Lecture Notes

Emerging Devices

Outline

- Power JFET Devices
- Field-Controlled Thyristor
- MOS-Controlled Thyristor
- High Voltage Integrated Circuits/ Discrete Modules
- New Semiconductor Materials

Power JFET Geometry

- Gate-source geometry highly interdigitated as in MOSFETs.
- Width w = μ ms to a few tens of μ ms ; $l_c < w$; l_{gs} minimized.
- l_{gd} set by blocking voltage considerations.

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

Power JFET I-V Characteristics

- Power JFET is a normally-on device. Substantial current flows when gatesource voltage is equal to zero.
- Opposite to BJTs, MOSFETs, and IGBTs which are normally-off devices.

Copyright © by John Wiley & Sons 2003

Controlling Potential Barrier in JFETs

- $|V_{GS}| > |V_p|$ (pinchoff voltage) potential barrier to electron flow from source to drain created. No drain current can flow.
- Suppress potential barrier by increasing V_{DS} at fixed V_{GS} . When $V_{DS} > \mu |V_{GS}|$ substantial drain currents flow.
- Blocking capability limited by magnitude of electric field in drift region. Longer drift regions have larger blocking voltage capability.
- Normally-off JFET created by having narrow enough channel width so that the channel is pinched off at zero gate-source voltage.

Copyright © by John Wiley & Sons 2003

JFET On and Off States

• Channel open between drain and source.

• Channel pinched-off (closed) between drain and source.

Bipolar Static Induction Transistor (BSIT)

- Channel width and channel doping chosen so that at zero gate-source voltage, depletion layers of gate-channel junction pinch-off the channel.
- Narrower channel than normally-on JFET.

JFET in on-state

- Forward bias gate-channel junction to reduce depletion region width and open up channel.
- Substantial current flow into gate.

JFET Switching Characteristics

- Equivalent circuits of JFETS nearly identical to those of MOSFETs
- Switching waveforms nearly identical to those of MOSFETs including values of various switching time intervals
- JFET V_{GS} starts at negative values and steps to zero at turn-on while MOSFET V_{GS} starts at zero and steps to positive value at turn-on
- FET on-state losses somewhat higher than for MOSFET technology related not fundamental
- Normally-off JFET (Bipolar static induction transistor or BSIT) switching characteristics more similar to those of BJT
- Differences between BSIT and BJT observable mainly at turn-off
 - 1. BSIT has no quasi-saturation region and thus only one current fall time (no current tailing) at turn-off.
 - 2. Overall turn-off times of BSIT shorter than for BJT
 - 3. Differences due to fact that BSIT has no in-line pn junction that can block sweep-out of excess carriers as does BJT

Field-Controlled Thyristor (FCT)

• Sometimes termed a bipolar static induction thyristor (BSIThy).

Copyright © by John Wiley & Sons 2003

FCT I-V Characteristics

- FCT has a normally-on characteristic.
- Can be made to have a normally-off characteristic.

1. Reduce channel width so that zero-bias depletion layer width of gate-channel junction pinches off channel

2. Then termed a bipolar static induction thyristor (BSIThy).

Copyright © by John Wiley & Sons 2003

Physical Operation of FCT

- FCT essentially a power JFET with an injecting contact at the drain
- Injecting contact causes conductivity modulation of drain drift region and results in much lower on-state losses
- At turn-off, gate draws large negative current similar to a GTO because of stored charge in drift region
- FCT not a latching switch as is a GTO. FCT has no regenerative action.
- FCT can be made a normally-off device by using narrow channel widths so that zero-bias width gate depletion layer pinchs off channel.

- Cascode switching circuit.
- Implement a normallyoff composite switch.
- R1 and R2 insure that voltage across MOSFET not overly large. Permits use of low voltage-high current device.

 $R1 >> R2 \approx 1-10 Meg$

Emerging Devices - 10

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

FCT Switching Characteristics

- FCT switching waveforms qualitatively similar to thyristor or GTO including large negative gate current at turn-off.
- FCT has gate-controlled turn-on and turn-off capabilities similar to GTO.
- FCT switching times somewhat shorter than GTO.
- Gate drive must be continuously applied to FCT because FCT has no latching characteristic.
- FCT has much larger re-applied dv/dt rating than GTO because of lack of latching action.
- FCT hasdi/dt limits because of localized turn-on and then expansion of turned-on region across entire device cross-section.

