Review of Basic Semiconductor Physics

Current Flow and Conductivity

- $Area = A$ • Charge in volume $A\delta x = \delta Q$ $\delta x = v \, \delta t$ \bigodot $=$ q n A δ x = q n A v δt _
⊝_ \bigodot Current density $J = (\delta Q / \delta t) A^{-1}$ **•**Electrons moving with velocity v Current $=$ q n v Density $=$ J
	- **•** Metals gold, platinum, silver, copper, etc.
		- $n = 10^{23}$ cm⁻³; $\sigma = 10^{7}$ mhos-cm
	- Insulators silicon dioxide, silicon nitride, aluminum oxide
		- $n < 10^3$ cm⁻³; $\sigma < 10^{-10}$ mhos-cm
	- Semiconductors silicon, gallium arsenide, diamond, etc.
		- 10^8 < n \le 10¹⁹ cm⁻³; 10^{-10} < σ < 10⁴ mhos-cm

Thermal Ionization

- **•** Si atoms have thermal vibrations about equilibrium point.
- **•** Small percentage of Si atoms have large enough vibrational energy to break covalent bond and liberate an electron.

Electrons and Holes

- $T_3 > T_2 > T_1$
- **•** Density of free electrons $= n : Density of free$ $holes = p$
	- $p = n = n_i(T) =$ intrinsic carrier density.
- $n_i^2(T) = C \exp(-qE_g/(kT))$ $= 10^{20}$ cm⁻⁶ at 300 K
	- $T = temp in K$
	- $k = 1.4x10^{-23}$ joules/ K
	- E_g = energy gap = 1.1 eV in silicon
	- $q = 1.6x10^{-19}$ coulombs

Doped Semiconductors

- Extrinsic (doped) semiconductors: $p = p_0 \neq n = n_0 \neq n_i$
- **•** Carrier density estimates:
	- Law of mass action $n_0p_0 = n_i^2(T)$
	- Charge neutrality $N_a + n_o = N_d + p_o$

• N-type silicon with $N_d \gg n_i$: $n_o \approx N_d$, $p_o \approx n_i^2/N_d$

Copyright © by John Wiley & Sons 2003 Semiconductor Physics - 5

Nonequilibrium and Recombination

- **•** Thermal Equilibrium - Carrier generation = Carrier recombination
	- $n = n_o$ and $p = p_o$
- <u>Nonequilibrium</u> $n > n_0$ and $p > p_0$
	- $n = n_0 + \delta n$ and $p = n_0 + \delta n$; $\delta n =$ excess carrier density
	- Excess holes and excess electrons created in equal numbers by breaking of covalent bonds
	- Generation mechanisms -light (photoelectric effect), injection, impact ionization
- \bullet Recombination - removal of excess holes and electrons
	- Mechanisms free electron captured by empty covalent bond (hole) or trapped by impurity or crystal imperfection
	- Rate equation: $d(\delta n)/dt = -\delta n/\tau$
	- Solution $\delta n = \delta n$ (0) e^{-t/t}

Carrier Lifetimes

- τ = excess carrier lifetime
	- Usually assumed to be constant. Changes in two important situations.
	- τ increases with temperature T
	- τ decreases at large excess carrier densities ; $\tau = \tau_o/[1 + (\delta n/n_b)^2]$

- Control of carrier lifetime values.
	- Switching time-on state loss tradeoff mandates good lifetime control.
	- Control via use of impurities such as gold lifetime killers.
	- Control via electron irradiation more uniform and better control.

- $J_{\text{drift}} = q \mu_n n E + q p \mu_p E$
- $\mu_n = 1500 \text{ cm}^2/\text{V}$ -sec for silicon at room temp. and $N_d < 10^{15}$ cm⁻³
- • $\mu_p = 500 \text{ cm}^2/\text{V-sec}$ for silicon at room temp. and $N_a < 10^{15}$ cm⁻³
- $J_{\text{diff}} = J_n + J_p = q D_n d n/d x q D_p d p/d x$
- $D_n/\mu_n = D_p/\mu_p = kT/q$; Einstein relation
- $D =$ diffusion constant, $\mu =$ carrier mobility
- Total current density $J = J_{drift} + J_{diff}$

Formation of Space Charge Layer

- **•** Diffusing electrons and holes leave the region near metallurgical junction depleted of free carriers (depletion region).
- **•** Exposed ionized impurities form space charge layer.
- **•** Electric field due to space charge opposes diffusion.

Quantitative Description of Space Charge Region

Copyright © by John Wiley & Sons 2003 Semiconductor Physics - 11

Contact (Built-in, Junction) Potential

• In thermal equilibrium
$$
J_n = q \mu_n n \frac{d\Phi}{dx} + q D_n \frac{dn}{dx} = 0
$$

• Separate variables and integrate ;
$$
\phi(x_n)
$$

\n• $\phi(x_n)$
\n $\phi(x_p)$
\n $\phi(x_p)$
\n $\phi(x_p)$
\n $\phi(x_p)$
\n $\phi(x_p)$

•
$$
\Phi(x_n) - \Phi(x_p) = \Phi_c = \frac{kT}{q} \ln \left[\frac{N_a N_d}{n_i^2} \right]; \Phi_c
$$
 = contact potential

• Example

• Room temperature
$$
kT/q = 0.025 \text{ eV}
$$

• $N_a = N_d = 10^{16}$ cm⁻³; $n_i^2 = 10^{20}$ cm⁻⁶

•
$$
F_{\rm c} = 0.72 \text{ eV}
$$

Reverse-Biased Step Junction

- Starting equations
	- $W(V) = x_n(V) + x_p(V)$

•
$$
V + \Phi_C = -\frac{qN_a x_p^2 + 1}{2\varepsilon}
$$

- \bullet Charge neutrality $\mathsf{qN}_\mathsf{a}\mathsf{x}_\mathsf{p}$ = $\mathsf{qN}_\mathsf{d}\mathsf{x}_\mathsf{n}$
- Solve equations simultaneously
	- W(V) = $W_0 \sqrt{1 + V/\Phi_C}$

Forward-Biased PN Junction

- Forward bias favors \bullet diffusion over drift.
- **Excess minority** \bullet carrier injection into both p and n drift regions.
- Minority carrier \bullet diffusion lengths.
	- $L_n = [D_n \tau_n]^{0.5}$
	- $L_p = [D_p \tau_p]^{0.5}$

Ideal PN Junction I-V Characteristics

- Excess carriers in drift regions recombined and thus more must be constantly injected if the distributions $np(x)$ and $pn(x)$ are to be maintained.
- Constant injection of electrons and holes results in a current density J given by

 \mathbf{v}

Reverse Saturation Current

- Carrier density gradient immediately adjacent to depletion region causes reverse saturation current to flow via diffusion.
- J_s independent of reverse voltage V because carrier density gradient unaffected by applied voltage.
- J_s extremely temperature sensitivity because of dependence on $n_i^2(T)$.

Impact Ionization

•
$$
E_{BD} = \sqrt{\frac{(2)!(1.1)!(10^{27})}{(1.6 \times 10^{-19})!(10^{-24})}} = 3 \times 10^5
$$
 V/cm

•Experimental estimates are $2-3.5x10^5$ V/cm