Lecture Notes

Gate Turn-off Thyristors (GTOS)

OUTLINE

- GTO construction and I-V characteristics.
- •Physical operation of GTOs.
- \bullet Switching behavior of GTOS

GTO (Gate Turn-off Thyristor) Construction

GTO Turn-off Gain

- • Turn off GTO by pulling one or both of the BJTs out of saturation and into active region.
- •Force Q_2 active by using negative base current I_G' to make I $_{\rm B2}$ < $\rm I_{C2}$ $\boldsymbol{\beta}_2$

•
$$
I_{B2} = \alpha_1 I_A - I_G
$$
 ;
$$
I_{C2} = (1 - \alpha_1) I_A
$$

•
$$
\alpha_1 I_A - I'_G < \frac{(1! - \alpha_1)I'_A!}{\beta_2} = \frac{(1! - \alpha_1)I(1! - \alpha_2)I'_A!}{\alpha_2}
$$

\n• $I'_G < \frac{I_A!}{\beta_0 f'_F}$; $\beta_0 f'_F = \frac{\alpha_2}{(1! - \alpha_1)! \alpha_2} = \text{turn-off gain}$

Copyright © by John Wiley & Sons 2003 GTOs - 3

- Large turn-off gain requires $\alpha_2 \approx 1, \alpha_1 \ll 1$
- Make α_1 small by
	- 1. Wide n_1 region (base of Q_1) also needed for large blocking voltage
	- 2. Short lifetime in n_1 region to remove excess carriers rapidly so Q_1 can turn off
- •Short lifetime causes higher on-state losses
- Anode shorts helps resolve lifetime delimma 1. Reduce lifetime only moderately to keep on-state losses reasonable
	- 2. N^+ anode regions provide a sink for excess holes - reduces turn-off time
- Make $\alpha_2 \approx$ unity by making p₂ layer relatively thin and doping in n_2 region heavily (same basic steps used in making beta large in BJTs).
- Use highly interdigitated gate-cathode geometry to minimize cathode current crowding and di/dt limitations.

Maximum Controllable Anode Current

- • Large negative gate current creates lateral voltage drops which must be kept smaller than breakdown voltage of J_3 .
- \bullet If J₃ breaks down, it will happen at gate-cathode periphery and all gate current will flow there and not sweep out any excess carriers as required to turn-off GTO.
- • Thus keep gate current less than I_{G,max} and so anode current restricted $\rm ^{I}G,$ max

by $I_A < \beta_{\rm off}$

Copyright © by John Wiley & Sons 2003 GTOs - 4

GTO Step-down Converter

- GTO used in medium-to-high power applications where electrical stresses are large and where other solid state devices used with GTOs are slow e.g. freewheeling diode D_F .
- GTO almost always used with turn-on and turn-off snubbers.
	- 1. Turn-on snubber to limit overcurrent from D $_F$ reverse recovery.
	- 2. Turn-off snubber to limit rate-of-rise of voltage to avoid retriggering the GTO into the on-state.
- Hence should describe transient behavior of GTO in circuit with snubbers.

GTO Turn-on Waveforms

- • GTO turn on essentially the same as for a standard thyristor
- •Large I_{GM} and large rate-of-rise insure all cathode islands turn on together and have good current sharing.
- •Backporch current I_{GT} needed to insure all cathode islands stay in conduction during entire on-time interval.
- • Anode current overshoot caused by freewheeling diode reverse recovery current.
- \bullet Anode-cathode voltage drops precipitiously because of turn-on snubber

Copyright © by John Wiley & Sons 2003 GTOs - 6

GTO Turn-off Waveforms

Copyright © by John Wiley & Sons 2003 GTOs - 7

• t_s interval

Time required to remove sufficient stored charge to bring BJTs into active region and break latch condition

- t_{fi} interval
	- 1. Anode current falls rapidly as load current commutates to turn-off snubber capacitor
	- 2. Rapid rise in anode-cathode voltage due to stray inductance in turn-off snubber circuit
- $t_{\rm W}$ 2 interval
	- 1. Junction J $_3$ goes into avalanche breakdown because of inductance in trigger circuit. Permits negative gate current to continuing flowing and sweeping out charge from $\bm{{\mathsf{p}}}_2$ layer.
	- 2. Reduction in gate current with time means rate of anode current commutation to snubber capacitor slows. Start of anode current tail.
- t_{tail} interval
	- 1. Junction J3 blocking, so anode current = negative gate current. Long tailing time required to remove remaining stored charge.
	- 2. Anode-cathode voltage growth governed by turn-off snubber.
	- 3. Most power dissipation occurs during tailing time.