JFET-Based Devices Vs Other Power Devices

- Blocking voltage capability of JFETs comparable to BJTs and MOSFETs.
- JFET on-state losses higher than MOSFETs technology limitation.
- Switching speeds of normally-on JFET somewhat slower than those of MOSFET technology limitation.
- BSIT switching times comparable to BJTs in principle should be faster because of lack of inline pn junction trapping stored charge at turn-off.
- No second breakdown in normally-on JFETs, similar to MOSFETs.
- BSITs and BSIThy have and possibly limitations.
- JFET-based power devices much less widely used because of normally-on characteristic. This has also slowed research and development efforts in these devices compared to other devices.

Copyright © by John Wiley & Sons 2003

P-MCT (P-type MOS-controlled Thyristor

Unit cell vertical cross-section

- Complete MCT composed of tens of thousands of identical cells connected in parallel.
- P-designation refers to doping of the lightly-doped P⁻ layer which contains the depletion layer of the blocking junction.
- Note that ON and OFF FETs are positioned at the anode end of the device.

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

P-MCT Equivalent Circuit & Circuit Symbol

P-MCT equivalent circuit

P-MCT circuit symbol

- P-MCT used with anode grounded.
- Gate-anode voltage is input drive voltage.
- Use P-MCT in circuits with negative voltages.

N-MCT (N-type MOS-controlled Thyristor

Vertical cross-section of N-MCT unit cell

- N-MCT composed of thousands of cells connected electrically in parallel.
- N-designation refers to the N⁻ layer which contains the depletion layer of the blocking junction.
- Note that the ON and OFF FETs are positioned at the cathode end of the

device.

Copyright © by John Wiley & Sons 2003

N-MCT Equivalent Circuit & Circuit Symbol

N-MCT equivalent circuit

N-MCT circuit symbol

- N-MCT used with cathode grounded.
- Gate-cathode voltage is input drive voltage.
- Use N-MCT in circuits with positive voltages.

Gate-controlled Turn-on of MCTs

- Turn on MCT by turning on the ON-FET
 - Positive gate-cathode voltage for N-MCT
 - Negative gate-anode voltage for P-MCT
 - These polarities of gate voltage automatically keep the OFF-FET in cutoff.
- ON-FET delivers base current to the low-gain BJT in the thyristor equivalent circuit and activates that BJT.
 - PNP transistor in the N-MCT
 - NPN transistor in the P-MCT
- Low-gain transistor activates the higher gain transistor and thyristor latches on.
- Once higher gain transistor, which is in parallel with ON-FET is activated, current is shunted from ON-FET to the BJT and the ON-FET carries very little current in the MCT on-state.
 - Only 5-10% of the cells have an ON-FET.
 - Cells are close-packed. Within one excess carreier diffusion length of each other.
 - Adjacent cells without an ON-FET turned on via diffusion of excess carriers from turned-on cell.

Gate-controlled Turn-off of MCTs

- Turn MCT off by turning on the OFF-FET
 - Negative gate-cathode for the N-MCT
 - Positive gate-anode voltage for the P-MCT
 - These gate voltage polarities automatically keep the ON-FET in cut-off.
- OFF-FET shunts base current away from the higher gain BJT in the thyristor equivalent circuit and forces it to cut-off.
 - NPN transistor in the N-MCT.
 - PNP transistor in the P-MCT.
- Cut-off of higher gain BJT then forces low-gain BJT into cut-off.
- Every MCT cell has an OFF-FET.
- OFF-FET kept activated during entire MCT off-state to insure no inadvertent activation of the thyristor.

Maximum Controllable Anode Current

- If drain-source voltage of OFF-FET reaches approximately 0.7 V during turn-off, then MCT may remain latched in on-state.
- Higher-gain BJT remains on if OFF-FET voltage drop, which is the base-emitter voltage of the BJT reaches 0.7 volts.
- Thus maximum on-state current that can be turned off by means of gate control.
- P-MCT have approximately three times larger gate-controlled anode current rating than a similar (same size and voltage rating) N-MCT.
- OFF-FET of the P-MCT is an n-channel MOSFET which has three times larger channel mobility than the p-channel OFF-FET of the N-MCT.

