
All matter exists in three states: gas, liquid and solid. A
molecular level representation of gaseous, liquid and
solid states is shown in Fig. 10.1

A gas consists of molecules separated wide apart in empty
space. The molecules are free to move about throughout the
container.

A liquid has molecules touching each other. However, the
intermolecular space, permit the movement of molecules
throughout the liquid.

A solid has molecules, atoms or ions arranged in a certain
order in fixed positions in the crystal lattice. The particles in a
solid are not free to move about but vibrate in their fixed positions.

Of the three states of matter, the gaseous state is the one
most studied and best understood. We shall consider it first.

GENERAL CHARACTERISTICS OF GASES
1. Expansibility

Gases have limitless expansibility. They expand to fill the
entire vessel they are placed in.

2. Compressibility
Gases are easily compressed by application of pressure to a

movable piston fitted in the container.
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3. Diffusibility
Gases can diffuse rapidly through each other to form a homogeneous mixture.

4. Pressure
Gases exert pressure on the walls of the container in all directions.

5. Effect of Heat
When a gas, confined in a vessel is heated, its pressure increases. Upon heating in a vessel

fitted with a piston, volume of the gas increases.
The above properties of gases can be easily explained by the Kinetic Molecular Theory which

will be considered later in the chapter.

PARAMETERS OF A GAS
A gas sample can be described in terms of four parameters (measurable properties):

(1) the volume, V of the gas
(2) its pressure, P
(3) its temperature, T
(4) the number of moles, n, of gas in the container

Molecular representation of the gaseous, liquid and solid states.
Figure 10.1
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The Volume, V
The volume of the container is the volume of the gas sample. It is usually given in litre (l or L) or

millilitres (ml or mL).
1 1itre(l) = 1000 ml and 1 ml = 10–3 l

One millilitre is practically equal to one cubic centimetre (cc). Actually
1 litre(l) = 1000.028 cc

The SI unit for volume is cubic metre (m3) and the smaller unit is decimeter3 (dm3).
The pressure of a gas is defined as the force exerted by the impacts of its molecules per unit

surface area in contact. The pressure of a gas sample can be measured with the help of a mercury
manometer (Fig. 10.2) Similarly, the atmospheric pressure can be determined with a mercury barometer
(Fig. 10.3).

The pressure of air that can support 760 mm Hg column at sea level, is called one atmosphere
(1 atm). The unit of pressure, millimetre of mercury, is also called torr.

Thus,
1 atm = 760 mm Hg = 760 torr

The SI unit of pressure is the Pascal (Pa). The relation between atmosphere, torr and pascal is :
1 atm = 760 torr = 1.013 × 105 Pa

The unit of pressure ‘Pascal” is not in common use.

Temperature, T
The temperature of a gas may be measured in Centigrade degrees (°C) or Celsius degrees. The

SI unit of temperature is Kelvin (K) or Absolute degree. The centigrade degrees can be converted to
kelvins by using the equation.

K = °C + 273
The Kelvin temperature (or absolute temperature) is always used in calculations of other

parameters of gases. Remember that the degree sign (°) is not used with K.

The gas container is connected with a U-tube
containing Hg having vacuum in the closed end.
The difference in Hg height in two limbs gives the
gas pressure in mm Hg.

A long tube (80 × 1 cm) filled with Hg inverted into
dish containing Hg. The atmospheric pressure is
equal to 760 mm Hg column supported by it at sea
level.

Vacuum

h mm
1 Atm

pressure

Pressure =  mm Hgh

A mercury manometer.
Figure 10.2

A mercury barometer.
Figure 10.3

GAS

760 mm Hg

Vacuum
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The Moles of a Gas Sample, n

The number of moles, n, of a sample of a gas in a container can be found by dividing the mass,
m, of the sample by the molar mass, M (molecular mass).

mass of gas sample ( )moles of gas ( ) =
molecular mass of gas ( )

mn
M

THE GAS LAWS
The volume of a given sample of gas depends on the temperature and pressure applied to it. Any

change in temperature or pressure will affect the volume of the gas. As results of experimental
studies from 17th to 19th century, scientists derived the relationships among the pressure, temperature
and volume of a given mass of gas. These relationships, which describe the general behaviour of
gases, are called the gas laws.

BOYLE’S LAW
In 1660 Robert Boyle found out experimentally the change in volume of a given sample of gas

with pressure at room temperature. From his observations he formulated a generalisation known as
Boyle’s Law. It states that : at constant temperature, the volume of a fixed mass of gas is inversely
proportional to its pressure. If the pressure is doubled, the volume is halved.

  
Boyle’s law states that at constant temperature, the volume of a fixed mass 
of gas is inversely proportional to its pressure. If the pressure is doubled, 
the volume is halved.

Figure 10.4

The Boyle’s Law may be expressed mathematically as
V ∝ 1/P (T, n are constant)

or V = k × 1/P
where k is a proportionality constant.

PV = k
If P1, V1 are the initial pressure and volume of a given sample of gas and P2, V2 the changed
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pressure and volume, we can write
P1 V1 = k = P2 V2

or P1 V1 = P2 V2
This relationship is useful for the determination of the volume of a gas at any pressure, if its

volume at any other pressure is known.

Graphical representation of Boyle's law. ( ) a plot of  versus  for a gas sample
is hyperbola; ( ) a plot of  versus 1/ is a straight line.

a V P
b V P 

Figure 10.5
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The Boyle’s law can be demonstrated by adding liquid mercury to the open end of a J-tube. As
the pressure is increased by addition of mercury, the volume of the sample of trapped gas decreases.
Gas pressure and volume are inversely related; one increases when the other decreases.

 Demonstration of Boyle’s law.
Figure 10.6

CHARLES’S LAW
In 1787 Jacques Charles investigated the effect of change of temperature on the volume of a fixed

amount of gas at constant pressure. He established a generalisation which is called the Charles’
Law. It states that : at constant pressure, the volume of a fixed mass of gas is directly proportional
to the Kelvin temperature of absolute temperature. If the absolute temperature is doubled, the
volume is doubled.

Charles’ Law may be expressed mathematically as
V ∝ T (P, n are constant)

or V = k T
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where k is a constant.

or                      
V k
T

=

If V1, T1 are the initial volume and temperature of a given mass of gas at constant pressure and
V2, T2 be the new values, we can write

1 2

1 2

V Vk
T T

= =

or
1 2

1 2

V V
T T

=

Using this expression, the new volume V2, can be found from the experimental values of V1, T1
and T2.

Charles law state that at constant pressure, the volume of a fixed mass 
of gas is directly proportional to the absolute temperature.

Figure 10.7
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THE COMBINED GAS LAW
Boyle’s Law and Charles’ Law can be combined into a single relationship called the Combined

Gas Law.

Boyle’s Law
1V
P

∝ (T, n constant)

Charles’ Law V ∝ T (P, n constant)

Therefore,
TV
P

∝ (n constant)

The combined law can be stated as : for a fixed mass of gas, the volume is directly proportional
to kelvin temperature and inversely proportional to the pressure.

If k be the proportionality constant,

kTV
P

= (n constant)

or
PV k
T

= (n constant)

If the pressure, volume and temperature of a gas be changed from P1, V1 and T1 to P2, T2 and V2,
then

1 1

1

P V
k

T
= 2 2

2

P V k
T

=

or
1 1 2 2

1 2

P V P V
T T

=

This is the form of combined law for two sets of conditions. It can be used to solve problems
involving a change in the three variables P, V and T for a fixed mass of gas.

SOLVED PROBLEM. 25.8 litre of a gas has a pressure of 690 torr and a temperature of 17°C. What
will be the volume if the pressure is changed to 1.85 atm and the temperature to 345 K.

SOLUTION
Initial conditions : Final Conditions :

V1 = 25.8 litres V2 = ?

1
690 0.908 atm
760

P = = P2 = 1.85 atm
T1 = 17 + 273 = 290 K T2 = 345 K

Substituting values in the equation
1 1 2 2

1 2

P V P V
T T

=

21.85 atm0.908 atm 25.8 litre
290K 345K

V×× =

Hence, 2
0.908 25.8 345

290 1.85
V × ×= =

×
15.1 litres

GAY LUSSAC’S LAW
In 1802 Joseph Gay Lussac as a result of his experiments established a general relation between

the pressure and temperature of a gas. This is known as Gay Lussac’s Law or Pressure-Temperature
Law. It states that : at constant volume, the pressure of a fixed mass of gas is directly proportional
to the Kelvin temperature or absolute temperature.
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The law may be expressed mathematically as
P ∝ T (Volume, n are constant)

or P = kT

or
P k
T

=

For different conditions of pressure and temperature
1 2

1 2

P Pk
T T

= =

or
1 2

1 2

P P
T T

=

Knowing P1, T1, and T2, P2 can be calculated.

AVOGADRO’S LAW
Let us take a balloon containing a certain mass of gas. If we add to it more mass of gas, holding

the temperature (T) and pressure (P) constant, the volume of gas (V) will increase. It was found
experimentally that the amount of gas in moles is proportional to the volume. That is,

V ∝ n (T and P constant)
or V = A n
where A is constant of proportionality.

or
V A
n

=

For any two gases with volumes V1, V2 and moles n1, n2 at constant T and P,
1 2

1 2

V VA
n n

= =

If V1 = V2,  n1 = n2
Thus for equal volumes of the two gases at fixed T and P, number of moles is also equal. This is

the basis of Avogadro’s Law which may be stated as : equal volumes of gases at the same temperature
and pressure contain equal number of moles or molecules. If the molar amount is doubled, the
volume is doubled.

Avogadro’s law states that under equal conditions of temperature and pressure, 
equal volumes of gases contain an equal number of molecules. 

Figure 10.9
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The Molar Gas Volume.  It follows as a corollary of Avogadro’s Law that one mole of any gas at
a given temperature (T) and pressure (P) has the same fixed volume. It is called the molar gas volume
or molar volume. In order to compare the molar volumes of gases, chemists use a fixed reference
temperature and pressure. This is called standard temperature and pressure (abbreviated, STP). The
standard temperature used is 273 K (0°C) and the standard pressure is 1 atm (760 mm Hg). At STP we
find experimentally that one mole of any gas occupies a volume of 22.4 litres. To put it in the form of
an equation, we have

1 mole of a gas at STP = 22.4 litres

THE IDEAL GAS EQUATION
We have studied three simple gas laws :

Boyle’s Law
1V
P

∝ (T, n constant)

Charles’ Law V ∝ T (n, P constant)
Avogadro’s Law V ∝ n (P, T constant)

These three laws can be combined into a single more general gas law :
nTV
P

∝ ...(1)

This is called the Universal Gas Law. It is also called Ideal Gas Law as it applies to all gases which
exhibit ideal behaviour i.e., obey the gas laws perfectly. The ideal gas law may be stated as : the
volume of a given amount of gas is directly proportional to the number of moles of gas, directly
proportional to the temperature, and inversely proportional to the pressure.

Introducing the proportionality constant R in the expression (1) we can write
nTV R
P

=

or P V = nRT ...(2)
The equation (2) is called the Ideal-gas Equation or simply the general Gas Equation. The

constant R is called the Gas constant. The ideal gas equation holds fairly accurately for all gases at
low pressures. For one mole (n = 1) of a gas, the ideal-gas equation is reduced to

PV = RT ...(3)
The ideal-gas equation is called an Equation of State for a gas because it contains all the

variables (T, P, V and n) which describe completely the condition or state of any gas sample. If we
know the three of these variables, it is enough to specify the system completely because the fourth
variable can be calculated from the ideal-gas equation.

The Numerical Value of R. From the ideal-gas equation, we can write
PVR
nT

= ...(1)

We know that one mole of any gas at STP occupies a volume of 22.4 litres. Substituting the
values in the expression (1), we have

1 atm 22.4 litres
1 mole 273 K

R ×=
×

= 0.0821 atm. litre mol–1 K–1

It may be noted that the unit for R is complex; it is a composite of all the units used in calculating
the constant.
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If the pressure is written as force per unit area and volume as area times length, from (1)
(force/area) area length force lengthR

n T n T
× × ×= =
× ×

work
n T

=

Hence R can be expressed in units of work or energy per degree per mole. The actual value of R
depends on the units of P and V used in calculating it. The more important values of R are listed in
Table 10.1.

TABLE 10.1. VALUE OF R IN DIFFERENT UNITS

0.0821 litre-atm K–1 mol–1 8.314 × 107 erg K–1 mol–1

82.1 ml-atm K–1 mol–1 8.314 Joule K–1 mol–1

62.3 litre-mm Hg K–1 mol–1 1.987 cal K–1 mol–1

DALTON’S LAW OF PARTIAL PRESSURES
John Dalton visualised that in a mixture of gases, each component gas exerted a pressure as if it

were alone in the container. The individual  pressure of each gas in the mixture is defined as its
Partial Pressure. Based on experimental evidence, in 1807, Dalton enunciated what is commonly
known as the Dalton’s Law of Partial Pressures. It states that : the total pressure of a mixture of
gases is equal to the sum of the partial pressures of all the gases present (Fig. 10.10).

Dalton’s law of partial pressures states that the total pressure of a mixture of gases 
is equal to the sum of the partial pressures exerted by each gas. The pressure of the 
mixture of O  and N  (Tanks) is the sum of the pressures in O  and N  tanks.2 2 2 2

Figure 10.10
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Mathematically the law can be expressed as Ptotal = P1 + P2 + P3 ... (V and T are constant) where
P1, P2 and P3 are partial pressures of the three gases 1, 2 and 3; and so on.

Dalton’s Law of Partial Pressures follows by application of the ideal-gas equation PV = n RT
separately to each gas of the mixture. Thus we can write the partial pressures P1, P2 and P3 of the
three gases

1 1
RTP n
V

⎛ ⎞= ⎜ ⎟⎝ ⎠ 2 2
RTP n
V

⎛ ⎞= ⎜ ⎟⎝ ⎠ 3 3
RTP n
V

⎛ ⎞= ⎜ ⎟⎝ ⎠
where n1, n2 and n3 are moles of gases 1, 2 and 3. The total pressure, Pt, of the mixture is

1 2 3( )t
RTP n n n
V

= + +

or t t
RTP n
V

=

In the words, the total pressure of the mixture is determined by the total number of moles present
whether of just one gas or a mixture of gases.

