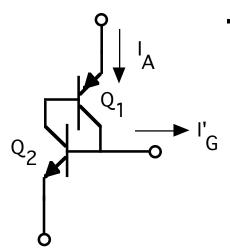

Lecture Notes

Gate Turn-off Thyristors (GTOS)


OUTLINE

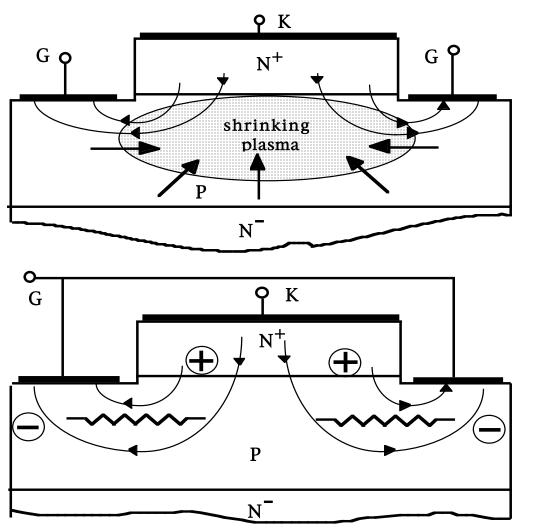
- GTO construction and I-V characteristics.
- Physical operation of GTOs.
- Switching behavior of GTOS

GTO (Gate Turn-off Thyristor) Construction

GTO Turn-off Gain

- Turn off GTO by pulling one or both of the BJTs out of saturation and into active region.
- Force Q₂ active by using negative base current I_G' to make I_{B2} < $\frac{I_{C2}}{\beta_2}$

•
$$I_{B2} = \alpha_1 I_A - I'_G$$
; $I_{C2} = (1 - \alpha_1) I_A$


•
$$\alpha_1 I_A - I'_G < \frac{(1! - !\alpha_1)!I_A!}{\beta_2} = \frac{(1! - !\alpha_1)!(1! - !\alpha_2)!I_A!}{\alpha_2}$$

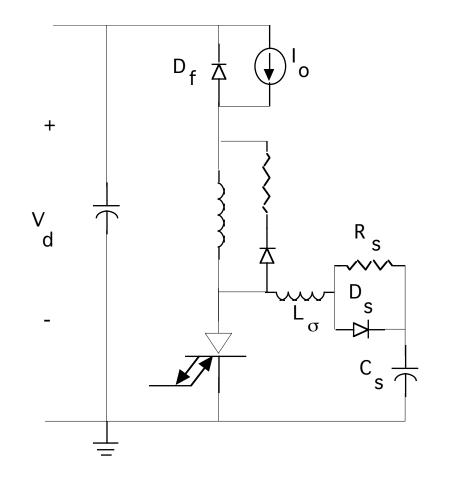
• $I'_G < \frac{I_A!}{\beta_{off}}; \ \beta_{off} = \frac{\alpha_2}{(1! - !\alpha_1! - !\alpha_2)} = \text{turn-off gain}$

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

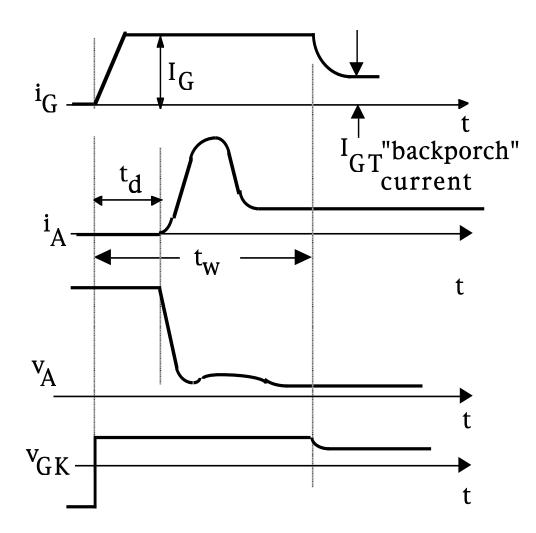
- Large turn-off gain requires $\alpha_2 \approx 1$, $\alpha_1 \ll 1$
- Make α_1 small by
 - 1. Wide n_1 region (base of Q_1) also needed for large blocking voltage
 - 2. Short lifetime in n_1 region to remove excess carriers rapidly so Q_1 can turn off
- Short lifetime causes higher on-state losses
- Anode shorts helps resolve lifetime delimma
 Reduce lifetime only moderately to keep on-state losses reasonable
 - 2. N⁺ anode regions provide a sink for excess holes reduces turn-off time
- Make $\alpha_2 \approx$ unity by making p_2 layer relatively thin and doping in n_2 region heavily (same basic steps used in making beta large in BJTs).
- Use highly interdigitated gate-cathode geometry to minimize cathode current crowding and di/dt limitations.

