Lecture Notes

Diodes for Power Electronic Applications

OUTLINE

- PN junction power diode construction
- Breakdown voltage considerations
- On-state losses
- Switching characteristics
- Schottky diodes
- Modeling diode behavior with PSPICE

Basic Structure of Power Semiconductor Diodes

Copyright © by John Wiley & Sons 2003

Diodes - 2

Breakdown Voltage Estimate - Step Junction

- Non-punch-through diode. Drift region length $W_d > W(BV_{BD}) =$ length of space charge region at breakdown.
- $W(V) = W_0 \sqrt{1 + V/\Phi_C}$

•
$$W_0 = \sqrt{\frac{2\epsilon\Phi_c(N_a+N_d)}{qN_aN_d}}$$

- $E_{\text{max}} = \frac{2\Phi_{\text{C}}}{W_{\text{O}}}\sqrt{1! + ! V/\Phi_{\text{C}}}$
- Power diode at reverse breakdown: $N_a \gg N_d$; E = E_{BD}; V = BV_{BD} $\gg \Phi_c$
- $W^2(BV_{BD}) = \frac{W_0^2! BV_{BD}}{\Phi_c}; W_0^2 = \frac{2\epsilon\Phi_c}{q! N_d}$
- Conclusions
 - 1. Large BV_{BD} (10³ V) requires N_d < 10¹⁵ cm⁻³
 - 2. Large BV_{BD} (10³ V) requires N⁻ drift region > 100 μ m

Solve for W(BV_{BD}) and BV_{BD} to obtain (put in Si values) $BV_{BD} = \frac{\epsilon! E_{BD}^2}{2! q! N_d} = \frac{1.3 \times 10^{17}}{N_d} ; [V]$ $W(BV_{BD}) = \frac{2! BV_{BD}}{E_{BD}} = 10^{-5} BV_{BD}; [\mu m]$

Breakdown Voltage - Punch-Through Step Junction

• Punch-through step junction - $W(BV_{BD}) > W_d$

• $V_2 = E_2 W_d$

Copyright © by John Wiley & Sons 2003

• At breakdown:

•
$$V_1 + V_2 = BV_{BD}$$

•
$$E_1 + E_2 = E_{BD}$$

•
$$BV_{BD} = E_{BD} W_d - \frac{q N_d W_d^2}{2\epsilon}$$

• If $N_d \ll \frac{\epsilon(EBD)^2}{2q(BV_{BD})}$ (required value of N_d for non-punch-thru diode), then

- $BV_{BD} \approx E_{BD} W_d$ and
- W_d(Punch-thru)
 - $\approx 0.5 W_{d}$ (non-punch-thru)

Effect of Space Charge Layer Curvature

- Impurities diffuse as fast laterally as vertically
- Curvature develops in junction boundary and in depletion layer.

- If radius of curvature is comparable to depletion layer thickness, electric field becomes spatially nonuniform.
- Spatially nonuniform electric field reduces breakdown voltage.
- $R > 6 W(BV_{BD})$ in order to limit breakdown voltage reduction to 10% or less.
- Not feasible to keep R large if BV_{BD} is to be large (> 1000 V).

Control of Space Charge Layer Boundary Contour

- Electrically isolated conductors (field plates) act as equipotential surfaces.
- Correct placement can force depletion layer boundary to have larger radius of curvature and t;hus minimize field crowding.
- Electrically isolated p-regions (guard rings)has depletion regions which interact with depletion region of main pn junction.
- Correct placement of guard rings can result in composite depletion region boundary having large radius of curvature and thus minimize field crowding.

Surface Contouring to Minimize Field Crowding

- Large area diodes have depletion layers that contact Si surface.
- Difference in dielectric constant of Si and air causes field crowding at surface.
- Electric fields fringing out into air attract impurities to surface that can lower breakdown voltage.

- Proper contouring of surface can mimimize depletion layer curvature and thus field crowding.
- Use of a passivation layer like SiO₂ can also help minimize field crowding and also contain fringing fields and thus prevent attraction of impurities to surface.

