## 15.1.5.3. Problem-3: Refrigeration System

## **Problem Statement**

The refrigerator show in below figure uses R-134a as the working fluid. The mass flow through each component is 0.1 kg/sec, and the power input to the compressor 5 kW. The heat lost to the compressor is 0.21 kW. Following state data are known, using the state notation (shown as numbers within circles) given in the figure below:

P<sub>1</sub>=100 kPa, T<sub>1</sub>=-20 °C P<sub>2</sub> = 800kPa,  $x_3$ =0.0(Vapor Fraction) T<sub>4</sub>= -25 °C

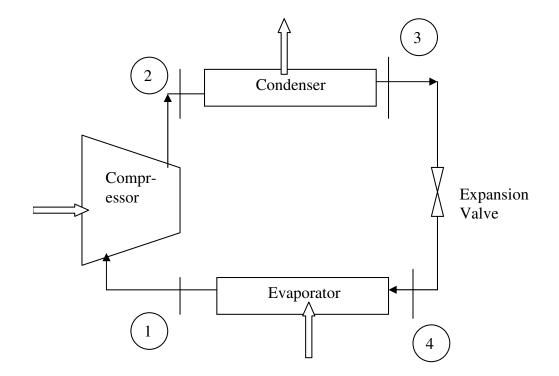



Fig. 15.4. Refrigeration System.

State 1: Cold Vapor

State 2: Warm Vapor

State 3: Warm Liquid

State 4: Cold liquid + vapor

Determine the following:

- 1. Quality at the evaporator inlet.
- 2. Rate of heat transfer to the evaporator.
- 3. Mass flow rate of cold water in the condenser and the evaporator if temperature differences are from 10→15 °C and 85→ 45 °C.
- 4. Pressure and temperature at the all four states.

- 1. Click on the shortcut of the Hysys 3.1.
- 2. Give the command ALT+F or open new case from menu. Following window would be opened.

| 🗼 Simulation Basis Manag | er              |             |           |                     |              | _ 🗆 🗵 |
|--------------------------|-----------------|-------------|-----------|---------------------|--------------|-------|
| Component Lists          |                 |             |           |                     |              |       |
| Master Component List    | ⊻iew            |             |           |                     |              |       |
|                          | Add             |             |           |                     |              |       |
|                          | Delete          | 1           |           |                     |              |       |
|                          | Сору            |             |           |                     |              |       |
|                          |                 |             |           |                     |              |       |
|                          | Import          |             |           |                     |              |       |
|                          | Export          |             |           |                     |              |       |
|                          | <u>R</u> efresh | [           |           |                     |              |       |
|                          |                 |             |           |                     |              |       |
| Components Fluid Pkg     | Bypotheticals   | Oil Manager | Reactions | Component Maps      | UserProperty |       |
|                          |                 |             |           | Enter Simulation En | vironment    |       |

3. Press the Add button and select the component R-134a and water as shown below.

| 🕴 Component List View |                                     |                                                                                            |                                                                                      |                                                                                                     | _ 🗆 ×                                                      |
|-----------------------|-------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Aug component         | Selected Components<br>R134a<br>H2O | <add pure<br="">&lt;-Substitute-&gt;<br/>Remove&gt;<br/>Sort List<br/>⊻iew Component</add> | Components Availa<br><u>Match</u><br>Sim Name<br>Naphthalene<br>Methanol<br>Methanol | able in the Component Library<br>C Full Name / Synonym<br>White_Tar<br>Wood_Alcohol<br>Wood_Naphtha | View Filters<br>C Formula<br>C10H8<br>CH40<br>CH40<br>CH40 |
|                       |                                     |                                                                                            | 🔽 Show Synonyr                                                                       | ns 🗖 Cluster                                                                                        |                                                            |
| Selected Componer     | it by Type                          | 2                                                                                          |                                                                                      |                                                                                                     |                                                            |
| Delete                |                                     | Name Master C                                                                              | omponent List                                                                        |                                                                                                     |                                                            |

 Now close the above window. In the window of simulation basis manager press the tab Fluid Pkgs. In the opened window of Fluid Package select the package of Peng Robinson as shown below.

| Fluid Package: Basis-1                                                                                                                                                    |                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Property Package Selection         NRTL         OLL Electrolyte         PRSV         Sour PR         Sour SRK         SRK         UNIQUAC         Van Laar         Wilson | EOS Enthalpy Method Specification<br>© Eguation of State<br>© Lee-Kesler<br>Peng Robinson Options<br>© HYSYS<br>© Standard<br>Use EOS Density |
| Zudkevitch Joffee     Image: Component List Selection       Component List - 1     Image: View       Set Up     Parameters     Binary Coeffs     StabTest     Phase       | Smooth Liquid Density     Advanced Thermodynamics     COMThermo Regression     Export     Export e Order Rxns Tabular Notes                   |
| Delete Name Basis-1 Property Pkg                                                                                                                                          | Peng Robinson Edit Properties                                                                                                                 |