Rationale of OFF-FET Placement

- Turning off the BJT with the larger value of α most effective way to break the latching condition $\alpha_1 + \alpha_2 = 1$
- BJT with the smaller base width has the larger value of α .
 - P-MCT ; PNP BJT has smaller base width
 - N-MCT ; NPN BJT has smaller base width
- OFF-FET put in parallel with baseemitter of larger gain BJT so that OFF-FET shorts out base-emitter

when the FET is activated.

<u>P-MCT cross-section showing</u> rationale for OFF-FET placement

Copyright © by John Wiley & Sons 2003

MCT Switching Waveforms

MCT Turn-on Process

- Turn-on delay time t_{d,on} time required for gate voltage to reach ON-FET threshold starting from reverse-bias value of V_{GG,off}
- Current rise time t_{ri1} and t_{ri2}
 - t_{ri1}; ON-FET turns on accepting all the current the gate drive voltage will permit. ON-FET in its active region.
 - t_{ri2}; NPN and PNP BJTs turn on and current shunted away from ON-FET. BJTs and ON-FET in their active regions.
- Voltage fall time t_{fv1} and t_{fv2}
 - t_{fv1} ; BJTs in their active regions so voltage fall initially fast.
 - t_{fv2} ; BJTs in quasi-saturation, so their gain is reduced and rate of voltage fall decreases.
 - At end of voltage fall time interval, BJTs enter hard saturation and MCT is in the on-state.
- Gate-cathode voltage should reach final on-state value in times no longer than a specified maximum value (typically 200 nsec). Insure that all paralleled cells turn on at the same time to minimize current crowding problems.
- Keep gate-cathode at on-state value for the duration of the on-state to minimize likelyhood of inadvertant turn-off of some cells if current is substantially reduced during on-state.

MCT Turn-off Process

- Turn-off delay time t_{d,off} time required to turn-off the ON-FET, activate the OFF-FET, and break the latching condition by pulling the BJTs out of hard saturation and into quasi-saturation.
 - Requires removal of substantial amount of stored charge, especially in the base regions of the two BJTs (n_1 and p_2 thyristor layers).
- Voltage rise times t_{rv1} and t_{rv2}
 - t_{rv1} ; time required to remove sufficient stored charge so that BJTs leave quasisaturation and enter active region and blocking junction (J₂) becomes reversebiased.
 - t_{rv2} ; BJTs in active region and their larger gain causes anode voltage to rapidly complete growth to power supply voltage V_d
- Current fall time t_{fi1} and t_{fi2}
 - t_{fi1} ; Initial rapid fall in current until high gain BJT (NPN BJT in the P-MCT equivalent circuit) goes into cutoff.
 - t_{fi2}; stored charge still remaining in base (drift region of thyristor) of the low-gain BJT removed in this interval. The open-base nature of the turn-off casuses longer time interval giving a "tail" to the anode current decay.
- Gate-cathode voltage kept at off-state value during entire off-state interval to prevent accidental turn-on.

MCT Operating Limitations

- I_{max} set by maximum controllable anode current. Presently available devices have 50-100 A ratings.
- V_{max} set by either breakover voltage of thyristor section or breakdown rating of the OFF-FET. Presently available devices rated at 600 V. 1000-2000 v devices prototyped.

dv_{DS}

• $\frac{DS}{dt}$ limited by mechanisms identical to those in thyristors. Presently available devices rated at 500-1000 V/sec.

di_D

• $\frac{1}{dt}$ limited by potential current crowding problems. Presently available devices rated at 500 A/sec. • MCT safe operating area. Very conservatively estimated.

