10 depending on
the nature of the encoding scheme. The choice of appropriate column lengths
does need to be taken into account for applications that span both single and
multi-byte encoding schemes. Such considerations also apply to the choice of
display field lengths, for example in a Forms application.

A side-effect of case conversion of digraphs is that the number of characters in
the result can differ from that in the source. For example, the uppercase of the
German ‘ß’ is ‘SS’. To avoid compatibility problems with existing applications,
UPPER, LOWER and INITCAP do not cater for such digraphs - for example
UPPER(‘ß’) returns ‘ß’. Equivalent functions - NLS_UPPER, NLS_LOWER and
NLS_INITCAP - are provided that do, but must be used explicitly in an application
if required.

Semitic languages are supported in both Developer/2000 and Oracle7.
Developer/2000 specifically provides support for controlling:
• Layout direction - allows displaying items with labels at the right of the item

and also enables correct placement of check boxes and radio buttons.
• Reading order - allows specifying whether the text direction is left->right or

right->left.
• Alignment - allows the point of origin to be upper right or upper left.
• Initial keyboard state - allows specifying whether local or Roman characters

will be produced during data entry.

Support for additional conventions and encoding schemes are added to Oracle7
releases on a continuing basis. Before Oracle7.2, such data specifications were
linked into the Oracle software, and because of their large number (more than
150 encoding schemes are currently supported overall). Since the 7.2 Server
release, data specifications are stored externally and are loadable at runtime.
This has eliminated the need for linked-in data and provides a simple mechanism
to enable on-site customization of such specifications, for example to modify a
specific sorting sequence or add support for an encoding scheme.

7
Client/Server Character Encoding Schemes
In general, two character encoding schemes are involved in a user session, the
encoding scheme being used by the input/output device (for example character
mode terminal, or PC running Windows) and the encoding scheme used to store
data in the Oracle7 database. The latter is defined when a database is created
with CREATE DATABASE, the former with the parameter NLS_LANG. The two
encoding schemes can be different, and different for different clients. Any
required conversion of data between encoding schemes is done by the Oracle
software, and is transparent to the application design.

Where different encoding schemes are used, It is normally essential to ensure
that they are compatible in that all support the repertoire of characters capable of
being handled by the application. If a character in the source data is not defined
in the target encoding scheme, replacement characters are used. These are
defined as part of the specifications for the target encoding scheme, and can
define replacements on a per-character basis if relevant. If not, a default
character (usually a question mark) is used. To ensure complete conversion, the
target encoding scheme must contain all characters in the source data. This is
discussed further in the section below.

Conversion is always possible between any two single-byte encoding schemes,
between two multi-byte schemes, and between a single-byte and a multi-byte
scheme for a limited set of combinations. However, in converting data between
different multi-byte schemes, string lengths may change, and this may impact
application design.

Conversion also applies to data transferred between two servers where the
encoding schemes used in the two databases are different. A further issue is to
ensure that the NLS environment operating on behalf of a specific user session is
propagated to any remote servers that the user session connects to (for example
in a distributed query). Such synchronization (for language and territory
conventions) is done automatically when such connections are made, and is
transparent to the application design.

Multilingual Data
The range of languages that can be supported by a multilingual application is
inherently limited to the range of languages supported by the character encoding
scheme being used. For data input and output, this is determined by the
input/output device, and its hardware/software must enable an appropriate
encoding scheme to be used according to the application requirements. For
example, for West European languages many UNIX systems support ISO 8859/1.
Many computer manufacturers also support the use of their own schemes that
were devised to support the same language group, for example DEC
Multinational, HP Roman8, IBM PC Code Page 850 and EBCDIC Code Page 500.
However, such single-byte schemes can only support a limited range of
characters, and other schemes must be used, for example, for East European
languages and non-Latin based languages such as Greek and Russian. Multi-

8
byte schemes can support many more characters, but were principally designed
to support a specific Asian language (for example Japanese, Korean, Traditional
or Simplified Chinese) and also only support a limited range of languages. All
encoding schemes support the basic Latin alphabet (a to z).

