Lecture Notes

Heat Sinks and Component Temperature Control

Need for Component Temperature Control

- • All components, capacitors, inductors and transformers, and semiconductor devices and circuits have maximum operating temperatures specified by manufacturer.
	- • Component reliability decreases with increasing temperature.Semiconductor failure rate doubles for every 10 - 15 C increase in temperature above 50 C (approx. rule-of-thumb).
- •High component operating temperatures have undesirable effects on components.

Capacitors

Electrolyte evaporation rate increases significantly with temperature increases and thus shortens lifetime.

Magnetic Components

- Losses (at constant power input) increase above 100 Γ
- Winding insulation (lacquer or varnish) degrades above 100 C

Semconductors

- Unequal power sharing in paralleled or seriesed devices.
- Reduction in breakdown voltage in some devices.
- Increase in leakage currents.
- Increase in switching times.

Temperature Control Methods

- **•** Control voltages across and current through components via good design practices.
	- \bullet Snubbers may be required for semiconductor devices.
	- \bullet Free-wheeling diodes may be needed with magnetic components.
- **•** Use components designed by manufacturers to maximize heat transfer via convection and radiation from component to ambient.
	- • Short heat flow paths from interior to component surface and large component surface area.
- **•** Component user has responsibility to properly mount temperature-critical components on heat sinks.
	- \bullet Apply recommended torque on mounting bolts and nuts and use thermal grease between component and heat sink.
	- \bullet Properly design system layout and enclosure for adequate air flow so that heat sinks can operate properly to dissipate heat to the ambient.

Heat Conduction Thermal Resistance

•Heat flow P_{cond} [W/m²] = λ A (T₂ - T₁) / d = (T₂ - T₁) / R_{θcond}

- **•**Thermal resistance $R_{\theta\text{cond}} = d / [\lambda A]$
	- •Cross-sectional area $A = hb$
	- • λ = Thermal conductivity has units of W-m⁻¹- C⁻¹ (λ _{Al} = 220 W-m⁻¹- C⁻¹).
	- •Units of thermal resistance are C/W

Thermal Equivalent Circuits

• Heat flow through a structure composed of layers of different materials.

Ambient Temperature Ta

• Thermal equivalent circuit simplifies calculation of temperatures in various parts of structure.

- $T_i = P_d (R_{\theta j c} + R_{\theta c s} + R_{\theta s a}) + T_a$
- • If there parallel heat flow paths, then thermal resistances of the parallel paths combine as do electrical resistors in parallel.

Transient Thermal Impedance

- **•**Heat capacity per unit volume $Cv = dQ/dT$ [Joules / C] prevents short duration high power dissipation surges from raising component temperature beyond operating limits.
	- **•** Transient thermal equivalent circuit. $C_s = C_vV$ where V is the volume of the component.

• Transient thermal impedance
$$
Z_{\theta}(t) = [T_j(t) - T_a]/P(t)
$$

• $\tau_{\theta} = \pi R_{\theta} C_s / 4$ = thermal time constant

$$
\bullet \ \mathrm{T}_{\mathrm{j}}(t=\tau_{\theta})=0.833 \mathrm{P}_{\mathrm{o}} \mathrm{R}_{\theta}
$$

Application of Transient Thermal Impedance

•Symbolic response for a rectangular power dissipation pulse $P(t) = Po \{u(t) - u(t - t_1)\}\.$

Copyright © by John Wiley & Sons 2003 Heat Sinks - 7

Heat Sinks

- **•** Aluminum heat sinks of various shapes and sizes widely available for cooling components.
	- **•**Often anodized with black oxide coating to reduce thermal resistance by up to 25%.
	- **•**Sinks cooled by natural convection have thermal time constants of 4 - 15 minutes.
	- **•** Forced-air cooled sinks have substantially smaller thermal time constants, typically less than one minute.
- **•**Choice of heat sink depends on required thermal resistance, R_{θ sa, which is determined by several factors.
	- •Maximum power, P_{diss} , dissipated in the component mounted on the heat sink.
	- **•**Component's maximum internal temperature, $T_{j,max}$
	- **•**Component's junction-to-case thermal resistance, $R_{\theta j c}$.
	- **•**Maximum ambient temperature, $T_{a,max}$.
- R_{θ sa = $\{T_{j,\max} T_{a,\max}\}P_{diss}$ $R_{\theta j c}$
	- P_{diss} and $T_{\text{a,max}}$ determined by particular application.
	- • $T_{j,max}$ and $R_{\theta j c}$ set by component manufacturer.

Radiative Thermal Resistance

- **•** Stefan-Boltzmann law describes radiative heat transfer.
	- **•** $P_{rad} = 5.7x10^{-8}$ EA [(T_s)⁴ -(T_a)⁴] ; [P_{rad}] = [watts]
	- **•** $E =$ emissivity; black anodized aluminum $E = 0.9$; polished aluminum $E = 0.05$
	- **•** $A =$ surface area [m²]through which heat radiation emerges.
	- **•** T_s = surface temperature [K] of component. T_a = ambient temperature [K].
- $(T_s T_a)$ /Prad = R $_{\theta, \text{rad}}$ = $[T_s T_a][5.7EA \{ (T_s/100)^4 (T_a/100)^4 \}]^{-1}$
- **•**Example - black anodized cube of aluminum 10 cm on a side. $T_s = 120$ C and $T_a = 20$ C • $R_{\theta,rad} = [393 - 293][(5.7) (0.9)(6x10-2)\{(393/100)^4 - (293/100)^4 \}]^{-1}$
	- $R_{\theta,rad} = 2.2$ C/W

Convective Thermal Resistance

- P_{conv} = convective heat loss to surrounding air from a vertical surface at sea level having a height d_{vert} [in meters] less than one meter.
	- $P_{\text{conv}} = 1.34 \text{ A [Ts Ta]}^{1.25} d_{\text{vert}}^{0.25}$
	- $A =$ total surface area in $[m^2]$
	- T_s = surface temperature [K] of component. T_a = ambient temperature [K].
	- $[T_s T_a]/P_{conv} = R_{\theta, conv} = [T_s T_a] [d_{vert}]^{0.25} [1.34 A (T_s T_a)]^{1.25}]^{-1}$
		- $R_{\theta, \text{conv}} = [d_{\text{vert}}]^{0.25} \{1.34 \text{ A } [T_s T_a]^{0.25} \}^{-1}$
- Example black anodized cube of aluminum 10 cm on a side. $T_s = 120$ C and $T_a = 20$ C.
	- $R_{\theta, \text{conv}} = [10^{-1}]0.25([1.34] [6x10^{-2}] [120 20]^{0.25})^{-1}$
	- $R_{\theta, \text{conv}} = 2.2$ C/W

Combined Effects of Convection and Radiation

- **•** Heat loss via convection and radiation occur in parallel.
	- **•** Steady-state thermal equivalent circuit

- $R_{\theta,\text{sink}} = R_{\theta,\text{rad}} R_{\theta,\text{conv}} / [R_{\theta,\text{rad}} + R_{\theta,\text{conv}}]$
- Example black anodized aluminum cube 10 cm per side
	- $R_{\theta,rad}$ = 2.2 C/W and $R_{\theta,conv}$ = 2.2 C/W
	- $R_{\theta,\text{sink}} = (2.2) (2.2) / (2.2 + 2.2) = 1.1 \text{ C/W}$