High Voltage (Power) Integrated Circuits

- Three classes of power ICs
 - 1. Smart power or smart/intelligent switches
 - Vertical power devices with on-chip sense and protective features and possibly drive and control circuits
 - 2. High voltage integrated circuits (HVICs)
 - Conventional ICs using low voltage devices for control and drive circuits and lateral high voltage power devices
 - 3. Discrete modules
 - Multiple chips mounted on a common substrate. Separate chips for drive, control, and power switch and possibly other functions.
- PIC rationale
 - Lower costs
 - Increased functionality
 - Higher reliability
 - Less circuit/system complexity

Issues Facing PIC Commercialization

- Technical issues
 - Electrical isolation of high voltage devices from low voltage components
 - Thermal management power devices generally operate at higher temperatures than low power devices/circuits.
 - On-chip interconnections with HV conductor runs over low voltage devices/regions.
 - Fabrication process should provide full range of devices and components - BJTs, MOSFETs, diodes, resistors, capacitors, etc.
- Economic issues
 - High up-front development costs
 - Relative cost of the three classes of PICs
 - Need for high volume applications to cover development expenses.

Dielectric Isolation

Self-Isolation and Junction Isolation

• Self-isolation - only feasible with MOSFET devices.

• Junction isolation.

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

High-Voltage Low-Voltage Cross-overs

Smart or Intelligent Switch Using MOSFETs

• Cross-sectional diagram of switch.

Circuit diagram

- Add additional components on vertical MOSFET wafer as long as no major process changes required.
- PN junction formed from N⁻ drift region and P-body region always reverse-biased if drain of power MOSFET positive respect to source. Provides electrical isolation of the two MOSFETs.

Smart Power Switch Using BJTs

- PN junction isolation via P-epi and top-side P⁺ diffusion
- Double epitaxial process squence
 - P-epi grown on N⁺ substrate
 - N⁺ buried layer diffused in next
 - N-epi for drift region grown over P-epi
 - P⁺ isolation diffusions to P-epi
 - Diffusion for base and emitters of BJTs

High Voltage Integrated Circuits (HVICs)

Discrete Module Example - IXYS I³M IGBT Module

IGCT - Integrated Gate Commutated Thyristor

- Specially designed GTO with low inductance gate drive circuit
- Ratings
 - Blocking voltage 4500V
 - Controllable on-state current 4000A
 - Average fwd current 1200A
 - Switching times 10µsec

- Approximate gate drive circuit
 - Ion $\approx 500 \text{ A } 10 \mu \text{sec}$
 - Ioff full forward current 10 usec
- Very low series inductance 3 nH

Emitter Turn-off Thyristor

- Performance similar to IGCTs
- Advantages over IGCTs
 - Simpler drive circuit
 - Easier to parallel MOSFETs in series with GTO have positive temperature coefficient
 - Series MOSFETs can be used for overcurrent sensing

1kA/4kV ETO10458

Copyright $\ensuremath{\mathbb{C}}$ by John Wiley & Sons 2003

Economic Considerations in PIC Availability

- PIC development costs (exclusive of production costs)
 - Discrete modules have lower development costs
 - Larger development costs for smart switches and HVICs
- Production costs (exclusive of development costs) of smart switches and HVICs lower than for discrete modules.
- Reliability of smart switches and HVICs better than discrete modules.
 - Greater flexibility/functionality in discrete modules
 - Wider range of components magnetics, optocouplers
- PICs will be developed for high volume applications
 - Automotive electronics
 - Telecommunications
 - Power supplies
 - Office automation equipment
 - Motor drives
 - Flourescent lighting ballasts

Summary of Silicon Power Device Capabilities

Copyright © by John Wiley & Sons 2003

New Semiconductor Materials for Power Devices

- Silicon not optimum material for power devices
- Gallium arsenide promising material
 - Higher electron mobilities (factor of about 5-6) faster switching speeds and lower on-state losses
 - Larger band-gap E_g higher operating temperatures
- Silicon carbide another promising materials
 - Larger bandgap than silicon or GaAs
 - Mobilities comparable to Si
 - Significantly larger breakdown field strength
 - Larger thermal conductivity than Si or GaAs
- Diamond potentially the best materials for power devices
 - Largest bandgap
 - Largest breakdown field strength
 - Largest thermal conductivity
 - Larger mobilities than silicon but less than GaAs