Where the required range of languages falls within the scope of a single encoding
scheme, the choice of encoding schemes should be straightforward. The
encoding scheme used by the client application (which is made known to the
Oracle software via NLS_LANG) is that determined by the input/output device. If
this is the same for all users, it is also the natural choice for the encoding scheme
to be used for the database. Different users can use different encoding schemes,
in which the database encoding scheme should be chosen as the most relevant
(for example to minimise overall data conversion). The only restriction in choice
of database encoding scheme is that an EBCDIC-based encoding scheme can
not be used for a database on an ASCII-based server, and vice versa. As
discussed above, where different encoding schemes are used, it is normally
essential to ensure that their character repertoires (the list of characters defined
in a specific encoding scheme) are compatible to ensure that replacement
characters are not used during conversion.

Ensuring this is much more of a problem where the language group is wider than
that which is supported within one encoding scheme (for example West European
languages plus Greek). In such cases, a multiple database solution may be
required, since only one encoding scheme can be defined per database. For this
example, one database could be used for West European character data and a
second for Greek character data. The application design would have to ensure
that only data capable of being displayed (and updated) on the specific
input/output device can be accessed by a user session. In some cases, use of a
custom encoding scheme may be preferable to achieve a situation where a single
encoding scheme can be used. Such a scheme however also has to be
supported by the input/output device.

UNICODE
A ‘complete’ solution to such limitations is the aim of the UNICODE character
encoding scheme (now a subset of the ISO 10646 standard). UNICODE defines
all characters used in all languages in a single encoding scheme. It is fixed
length with 2 bytes being used for every character, even a - z. Hence it is not
compatible with ASCII or EBCDIC. ‘Conventional’ multi-byte schemes are
variable length, generally 1 byte being used for the Latin alphabet, two bytes (or
more) for Asian characters. The fixed byte encoding of UNICODE (referred to as
UCS-2) has the disadvantage that Latin character data requires more storage
space that with ‘conventional; multi-byte schemes, but has the advantage that all
bytes are quaranteed to be 2-bytes in length, which enables the use of more
efficient coding techniques for processing such data compared to those required
for ‘conventional’ multi-byte schemes.

9
In additional to being non-ASCII/EBCDIC compatible, UCS-2 also has the
property that 0 bytes can occur within character strings. Code written to use null-
terminated strings can therefore not cater for UCS-2. In general, existing
software, even if it can cater for variable-length multi-byte encoding schemes, has
to be modified to cater for UCS-2. Hence, the process of providing support for
UCS-2 can require significant development work.

X/Open have defined an alternative encoding scheme for the UNICODE character
repertoire, referred to as UTF-8. This uses a variable-length, multi-byte, ASCII-
compatible encoding which can be supported more easily by software that already
caters for ‘conventional’ multi-byte schemes, at least on ASCII-based platforms.
The 7.2 Server release will provide support for UTF-8, enabling this to be used as
the encoding scheme for a database. Hence, a single database can then store
character data for any group of languages.

However, this in itself does not overcome the limitation of what can be input and
displayed by the client application. Character data can always be converted from
any ‘conventional’ single or multi-byte encoding scheme to UTF-8 (or UCS-2), but
not vice versa. The application design still needs to ensure that only data
compatible with the input/output device being used is accessed by the user
session. If the input/output device can itself use UTF-8, or at least that subset
that the application is required to support, then this limitation is also removed.
DEVELOPER/2000 will also provide support for UTF-8 in a future release,
enabling this to be used where the input/output devise also supports UTF-8.
Support for UCS-2 is also being planned for future releases of both Server and
DEVELOPER/2000.