SOLVED PROBLEM 1. What pressure is exerted by a mixture of 2.00 g of H2 and 8.00 g of N2 at 273
K in a 10 litre vessel ?

SOLUTION
Applying the ideal-gas equation

RTP n
V

=

we can find the partial pressure of H2 and N2

Moles of H2 =
2.00 0.990
2.02

=

Moles of N2 =
8.00 0.286
28

=

∴ 2

–1 –10.990 mole 0.0821 atm. litre K mol 273 K
10.0 litreHP × ×=

= 2.20 atm.

and 2

–1 –10.286 mole 0.0821 atm. litre K mol 273 K
10.0 litreNP × ×=

= 0.64 atm

Thus 2 2total H NP P P= +

= 2.20 atm + 0.64 atm
= 2.84 atm

Thus the pressure exerted by the mixture of H2 and N2 is 2.84 atm.

SOLVED PROBLEM 2. A sample of oxygen is collected by the downward displacement of water
from an inverted bottle. The water level inside the bottle is equalised with that in the trough.
Barometeric pressure is found to be 757 mm Hg, and the temperature of water is 23.0°C. What is the
partial pressure of O2 ? Vapour pressure of H2O at 23°C = 19.8 mm Hg.

SOLUTION
The total pressure inside the bottle is
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2 2total O H OP P P= +
Since the water levels inside and outside the bottle were equalised, the total gas pressure

inside the bottles must be equal to Patm.
∴ 2 2total atm O H OP P P P= = +
But Patm is given as 757 mm Hg

∴ 2 2
757 mm Hg –O H OP P=

= 757 mm Hg – 19.8 mm Hg
= 737.2 mm Hg

Thus the partial pressure of O2 is 737.2 mm Hg.

GRAHAM’S LAW OF DIFFUSION
When two gases are placed in contact, they mix spontaneously. This is due to the movement of

molecules of one gas into the other gas. This process of mixing of gases by random motion of the
molecules is called Diffusion. Thomas Graham observed that molecules with smaller masses diffused
faster than heavy molecules.

A light molecule diffuses quicker than a heavy molecule.
Figure 10.11

In 1829 Graham formulated what is now known as Graham’s Law of Diffusion. It states that :
under the same conditions of temperature and pressure, the rates of diffusion of different gases are
inversely proportional to the square roots of their molecular masses.

Mathematically the law can be expressed as

1 2

2 1

r M
r M

=

where r1 and r2 are the rates of diffusion of gases 1 and 2, while M1 and M2 are their molecular masses.
When a gas escapes through a pin-hole into a region of low pressure of vacuum, the process is

called Effusion. The rate of effusion of a gas also depends, on the molecular mass of the gas.

( ) Diffusion is mixing of gas molecules by random motion under conditions
where molecular collisions occur. ( ) Effusion is escape of a gas through a 
pinhole without molecular collisions.

a
b

Figure 10.12

(a)  Diffusion (b)  Effusion
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Dalton’s law when applied to effusion of a gas is called the Dalton’s Law of Effusion. It may be
expressed mathematically as

2

1

Effusion rate of Gas 1
Effusion rate of Gas 2

M
M

= (P, T constant)

The determination of rate of effusion is much easier compared to the rate of diffusion. Therefore,
Dalton’s law of effusion is often used to find the molecular mass of a given gas.

SOLVED PROBLEM 1. If a gas diffuses at a rate of one-half as fast as O2, find the molecular mass
of the gas.

SOLUTION
Applying Graham’s Law of Diffusion,

1 2

2 1

r M
r M

=

1
2

1

32
1 M

=

Squaring both sides of the equation.
2

1 1

1 32 1 32or
2 4M M

⎛ ⎞ = =⎜ ⎟⎝ ⎠
Hence, M1 = 128
Thus the molecular mass of the unknown gas is 128.

SOLVED PROBLEM 2. 50 ml of gas A effuse through a pin-hole in 146 seconds. The same volume
of CO2 under identical conditions effuses in 115 seconds. Calculate the molecular mass of A.

SOLUTION

2

2Effusion rate of CO
Effusion rate of

A

CO

M
A M

=

50 /115
50 /146 44

AM=

or 2(1.27)
44

AM=

Hence MA = 71
∴ Molecular mass of A is 71.

KINETIC MOLECULAR THEORY OF GASES
Maxwell and Boltzmann (1859) developed a mathematical theory to explain the behaviour of

gases and the gas laws. It is based on the fundamental concept that a gas is made of a large number
of molecules in perpetual motion. Hence the theory is called the kinetic molecular theory or simply
the kinetic theory of gases (The word kinetic implies motion). The kinetic theory makes the following
assumptions.
Assumptions of the Kinetic Molecular Theory

(1) A gas consists of extremely small discrete particles called molecules dispersed throughout
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the container. The actual volume of the molecules is negligible compared to the total volume
of the gas. The molecules of a given gas are identical and have the same mass (m).

Actual volume
of gas molecules

A gas is made of molecules dispersed
in space in the container.

Figure 10.13
Actual volume of the gas 
molecules is negligible.

Figure 10.14

Collision
with wall

Molecular
collision

Gas molecules are in constant 
motion in all possible directions.

Figure 10.15
Molecules move in straight line and
change direction on collision with 
another molecule or wall of container.

Figure 10.16

(2) Gas molecules are in constant random motion with high velocities. They move in straight
lines with uniform velocity and change direction on collision with other molecules or the
walls of the container. Pool table analogy is shown in Fig.10.17.

Gas molecules can be compared to billiard balls in random motion,
bouncing off each other and off the sides of the pool table.

Figure 10.17
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(3) The distance between the molecules are very large and it is assumed that van der Waals
attractive forces between them do not exist. Thus the gas molecules can move freely,
independent of each other.

(4) All collisions are perfectly elastic. Hence, there is no loss of the kinetic energy of a molecule
during a collision.

(5) The pressure of a gas is caused by the hits recorded by molecules on the walls of the
container.

(6) The average kinetic energy 21
2

mv⎛ ⎞
⎜ ⎟⎝ ⎠  of the gas molecules is directly proportional to absolute

temperature (Kelvin temperature). This implies that the average kinetic energy of molecules
is the same at a given temperature.

How Does an Ideal Gas Differ from Real Gases ?
A gas that confirms to the assumptions of the kinetic theory of gases is called an ideal gas. It

obeys the basic laws strictly under all conditions of temperature and pressure.
The real gases as hydrogen, oxygen, nitrogen etc., are opposed to the assumptions (1), (2) and

(3) stated above. Thus :
(a) The actual volume of molecules in an ideal gas is negligible, while in a real gas it is

appreciable.
(b) There are no attractive forces between molecules in an ideal gas while these exist in a real

gas.
(c) Molecular collisions in an ideal gas are perfectly elastic while it is not so in a real gas.

For the reasons listed above, real gases obey the gas laws under moderate conditions of
temperature and pressure. At very low temperature and very high pressure, the clauses (1), (2) and
(3) of kinetic theory do not hold. Therefore, under these conditions the real gases show considerable
deviations from the ideal gas behaviour.

DERIVATION OF KINETIC GAS EQUATION
Starting from the postulates of the kinetic molecular theory of gases we can develop an important

equation. This equation expresses PV of a gas in terms of the number of molecules, molecular mass
and molecular velocity. This equation which we shall name as the Kinetic Gas Equation may be
derived by the following clauses.

Let us consider a certain mass of gas enclosed in a cubic box (Fig. 10.18) at a fixed temperature.
Suppose that :

the length of each side of the box = l cm
the total number of gas molecules = n
the mass of one molecule = m
the velocity of a molecule = v

The kinetic gas equation may be derived by the following steps :
(1) Resolution of  Velocity v of a Single Molecule Along X, Y and Z Axes

According to the kinetic theory, a molecule of a gas can move with velocity v in any direction.
Velocity is a vector quantity and can be resolved into the components vx, vy, vz along the X, Y and Z
axes. These components are related to the velocity v by the following expression.

2 2 2 2
x y zv v v v= + +

Now we can consider the motion of a single molecule moving with the component velocities
independently in each direction.
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(2) The Number of Collisions Per Second on Face A Due to One Molecule
Consider a molecule moving in OX direction between opposite faces A and B. It will strike the

face A with velocity vx and rebound with velocity – vx. To hit the same face again, the molecule must
travel l cm to collide with the opposite face B and then again l cm to return to face A. Therefore,

the time between two collisions of face 2
v

x

lA
v

=  seconds

the number of collisions per second on face 
2

xvA
l

=

X-AxisY-
Axis

B
Vx

Vx A

1 cm

Resolution of velocity v into 
components ,  and .V V  Vx y z

Figure 10.18
Cubic box showing molecular 
collisions along  axis.X

Figure 10.19

Z-
A

xi
s

Vz

V

Vx

Vy

(3) The Total Change of Momentum on All Faces of the Box Due to One Molecule Only
Each impact of the molecule on the face A causes a change of momentum (mass × velocity) :

the momentum before the impact = mvx

the momentum after the impact = m (– vx)
∴ the change of momentum = mvx – (– mvx)

= 2 mvx

But the number of collisions per second on face A due to one molecule 
2

xv
l

=

Therefore, the total change of momentum per second on face A caused by one molecule
2

2
2

x x
x

v m v
m v

l l
⎛ ⎞= × =⎜ ⎟⎝ ⎠

The change of momentum on both the opposite faces A and B along X-axis would be double i.e.,
22 /xmv l similarly, the change of momentum along Y-axis and Z-axis will be 22 /ymv l and 22 /zmv l

respectively. Hence, the overall change of momentum per second on all faces of the box will be
22 222 2yx zmvmv mv

l l l
= + +

2 2 22 ( )x y z
m v v v
l

= + +

22m v
l

= 2 2 2 2( )x y zv v v v= + + 
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(4)   Total Change of Momentum Due to Impacts of All the Molecules on All Faces of the Box
Suppose there are N molecules in the box each of which is moving with a different velocity v1, v2,

v3, etc. The total change of momentum due to impacts of all the molecules on all faces of the box

2 2 2
1 2 3

2 ( ...)m v v v
l

= + + +

Multiplying and dividing by n, we have
2 2 2
1 2 3 ...2 v v vmN

l n
⎛ ⎞+ + +

= ⎜ ⎟
⎝ ⎠

22mN u
l

=

where u2 is the mean square velocity.
(5)   Calculation of Pressure from Change of Momentum; Derivation of Kinetic Gas Equation

Since force may be defined as the change in momentum per second, we can write
22Force mN u

l
=

But
Total ForcePressure =
Total Area

2 2

2 3
2 1 1

36
mNu mNuP

l l l
= × =

Since l3 is the volume of the cube, V, we have
21

3
mNuP

V
=

or 21
3

P V mNu=

This is the fundamental equation of the kinetic molecular theory of gases. It is called the Kinetic
Gas equation. This equation although derived for a cubical vessel, is equally valid for a vessel of any
shape. The available volume in the vessel could well be considered as made up of a large number of
infinitesimally small cubes for each of which the equation holds.

Significance of the term u. As stated in clause (4) u2 is the mean of the squares of the individual
velocities of all the N molecules of the gas. But 2 .u u=  Therefore u is called the Root Mean Square
(or RMS) Velocity.

KINETIC GAS EQUATION IN TERMS OF KINETIC ENERGY
If N be the number of molecules in a given mass of gas,

21
3

P V mNu= (Kinetic Gas equation)

22 1
3 2

N mu= ×

2
3

N e= ×

where e is the average kinetic energy of a single molecule.

∴
2 2
3 3

PV Ne E= =
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or
2
3

PV E= ...(1)

where E is the total kinetic energy of all the N molecules. The expression (1) may be called the kinetic
gas equation in terms of kinetic energy.

We know that the General ideal gas equation is
PV = nRT ...(2)

From (1) and (2)
2
3

E nRT= ...(3)

For one mole of gas, the kinetic energy of N molecules is,
3

2
RTE = ...(4)

Since the number of gas molecules in one mole of gas in N0 (Avogadro number),

0 0

3
2

E RTe
N N

= =

or
0

3
2
RTe
N

= ...(5)

substituting the values of R, T, N0, in the equation (5), the average kinetic energy of a gas molecule
can be calculated.

SOLVED PROBLEM 1. Calculate the average kinetic energy of a hydrogen molecule at 0°C.

SOLUTION

0

3
2

RTe
N

=

Here R = 8.314 × 107 erg K–1 mol–1

T = 273 K ; N0 = 6.02 × 1023

∴
7

23
3 8.314 10 273
2 6.02 10

e × ×= × =
×

–145.66 10 erg×

Thus the average kinetic energy of H2 at 0°C is 5.66 × 10–14 erg

SOLVED PROBLEM 2. Calculate the kinetic energy of two moles of N2 at 27°C. (R = 8.314 JK–1

mol–1)

SOLUTION

We know
3
2

E nRT=

Here, T = 27 + 273 = 300 K ; n = 2; R = 8.314 JK–1 mol–1

Substituting these values, we have
3
2

E =  × 2 × 8.314 × 300 = 7482.6 J

Therefore the kinetic energy of two moles of N2 is 7482.6 J.
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DEDUCTION OF GAS LAWS FROM THE KINETIC GAS EQUATION
(a)    Boyle’s Law

According to the Kinetic Theory, there is a direct proportionality between absolute temperature
and average kinetic energy of the molecules i.e.,

21
2

mNu T∝

or 21
2

mNu kT=

or 23 1
2 3

mNu kT× =

or 21 2
3 3

mNu kT=

Substituting the above value in the kinetic gas equation 21 ,
3

PV mNu= we have

2
3

PV kT=

The product PV, therefore, will have a constant value at a constant temperature. This is Boyle’s
Law.
(b)   Charles’ Law

As derived above,
2
3

PV kT=

or
2
3

kV T
P

= ×

At constant pressure,

V = k' T where 
2
3

kk
P

⎛ ⎞′ = ×⎜ ⎟⎝ ⎠
or V ∝ T
That is, at constant pressure, volume of a gas is proportional to Kelvin temperature and this is

Charles’ Law.
(c)    Avogadro’s Law

If equal volume of two gases be considered at the same pressure,

2
1 1 1

1
3

PV m N u= ...Kinetic equation as applied to one gas

2
2 2 2

1
3

PV m N u= ...Kinetic equation as applied to 2nd gas

∴ 2 2
1 1 1 2 2 2

1 1
3 3

m N u m N u= ...(1)

When the temperature (T) of both the gases is the same, their mean kinetic energy per molecule
will also be the same.

i.e., 2 2
1 1 2 2

1 1
3 3

m u m u= ...(2)

Dividing (1) by (2), we have
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1
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N1 = N2
Or, under the same conditions of temperature and pressure, equal volumes of the two gases

contain the same number of molecules. This is Avogadro’s Law.
(d)   Graham’s Law of Diffusion

If m1 and m2 are the masses and u1 and u2 the velocities of the molecules of gases 1 and 2, then
at the same pressure and volume

2 2
1 1 1 2 2 2

1 1
3 3

m N u m N u=

By Avogadro’s Law N1 = N2

∴ 2 2
1 1 2 2m u m u=

or
2

1 2

2 1

u m
u m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

If M1 and M2 represent the molecular masses of gases 1 and 2,
2

1 2

2 1

u M
u M

⎛ ⎞ =⎜ ⎟
⎝ ⎠

1 2

2 1

u M
u M

=

The rate of diffusion (r) is proportional to the velocity of molecules (u), Therefore,

1 2

2 1

Rate of diffusion of gas 1
Rate of diffusion of gas 2

r M
r M

= =

This is Graham’s Law of Diffusion.