Conductivity Modulation of Drift Region

Copyright © by John Wiley & Sons 2003

- Forward bias injects holes into drift region from P⁺ layer. Electrons attracted into drift region from N⁺ layer. So-called double injection.
- If $W_d \le$ high level diffusion length L_a , carrier distributions quite flat with $p(x) \approx n(x) \approx n_a$.
- For n_a >> drift region doping N_d, the resistance of the drift region will be quite small. So-called conductivity modulation.
- On-state losses greatly reduced below those estimated on basis of drift region low-level (N_d) ohmic conductivity.

Diodes - 8

Drift Region On-State Voltage Estimate

•
$$I_F = \frac{Q_F}{\tau} = \frac{q! \ A! \ W_d! \ n_a}{\tau}$$
; Current needed
to maintain stored charge Q_F .
• $I_F = \frac{q! \ [\mu_{n!} + ! \ \mu_p]! \ n_a! \ A! \ V_d}{W_d}$;
Ohm's Law $(J = \sigma E)$
• $V_d = \frac{W_d^2}{! \ [\mu_{n!} + ! \ \mu_p]! \ \tau}$; Equate above
two equations and solve for V_d

• Conclusion: long lifetime τ minimizes V_d.

Diode On-State Voltage at Large Forward Currents

•
$$\mu_{\rm n} + \mu_{\rm p} = \frac{\mu_{\rm o}}{1! + ! \frac{n_{\rm a}}{n_{\rm b}}}$$
; $n_{\rm b} \approx 10^{17} \, {\rm cm}^{-3}$.

• Mobility reduction due to increased carrier-carrier scattering at large n_a.

•
$$I_F = \frac{q! n_a! A! V_d}{W_d} \frac{\mu_0}{1! +! \frac{n_a}{n_b}}$$
; Ohms Law

with density-dependent mobility.

• Invert Ohm's Law equation to find V_d as function I_F assuming $n_a >> n_b$.

• $V_d = I_F R_{on}$

•
$$V = V_j + V_d$$

Diodes - 10

Diode Switching Waveforms in Power Circuits

Diode Internal Behavior During Turn-on

Diode Internal Behavior During Turn-off

• Insufficient excess carriers remain to support Irr, so

 P^+N^- junction becomes reverse-biased and current decreases to zero.

• Voltage drops from V_{rr} to V_R as current decreases to zero. Negative current integrated over its time duration removes a total charge Q_{rr} .

Factors Effecting Reverse Recovery Time

• $I_{rr} = \frac{di_R}{dt} t_4 = \frac{di_R}{dt} \frac{t_{rr}}{(S! + 1)}$; Defined on switching waveform diagram

•
$$Q_{rr} = \frac{I_{rr!} t_{rr}}{2} = \frac{di_R}{dt} \frac{t_{rr}^2}{2(S! + ! 1)}$$
; Defined
on waveform diagram

• Inverting Q_{rr} equation to solve for t_{rr} yields

$$t_{rr} = \sqrt{\frac{2Q_{rr}(S+1)}{\frac{di_R}{dt}}} \text{ and } I_{rr} = \sqrt{\frac{2Q_{rr}\frac{di_R}{dt}}{(S! + ! 1)}}$$

- If stored charge removed mostly by sweep-out $Q_{rr} \approx Q_F \approx I_F \tau$
- Using this in eqs. for I_{rr} and t_{rr} and assuming S + 1 \approx 1 gives

$$t_{rr} = \sqrt{\frac{2" I_F" \tau}{\frac{di_R}{dt}}}$$
 and

$$I_{rr} = \sqrt{2" I_F" \tau_" \frac{di_R}{dt}}$$

Carrier Lifetime-Breakdown Voltage Tradeoffs

• Low on-state losses require

$$L = \sqrt{D! \tau} = \sqrt{\frac{kT}{q! [\mu_n! +! \mu_p]!} \tau}$$
$$L = W_d \ge W(V) = 10^{-5} BV_{BD}$$