Translating Applications
An important consideration in maximising the ease-of-use of an application, and
hence minimising end-user training costs, is to display the end-user interface of
the application (for example, screen displays, error and help messages) in the
native language of the end-user. In general, such text originates from two
sources, the Oracle software and the application design itself. To support a
multilingual application, multiple language versions of both sources of text need to
be available and the language used selected at runtime. Such multilingual text
capability is provided by Oracle7 and Developer/2000. Translations for Oracle
products are distributed by Oracle itself for an increasing range of products and
languages. Developer/2000 supports multilingual application text in that multiple
versions can be created for a single application. Translation is part of the
application development process.

Oracle Forms
In the case of Oracle Forms, a single application definition (FMB/MMB) file can
contain multiple versions of application text (for example trigger messages,
boilerplate text, default values, menu items, button labels). Separate runtime
(FMX/MMX) files are then generated for each language. If it is required to

10
provide users with a choice of language, the application design needs to provide
some sort of menu-driven front-end to identify and execute the relevant FMX file.

Within the FMB file, different versions of the application text can be stored using
different character encoding schemes if this is necessary. An FMX file is
generated with the text in the encoding scheme used in the FMB file for that
language. If the user’s input/output device uses a different encoding scheme (as
indicated by NLS_LANG) text is automatically converted to that encoding scheme.

Text displayed to the end-user from a PL/SQL procedure using the MESSAGE()
function is not catered for automatically. In these cases, an application-specific
solution must be used, for example using a message table in the database itself.

Translation Manager
Translation Manager is a tool designed to manage and perform the translation of
Developer/2000-based applications. It is a component of Developer/2000, and
optimized for translation of the type of text typically used in Developer/2000
applications. It can also be used to translate Oracle products themselves in the
case where the required translation is not available from Oracle itself.

Translation Manager does not provide automated machine-translation, a
technology not well suited to the type of ‘unstructured’ text used in applications.
Rather, Translation Manager provides features to minimise the cost and time
taken to do translation, and to maximise the productivity of the translator. For
example, Translation Manager maintains a translation memory to store previous
translations. This provides the capability of automated upgrade of translations to
a new version of a translated application to re-use previous translations that are
still valid. The translation memory can also be applied to new applications in a
search/replace mode, again to maximise re-use of existing valid translations.

Source text is loaded from an application source file into Translation Manager‘s
translation memory, and the translator then uses a simple split-screen edit window
to perform the required translation work. This provides a unified translation
environment, with an easy-to-learn interface, and does not require the translator
to have any knowledge or training in the application development environment
itself. Also, it ensures that the application design is completely isolated from the
translation process, to ensure that a translator can make no inadvertent changes
to the application design itself. Once translation is complete, Translation
Manager is used to merge the translated text back into the application source file.

Conclusions
Multilingual applications have evident benefits compared to maintaining separate
versions of applications for each language. Also, implementing multilingual
capability into the application design itself has formerly required complex design
techniques. The aim of this paper has been to show that Oracle7 and
Developer/2000 can be used to build multilingual applications with minimal
increase in design complexity compared with that required for a monolingual

11
application. This is possible by taking advantage of the key features of
transparent runtime adaption of language-dependent behaviour, and multilingual
application text capability.

However, application design does need to take into account the limitations
imposed by input/output devices in the range of characters they are able to create
and display. However the emergence of UNICODE may well provide a solution to
this limitation as it becomes more widely supported by operating system and
application development software, and by input/output devices themselves.

12

®

Copyright © Oracle Corporation 1995
All Rights Reserved
Printed in the USA

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
USA

Worldwide Inquiries:
Ph 415.506.7000
Fax 415.506.7200

Author: NLS Product Management
Date: November 1995

Oracle is a registered trademark and Developer/2000, Forms, Graphics, Reports, Oracle Toolkit, Oracle7, Translation
Manager and PL/SQL are trademarks of Oracle Corporation.

All other company and product names are used for identification purposes only, and may be trademarks of their
respective owners.