DISTRIBUTION OF MOLECULAR VELOCITIES
While deriving Kinetic Gas Equation, it was assumed that all molecules in a gas have the same

velocity. But it is not so. When any two molecules collide, one molecule transfers kinetic energy
21

2( )mv to the other molecule. The velocity of the molecule which gains energy increases and that
of the other decreases. Millions of such molecular collisions are taking place per second. Therefore,
the velocities of molecules are changing constantly. Since the number of molecules is very large, a
fraction of molecules will have the same particular velocity. In this way there is a broad distribution
of velocities over different fractions of molecules. In 1860 James Clark Maxwell calculated the
distribution of velocities from the laws of probability. He derived the following equation for the
distribution of molecular velocities.

2–3/ 2
224

2

MC
c RTdN M e C dc

N RT
⎛ ⎞= π ⎜ ⎟π⎝ ⎠

where dNc = number of molecules having velocities between C and (C + dc)
N = total number of molecules
M = molecular mass
T = temperature on absolute scale (K)

The relation stated above is called Maxwell’s law of distribution of velocities. The ratio dnc/n
gives the fraction of the total number of molecules having velocities between C and (C + dc).
Maxwell plotted such fractions against velocity possessed by the molecules. The curves so obtained
illustrate the salient features of Maxwell distribution of velocities.



375GASEOUS STATE

Fig. 10.20. Shows the distribution of velocities in nitrogen gas, N2, at 300 K and 600 K. It will be
noticed that :

(1) A very small fraction of molecules has either very low (close to zero) or very high
velocities.

(2) Most intermediate fractions of molecules have velocities close to an average velocity
represented by the peak of the curve. This velocity is called the most probable velocity. It
may be defined as the velocity possessed by the largest fraction of molecules
corresponding to the highest point on the Maxvellian curve.

(3) At higher temperature, the whole curve shifts to the right (dotted curve at 600 K). This
shows that at higher temperature more molecules have higher velocities and fewer
molecules have lower velocities.
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n 
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ec
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es Most probable velocity

300 K

600 K

V
Molecular velocity

Distribution of molecular velocities in nitrogen 
gas, N , at 300 K and 600 K.2

Figure 10.20

DIFFERENT KINDS OF VELOCITIES
In our study of kinetic theory we come across three different kinds of molecular velocities :

(1) the Average velocity (V)
(2) the Root Mean Square velocity (μ)
(3) the Most Probable velocity (vmn)

Average Velocity
Let there be n molecules of a gas having individual velocities v1, v2, v3 ..... vn. The ordinary

average velocity is the arithmetic mean of the various velocities of the molecules.

1 2 3 ..... nv v v vv
n

+ + +
=

From Maxwell equation it has been established that the average velocity vav is given by the
expression

8RTv
M

=
π

Substituting the values of R, T, π and M in this expression, the average value can be calculated.
Root Mean Square Velocity

If v1, v2, v3 ..... vn are the velocities of n molecules in a gas, μ2, the mean of the squares of all the
velocities is
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2 2 2 2
2 1 2 3 ..... nv v v v

n
+ + +

μ =

Taking the root
2 2 2 2
1 2 3 ..... nv v v v

n
+ + +

μ =

μ is thus the Root Mean Square velocity or RMS velocity. It is denoted by u.
The value of the RMS of velocity u, at a given temperature can be calculated from the Kinetic

Gas Equation.

21
3

PV mNu= ...Kinetic Equation

2 3PVu
mN

=

For one mole of gas
PV = RT

Therefore, 2 3RTu
M

= ...M is molar mass

3RTu
M

=

By substituting the values of R, T and M, the value of u (RMS velocity) can be determined.
RMS velocity is superior to the average velocity considered earlier. With the help of u, the total

Kinetic energy of a gas sample can be calculated.
Most Probable Velocity

As already stated the most probable velocity is possessed by the largest number of molecules
in a gas. According to the calculations made by Maxwell, the most probably velocity, vmp, is given by
the expression.

2 mps
RTv
M

Substituting the values of R, T and M in this expression, the most probably velocity can be
calculated.

Relation between Average Velocity, RMS Velocity and Most Probable Velocity
We know that the average velocity, v , is given by the expression

8RTv
M

=
π

and
3RT
M

μ =

∴
8 8

3 3
v RT M

M RT
= × =

μ π π
= 0.9213

or v = μ × 0.9213 ...(1)
That is, Average Velocity = 0.9213 × RMS Velocity
The expression for the most probably velocity, vmp, is
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2
mp

RTv
M

=

and
3RT
M

μ =

∴
2 2 0.8165

3 3
mpv RT M

M RT
= × = =

μ
or vmp = μ × 0.8165 ...(2)
That is,                                 Most Probable Velocity = 0.8165 × RMS Velocity

RMS can be easily calculated by the application of Kinetic Gas equation. Knowing the value
of RMS, we can find the average velocity and the most probable velocity from expressions (1) and
(2).

CALCULATION OF MOLECULAR VELOCITIES
The velocities of gas molecules are exceptionally high. Thus velocity of hydrogen molecule is

1,838 metres sec–1. While it may appear impossible to measure so high velocities, these can be easily
calculated from the Kinetic Gas equation. Several cases may arise according to the available data.

While calculating different types of velocities, we can also make use of the following expressions
stated already.

RMS velocity,
3RT
M

μ =

Average velocity,
8RTv
M

=

Most Probable velocity,
2

mp
RTv
M

=

Case 1. Calculation of Molecular Velocity when temperature alone is given

21
3

PV mNu= (Kinetic Gas equation)

where N = N0 (Avogadro’s number)
Thus we have,

M = m × N0 = molecular mass of the gas

∴
3 3PV RTu
M M

= = (∵  PV = RT for 1 mole)

But R = 8.314 × 107 ergs deg–1 mol–1

= 0.8314 × 108 ergs deg–1 mol–1

∴
83 0.8314 10 Tu

M
× × ×=

= 4 –1T1.58 10 cm sec
M

× ×

where T is Kelvin temperature and M the molar mass.
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SOLVED PROBLEM. Calculate the root mean square velocity of CO2 molecule at 1000°C.

SOLUTION
T = 273 + 1000 = 1273 K; M = 44

Applying the equation

u = 1.58 × 104 × 
T
M

we have u = 1.58 × 104 × 
1273

44
u = 84985 cm  sec–1 or 849.85 m  sec–1

Case 2. Calculation of Molecular Velocity when temperature and pressure both are given.
In such cases we make use of the following relation based on Kinetic Gas equation.

3PVu
M

=

We know that 1 mole of a gas at STP occupies a volume of 22400 ml (known as molar volume).
But before applying this relation the molar volume is reduced to the given conditions of temperature
and pressure.

SOLVED PROBLEM. Calculate the RMS velocity of chlorine molecules at 12°C and 78 cm pressure.

SOLUTION
At STP : At given conditions :

V1 = 22400 ml V2 = ?
T1 = 273 K T2 = 12 + 273 = 285 K
P1 = 76 cm P2 = 78 cm

Applying
1 1 2 2

1 2

P V P V
T T

=

we have
1 1 2

2
1 2

76 22400 285 22785 ml
273 78

P V TV
T P

× ×= = =
×

we know that
3PVu
M

=

P = hdg = 78 × 13.6 × 981 dynes cm–2

V = 22785 ml;  M = 71

∴
3 78 13.6 981 22785

71
u × × × ×=

u = 31652 cm sec–1  or  316.52 m sec–1

Case 3.  Calculation of Molecular Velocity at STP
Here we use the relation
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3PVu
M

=

where P = 1 atm = 76 × 13.6 × 981 dynes cm–2

V = 22,400 ml
M = Molar mass of the gas

SOLVED PROBLEM. Calculate the average velocity of nitrogen molecule at STP.
SOLUTION

In this example we have,
P = 1 atm = 76 × 13.6 × 981 dynes cm–2

V = 22,400 ml
M = 28

Substituting these values in the equation

3PVu
M

=

we have
3 76 13.6 981 22400

28
× × × ×=

= 49,330 cm sec–1

∴  Average velocity = 0.9213 × 49330 cm sec–1

= 45,447 cm sec–1

Case 4.  Calculation of Molecular Velocity when pressure and density are given
In this case we have

3 3orPV Pu u
M D

= =
M D
V

⎡ ⎤=⎢ ⎥⎣ ⎦
 

where P is expressed in dynes cm–2 and D in gm ml–1.

SOLVED PROBLEM. Oxygen at 1 atmosphere pressure and 0°C has a density of 1.4290 grams per
litre. Find the RMS velocity of oxygen molecules.

SOLUTION
We have P = 1 atm = 76 × 13.6 × 981 dynes cm–2

D = 1.4290 g l–1 
1.4290
1000

= g ml–1

= 0.001429 g ml–1

Applying
3Pu
D

=

we get
3 76 13.6 981

0.001429
u × × ×= = –146138 cm sec

Case 5.     Calculation of most probable velocity
In this case we have

41.29 10mp
Tv
M

= ×

where T expressed in Kelvin and M to mass.
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SOLVED PROBLEM. Calculate the most probable velocity of nitrogen molecules, N2, at 15°C.
SOLUTION

T = 273 + 15 = 288 K
We know that

41.29 10mp
Tv
M

= ×

4 2881.29 10
28

= ×

= 4.137 × 104 cm sec–1

COLLISION PROPERTIES
In the derivation of Kinetic gas equation we did not take into account collisions between

molecules. The molecules in a gas are constantly colliding with one another. The transport properties
of gases such as diffusion, viscosity and mean free path depend on molecular collisions. We will now
discuss some properties of gases which determine the frequency of collisions.
The Mean Free Path

At a given temperature, a molecule travels in a straight line before collision with another molecule.
The distance travelled by the molecule before collision is termed free path. The free path for a
molecule varies from time to time. The mean distance travelled by a molecule between two successive
collisions is called the Mean Free Path. It is denoted by λ. If l1, l2, l3 are the free paths for a molecule
of a gas, its free path

1 2 3 ..... nl l l l
n

+ + + +
λ =

where n is the number of molecules with which the molecule collides. Evidently, the number of
molecular collisions will be less at a lower pressure or lower density and longer will be the mean free
path. The mean free path is also related with the viscosity of the gas.

Collision

Free path

l3l2l1

The mean free path illustrated.
Figure 10.21

The mean free path, λ, is given by the expression
3

Pd
λ = η

where P = pressure of the gas
d = density of the gas
η = coefficient of viscosity of the gas
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By a determination of the viscosity of the gas, the mean free path can be readily calculated. At
STP, the mean free path for hydrogen is 1.78 × 10–5 cm and for oxygen it is 1.0 × 10–5 cm.

Effect of Temperature and Pressure on Mean Free Path
(a)   Temperature

The ideal gas equation for n moles of a gas is
PV = n R T ...(i)

where n is the number of moles given by

0

Number of molecules
Avogadro's Number

Nn
N

= =

Substituting this in equation (i) we get

o

NPV RT
N

=

       or 0PNN
V RT

=

At constant pressure
1N
T

∝ ...(ii)

The mean free path is given by
Distance travelled by the molecule per second

Number of collisions per c.c.
λ =

22
v

vN
=

πσ

2
1

2 N
=

πσ ...(iii)

combining equations (ii) and (iii), we get
λ ∝ T

Thus, the mean free path is directly proportional to the absolute temperature.

(b)   Pressure
We know that the pressure of a gas at certain temperature is directly proportional to the number

of molecules per c.c. i.e.
P N∝

and mean free path is given by

2
1

2 N
λ =

πσ
Combining these two equations, we get

1
P

λ ∝

Thus, the mean free path of a gas is directly proportional to the pressure of a gas at constant
temperature.
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SOLVED PROBLEM 1. At 0°C and 1 atmospheric pressure the molecular diameter of a gas is 4Å.
Calculate the mean free path of its molecule.

SOLUTION. The mean free path is given by

2
1

2 N
λ =

πσ
where σ is the molecular diameter
and N  is the no. of molecules per c.c.
Here σ = 4Å = 4 × 10–8 cm.
We know 22400 ml of a gas 0°C and 1 atm. pressure contains 6.02 × 1023 molecules.