- Solving for the lifetime yields $\tau = \frac{W_d^2}{(kT/q)! \ [\mu_n + \mu_p]} = 4x10^{-12} \ (BV_{BD})^2$
- Substituting for τ in I_{rr} and t_{rr} equations gives

•
$$t_{rr} = 2.8 \times 10^{-6} \text{ BV}_{BD} \sqrt{\frac{I_F}{(di_R/dt)}}$$

•
$$I_{rr} = 2.8 \times 10^{-6} \text{ BV}_{BD} \sqrt{I_F!} \frac{dI_F}{dt}$$

Conclusions

- 1. Higher breakdown voltages require larger lifetimes if low on-state losses are to be maintained.
- 2. High breakdown voltage devices slower than low breakdown voltage devices.

3. Turn-off times shortened
by large
$$\frac{di_R}{dt}$$
 but I_{rr} is
increased.

Physics of Schottky Diode Operation

- Electrons diffuse from Si to Al because electrons have larger average energy in silicon compared to aluminum.
- Depletion layer and thus potential barrier set up. Gives rise to rectifying contact.
- No hole injection into silicon. No source of holes in aluminum. Thus diode is a majority carrier device.
- Reverse saturation current much larger than in pn junction diode. This leads to smaller V(on) (0.3 -0.5 volts)

Schottky Diode Breakdown Voltage

- Breakdown voltage limited to 100-200 volts.
- Narrow depletion region widths because of heavier drift region doping needed for low on-state losses.
- Small radius of curvature of depletion region where metallization ends on surface of silicon. Guard rings help to mitigate this problem.
- Depletion layer forms right at silicon surface where maximum field needed for breakdown is less because of imperfections, contaminants.

Schottky Diode Switching Waveforms

- Schottky diodes switch much faster than pn junction diodes. No minority carrier storage.
- Foreward voltage overshoot V_{FP} much smaller in Schottky diodes. Drift region ohmic resistance R_{Ω} .
- Reverse recovery time t_{rr} much smaller in Schottky diodes. No minority carrier storage.
- Reverse recovery current I_{rr} comparable to pn junction diodes. space charge capacitance in Schottky diode larger than in pn junction diode becasue of narrower depletion layer widths resulting from heavier dopings.

Ohmic Contacts

- Electrons diffuse from Al into ptype Si becasue electrons in Al have higher average energy.
- Electrons in p-type Si form an accumulation layer of greatly enhanced conductivity.
- Contact potential and rectifying junction completely masked by enhanced conductivity. So-called ohmic contact.
- In N⁺ Si depletion layer is very narrow and electric fields approach impact ionization values. Small voltages move electrons across barrier easily becasue quantum mechanical tunneling occurs.

PN Vs Schottkys at Large BVBD

 Minority carrier drift region relationships

•
$$I_F \approx \frac{q'' \left[\mu_n'' + \mu_p\right]'' n_a'' A'' V_d}{W_d}$$

- Maximum practical value of $n_a = 10^{17}$ cm⁻³ and corresponding to $\mu_n + \mu_p = 900 \text{ cm}^2/(\text{V-sec})$
- Desired breakdown voltage requires $W_d \ge 10^{-5} \text{ BV}_{BD}$ $\frac{I_F}{I_c} = 1.4 \times 106 \text{ Vd}$

$$\frac{1}{A} = 1.4 \times 10^6 \frac{VU}{BV_{BD}}$$

 Majority carrier drift region relationships

•
$$I_F \approx \frac{q'' [\mu_n'' + \mu_p]'' N_d'' A'' V_d}{W_d}$$

- Desired breakdown voltage requires $N_d = \frac{1.3 \times 10^{17}}{BV_{BD}}$ and $W_d \ge 10^{-5} BV_{BD}$
- Large BV_{BD} (1000 V) requires N_d = 10^{14} cm⁻³ where $\mu_{n} + \mu_{p} =$ 1500 cm²/(V-sec)

•
$$\frac{I_F}{A} \approx 3.1 \times 10^6 \frac{V_d}{[BV_{BD}]^2}$$

 Conclusion: Minority carrier devices have lower on-state losses at large BV_{BD}.