- 5. Now close the window of Fluid Package: Basis1.
- In the window of simulation basis manager, press the key of Enter the Simulation Environment. The new window named PFD-Case (Main) would be opened along with Case (Main) window.
- 7. From the Case (Main) window select the compressor and double click on it. You would get following window.

| 🕨 K-100                                                                 |                                | _ 🗆 ×   |
|-------------------------------------------------------------------------|--------------------------------|---------|
| Design<br>Connections<br>Parameters<br>Links<br>User Variables<br>Notes | Name K-100                     |         |
| Design Rating                                                           | Worksheet Performance Dynamics |         |
| Delete                                                                  | Requires a feed stream         | Ignored |

- In the window of the K-100, enter the inlet, outlet and energy stream as Cold Vapor, Warm Vapor, and Work respectively.
- 9. Click the worksheet tab and fill the data of cold vapor, warm vapor and work as follows.

| Worksheet     | Name                        | Cold Vapor      | Warm Vapor      | Work            |
|---------------|-----------------------------|-----------------|-----------------|-----------------|
| e re          | Vapour                      | 1.0000          | 1.0000          | <empty></empty> |
| Conditions    | Temperature [C]             | -20.00          | <empty></empty> | <empty></empty> |
| Properties    | Pressure [kPa]              | 100.0           | 800.0           | <empty></empty> |
| Composition   | Molar Flow [kgmole/h]       | <empty></empty> | <empty></empty> | <empty></empty> |
|               | Mass Flow [kg/h]            | 360.0           | 360.0           | <empty></empty> |
| PF Specs      | LiqVol Flow [m3/h]          | <empty></empty> | <empty></empty> | <empty></empty> |
|               | Molar Enthalpy [kJ/kgmole]  | <empty></empty> | <empty></empty> | <empty></empty> |
|               | Molar Entropy [kJ/kgmole-C] | <empty></empty> | <empty></empty> | <empty></empty> |
|               | Heat Flow [kJ/h]            | <empty></empty> | <empty></empty> | 1.724e+004      |
|               |                             |                 |                 |                 |
| Design Rating | Worksheet Performance Dyna  | amics           |                 |                 |

| Worksheet     |                       | Cold Vapor | Warm Vapor |  |
|---------------|-----------------------|------------|------------|--|
|               | R134a                 | 1.0000     | 1.0000     |  |
| Conditions    | H20                   | 0.0000     | 0.0000     |  |
| Properties    |                       |            |            |  |
| Composition   |                       |            |            |  |
| PF Specs      |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
|               |                       |            |            |  |
| Design Rating | Worksheet Performance | Dynamics   |            |  |

10. Click the composition and fill the data as shown below.

- 11. As can be seen, the compressor (K-100) is solved and the outlet warm vapor temperature is found out to be 48.26 °C.
- 12. Select the next component heat exchanger by double clicking on it and fill the data as follows. Here vapors are getting condensed and hence one has to choose heat exchanger only. If we select cooler, then solver would automatically take it for granted that no phase change occurs during cooling, which is not the case in the present problem.

| 🗩 E-100                             |                                                                                       |                                                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Design<br>Connections<br>Parameters | Iube Side Inlet Name E-100<br>Warm Vapor ▼                                            | Shell Side Inlet                                                                   |
| Specs<br>User Variables<br>Notes    | Tube Side Shell Side Shell Side I Shellside Flowsheet Shellside Flowsheet Case (Main) | wisheet                                                                            |
|                                     | Tube Side Outlet<br>Warm Liquid<br>Tube Side Fluid <u>Pkg</u><br>Basis-1              | Shell Si <u>d</u> e Outlet<br>CWout ▼<br>Shell Side Fluid P <u>kg</u><br>Basis-1 ▼ |
| Design Rating                       | Worksheet Performance Dynamics HTFS - TASC                                            |                                                                                    |
| Delete                              | Unknown Delta P                                                                       | 🗖 Ignored                                                                          |

13. Click on the parameter and enter the value of the  $\Delta P$  as 0 kPa. Click on the Worksheet Tab and press the composition. Enter the fraction 1.00 for H<sub>2</sub>O and make the composition of Cw<sub>in</sub> and Cw<sub>out</sub> as 100% H<sub>2</sub>O.

14. Now press the condition and enter the vapor fraction 0 for warm liquid. Then enter the CW<sub>in</sub> and CW<sub>out</sub> temperatures and its vapor fraction. Solver would calculate the mass flow rate as shown in the window below.