∴ No. of molecules per c.c., 
236.02 10

22400
N ×=

= 2.689 × 1019 molecules
Substituting the values, we get

–8 2 19
1

1.414 3.14 (4 10 ) 2.689 10
σ =

× × × × ×

3
1

1.414 3.14 16 2.689 10
=

× × × ×
= 0.524 × 10–5 cm

SOLVED PROBLEM 2. The root mean square velocity of hydrogen at STP is 1.83 × 105 cm sec–1

and its mean free path is 1.78 × 10–5 cm. Calculate the collision number at STP.
SOLUTION. Here root mean square velocity

μ = 1.831 × 105 cm sec–1

We know average velocity v = 0.9213 × RMS velocity
= 0.9213 × 1.831 × 105 cm sec–1

= 1.6869 × 105 cm sec–1

Average velocityThe mean free path =
Collision Number

∴ Average velocityCollision Number =
Mean free path

5 –1

–5
1.6869 10 cm sec

1.78 10 cm.
×=
×

= 9.4769 × 109 sec–1

The Collison Diameter
When two gas molecules approach one another, they cannot come closer beyond a certain

distance. The closest distance between the centres of the two molecules taking part in a collision is
called the Collision Diameter. It is denoted by σ. Whenever the distance between the centres of two
molecules is σ, a collison occurs.

The collision diameter is obviously related to the mean free path of molecules. The smaller the
collision or molecular diameter, the larger is the mean free path.
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σ

Collision diameter of molecules.
Figure 10.22

The collision diameter can be determined from viscosity measurements. The collision diameter
of hydrogen is 2.74 Å and that of oxygen is 3.61Å.
The Collision Frequency

The collision frequency of a gas is defined as :
the number of molecular collisions taking place per second per unit volume (c.c.) of the gas.
Let a gas contain N  molecules per c.c. From kinetic consideration it has been established that the

number of molecules, n, with which a single molecule will collide per second, is given by the relation
22n v N= π σ

where v  = average velocity; σ = collision diameter.
If the total number of collisions taking place per second is denoted by Z, we have

22Z v N N= π σ ×
2 22 v N= π σ

Since each collision involves two molecules, the number of collision per second per c.c. of the
gas will be Z/2.

Hence the collision frequency
2 22

2
v Nπ σ=

2 2

2
v Nπ σ=

Evidently, the collision frequency of a gas increases with increase in temperature, molecular
size and the number of molecules per c.c.

Effect of Temperature and Pressure on Collision Frequency
(i)  Effect of Temperature
We know collision frequency is given by

2 2

2
v NZ π σ= ...(i)

From this equation it is clear that
Z v∝

But Tμ ∝
or Z T∝
Hence collision frequency is directly proportional to the square root of absolute temperature.
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(ii)  Effect of Pressure
From equation (i), we have

2Z N∝ ...(ii)

where N  is the number of molecules per c.c. But we know that the pressure of the gas at a certain
temperature i.e.

P N∝ ...(iii)
combining equation (ii) and (iii) we get

2Z P=
Thus the collision frequency is directly proportional to the square of the pressure of the gas.

SPECIFIC HEAT RATIO OF GASES
The Specific heat is defined as the amount of heat required to raise the temperature of one

gram of a substance through 1°C. It may be measured at constant volume or at a constant pressure
and though the difference in the two values is negligible in case of solids and liquids, it is appreciable
in case of gases and a ratio of the two values gives us valuable information about the atomicity of a
gas molecule.

Specific Heat at Constant Volume
It is the amount of heat required to raise the temperature of one gas through 1°C while the

volume is kept constant and the pressure allowed to increase. It is denoted by the symbol Cv. In
Physical Chemistry it is more common, however, to deal with one gram mole of the gas and the heat
required in such case is called Molecular Heat and is represented at constant volume by Cv.

It is possible to calculate its value by making use of the Kinetic theory.

Consider one mole of a gas at the temperature T. Its kinetic energy is 21 .
2

mnu  From the kinetic
gas equation

21
2

PV mnu=

22 1
3 2

mnu RT= × =

or 21 3( KE)
2 2

mnu RT= =

If the temperature is raised by 1°C to (T + 1)K kinetic energy becomes 
3 ( 1).
2

R T +

∴ Increase in kinetic energy 
3 3( 1) –
2 2

R T RT= +

3
2

R=

If, therefore, it be assumed that the heat supplied to a gas at constant volume is used up entirely in
increasing the kinetic energy of the moving molecules, and consequently increasing the temperature,

the value of Cv should be equal 
3 .
2

R  It is actually so for monoatomic gases and vapours because

such molecules can execute only translatory motion along the three co-ordinate axes. Motion of
monoatomic gas molecules is the simplest and can be resolved into three perpendicular components
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along the co-ordinate axes. Thus the energy of such a molecule can be considered to be composed
of three parts as

2 2 2 21 1 1 1
2 2 2 2x y zmv mv mv mv= + +

The number of square terms involved in determining the total kinetic energy of a molecule is often
referred to as the Degrees of freedom of motion. Such molecules have three degrees of freedom of
motion. According to the principle of equipartition of energy, total energy of the molecule is equally
distributed among all its degrees of freedom. But in the case of diatomic and polyatomic molecules, the
heat supplied may not only increase this kinetic energy of translation of the molecules as a whole but
also cause an increase in the energy in the inside of the molecules which we may call as intramolecular
energy.  This intramolecular energy may be the vibration energy i.e., energy of the atoms executing
vibrations with respect to each other along their line of centres or rotational energy which manifests
itself in the rotation of the molecules about axes perpendicular to the line of centres. There will be
other degrees of freedom for rotational and vibrational modes of motion also. For such cases the heat
needs will be complex and are denoted by ‘x’ – a factor which depends upon vibrational and rotational
degrees of freedom. Vibrational degrees of freedom rapidly increase with the increase in the total
number of atoms in a molecule but the degrees of freedom are two for linear diatomic and three for non-
linear diatomic molecules in case of rotational motion.

Consequently in such cases the molecular heat will be greater than 
3
2

R  by the factor x.

or
3
2vC R x= +

The value of x varies from gas to gas and is zero for monoatomic molecules.
Specific Heat at Constant Pressure

It may be defined as the amount of heat required to raise the temperature of one gram of gas
through 1°C, the pressure remaining constant while the volume is allowed to increase. It is written as
cp and the Molecular heat in this gas is represented as Cp.

Now, whenever a gas expands it has to do work against external pressure. It means that when a
gas is heated under constant pressure, the heat supplied is utilised in two ways :

(1) in increasing the kinetic energy of the moving molecules and this has already been
shown to be equal to 3/2 R + x cal.

(2) in performing external work done by the expanding gas. The work done by the gas is
equivalent to the product of the pressure and the change in volume. Let this change in
volume be ΔV when the constant pressure is P and the initial volume is V.

For 1 g mole of the gas at temperature T,
PV = RT ...(i)

At temperature (T + 1) K
P (V + ΔV) = R (T + 1) ...(ii)

Subtracting (i) from (ii)
P × ΔV = R

Hence R cal must be added to the value of 
3
2

R cal in order to get the thermal equivalent of the
energy supplied to one gram mole of the gas in the form of heat when its temperature is raised by 1°C.

∴
3 5
2 2pC R R R= + = (for monoatomic molecules)
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For di– and polyatomic molecules, it will be 
3 .
2

R x+

Specific Heat Ratio
The ratio of the molecular heats will be the same as the ratio of the specific heats. It is represented

by the symbol γ .
5
2
3
2

p

v

C R x
C R x

+
γ = =

+
For monoatomic molecules, x = 0

5
2
3
2

5
3

p

v

C R
C R

γ = = = = 1.667

For diatomic molecules in most cases, S = R
7
2
5
2

7
5

p

v

C R
C R

γ = = = = 1.40

For polyatomic molecules, very often 
3
2

x R=

5 3
2 2
3 3
2 2

8
6

p

v

C R R
C R R

+
γ = = = =

+
1.33

These results are found to be in accord with experimental observations at 15°C given in the
Table that follows and thus specific heat ratio helps us to determine the atomicity of gas molecules.
The theoretical difference between Cp and Cv as calculated above is R and its observed value also
shown in the table below comes out to about 2 calories.

Gas Cp Cv Cp–Cv = R g = Cp/Cv Atomicity

Helium 5.00 3.01 1.99 1.661 1
Argon 4.97 2.98 1.90 1.667 1
Mercury vapour 6.93 4.94 1.99 1.40 2
Nitrogen 6.95 4.96 1.99 1.40 2
Oxygen 6.82 4.83 1.49 1.41 2
Carbon dioxide 8.75 6.71 2.04 1.30 3
Hydrogen sulphide 8.62 6.53 2.09 1.32 3

DEVIATIONS FROM IDEAL BEHAVIOUR
An ideal gas is one which obeys the gas laws or the gas equation PV = RT at all pressures and

temperatures. However no gas is ideal. Almost all gases show significant deviations from the ideal
behaviour. Thus the gases H2, N2 and CO2 which fail to obey the ideal-gas equation are termed
nonideal or real gases.
Compressibility Factor

The extent to which a real gas departs from the ideal behaviour may be depicted in terms of a new
function called the Compressibility factor, denoted by Z. It is defined as

PVZ
RT

=

The deviations from ideality may be shown by a plot of the compressibility factor, Z, against P.
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For an ideal gas, Z = 1 and it is independent of temperature and pressure. The deviations from
ideal behaviour of a real gas will be determined by the value of Z being greater or less than 1. The
difference between unity and the value of the compressibility factor of a gas is a measure of the
degree of nonideality of the gas.

For a real gas, the deviations from ideal behaviour depend on (i) pressure; and temperature. This
will be illustrated by examining the compressibility curves of some gases discussed below with the
variation of pressure and temperature.
Effect of Pressure Variation on Deviations

Fig. 10.23 shows the compressibility factor, Z, plotted against pressure for H2, N2 and CO2 at a
constant temperature.

2.0

1.5

1.0

0.5

0

N2

H2
CO2

Ideal Gas

Z 
= 

P
V

R
T

0 200 400 600 800 1000
P (atm)

Z P versus  plots for H , N  and CO  at 300 K.2 2 2

Figure 10.23

At very low pressure, for all these gases Z is approximately equal to one. This indicates that at
low pressures (upto 10 atm), real gases exhibit nearly ideal behaviour. As the pressure is increased,
H2 shows a continuous increase in Z (from Z = 1). Thus the H2 curve lies above the ideal gas curve at
all pressures.

For N2 and CO2, Z first decreases (Z < 1). It passes through a minimum and then increases
continuously with pressure (Z > 1). For a gas like CO2 the dip in the curve is greatest as it is most
easily liquefied.
Effect of Temperature on Deviations

Fig 10.24 shows plots of Z or PV/RT against P for N2 at different temperatures. It is clear from the
shape of the curves that the deviations from the ideal gas behaviour become less and less with
increase of temperature. At lower temperature, the dip in the curve is large and the slope of the curve
is negative. That is, Z < 1. As the temperature is raised, the dip in the curve decreases. At a certain
temperature, the minimum in the curve vanishes and the curve remains horizontal for an appreciable
range of pressures. At this temperature, PV/RT is almost unity and the Boyle’s law is obeyed. Hence
this temperature for the gas is called Boyle’s temperature. The Boyle temperature of each gas is
characteristic e.g., for N2 it is 332 K.
Conclusions

From the above discussions we conclude that :
(1) At low pressures and fairly high temperatures, real gases show nearly ideal behaviour

and the ideal-gas equation is obeyed.
(2) At low temperatures and sufficiently high pressures, a real gas deviates significantly

from ideality and the ideal-gas equation is no longer valid.
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Figure 10.24

Z 
= 

PV R
T

(3) The closer the gas is to the liquefaction point, the larger will be the deviation from the ideal
behaviour.

EXPLANATION OF DEVIATIONS – VAN DER WAALS EQUATION
van der Waals (1873) attributed the deviations of real gases from ideal behaviour to two erroneous

postulates of the kinetic theory. These are :
(1) the molecules in a gas are point masses and possesses no volume.
(2) there are no intermolecular attractions in a gas.

Therefore, the ideal gas equation PV = nRT derived from kinetic theory could not hold for real
gases. van der Waals pointed out that both the pressure (P) and volume (V) factors in the ideal gas
equation needed correction in order to make it applicable to real gases.
Volume Correction

The volume of a gas is the free space in the container in which molecules move about. Volume
V of an ideal gas is the same as the volume of the container. The dot molecules of ideal gas have
zero-volume and the entire space in the container is available for their movement. However, van der
Waals assumed that molecules of a real gas are rigid spherical particles which possess a definite
volume.

Ideal volume = V Volume =  –V  b Excluded volume ( )b

Ideal Gas Real Gas

Volume of a Real gas.
Figure 10.25

V b – 

The volume of a real gas is, therefore, ideal volume minus the volume occupied by gas molecules
(Fig. 10.25). If b is the effective volume of molecules per mole of the gas, the volume in the ideal gas
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equation is corrected as :
(V – b)

For n moles of the gas, the corrected volume is :
(V – nb)

where b is termed the excluded volume which is constant and characteristic for each gas.

2r

Excluded
volume

Excluded volume for a pair of gas molecules.
Figure 10.26

Excluded volume is four times the actual volume of molecules. The excluded volume is not
equal to the actual volume of the gas molecules. In fact, it is four times the actual volume of
molecules and can be calculated as follows.

Let us consider two molecules of radius r colliding with each other (Fig. 10.26). Obviously, they
cannot approach each other closer than a distance (2r) apart. Therefore, the space indicated by the
dotted sphere having radius (2r) will not be available to all other molecules of the gas. In other words
the dotted spherical space is excluded volume per pair of molecules. Thus,

excluded volume for two molecules 34 (2 )
3

r= π

348
3

r⎛ ⎞= π⎜ ⎟⎝ ⎠

excluded volume per molecule (Ve) 
31 48

2 3
r⎛ ⎞= × π⎜ ⎟⎝ ⎠

= 4 Vm

where Vm is the actual volume of a single molecule.
Therefore, in general, excluded volume of the gas molecules is four times the actual volume of

molecules.
Pressure Correction

A molecule in the interior of a gas is attracted by other molecules on all sides. These attractive
forces cancel out. But a molecule about to strike the wall of the vessel is attracted by molecules on
one side only. Hence it experiences an inward pull (Fig. 10.27). Therefore, it strikes the wall with
reduced velocity and the actual pressure of the gas, P, will be less than the ideal pressure. If the
actual pressure P, is less than Pideal by a quantity p, we have

                                             P = Pideal – p

or Pideal = P + p
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(a) (b)

Molecular attractions
balancedInward pull

( ) A molecule about to strike the wall has a net inward pull;
( ) A molecule in the interior of gas has balanced attractions.
a
b

Figure 10.27

p is determined by the force of attraction between molecules (A) striking the wall of container and the
molecules (B) pulling them inward. The net force of attraction is, therefore, proportional to the
concentration of (A) type molecules and also of (B) type of molecules. That is,

p ∝CA × CB

or
n np
V V

∝ ×

or
2

2
anp
V

=

where n is total number of gas molecules in volume V and a is proportionality constant characteristic
of the gas. Thus the pressure P in the ideal gas equation is corrected as :

2

2

⎛ ⎞
+⎜ ⎟

⎝ ⎠

anP
V

for n moles of gas.