GTOs - 3

Maximum Controllable Anode Current

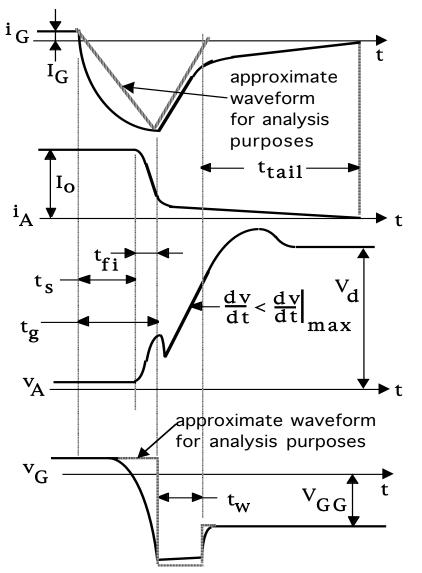


- Large negative gate current creates lateral voltage drops which must be kept smaller than breakdown voltage of J_3 .
- If J₃ breaks down, it will happen at gate-cathode periphery and all gate current will flow there and not sweep out any excess carriers as required to turn-off GTO.
- Thus keep gate current less than $I_{G,max}$ and so anode current restricted


by $I_A < \frac{I_{G,max}}{\beta_{off}}$

GTO Step-down Converter

- GTO used in medium-to-high power applications where electrical stresses are large and where other solid state devices used with GTOs are slow e.g. free-wheeling diode D $_{\rm F}$.
- GTO almost always used with turn-on and turn-off snubbers.
 - 1. Turn-on snubber to limit overcurrent from D _F reverse recovery.
 - 2. Turn-off snubber to limit rate-of-rise of voltage to avoid retriggering the GTO into the on-state.
- Hence should describe transient behavior of GTO in circuit with snubbers.


GTO Turn-on Waveforms

- GTO turn on essentially the same as for a standard thyristor
- Large I_{GM} and large rate-of-rise insure all cathode islands turn on together and have good current sharing.
- Backporch current I _{GT} needed to insure all cathode islands stay in conduction during entire on-time interval.
- Anode current overshoot caused by freewheeling diode reverse recovery current.
- Anode-cathode voltage drops precipitiously because of turn-on snubber

Copyright © by John Wiley & Sons 2003

GTO Turn-off Waveforms

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

• <u>t_s interval</u>

Time required to remove sufficient stored charge to bring BJTs into active region and break latch condition

- <u>t_{fi} interval</u>
 - 1. Anode current falls rapidly as load current commutates to turn-off snubber capacitor
 - 2. Rapid rise in anode-cathode voltage due to stray inductance in turn-off snubber circuit
- t_{w2} interval
 - 1. Junction J_3 goes into avalanche breakdown because of inductance in trigger circuit. Permits negative gate current to continuing flowing and sweeping out charge from p_2 layer.
 - 2. Reduction in gate current with time means rate of anode current commutation to snubber capacitor slows. Start of anode current tail.
- <u>t_{tail} interval</u>
 - 1. Junction J_3 blocking, so anode current = negative gate current. Long tailing time required to remove remaining stored charge.
 - 2. Anode-cathode voltage growth governed by turn-off snubber.
 - 3. Most power dissipation occurs during tailing time.

GTOs - 7