Properties of Important Semiconductor Materials

Property	Si	GaAs	3C-SiC	6H-SiC	Diamond
Bandgap @ 300 K [ev]	1.12	1.43	2.2	2.9	5.5
Relative dielectric constant	11.8	12.8	9.7	10	5.5
Saturated drift velocity [cm/sec]	1x10 ⁷	2x10 ⁷	2.5x10 ⁷	2.5x10 ⁷	2.7x10 ⁷
Thermal conductivity [Watts/cm- C]	1.5	0.5	5.0	5.0	20
Maximum operating temperature [K]	300	460	873	1240	1100
Intrinsic carrier density [cm ⁻³] @ 25 C	10 ¹⁰	10 ⁷	-	-	-
Melting temperature [C]	1415	1238	Sublime >1800	Sublime >1800	Phase change
Electron mobility @ 300 K [cm ² /V-sec]	1400	8500	1000	600	2200
Breakdown electric field [V/cm]	2-3x10 ⁵	4x10 ⁵	2x10 ⁶	2x10 ⁶	1x10 ⁷

Copyright © by John Wiley & Sons 2003

• Specific drift region resistance of majority carrier device

•
$$R_{on} \bullet A \approx \frac{4"q"(BV_{BD})^2}{e"m_n"(E_{BD})^3}$$

• Normalize to silicon - assume identical areas and breakdown voltages

$$\frac{R_{on}(x)^{"}A}{R_{on}(Si)^{"}A} = \text{resistance ratio} = \frac{e_{Si}^{"}m_{Si}}{e_{x}^{"}m_{x}} \left[\frac{E_{BD,Si}}{E_{BD,x}}\right]^{3}$$

• Numerical comparison

Material	Resistance Ratio
Si	1
GaAs	6.4x10 ⁻²
SiC	9.6x10 ⁻³
Diamond	3.7x10 ⁻⁵

Material Comparison: PN Junction Diode Parameters

- Approximate design formulas for doping density and drift region length of HV pn junctions
 - Based on step junction $P^+N^-N^+$ structure

•
$$N_d = drift region doping level \approx \frac{e''[E_{BD}]^2}{2''q''BV_{BD}}$$

•
$$W_d = drift region length \approx \frac{2"BV_{BD}}{E_{BD}}$$

• Numerical comparison - 1000 V breakdown rating

Material	Nd	w _d
Si	1.3×10^{14} cm ⁻³	67 μm
GaAs	5.7x10 ¹⁴	50
SiC	1.1x10 ¹⁶	10
Diamond	1.5x10 ¹⁷	2

Copyright © by John Wiley & Sons 2003

Material Comparison: Carrier Lifetime Requirements

- Drift region carrier lifetime required for 1000 V pn junction diode
 - Approximate design formula based on step junction

$$\tau \approx \frac{q''W_d^2}{k''T''m_n} = \frac{4''q''[BV_{BD}]^2}{k''T''m_n''[E_{BD}]^2}$$

• Numerical comparison

Material	Lifetime
Si	1.2 µsec
GaAs	$0.11 \mu \text{sec}$
SiC	40 nsec
Diamond	7 nsec

• Shorter carrier lifetimes mean faster switching minority carrier devices such as BJTs, pn junction diodes, IGBTs, etc.

Recent Advances/Benchmarks

- Gallium arsenide
 - 600V GaAs Schottky diodes announced by Motorola. 250V available from IXYS
 - 3" GaAs wafers available
- Silicon carbide
 - 3" wafers available from Cree Research expensive
 - 600V -6A Schottky diodes available commercially Infineon Technologies AG (Siemens spinoff)
 - Controlled switches also demonstrated
 - 1800V 3A BJT with beta of 20
 - 3100V 12A GTO
- Diamond
 - Polycrystalline diamond films of several micron thickness grown over large (square centimeters) areas
 - Simple device structures demonstrated in diamond films.
 - PN junctions
 - Schottky diodes

Projections

• GaAs

- Devices such as Schottky diodes which are preesently at or near commercial introduction will become available and used.
- GaAs devices offer only incremental improvements in performance over Si devices compared to SiC or diamond.
- Broad introduction of several types of GaAs-based power devices unlikely.
- SiC
 - Rapid advances in SiC device technology
 - Spurred by the great potential improvement in SiC devices compared to Si devices.
 - Commercially available SiC power devices within 5-10 years.
- Diamond
 - Research concentrated in improving materials technology.
 - Growth of single crystal material
 - Ancilliary materials issues ohmic contacts, dopants, etc.
 - No commercially available diamond-based power devices in the forseeable future (next 10-20 years).