VAN DER WAALS EQUATION
Substituting the values of corrected pressure and volume in the ideal gas equation, PV = nRT, we

have
2

2 ( – )anp V nb nRT
V

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
This is known as van der Waals equation for n moles of a gas. For 1 mole of a gas (n = 1), van der

Waals equation becomes

–⎛ ⎞+ =⎜ ⎟
⎝ ⎠2 ( )ap V b RT

V
Constant a and b in van der Waals equation are called van der Waals constants. These constants

are characteristic of each gas.
Determination of a and b

From the expression (1), the value of a is given by the relation
2

2
pVa
n

=

If the pressure is expressed in atmospheres and volume in litres,
2 2

2 2
(pressure) (volume) atm litre

mol mol
a = =
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The striking molecule A is pulled inward by molecules B which 
reduces the velocity of A and causes the decrease of pressure.

Figure 10.28

A B

B

B

Velocity
reduced

Wall

Thus a is expressed in atm litre2 mol–2 units.

Since nb is excluded volume for n moles of gas,

volume litre
mole

b
n

= =

If volume is expressed in litres, b is expressed in litre mol–1 units.

SI units of a and b.  If pressure and volume are taken in SI units, we have
–2 3 2

2 2
(pressure) (volume) (Nm ) (m )

(mol) (mol)
a = =

= N m4 mol–2

and b = Volume mol–1

= m3 mol–1

The values of (a) and (b) can be determined by knowing the P, V and T of a gaseous system
under two different conditions. Table 10.2 gives values of a and b for some common gases.

TABLE 10.2.  VAN DER WAALS CONSTANTS FOR SOME COMMON GASES
Gas a b

atm litre2 mol–2 N m4 mol–2 litre mol–1 103 m3 mol–1

Hydrogen 0.245 0.0247 0.0266 0.0266
Oxygen 1.360 0.1378 0.0318 0.0318
Nitrogen 1.390 0.1408 0.0391 0.0391
Chlorine 6.493 0.6577 0.0562 0.0562
Carban dioxide 3.590 0.3637 0.0428 0.0428
Ammonia 4.170 0.4210 0.0371 0.0371
Sulphur dioxide 6.710 0.6780 0.0564 0.0564
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SOLVED PROBLEM. Calculate the pressure exerted by 1.00 mole of methane (CH4) in a 250 mL
container at 300 K using van der Waals equation. What pressure will be predicted by ideal gas
equation ?

a = 2.253 L2 atm mol–2, b = 0.0428 L mol–1; R = 0.0821 L atm mol–1 K.

SOLUTION

2

2 ( – )n aP V nb nRT
V

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
...van der Waals equation

Dividing by (V – nb) and solving for P
2

2–
–

nRT n aP
V nb V

=

Substituting n = 1, R = 0.0821 L atm mol–1 K–1, V = 0.250 L, T = 300 K and the values of a and b,
we have

2

2
1 0.0821 300 1 2.253–

0.250 – (1 0.0428) (0.250)
P × × ×=

×

= 82.8 atm
The ideal gas equation predicts that

1 0.0821 300
0.250

nRTP
V

× ×= =

= 98.5 atm

Limitations of van der Waals Equation
van der Waals equation explains satisfactorily the general behaviour of real gases. It is valid

over a wide range of pressures and temperatures. However, it fails to give exact agreement with
experimental data at very high pressures and low temperatures. Dieterici (1899) proposed a
modified van der Waals equation. This is known as Dieterici equation. For one mole of gas, it
may be stated as

P (V – b) = RTe–a/VRT

Here the terms (a) and (b) have the same significance as in van der Waals equation.
Interpretation of Deviations from van der Waals equation
For one mole of gas, van der Waals equation is

2 ( – )aP V b RT
V

⎛ ⎞+ =⎜ ⎟⎝ ⎠
...(1)

or
2– a abPV RT Pb

V V
= + + ...(2)

Now we proceed to interpret the deviations of real gases from ideal behaviour as depicted in
Figs. 10.21 and 10.22.

(a)  At low pressure. When P is small, V will be large. Thus both the terms Pb and ab/V2 in
equation (2) are negligible compared to a/V. Ignoring these,

– aPV RT
V

=

or 1 –PV a
RT VRT

=
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or 1 – aZ
VRT

=

Thus at low pressure, the compressibility factor is less than 1. This explains the initial portions
of Z/P curves of N2 and CO2 which lie below the ideal curve. As the pressure is increased, V
decreases and the value of Z increases. Hence the curves show upward trend.

(b)  At high pressures. When P is large, V will be small. Therefore the terms a/V and ab/V2 are
negligible in comparison with Pb. Hence equation (2) is reduced to

PV = RT + Pb

or 1PV Pb
RT RT

= +

or 1 PbZ
RT

= +

Thus at high pressures, Z is greater than 1 and Z/P lies above the ideal gas curve. With the
increase of pressure, the value of Z will be still higher. This accounts for the rising parts of the curves
in Fig. 10.18.

(c)  At extremely low pressures. At extremely low pressures, V becomes very large. Hence all the
terms Pb, a/V and ab/V2 in equation (2) are negligibly small. These could be ignored compared to RT.
Thus equation (2) reduces to

PV = RT
Hence, at low pressures real gases behave ideally.
(d)  At high temperatures. At high temperatures, volume will be large (V∝T). Hence P will be small.

Then in the equation (2) the term RT predominates the other terms and the equation is reduced to
PV = RT

Thus at extremely high temperatures real gases tend to show ideal behaviour.
However, at low temperatures, both P and V will be small and the net result of Pb, – a/V, and

ab/V2 will be appreciable. Therefore the deviations would be quite prominent.
(e)  Exceptional behaviour of hydrogen. Because of the small mass of H2 molecule, the attractions

between the molecules are negligible. Hence the term ‘a’ is extremely small and the terms a/V and
ab/V2 in equation (2) can be ignored. The equation now becomes

PV = RT + Pb

or 1PV Pb
RT RT

= +

or 1 PbZ
RT

= +

Since Z is always greater than 1, the Z/P curve throughout lies above the ideal curve.

SOLVED PROBLEM 1. One mole of water vapour is confined to a 20 litre flask at 27°C. Calculate
its pressure using

(a) van der Waal’s equation
(b) Ideal gas equation

Given that a = 5.464 litre2 atm mol–1

b = 0.0305 litre mol–1

R = 0.0821 litre atm. deg–1 mol–1

SOLUTION. (a) using van der Waal’s equation
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2

2 ( – )nP a V nb nRT
V

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
Here n = 1 mole ; T = 27 + 273 = 300 K

R = 0.0821 litre atm. deg–1 mol–1; a = 5.464 litre2 atm. mol–1 and b = 0.0305 litre mol–1; P = ?
V = 20 litre. Substituting the values, we get

2

2
5.464 1

(20)
P

⎡ ⎤×+⎢ ⎥
⎣ ⎦

 [20 – 1 × 0.0305] = 1 × 0.0821 × 300

[P + 0.01366] [19.9695] = 24.6

or
24.6 – 0.01366

19.9695
P =

= 1.23187 – 0.01366 = 1.21821 atm
(b) using van der Waal’s equation

PV = n RT

or nP RT
V

=

Substituting the values, we get
1 0.0821 300
20

P = × × = 1.2315 atm

SOLVED PROBLEM 2. Two moles of NH3 are enclosed in a five litre flask at 27°C. Calculate the
pressure exerted by the gas assuming that

(i) the gas behaves like an ideal gas.
(ii) the gas behaves like a real gas

SOLUTION. Here
n = 2 ; T = 300 K ; V = 5 litres
R = 0.082 atm. litre K–1 mol–1

(i)  when the gas behaves like an ideal gas

PV = n RT  or nP RT
V

=

Substituting the values
2 0.082 300

5
P × ×= = 9.84 atm

(ii)  when the gas behaves like a real gas
2

2 ( – )nP a V nb nRT
V

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠

or
2

2–
–

n RT anP
V nb V

=

Substituting the values we get
2

2
2 0.082 300 4.14 2–
5 – 2 0.037 5

P × × ×=
×

= 9.9879 – 0.667 = 9.3028 atm
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LIQUEFACTION OF GASES – CRITICAL PHENOMENON
A gas can be liquefied by lowering the temperature and increasing the pressure. At lower

temperature, the gas molecules lose kinetic energy. The slow moving molecules then aggregate due
to attractions between them and are converted into liquid. The same effect is produced by the
increase of pressure. The gas molecules come closer by compression and coalesce to form the liquid.

Andres (1869) studied the P – T conditions of liquefaction of several gases. He established that
for every gas there is a temperature below which the gas can be liquefied but above it the gas defies
liquefaction. This temperature is called  the critical temperature of the gas.

The critical temperature, Tc, of a gas may be defined as that temperature above which it cannot
be liquefied no matter how great the pressure applied.

The critical pressure, Pc , is the minimum pressure required to liquefy the gas at its critical
temperature.

The critical volume, Vc, is the volume occupied by a mole of the gas at the critical temperature
and critical pressure.

Tc, Pc and Vc are collectively called the critical constants of the gas. All real gases have
characteristic critical constants.

TABLE 10.4.  THE CRITICAL CONSTANTS OF SOME COMMON GASES
Gas Critical temperature (K) Critical pressure (atm) Critical volume (ml/mole)

Helium 5.3 2.26 57.8
Hydrogen 33.2 12.8 65.0
Nitrogen 126.0 33.5 90.1
Oxygen 154.3 50.1 74.4
Carbon dioxide 304.0 72.9 94.0
Ammonia 405.5 111.5 72.1
Chlorine 407.1 76.1 123.8
Sulphur dioxide 430.3 77.7 122.3

At critical temperature and critical pressure, the gas becomes identical with its liquid and is said
to be in critical state. The smooth merging of the gas with its liquid is referred to as the critical
phenomenon. Andrews demonstrated the critical phenomenon in gases by taking example of carbon
dioxide.
Andrews Isotherms of Carbon Dioxide

The P-V curves of a gas at constant temperature are called
isotherms or isothermals. For an ideal gas PV = nRT and the
product PV is constant if T is fixed. Hence the isotherms would be
rectangular parabolas.

For an ideal gas PV = nRT and the product PV is constant if π
is fixed. Hence the isotherms would be rectangular parabolas.

Andrews plotted the isotherms of carbon dioxide for a series
of temperatures. From Fig. 10.30 can be seen that there are three
types of isotherms viz., those above 31°C, those below 31°C; and
the one at 31°C.

(a)  Isotherms above 31°C. The isotherm at 25°C is a
rectangular hyperbola and approximates to the isotherm of ideal
gas. So are all other isotherms above 31°C. Thus in the region
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Figure 10.29
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above the isotherm at 31°C, carbon dioxide always exists in the gaseous state.
(b)  Isotherms below 31°C. The isotherms below 31°C are discontinuous. For example, the

isotherm of 21° consists of three parts.
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Andrews isotherms of CO  at different temperatures.2

Figure 10.30

(i) The curve AB.  It is a PV curve for gaseous carbon dioxide. Along AB, the volume
decreases gradually with the increase of pressure. At B the volume decreases suddenly
due to the formation of liquid carbon dioxide having higher density.

(ii) The horizontal portion BC.  Along the horizontal part BC of the isotherm, the
liquefaction continues while the pressure is held constant. At C all the gas is converted to
liquid.

(iii) The vertical curve CD.  This part of the isotherm is, in fact, the P-V curve of liquid carbon
dioxide. This is almost vertical since the liquid is not very compressible.

(c)  Isotherm at 31°C.  Andrews noted that above 31°C there was no possibility of liquefaction
of carbon dioxide however great the pressure applied. The critical temperature of carbon dioxide is,
therefore, 31°C. The isotherm EFG at this temperature is called the critical isotherm. The EF portion
of the critical isotherm represents the P-V curve of carbon dioxide gas. At the point F, the curve
records a twist which is coincident with the appearance of liquid carbon dioxide. Here the gas and the
liquid have the same density and are indistinguishable. The point is called the critical point and the
corresponding pressure is called the critical pressure (72.7 atom). Beyond F the isotherm becomes
nearly parallel to the vertical axis and marks the boundary between the gaseous carbon dioxide on
the right and the liquid carbon dioxide on the left.
van der Waals’ Equation and Critical Constants

Thomson (1871) studied the isotherms of carbon dioxide drawn by Andrews. He suggested that
there should be no sharp points in the isotherms below the critical temperature. These isotherms
should really exhibit a complete continuity of state from gas to liquid. This he showed a theoretical
wavy curve. The curve MLB in Fig. 10.31 represents a gas compressed in a way that it would remain
stable. The curve MNC represents a superheated liquid. This type of continuity of state is predicated
by van der Waals cubic equation. According to it, for any given values of P and T there should be
three values of V. These values are indicated by points B, M and C of the wavy curve. The three
values of V become closer as the horizontal part of the isotherm rises. At the critical point, these
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values become identical. This enables the calculation of Tc, Pc and Vc in terms of van der Waals
constants. The van der Waals equation may be written as

2 ( – )aP V b RT
V

⎛ ⎞+ =⎜ ⎟⎝ ⎠

2– – – 0a abPV Pb RT
V V

+ =

Multiplying the whole equation by V 2

or PV 3 – (RT + Pb) V 2 + aV – ab = 0
At the critical point

V 3 = Vc
(V – Vc ) 3 = 0

or 3 2 2 3– 3 3 – 0c c cV V V V V V+ = ...(1)
Thus at the critical point van der Waals equation gives

3 2– – 0c

c c c

RT a abV b V V
P P P

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

...(2)

Equating coefficients in (1) and (2)

3 c
c

c

RT
V b

P
= + ...(3)

23 c
c

aV
P

= ...(4)

3
c

c

abV
P

= ...(5)

From (4) and (5)
Vc = 3b ...(6)
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to van der Waals equation.