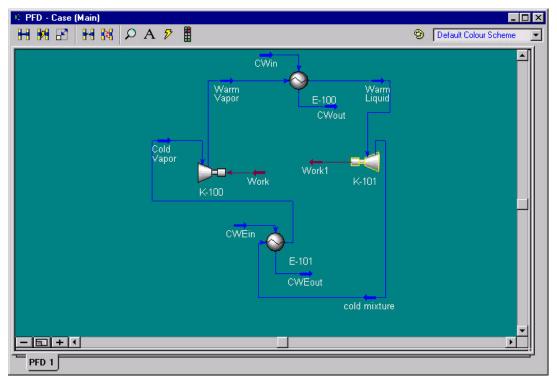
| Vapour<br>Temperature [C]<br>Pressure [kPa]<br>Molar Flow [kgmole/h]<br>Mass Flow [kg/h]<br>Std Ideal Liq Vol Flow [m3/h]<br>Molar Enthalpy [kJ/kgmole]<br>Molar Entropy [kJ/kgmole-C]<br>Heat Flow [kJ/h] | Warm Vapor<br>1.0000<br>48.26<br>800.0<br>3.528<br>360.0<br>0.2899<br>-8.948e+005<br>187.0<br>-3.157e+006 | Warm Liquid<br>0,0000<br>31.31<br>800.0<br>3.528<br>360.0<br>0.2899<br>-9.144e+005<br>122.9<br>-3.226e+006 | 0.0000<br>10.00<br>414.2<br>96.02<br>9797<br>7.890<br>-9.175e+005<br>112.2<br>-8.810e+007 | 0.0000<br>15.00<br>488.0<br>96.02<br>9797<br>7.890<br>-3.168e+005<br>114.7<br>-8.803e+007 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Pressure (kPa)<br>Molar Flow (kgmole/h)<br>Mass Flow (kg/h)<br>Std Ideal Liq Vol Flow (m3/h)<br>Molar Enthalpy (kJ/kgmole)<br>Molar Entropy (kJ/kgmole-C)                                                  | 800.0<br>3.528<br>360.0<br>0.2899<br>-8.948e+005<br>187.0                                                 | 800.0<br>3.528<br>360.0<br>0.2899<br>-9.144e+005<br>122.9                                                  | 414.2<br>96.02<br>9797<br>7.890<br>-9.175e+005<br>112.2                                   | 488.0<br>96.02<br>9797<br>7.890<br>-9.168e+005<br>114.7                                   |
| Molar Flow (kgmole/h)<br>Mass Flow (kg/h)<br>Std Ideal Liq Vol Flow (m3/h)<br>Molar Enthalpy (kJ/kgmole)<br>Molar Entropy (kJ/kgmole-C)                                                                    | 3.528<br>360.0<br>0.2899<br>-8.948e+005<br>187.0                                                          | 3.528<br>360.0<br>0.2899<br>-9.144e+005<br>122.9                                                           | 96.02<br>9797<br>7.890<br>-9.175e+005<br>112.2                                            | 96.02<br>9797<br>7.890<br>-9.168e+005<br>114.7                                            |
| Mass Flow (kg/h)<br>Std Ideal Liq Vol Flow (m3/h)<br>Molar Enthalpy (kJ/kgmole)<br>Molar Entropy (kJ/kgmole-C)                                                                                             | 360.0<br>0.2899<br>-8.948e+005<br>187.0                                                                   | 360.0<br>0.2899<br>-9.144e+005<br>122.9                                                                    | 9797<br>7.890<br>-9.175e+005<br>112.2                                                     | 9797<br>7.890<br>-9.168e+005<br>114.7                                                     |
| Std Ideal Liq Vol Flow (m3/h)<br>Molar Enthalpy (kJ/kgmole)<br>Molar Entropy (kJ/kgmole-C)                                                                                                                 | 0.2899<br>-8.948e+005<br>187.0                                                                            | 0.2899<br>-9.144e+005<br>122.9                                                                             | 7.890<br>-9.175e+005<br>112.2                                                             | 7.890<br>-9.168e+005<br>114.7                                                             |
| Molar Enthalpy [kJ/kgmole]<br>Molar Entropy [kJ/kgmole-C]                                                                                                                                                  | -8.948e+005<br>187.0                                                                                      | -9.144e+005<br>122.9                                                                                       | -9.175e+005<br>112.2                                                                      | -9.168e+005<br>114.7                                                                      |
| Molar Entropy [kJ/kgmole-C]                                                                                                                                                                                | 187.0                                                                                                     | 122.9                                                                                                      | 112.2                                                                                     | 114.7                                                                                     |
|                                                                                                                                                                                                            |                                                                                                           |                                                                                                            |                                                                                           |                                                                                           |
| Heat Flow [kJ/h]                                                                                                                                                                                           | -3.157e+006                                                                                               | -3.226e+006                                                                                                | -8.810e+007                                                                               | -8.803e+007                                                                               |
|                                                                                                                                                                                                            |                                                                                                           |                                                                                                            |                                                                                           |                                                                                           |
|                                                                                                                                                                                                            |                                                                                                           | 1                                                                                                          | I                                                                                         |                                                                                           |
| Vorksheet Performance Dyna                                                                                                                                                                                 | amics HTFS - TASC                                                                                         |                                                                                                            |                                                                                           |                                                                                           |
|                                                                                                                                                                                                            | f <b>orksheet</b> Performance Dyn                                                                         | forksheet Performance Dynamics HTFS - TASC                                                                 |                                                                                           |                                                                                           |