PSPICE Built-in Diode Model

• Circuit diagram

- Components
- C_i nonlinear space-charge capacitance
- C_d diffusion capacitance. Caused by excess carriers. Based on quasi-static description of stored charge in drift region of diode.
- Current source i_{dc}(v_j) models the exponential I-V characteristic.
- R_s accounts for parasitic ohmic losses at high currents.

Stored Charge in Diode Drift Region - Actual Versus Quasi-static Approximation

- One dimensional diagram of a power diode.
 - Quasistatic view of decay of excess carrier distribution during diode turn-off. n(x,t) = n(x=0,t) f(x)
- Redistribution of excess carriers via diffusion ignored.
 Equ;ivalent to carriers moving with inifinte velocity.
 - Actual behavior of stored charge distribution during turn-off.

Example of Faulty Simulation Using Built-in Pspice Diode Model

Copyright © by John Wiley & Sons 2003

Improved (lumped-charge) Diode Model

• More accurately model distributed nature of excess carrier distribution by dividing it into several regions, each described by a quasi-static function. Termed the lumped-charge approach.

• Many other even better (but more complicated models available in technical literature..

Details of Lumped-Charge Model

Subcircuit Listing

.Subckt DMODIFY 1 9 Params: Is1=1e-6, Ise=1e-40, Tau=100ns, +Tm=100ns,Rmo=Rs=.001, Vta=.0259, CAP=100p, Gde=.5, + Fbcoeff=.5, Phi=1, Irbk=1e20, Vrbk=1e20 *Node 1= anodeand Node 9 = cathode Dcj 1 2 Dcap ; Included for space charge capacitance and reverse *breakdown. .model Dcap D (Is=1e-25 Rs=0 TT=0 Cjo={CAP} M={Gde} +FC={Fbcoeff} Vj={Phi} +IBV={Irbk} BV=Vrbk}) Gd 1 2 Value={ $(v(5)-v(6))/Tm + Ise^*(exp(v(1,2)/Vta)-1)$ } *Following components model forward and reverse recovery. Ee 5 0 VALUE = {Is1*Tau*(exp(V(1,2)/(2*Vta))-1)}; Ee=Qe Re 5 0 1e6 $Em 6 0 VALUE = \{(V(5)/Tm-i(Vsense1))*Tm*Tau/(Tm+Tau)\}$ *Em=Qm Rm 6 0 1e6 Edm 7 0 VALUE = $\{v(6)\}$;Edm=Qm Vsense1 7 8 dc 0 ; i(vsense1)=dQm/dt Cdm 8 0 1 Rdm 8 0 1e9 Rs 2 3 4e-3 Emo 3 4 VALUE={2*Vta*Rmo*Tm*i(Vsense2) +/(v(6)*Rmo+Vta*Tm); Vm Vsense2 4 9 dc 0 .ends

- Pass numerical values of parameters Tau, Tm, Rmo,Rs, etc. by entering values in PART ATTRIBUTE window (called up within SCHEMATICS).
- See reference shown below for more details and parameter extraction procedures.
- Peter O. Lauritzen and Cliff L. Ma, "A Simple Diode Model with Forward and Reverse Recovery", IEEE Trans. on Power Electronics, Vol. 8, No. 4, pp. 342-346, (Oct., 1993)

[•] Symbolize subcircuit listing into SCHEMATICS using SYMBOL WIZARD

Simulation Results Using Lumped-Charge Diode Model

 Note soft reverse recovery and forward voltage overshoot.
Qualitatively matches experimental measurements.

Copyright © by John Wiley & Sons 2003