Figure 10.31
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Substituting the value in (4)

227c
aP
b

= ...(7)
Substituting the values of Vc and Pc in (3)

8
27c

aT
Rb

= ...(8)

Knowing a and b which can be deduced from deviations of ideal gas equation, the critical
constants can easily be calculated. Conversely, since Pc and Tc can often be determined experimentally
with comparative ease, these values may be employed to calculate the constants a and b.

23
3
c

c c
Va V P b= =

SOLVED PROBLEM 1. van der Waals’ constants for hydrogen chloride gas are a = 3.67 atm
lit–2 and b = 40.8 ml mol–1. Find the critical temperature and critical pressure of the gas.

SOLUTION
8

27c
aT
Rb

=

8 3.67 324.7 K
27 0.0821 0.0408

×= =
× ×

= 51.7°C

2 2
3.67

27 27 (0.0408)c
aP
b

= =
×

= 81.6 atm

SOLVED PROBLEM 2. The critical constants for water are Tc = 647 K, Pc = 218 atm, Vc = 0.057
litre/mol. Calculate van der Waals constants.

SOLUTION
a = 3 Pc Vc

2 = 3 × 218 × (0.057)2

= 2.12 litre2 atm mol–2

0.057
3 3
cV

b = =

= 0.019 litre mol–1

Experimental Determination of Critical Constants
The actual determination of critical constants of a substance is often a task of considerable

difficulty. Of these the critical temperature and critical pressure can be measured relatively easily
with the help of Cagniard de la Tour’s apparatus. It consists of a stout glass U-tube blown into a bulb
at the lower end. The liquid under examination is contained in the bulb and the rest of the apparatus
is filled with mercury. The upper end of the U-tube is sealed leaving a little air in it so that this can be
used as a manometer.

The temperature of the bulb containing the liquid and its vapour is raised gradually by means of
the heating jacket. A point is reached when the meniscus of the liquid becomes faint and then
disappears leaving the contents of the bulb perfectly homogeneous. On allowing the bulb to cool
again, a mist first forms in the gas which quickly settles with the reappearance of the meniscus. The
mean of the temperatures of disappearance and reappearance of the meniscus in the bulb, is the
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critical temperature. The pressure read on the manometer
at the critical temperature, gives the critical pressure.

The critical volume is the volume at critical temperature
and critical pressure. It is much more difficult to measure
since even a slight change in temperature of pressure at the
critical point produces a large change in volume.

The most accurate method of determining the critical
volume was given by Amagat. It consists of measuring the
densities of a liquid and its vapour at a number of
temperatures near the critical point, and plotting these two
densities against the temperature. When the two curves
representing the densities of the liquid and vapour thus
drawn are extended, they naturally meet at the critical
temperature because here the density of the liquid and
vapour becomes identical.

The mean values of the densities are then plotted
against the various temperatures where straight line DC
is obtained which will obviously pass through the critical
temperature which will be given by the point where this line
will cut the curve AB (point C in Fig. 10.33). The density
corresponding to the point C in the diagram is the critical
density.

The critical volume is obtained by dividing the molecular weight of the liquid by critical
density.
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Illustration of the determination of critical volume (drawn for -pentane).n
Figure 10.33

The following Table gives the critical temperature and critical pressure of a few substances.

Substance Critical temp (°C) Critical pressure (Atm.)

Helium – 269 2.3
Hydrogen – 249 11
Nitrogen – 146 35
Oxygen – 119 51
Carbon dioxide + 31 73
Ammonia + 131 113
Water + 374 217
Ether + 194 35

Air

Mercury

Vapour

Liquid

Cagniard de la Tour's apparatus.
Figure 10.32
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LAW OF CORRESPONDING STATES
If the values of pressure, volume and temperature be expressed as fractions of the corresponding

critical values, we have

, ,
c c c

P V T
P V T

= π = φ = θ

where π, φ and θ are termed the reduced pressure, the reduced volume, and the reduced
temperature respectively.

If now we replace P, V and T  by πPc, φVc and θTc respectively in van der Waals equation

2 ( – )aP V b RT
V

⎛ ⎞+ =⎜ ⎟⎝ ⎠
we have,

2 2 ( – )c c c
c

aP V b R T
V

⎛ ⎞π + φ = θ⎜ ⎟φ⎝ ⎠
Substituting the values of Pc, Vc and Tc in terms of a, b and R as given in equation (6), (7) and (8),

we get

2 2 2
8(3 – )

2727 9
a a ab b R

Rbb b
π⎛ ⎞+ φ = θ⎜ ⎟φ⎝ ⎠

Dividing this equation throughout by 2 ,
27

a
b

we get

2
3 (3 – 1) 80⎛ ⎞π + φ = θ⎜ ⎟φ⎝ ⎠

...(9)

This is known as van der Waals reduced equation of state. In this equation the quantities a, b, Pc,
Tc, Vc which are characteristics of a given gas have cancelled out, thus making it applicable to all
substances in the liquid or gaseous state irrespective of their specific nature. From equation (9) it is
clear that when two substances have the same reduced temperature and pressure, they will have the
same reduced volume. This is known as the Law of Corresponding States and when two or more
substances are at the same reduced temperature and pressure, they are said to be in the Corresponding
states. In practice this means that the properties of liquids should be determined at the same reduced
temperature because pressure has very slight effect on them. Since it has been found that boiling
points of liquids are approximately 2/3rd of the critical temperature, it follows that liquids are at their
boiling points (in degrees absolute) approximately in corresponding states. Therefore in studying
the relation between the physical properties of liquids and the chemical constitution, the physical
properties may be conveniently determined at the boiling points of liquids.

SOLVED PROBLEM 1. The reduced volume (φ) and reduced temperature (θ) of a gas are 10.2 and
0.7. What will be its pressure if its critical pressure (Pc) is 4.25 atm ?

SOLUTION. It is given that
Reduced volume, φ = 10.2; Reduced temperature, θ = 0.7

Critical pressure, cP  = 4.25 atm
Applying reduced equations of state

2
3 [3 – 1] 8            

Substituting the values we get
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LAW OF CORRESPONDING STATES
If the values of pressure, volume and temperature be expressed as fractions of the corresponding

critical values, we have

, ,
c c c

P V T
P V T

= π = φ = θ

where π, φ and θ are termed the reduced pressure, the reduced volume, and the reduced
temperature respectively.

If now we replace P, V and T  by πPc, φVc and θTc respectively in van der Waals equation

2 ( – )aP V b RT
V

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

we have,

2 2 ( – )c c c
c

aP V b R T
V

⎛ ⎞π + φ = θ⎜ ⎟φ⎝ ⎠
Substituting the values of Pc, Vc and Tc in terms of a, b and R as given in equation (6), (7) and (8),

we get

2 2 2
8(3 – )

2727 9
a a ab b R

Rbb b
π⎛ ⎞+ φ = θ⎜ ⎟φ⎝ ⎠

Dividing this equation throughout by 2 ,
27

a
b

we get

2
3 (3 – 1) 80⎛ ⎞π + φ = θ⎜ ⎟φ⎝ ⎠

...(9)

This is known as van der Waals reduced equation of state. In this equation the quantities a, b, Pc,
Tc, Vc which are characteristics of a given gas have cancelled out, thus making it applicable to all
substances in the liquid or gaseous state irrespective of their specific nature. From equation (9) it is
clear that when two substances have the same reduced temperature and pressure, they will have the
same reduced volume. This is known as the Law of Corresponding States and when two or more
substances are at the same reduced temperature and pressure, they are said to be in the Corresponding
states. In practice this means that the properties of liquids should be determined at the same reduced
temperature because pressure has very slight effect on them. Since it has been found that boiling
points of liquids are approximately 2/3rd of the critical temperature, it follows that liquids are at their
boiling points (in degrees absolute) approximately in corresponding states. Therefore in studying
the relation between the physical properties of liquids and the chemical constitution, the physical
properties may be conveniently determined at the boiling points of liquids.

SOLVED PROBLEM 1. The reduced volume (φ) and reduced temperature (θ) of a gas are 10.2 and
0.7. What will be its pressure if its critical pressure (Pc) is 4.25 atm ?

SOLUTION. It is given that
Reduced volume, φ = 10.2; Reduced temperature, θ = 0.7

Critical pressure, cP  = 4.25 atm
Applying reduced equations of state

2
3 [3 – 1] 8⎡ ⎤π + φ = θ⎢ ⎥φ⎣ ⎦

Substituting the values we get
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2
3 [3 10.2 – 1] 8 0.7

(10.2)
⎡ ⎤π + × = ×⎢ ⎥
⎣ ⎦

or
3 [30.6 – 1] 5.6

104.04
⎡ ⎤π + =⎢ ⎥⎣ ⎦

or (π + 0.0288) (29.6) = 5.6

or
5.6 – 0.0288
29.6

π =

= 0.18918 – 0.0288
= 0.160389

We know
c

P
P

= π

or P = π × cP = 0.016038 × 4.25

= 0.06816 atm

SOLVED PROBLEM 2. The critical temperature of hydrogen gas is 33.2°C and its critical pressure
is 12.4 atm. Find out the values of ‘a’ and ‘b’ for the gas

SOLUTION. We know
8

27c
aT
Rb

= ...(i);             227c
aP
b

= ...(ii)

Dividing (i) by (ii) we get
28 27 8

27
c

c

T a b b
P Rb a R

= × = ...(iii)

Given Tc = 33.2°C = 33.2 + 273 = 306.2 K
and Pc = 12.4 atm ; R = 0.082 atm. litre K–1 mol–1

Substituting the values in equation (iii), we get

306.2 8
12.4 0.082

b×
=

or
306.2 0.082

12.4 8
b ×
=

×

= 0.253 litre mol–1

Now, substituting the value of ‘b’ in equation (i) we have
8 8or 306.2

27 27 0.082 0.253c
a aT
Rb

×
= =

× ×
or a = 21.439 atm litre2 mol–1

METHODS OF LIQUEFACTION OF GASES
The general behaviour of gases with the decrease of temperature and increase of pressure is

shown by the Andrews isotherms of CO2 (Fig. 10.32). If a gas is cooled below its critical temperature
and then subjected to adequate pressure, it liquefies. The various methods employed for the
liquefaction of gases depend on the technique used to attain low temperature. The three important
methods are :
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(1) Faraday’s method in which cooling is done with a freezing mixture
(2) Linde’s method in which a compressed gas is released at a narrow jet (Joule-Thomson

effect)
(3) Claude’s method in which a gas is allowed to do mechanical work

FARADAY’S METHOD
Faraday (1823) used freezing mixtures of ice with various salts for external cooling of gases. The

melting of ice and dissolution of salts both are endothermic processes. The temperature of the
mixture is lowered up to a temperature when the solution becomes saturated.

Faraday's method for the liquefaction of gases.
Figure 10.34

Heat

Gas

Liquefied gas

Reactants

Faraday succeeded in liquefying a number of gases such as SO2, CO2, NO and Cl2 by this
method. He employed a V-shaped tube in one arm of which the gas was prepared. In the other arm, the
gas was liquefied under its own pressure.

The gases liquefied by this method had their critical temperature above or just below the
ordinary atmospheric temperature. The other gases including H2, N2 and O2 having low critical
points could not be liquefied by Faraday’s method.

Refrigerating liquid

Compressed
air

Fresh
air

Compressor

Jet

 Linde's method for liquefaction of air.
Figure 10.35
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Expansion
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tube
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LINDE’S METHOD
Linde (1895) used Joule Thomson effect as the basis for the liquefaction of gases. When a

compressed gas is allowed to expand into vacuum or a region of low pressure, it produces intense
cooling. In a compressed gas the molecules are very close and the attractions between them are
appreciable. As the gas expands, the molecules move apart. In doing so, the intermolecular attraction
must be overcome. The energy for it is taken from the gas itself which is thereby cooled.

Linde used an apparatus worked on the above principle for the liquefaction of air (see Fig. 10.35).
Pure dry air is compressed to about 200 atmospheres. It is passed through a pipe cooled by a
refrigerating liquid such as ammonia. Here, the heat of compression is removed. The compressed air
is then passed into a spiral pipe with a jet at the lower end. The free expansion of air at the jet results
in a considerable drop of temperature. The cooled air which is now at about one atmosphere pressure
passed up the expansion chamber. It further cools the incoming air of the spiral tube and returns to
the compressor. By repeating the process of compression and expansion, a temperature low enough
to liquefy air is reached. The liquefied air collects at the bottom of the expansion chamber.

CLAUDE’S METHOD
This method for liquefaction of gases is more efficient than that of Linde. Here also the cooling

is produced by free expansion of compressed gas. But in addition, the gas is made to do work by
driving an engine. The energy for it comes from the gas itself which cools. Thus in Claude’s method
the gas is cooled not only by overcoming the intermolecular forces but also by performance of work.
That is why the cooling produced is greater than in Linde’s method.

Air expands and
pushes back the
piston

Refrigerating liquid

Compressed
air

Fresh
air

Compressor

 Claude's method for liquefaction of air.
Figure 10.36
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Jet

Claude used the apparatus shown in Fig. 10.36. for the liquefaction of air. Pure dry air is
compressed to about 200 atmospheres. It is led through a tube cooled by refrigerating liquid to
remove any heat produced during the compression. The tube carrying the compressed air then enters
the ‘expansion chamber’. The tube bifurcates and a part of the air passes through the side-tube into
the cylinder of an engine. Here it expands and pushes back the piston. Thus the air does mechanical
work whereby it cools. The air then enters the expansion chamber and cools the incoming compressed
air through the spiral tube. The air undergoes further cooling by expansion at the jet and liquefies. The
gas escaping liquefaction goes back to the compressor and the whole process is repeated over and
over again.
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    EXAMINATION QUESTIONS

1. Define or explain the following terms :
(a) Boyle’s law (b) Charle’s law (c) Absolute zero
(d) Avogadro’s law (e) Combined gas laws (f) Ideal gas equation
(g) Gas constant (h) Dalton’s law (i) Graham’s law
(j) Mean free path (k) Collision frequency (l) Specific heat
(m) Molar heat capacity (n) Real gases (o) van der Waals equation
(p) Critical temperature (q) Critical pressure (r) Critical volume

2. At what temperature would ethane molecules have the same r.m.s. velocity as methane molecules at
27°C.
Answer. 289.5°C

3. (a) What is the law of corresponding states? How it is derived from the van der Waal’s equation?
(b) Calculate the root mean square velocity of oxygen molecules at 27°C.
Answer. (b) 4.835 × 104 cm sec–1

4. Calculate the critical constants (Vc, Pc and Tc) for C2H2 using van der Waal’s constants
a = 4.390 atm litre2 moles–2; b = 0.05136 litre mol–1 (R = 0.082 atm litre mol–1 K–1)
Answer. Vc = 0.1540 litre; Pc = 61.63 atm; Tc = 15.86 K

5. (a) Derive an expression for the pressure  of an ideal gas by means of the kinetic theory and show that
the total kinetic energy of the molecules in one mole of an ideal gas is equal to 3/2RT.