## 15. Condenser has been solved and the main window of PFD-case would look as follows:

| © PFD - Case (Main)                                       |                           |
|-----------------------------------------------------------|---------------------------|
| 田園習 田園 PA2 📲                                              | 🧐 Default Colour Scheme 💌 |
| CWin<br>E-100<br>Cold<br>Vapor<br>Vapor<br>Vapor<br>K-100 | ▲<br>Warm<br>Liquid       |
|                                                           | <u> </u>                  |
| PFD 1                                                     |                           |

16. Now select the expander by double clicking on it. And enter the stream names as shown below. Actually we require expansion valve (Joule-Thompson) in this problem, but this is not included as one of the symbols in the Case (Main) window of this software (HYSYS). However, it is possible to take care of such problems in this software. Though all the components required for various problems are not directly available, with some approximations and assumptions, equivalent components could be found. In the present problem, the expander with no work and no heat loss could be approximated to Joule-Thompson expansion valve, which is available in the Case (Main) list.

| <ul> <li>K-101</li> </ul>             |                                 | _ 🗆 ×   |
|---------------------------------------|---------------------------------|---------|
| Design                                | <u>N</u> ame K-101              |         |
| Connections                           | Inlet<br>Warm Liquid            |         |
| Parameters<br>Links<br>User Variables | Fluid Package                   |         |
| Notes                                 |                                 |         |
|                                       | O <u>u</u> tlet<br>cold mixture |         |
| Design Rating                         | Worksheet Performance Dynamics  |         |
| Delete                                | Liquid in inlet stream          | Ignored |


17. Press the worksheet tab and enter the data of cold mixture temperature and zero work. One can see that rest all the quantities have been solved. Still warning is there for liquid inlet in expander but we are using expander as a Joule Thompson valve with no work and no heat transfer. 18. Select the heat exchanger and double click on it, which would work as evaporator and fill the stream names as following.

| 🛡 E-101                             |                                                                                                           |                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
| Design<br>Connections<br>Parameters | Iube Side Inlet     Name       Cold mixture                                                               | Shell Side Inlet  |
| Specs<br>User Variables<br>Notes    | Tube Side     Shell Side       Tubeside Flowsheet     Shellside Flowshe       Case (Main)     Case (Main) |                   |
|                                     | Tube Side Fluid Pkg                                                                                       | Shell Sige Outlet |
|                                     | Basis-1                                                                                                   | Basis-1           |
| Design Rating                       | Worksheet Performance Dynamics HTFS - TASC                                                                |                   |
| Delete                              | Unknown Delta P                                                                                           | Ignored           |

19. Press the worksheet tab and enter the data of coldwater inlet and outlet temperatures and give its composition. The problem is solved and the results are displayed.

| Worksheet   | Name                          | cold mixture | Cold Vapor  | CWEin       | CWEout      |
|-------------|-------------------------------|--------------|-------------|-------------|-------------|
|             | Vapour                        | 0.3555       | 1.0000      | 0.0000      | 0.0000      |
| Conditions  | Temperature [C]               | -25.00       | -20.00      | 85.00       | 45.00       |
| Properties  | Pressure [kPa]                | 106.8        | 100.0       | 57.81       | 9.494       |
|             | Molar Flow [kgmole/h]         | 3.528        | 3.528       | 16.56       | 16.56       |
| Composition | Mass Flow [kg/h]              | 360.0        | 360.0       | 298.4       | 298.4       |
| PF Specs    | Std Ideal Lig Vol Flow [m3/h] | 0.2899       | 0.2899      | 0.2990      | 0.2990      |
|             | Molar Enthalpy [kJ/kgmole]    | -9.144e+005  | -8.997e+005 | -2.807e+005 | -2.839e+005 |
|             | Molar Entropy [kJ/kgmole-C]   | 126.3        | 186.0       | 68.00       | 58.75       |
|             | Heat Flow [kJ/h]              | -3.226e+006  | -3.174e+006 | -4.649e+006 | -4.701e+006 |
|             |                               |              |             |             |             |
|             |                               |              |             |             |             |
| 100 C       |                               |              |             |             |             |

20. Finally the PFD case window would be looks as following.