(b) Calculate the root mean square velocity of oxygen molecules at 25°C.
Answer. 4.819 × 104 cm sec–1

6. (a) Derive the kinetic gas equation for an ideal gas.
(b) Calculate the root mean square velocity for oxygen molecules at 26.85°C, given that gas constant

is 8.314 × 107 ergs mol–1 deg–1.
Answer. 4.8365 × 104 cm sec–1

7. (a) What are assumptions of kinetic theory of gases and show how far are they justified?
(b) A vessel of volume 1.0 litre contains 1025 gas molecules of mass 10–24 g each. If the r.m.s. velocity

is 105 cm sec–1, calculate the total kinetic energy and the temperature.
Answer. (b) 5 × 1010 ergs; 127.93°C

8. (a) Derive van der Waal’s reduced equation of state. Explain the significance of the law.

(b) Critical density of a substance having molecular weight is 0.555 gm/cc and cP  = 48 atm. Calculate
van der Waal’s constants ‘a’ and ‘b’.

Answer. (b)a = 5.645 atm litre2 mol–2; b = 0.066 litre mol–1

9. (a) Indicate what do you mean by ‘mean’ and r.m.s. velocity of gas molecules.
(b) Calculate the root mean square (rms) speed of CO2 molecules at 27°C.
(c) Define critical constants of a gas. Obtain the relation from van der Waal’s gas.

c

c c

8
3

RT
PV

=

where symbols have their usual meanings.
Answer. (b) 4.1238 × 104 cm sec–1

10. For ammonia gas van der Waals constants a and b are 4.0 litre2 atm mol–2 and 0.036 litre mol–1

respectively. Calculate critical volume. (R = 0.082 litre atm deg–1)
Answer. 0.108 lit.
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11. (a) What do you understand by the distribution of molecular velocities of a gas? Illustrate your
answer with the help of a diagram.

(b) Calculate the root mean square velocity of CO2 at 27°C.
Answer. 4.124 × 104 cm sec–1

12. (a) Discuss the causes of deviation of real gases from ideal gas behaviour. How are they accounted for
in the van der Waal’s equation?

(b) What is the ‘mean free path’ of a gas? Give its relationship with the collision diameter as well as
with the viscosity of a gas. (Delhi BSc, 2000)

13. Write short note on ‘critical constants and their experimental determination’. (Lucknow BSc, 2001)
14. (a) Prove that for gases Cp – Cv = R. Define the terms involved. How does it help in determining the

aromaticity of the gases?
(b) Explain the law of corresponding state. (Lucknow BSc, 2001)

15. (a) How and why real gases deviate from ideal behaviour. Derive van der Waal’s equation for ‘n’
moles.

(b) What do you understand by the mean free path and collision diameter of a gas molecule. Give the
effect of temperature and pressure on the free path. (Lucknow BSc, 2001)

16. Calculate critical constants Vc, Pc and Tc for C2H2 using van der Waal’s constants.
a = 4.39 atm lit mol–1, b = 0.5316 litre mol–1. (R = 0.082 litre atm K–1 mol–1)
Answer. 1.5948 litre; 0.575 atm and 29.83 K (Delhi BSc, 2001; Nagpur BSc, 2002)

17. (a) What are the limitations of the equation PV = RT? What improvements have been suggested by van
der Waal?

(b) How van der Waal’s equation can be applied for the calculation of Boyle’s temperature? Also
define Boyle’s temperature.

(c) Show that van der Waal’s equation reduces to ideal gas equation at Boyle’s temperature.
(MD Rohtak BSc, 2002)

18. Define critical constants. Explain the experimental determination of critical constants.
(Sri Venkateswara BSc, 2002)

19. (a) How does the van der Waal’s equation explain the behaviour of gases at
(i) High pressure and (ii) Low pressure

(b) Discuss the critical constants of a gas. (Jamia Millia BSc, 2002)
20. Calculate the average internal energy of a diatomic molecule at 300 K using law of equipartition of

energy.
Answer. 6235.5 J (Panjab BSc, 2002)

21. Calculate average velocity of oxygen molecule at 25°C. (R = 8.314 JK–1 mol–1)
Answer. 444.138 m sec–1 (Nagpur BSc, 2002)

22. Explain the deviation of real gases from ideal gas behaviour and derive the van der Waal’s equation for
one mole of a gas

( )2
aP V b RT

V
⎛ ⎞+ − =⎜ ⎟⎝ ⎠

(Allahabad BSc, 2002)

23. (a) What is Boyle’s temperature? Give its significance.
(b) Define specific heat and heat capacity. What is the difference between the two?
(c) Describe the temperature dependence of molecular distribution of energies.

(Guru Nanak Dev BSc, 2002)
24. (a) Explain the term degree of freedom.

(b) State law of corresponding state. (Nagpur BSc, 2002)
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25. Derive the van der Waal’s equation for n moles of a gas and write down the units in which van der Waal’s
constants are expressed. (Arunachal BSc, 2002)

26. Calculate the root mean square velocity of nitrogen molecule at 27°C.
Answer. 1.63 × 105 cm sec–1 (Vidyasagar BSc, 2002)

27. (a) If the equation of state for one mole of a gas is P (v – b) = RT, find the value of

T P V

P V T
V T P

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(b) Show that Cp – Cv = T 
V P

P V
T T

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠  and hence for an ideal gas (1 mole) Cp – Cv = R

(c) Show that at equilibrium : ( ) ( )T, P T, V0, 0G A∂ = ∂ = (Jamia Millia BSc, 2002)

28. (a) What are ideal and non-ideal gases? Explain why the real gases deviate from ideal behaviour?
(b) The critical volume of a gas is 0.105 L mol–1. Assuming the molecules of the gas to be spherical,

calculate the diameter of the gas molecule.
Answer. (b) 4.806 × 10–9 m (Guru Nanak Dev BSc, 2002)

29. (a) What is kinetic gas equation? Derive Boyle’s law and Charle’s law from it.
(b) Define mean free path and collision diameter.
(c) On the basis of kinetic theory of gases, show that for monoatomic gases Cp – Cv = R.

(Punjabi BSc, 2002)
30. (a) Explain the significance of van der Waal’s constant.

(b) Why do gases fail to obey ideal gas equation at high pressure and low temperature?
(Punjabi BSc, 2002)

31. (a) What are the real gases? In which conditions real gases deviate from ideal gas behaviour? Describe
these deviations and derive van der Waal’s equation.

(b) What do you understand by the liquefaction of gases. Describe two methods briefly.
(HS Gaur BSc, 2002)

32. (a) Deduce Avogadro’s law from the kinetic gas equation.
(b) What will be the real gas equation if the pressure is too high?
(c) Why is volume correction necessary for a real gas? What is the unit of ‘b’.

(Arunachal BSc, 2002)
33. State the principle of equipartition of energy and explain the high temperature limiting value of molar

heat capacity of a diatomic molecule at constant volume can be evaluated with the help of this principle.
(Vidyasagar BSc, 2002)

34. What is compressibility factor? How van der Waal’s equation of state accounts for the non-ideal
behaviour of gases? (Aligarh BSc, 2002)

35. (a) What do you understand by Cp and Cv of gases?
(b) State Kirchoff’s law. (Madurai BSc, 2002)

36. Write down the expression for the Maxwell’s distribution of molecular speed and discuss its
characteristics. (Vidyasagar BSc, 2002)

37. (a) Explain how real gases deviate from ideal behaviour. What are the causes of deviations.
(b) What is the law of corresponding states? Deduce the equation for law of corresponding states.

(Arunachal BSc, 2002)
38. (a) What is meant by degree of freedom of a molecule? How is it classified into different forms.

(b) Explain giving reasons why the heat capacity of a diatomic gas is greater than that of a monoatomic
gas. Show that the ratio Cp / Cv for monoatomic gases is 1.66. (Mizoram BSc, 2002)
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39. (a) Write the wrong assumptions of kinetic theory of gases and derive the van der Waal’s equation.
(b) Explain deviation of gases from ideal gas behaviour with the help of a graph.

(Jamia Millia BSc, 2002)
40. (a) What are the van der Waal’s forces? How do they originate in non-polar molecules? Explain giving

examples.
(b) Calculate molecular diameter of helium. Given b = 2.4 × 10–3 m–1 mol–1

Answer. (b) 4.238 × 10–10 m
41. Derive the reduced equation of state for a gas obeying van der Waal’s equation (Assume the necessary

expression for Pc, Vc, and Tc. Explain significance. (Vidyasagar BSc, 2002)
42. Derive the relation between Cp and Cv for an ideal gas. (Nagpur BSc, 2002)
43. (a) Write the expression for the distribution of molecular velocities. What is root mean square velocity?

(b) Explain the principle of continuity of state. (Aligarh BSc, 2002)
44. Starting from kinetic gas equation derive

(i) Avogadro’s law;  and (ii) Graham’s law of diffusion (Nagpur BSc, 2003)
45. Calculate the root mean square velocity of hydrogen gas at 0°C. (R = 8.314 JK–1 mol–1)

Answer. 184.51 × 103 cm sec–1 (Arunachal BSc (H), 2003)
46. What are ideal and non-ideal gases? What are the chief causes of deviation of real gases from ideal

behaviour? Derive van der Waal’s equation and show how these are accounted for in this equation.
(Guru Nanak Dev BSc, 2003)

47. Show that the total pressure (P) exerted by an ideal gas containing ‘N’ molecules and occupying volume
‘V’ is given by :

2

3
m NP

V
μ= (Guru Nanak Dev BSc, 2002)

48. What is critical phenomenon? Derive expression for the critical constants of a gas using van der Waal’s
equation of state. How do you find out the van der Waal’s constants from the critical values of pressure,
temperature and volume? (Sambalpur BSc, 2003)

49. (a) Explain why beyond a certain temperature gases can not be liquefied whatever the pressure may be.
(b) Describe the effect of temperature and pressure on mean free path.
(c) Describe law of corresponding state. (Guru Nanak Dev BSc, 2003)

50. (a) Expected values of heat capacities for gases are observed only at high temperatures. Explain.
(b) The compressibility factor is unity at Boyle temperature of gas. Why?
(c) Calculate ‘r’ for diatomic molecule using equipartition principle. (Sambalpur BSc, 2003)

51. (a) Discuss the effect of temperature on molecular velocity.
(b) Derive a relationship between Cp and Cv for an ideal gas. (Nagpur BSc, 2003)

52. At what temperature would ethane molecule have the same r.m.s. velocity as methane molecules at
27°C?
Answer. 562.4 K (Delhi BSc, 2003)

53. (a) Derive the reduced equation of state for a gas.
(b) What is the law of corresponding states? (Delhi BSc, 2003)

54. Find the relationship between kinetic energy and temperature. (Arunachal BSc, 2003)
55. A 10.0 L flask contains 64 g of oxygen at 27°C. Calculate its pressure using

(i) van der Waal’s equation and (ii) ideal gas equation
Given that a = 4.17 atm L mol–2 and b = 0.037 L mol–1

Answer. 4.808 atm; 4.938 atm (Arunachal BSc (H), 2003)
56. (a) What is kinetic gas equation? Explain the concept of absolute zero.
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(b) What do you understand by the degree of freedom of motion. Briefly explain the different type of
degrees of freedom possessed by linear and non-linear molecules. (Panjab BSc, 2002)

57. (a) Deduce the equation for mean free path of a gas molecule and hence show that how it varies with
temperature and pressure.

(b) Explain using different curves that real gases can behave ideally at very low pressure and at fairly
high temperature. (Kalyani BSc, 2003)

58. Starting from van der Waal’s equation, derive the values of critical volume and critical pressure in terms
of van der Waal’s constants ‘a’ and ‘b’. van der Waal’s constants for carbon dioxide are
a = 3.6 atm dm6 mol–2 and b = 4.28 × 10–2 dm3 mol–1. Calculate critical volume and critical pressure of
the gas.
Answer. Vc = 1.284 × 10–1 atm dm6 mol–2; Pc = 1.03 atm dm3 mol–1 (Nagpur BSc, 2003)

59. Calculate RMS velocity of methane molecule at 370 K (R = 8.314 JK–1 mol–1, M = 16 × 10–3 kg)
Answer. 7.5946 × 104 cm sec–1 (Nagpur BSc, 2003)

60. Oxygen has a density of 1.429 g per litre at NTP. Calculate the r.m.s. and average velocity of its
molecules.
Answer. 1.3487 × 103 cm sec–1; 1.2426 × 103 cm sec–1 (Delhi BSc, 2003)

61. (a) What is meant by root mean square velocity of gaseous molecules? How is it different from
average velocity?

(b) Calculate the average kinetic energy per molecule of CO2 gas at 27°C. (R = 1.987 cal deg–1 mol–1)
Answer. (b) 894.15 cal (Sambalpur BSc, 2003)

62. What do you mean by fugacity? Explain clearly that the fugacity of a gas can be less than as well as more
than the pressure. (Arunachal BSc, 2003)

63. Oxygen has a density of 1.429 g litre at NTP. Calculate the r.m.s. and average velocity of its molecules.
Answer. 0.4612 m sec–1; 0.4249 m sec–1 (Delhi BSc, 2003)

64. (a) What were the reasons which led van der Waals to modify the ideal gas equation. Write down the
modified equation.

(b) One mole of diethyl ether occupies 15 litres at 227°C. Calculate the pressure if van der Waal’s
constants for diethyl ether are a = 17.38 atm litre2 mol–2 and b = 0.134 litre mol–1.

Answer. 2.6184 atm (Anna BSc, 2004)
65. (a) Write van der Waal’s equation. What are the limitations of this equation? Give the units of van der

Waal’s constants.
(b) Define mean free path and collision frequency. Explain how mean free path depends upon collision

frequency and molecular size.
(c) Calculate the critical temperature of a van der Waal’s gas for which Pc is 100 atm. and b is

50 cm3 mol–1.
Answer. (c) 214.2°C (Mangalore BSc, 2004)

66. (a) Distinguish between root mean square velocity and most probable velocity.
(b) Calculate molar volume of an ideal gas at 127°C and 1 atm. pressure.
(c) Why van der Waal’s equation is applicable to real gases? Define compressibility factor and Boyle’s

temperature.
Answer. (b) 32.84 litre (Burdwan BSc, 2004)

67. Two gases P and Q having molecular masses 44 and 64 respectively are enclosed in a vessel. Their masses
are 0.5 g and 0.3 g respectively and the total pressure of the mixture is 740 mm. Calculate the partial
pressures of the two gases.
Answer. 524 mm ; 216 mm (Burdwan BSc, 2005)

68. Calculate the total pressure in a 10 Litre cylinder which contains 0.4 g of helium, 1.6 g of oxygen and 1.4
of nitrogen at 27 ºC. Also calculate the partial pressure of helium gas in the cylinder. Assume ideal
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behaviour for gases.
Answer. 0.492 atm ; 0.246 atm (Arunachal BSc, 2005)

69. Calculate the average kinetic energy in Joules of the molecules in 8.0 g of methane at 27 ºC.
Answer. 1870.65 J (Mysore BSc, 2005)

70. Calculate the root mean square velocity of Ozone kept in a closed vessel at 20 ºC and 82 cm mercury
pressure.
Answer. 3.9032 ×  104 cm sec–1 (Purvanchal BSc, 2005)

71. Calculate the volume occupied by 7 g of nitrogen gas at 27 ºC and 750 mm pressure.
Answer.  6.23 litre (Kalyani BSc, 2006)

73. A spherical balloon of 21 cm diameter is to be filled up with hydrogen at NTP from a cylinder containing
the gas at 27 ºC and 27 atm pressure. If the cylinder can hold 2.82 litre of water, calculate the number of
balloons that can be filled up.
Answer.  10 (Jamia Millia BSc, 2006)

74. Calculate the total pressure in a mixture of 4 g of oxygen and 3 g of hydrogen confined in a total volume
of one litre at 0 ºC.
Answer.  25.18 atm (Mumbai BSc, 2006)

    MULTIPLE CHOICE QUESTIONS

1. According to Boyle’s law the volume of a fixed mass of a gas, at constant temperature, is
(a) directly proportional to its pressure (b) inversely proportional to its pressure
(c) the square root of its pressure (d) none of these
Answer. (b)

2. Mathematically, Boyle’s law can be represented as
(a) V ∝ 1/P (b) V = k/P
(c) V P = k (d) all of these
Answer. (d)

3. At constant temperature, the pressure of the gas is reduced to one third, the volume
(a) reduces to one third (b) increases by three times
(c) remains the same (d) cannot be predicted
Answer. (b)

4. At constant pressure, the volume of a fixed mass of a gas is
(a) directly proportional to its temperature (b) directly proportional to its absolute temperature
(c) inversely proportional to its temperature (d) inversely proportional to its absolute

temperature
Answer. (b)

5. Which of the following is the correct mathematical relation for Charle’s law at constant pressure?
(a) V ∝ T (b) V ∝ t
(c) V = kt (d) none of these
Answer. (a)

6. According to Gay Lussac’s law for a fixed volume of a given gas
(a) P/T = a constant (b) P ∝ 1/T
(c) P = k/T (d) PT = k
Answer. (a)



410 1010101010  PHYSICAL CHEMISTRY

7. “Equal volume of all gases at the same temperature and pressure contain equal number of molecules” is
the statement of
(a) combined gas law (b) Charle’s law
(c) Avogadro’s law (d) Boyle’s law
Answer. (c)

8. For one mole of a gas, the ideal gas equation is
(a) PV = RT (b) PV = 1/2 RT
(c) PV = 3/2 RT (d) PV = 5/2 RT
Answer. (a)

9. The units of R, the gas constant are
(a) erg K–1 mol–1 (b) cal K–1 mol–1

(c) joule K–1 mol–1 (d) all of these
Answer. (d)

10. In lit atm K–1 mol–1 the numerical value of R, the gas constant, is
(a) 0.821 (b) 0.0821
(c) 0.00821 (d) 0.000821
Answer. (b)

11. “The total pressure of a mixture of gases (non–reacting) is equal to the sum of the partial pressures of
all the gases present” is the statement of
(a) Graham’s law of diffusion (b) Dalton’s law of partial pressures
(c) Avogadro’s law of partial pressures (d) none of these
Answer. (b)

12. Under same conditions of temperature and pressure, the rates of diffusion of different gases are
(a) directly proportional to the square roots of the molecular masses
(b) directly proportional to the square roots of their vapour densities
(c) inversely proportional to the square roots of their molecular masses
(d) inversely proportional to the square roots of their molar volumes
Answer. (c)

13. The average kinetic energy of the gas molecules is
(a) inversely proportional to its absolute temperature
(b) directly proportional to its absolute temperature
(c) equal to the square of its absolute temperature
(d) directly proportional to the square root of its absolute temperature
Answer. (b)

14. For one mole of a gas the kinetic energy is given by
(a) E = 1/2 RT (b) E = 3/2 RT
(c) E = 5/2 RT (d) E = 7/2 RT
Answer. (b)

15. The kinetic gas equation is given by the relation
(a) PV = 1/3 m N μ2 (b) PV = 1/2 m N μ2

(c) PV = 3/2 m N μ2 (d) PV = 2/3 m N μ2

Answer. (a)
16. The average velocity of a gas is given by

(a)
8RTv
n M

= (b)
3RTv
n M

=
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(c)
2RTv
n M

= (d)
RTv

n M
=

Answer. (a)
17. The root mean square velocity of gas molecules is given by the relation

(a)
RT
M

μ = (b)
2RT
M

μ =

(c)
3RT
M

μ = (d)
8RT
M

μ =

Answer. (c)
18. The root mean square velocity gas molecules is given by the relation

(a)
3PV
M

μ = (b)
3RT
M

μ =

(c)
3P
D

μ = (d) all of these

Answer. (d)
19. The free path is the distance travelled by the molecule

(a) before collision (b) in one second
(c) after collision (d) in one minute
Answer. (a)

20. The mean free path is
(a) directly proportional to the pressure of the gas
(b) directly proportional to the root mean square velocity of gas
(c) directly proportional to the temperature of the gas
(d) directly proportional to the absolute temperature of the gas
Answer. (d)

21. The collision frequency of a gas is
(a) directly proportional to the square root of absolute temperature
(b) directly proportional to the absolute temperature
(c) inversely proportional to the pressure of the gas
(d) inversely proportional to the absolute temperature
Answer. (b)

22. The value of γ , the specific heat ratio, for a monoatomic gas is
(a) 0 (b) 1.40
(c) 1.667 (d) 1.33
Answer. (a)

23. The compressibility factor, z i.e. the extent to which a real gas deviates from ideal behaviour is given by

(a) 2
PVz
RT

= (b) 2
PVz
RT

=

(c)
PVz
RT

= (d)
2PVz
RT

=

Answer. (c)
24. The real gases show nearly ideal behaviour at

(a) low pressures and low temperatures (b) high pressures and low temperatures
(c) high pressures and high temperatures (d) low pressures and high temperatures
Answer. (d)
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25. Excluded volume is _____ times the actual volume of molecules.
(a) ½ (b) two
(c) three (d) four
Answer. (d)

26. The pressure P in the ideal gas equation is replaced by

(a)
2

2
a nP
V

⎛ ⎞
+⎜ ⎟⎜ ⎟⎝ ⎠

(b)
2

2
a nP
V

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

(c)
2

2
2 nP
V

⎛ ⎞
+⎜ ⎟⎜ ⎟⎝ ⎠

(d)
2

22
nP
V

⎛ ⎞
+⎜ ⎟⎜ ⎟⎝ ⎠

Answer. (a)
27. The units of ‘a’ the van der Waal’s constant are

(a) atm lit mol–1 (b) atm lit–1 mol–1

(c) atm lit–2 mol–2 (d) atm lit–1 mol–2

Answer. (c)
28. Which one of the following is incorrect?

(a) the critical temperature, Tc, of a gas is that temperature above which it can be liquefied no matter
how high pressure is applied

(b) the critical pressure, cP , is the minimum pressure required to liquefy the gas at its critical
temperature

(c) the critical volume, cP , is the volume occupied by one mole of the gas at critical temperature and
critical volume

(d) none of these
Answer. (d)

29. Which one of the following relations is correct?

(a) Vc = 3b (b) Pc = 227
a
R b

(c) Tc = 
8

27
a
R b (d) none of these

Answer. (d)
30. The van der Waal’s reduced equation of state is

(a) ( )2
3 3 1 8

⎡ ⎤
π + φ − = θ⎢ ⎥φ⎣ ⎦

(b) ( )2
3 3 1 8

⎡ ⎤
π− φ + = θ⎢ ⎥φ⎣ ⎦

(c) ( )3 3 1 8⎡ ⎤π+ φ + = θ⎢ ⎥φ⎣ ⎦
(d) 2

3 1 8
3

⎡ ⎤ φ⎛ ⎞π+ + = θ⎢ ⎥ ⎜ ⎟φ ⎝ ⎠⎣ ⎦
Answer. (a)

31. How many molecules are present in 0.2 g of hydrogen?
(a) 6.023 × 1023 (b) 6.023 × 1022

(c) 3.0125 × 1023 (d) 3.0125 × 1022

Answer. (b)
32. Gas A diffuses twice as fast as another gas B. If the vapour density of the gas A is 2, the molecular mass

of gas B is
(a) 2 (b) 4
(c) 8 (d) 16
Answer. (d)

33. A container contains a gas at 1 atm pressure. To compress it to 1/3rd of its initial volume, pressure to
be applied is
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(a) 1 atm (b) 2 atm
(c) 3 atm (d) 6 atm
Answer. (c)

34. The ratio of most probable velocity, average velocity and root mean square velocity of molecules of a
gas is
(a) 1 : 1.128 : 1.224 (b) 1.128 : 1 : 1.224
(c) 1.128 : 1.224 : 1 (d) 1.224 : 1 : 1.128
Answer. (a)

35. Which of the following gases will have the highest rate of diffusion?
(a) CH4 (b) NH3
(c) N2 (d) CO2
Answer. (a)

36. 290 ml of a gas at 17°C is cooled to –13°C at constant pressure. The new volume of the gas will be
(a) 260 ml (b) 270 ml
(c) 280 ml (d) 290 ml
Answer. (a)

37. The volume of a gas at 0°C is 273 ml. Its volume at 12°C and the same pressure will be

(a)
12273 ml
273

+ (b)
273273 ml
12

+

(c) 273 + 12 ml (d) 273 – 12 ml
Answer. (c)

38. If the pressure and absolute temperature of 3 litres of a gas are doubled, its volume would be
(a) 2 litres (b) 3 litres
(c) 6 litres (d) 12 litres
Answer. (b)

39. The mass of 2240 ml of CO2 at NTP will be
(a) 4.0 g (b) 4.4 g
(c) 8.8 g (d) 8.0 g
Answer. (b)

40. The mass of 224 ml of N2 on liquefaction will be
(a) 28 g (b) 14 g
(c) 1.4 g (d) 2.8 g
Answer. (d)

41. The root mean square velocity of a certain gas at 27°C is y cm sec–1. The temperature at which its
velocity will be 2y is
(a) 54°C (b) 108°C
(c) 600 K (d) 1200 K
Answer. (d)

42. Out of the following pairs of gases, which will diffuse through a porous plug with the same rate of
diffusion?
(a) NO, CO (b) CH4, O2
(c) NO2, CO2 (d) NO, C2H6
Answer. (d)

43. 8 g of CH4 and 2 g of hydrogen are mixed and kept at 760 mm pressure at 273 K. The total volume
occupied by the mixture will be
(a) 11.2 litre (b) 22.4 litre
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(c) 33.6 litre (d) 44.8 litre
Answer. (c)

44. The root mean square velocity of a certain gas at 27°C is a m sec–1. Its root mean square velocity at
927°C is
(a) a/2 m sec–1 (b) 2a m sec–1

(c) 3a m sec–1 (d) 6a m sec–1

Answer. (b)
45. In a closed flask of one litre, 2.0 g of hydrogen gas is heated from 27°C to 327°C. Which of the following

is incorrect?
(a) the pressure of the gas increases
(b) the kinetic energy of gaseous molecules increases
(c) the rate of collision increases
(d) the number of moles of the gas increases
Answer. (d)

46. Which of the following gases will have the lowest rate of diffusion?
(a) H2 (b) N2
(c) F2 (d) O2
Answer. (c)

47. A gas is heated at constant temperature. Then
(a) the no. of molecules of the gas increases
(b) the kinetic energy of the gas molecules decreases
(c) the kinetic energy of the gas molecules remains unaltered
(d) the kinetic energy of the gas molecules increases
Answer. (c)

48. Equal volumes of methane and ethane are mixed in an empty container at 25°C. The fraction of total
pressure exerted by ethane is
(a) 1/2 (b) 2/3
(c) 8/15 (d) 3/2
Answer. (a)

49. In van der Waal’s equation of state for a non-ideal gas the net force of attraction among the molecules is
given by

(a)
2

2
a n
V

(b)
2

2
a nP
V

+

(c)
2

2
a nP
V

− (d)
2

2
a n
V

−

Answer. (a)
50. The compressibility factor, z, for an ideal gas is

(a) zero (b) less than one
(c) greater than one (d) equal to one
Answer. (d)
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