Lecture Notes

Heat Sinks and Component Temperature Control

Need for Component Temperature Control

- All components, capacitors, inductors and transformers, and semiconductor devices and circuits have maximum operating temperatures specified by manufacturer.
 - Component reliability decreases with increasing temperature. Semiconductor failure rate doubles for every 10 15 C increase in temperature above 50 C (approx. rule-of-thumb).
- High component operating temperatures have undesirable effects on components.

Capacitors

Electrolyte evaporation rate increases significantly with temperature increases and thus shortens lifetime.

Magnetic Components

- Losses (at constant power input) increase above 100
 C
- Winding insulation (lacquer or varnish) degrades above
 100 C

Semconductors

- Unequal power sharing in paralleled or seriesed devices.
- Reduction in breakdown voltage in some devices.
- Increase in leakage currents.
- Increase in switching times.

Temperature Control Methods

- Control voltages across and current through components via good design practices.
 - Snubbers may be required for semiconductor devices.
 - Free-wheeling diodes may be needed with magnetic components.
- Use components designed by manufacturers to maximize heat transfer via convection and radiation from component to ambient.
 - Short heat flow paths from interior to component surface and large component surface area.
- Component user has responsibility to properly mount temperature-critical components on heat sinks.
 - Apply recommended torque on mounting bolts and nuts and use thermal grease between component and heat sink.
 - Properly design system layout and enclosure for adequate air flow so that heat sinks can operate properly to dissipate heat to the ambient.

Heat Conduction Thermal Resistance

 Generic geometry of heat flow via conduction

- Heat flow P_{cond} [W/m²] = $\lambda A (T_2 T_1) / d = (T_2 T_1) / R_{\theta cond}$
- Thermal resistance $R_{\theta cond} = d / [\lambda A]$
 - Cross-sectional area A = hb
 - λ = Thermal conductivity has units of W-m⁻¹- C⁻¹ (λ_{A1} = 220 W-m⁻¹- C⁻¹).
 - Units of thermal resistance are C/W

Thermal Equivalent Circuits

Heat flow through
 a structure composed
 of layers of different
 materials.

Ambient Temperature Ta

• Thermal equivalent circuit simplifies calculation of temperatures in various parts of structure.

•
$$T_i = P_d (R_{\theta jc} + R_{\theta cs} + R_{\theta sa}) + T_a$$

• If there parallel heat flow paths, then thermal resistances of the parallel paths combine as do electrical resistors in parallel.

Transient Thermal Impedance

- Heat capacity per unit volume Cv = dQ/dT [Joules / C] prevents short duration high power dissipation surges from raising component temperature beyond operating limits.
 - Transient thermal equivalent circuit. $C_s = C_vV$ where V is the volume of the component.

• Transient thermal impedance $Z_{\theta}(t) = [T_{i}(t) - T_{a}]/P(t)$

- $\tau_{\theta} = \pi R_{\theta} C_{s} / 4$ = thermal time constant
- $T_i(t = \tau_\theta) = 0.833 P_o R_\theta$

Application of Transient Thermal Impedance

• Symbolic response for a rectangular power dissipation pulse $P(t) = Po \{u(t) - u(t - t_1)\}$.

- Symbolic solution for half sine power dissipation pulse.
 - $P(t) = P_o \{u(t T/8) u(t 3T/8)\}$; area under two curves identical.
 - $T_i(t) = Po \{ Z_{\theta}(t T/8) Z_{\theta}(t 3T/8) \}$

Z_{θ} for Multilayer Structures

Multilayer geometry

• Transient thermal equivalent circuit

 $\log[Z_{\theta}(t)]$

log(t)

 τ_{θ} (sink)

Transient thermal impedance (asymptotic) of multilayer structure assuming widely separated thermal time constants.

Copyright © by John Wiley & Sons 2003

 $\tau_{\theta}(Si)$

Heat Sinks - 8

Heat Sinks

- Aluminum heat sinks of various shapes and sizes widely available for cooling components.
 - Often anodized with black oxide coating to reduce thermal resistance by up to 25%.
 - Sinks cooled by natural convection have thermal time constants of 4 15 minutes.
 - Forced-air cooled sinks have substantially smaller thermal time constants, typically less than one minute.
 - Choice of heat sink depends on required thermal resistance, $R_{\theta sa}$, which is determined by several factors.
 - Maximum power, P_{diss}, dissipated in the component mounted on the heat sink.
 - Component's maximum internal temperature, T_{j,max}
 - Component's junction-to-case thermal resistance, $R_{\theta ic}$.
 - Maximum ambient temperature, T_{a,max}.
- $\bullet \ R_{\theta sa} \ = \ \{T_{j,max} \ T_{a,max}\}P_{diss} \quad \ R_{\theta jc}$
 - P_{diss} and T_{a,max} determined by particular application.
 - $T_{j,max}$ and $R_{\theta jc}$ set by component manufacturer.

Radiative Thermal Resistance

- Stefan-Boltzmann law describes radiative heat transfer.
 - $P_{rad} = 5.7 \times 10^{-8} EA [(T_s)^4 (T_a)^4] ; [P_{rad}] = [watts]$
 - E = emissivity; black anodized aluminum E = 0.9; polished aluminum E = 0.05
 - $A = surface area [m^2]$ through which heat radiation emerges.
 - $T_s = \text{surface temperature } [K] \text{ of component. } T_a = \text{ambient temperature } [K].$
- $(T_s T_a)/Prad = R_{\theta,rad} = [T_s T_a][5.7EA \{(T_s/100)^4 (T_a/100)^4 \}]^{-1}$
- Example black anodized cube of aluminum 10 cm on a side. $T_s = 120$ C and

$$T_a = 20 C$$

- $R_{\theta,rad} = [393 293][(5.7) (0.9)(6x10-2)\{(393/100)^4 (293/100)^4\}]^{-1}$
- $R_{\theta,rad} = 2.2$ C/W

Convective Thermal Resistance

- P_{conv} = convective heat loss to surrounding air from a vertical surface at sea level having a height d_{vert} [in meters] less than one meter.
 - $P_{conv} = 1.34 \text{ A} [Ts Ta]^{1.25} d_{vert}^{-0.25}$
 - A = total surface area in $[m^2]$
 - T_s = surface temperature [K] of component. T_a = ambient temperature [K].
- $[T_s T_a]/P_{conv} = R_{\theta,conv} = [T_s T_a] [d_{vert}]^{0.25} [1.34 \text{ A} (T_s T_a)^{1.25}]^{-1}$
 - $R_{\theta,conv} = [d_{vert}]^{0.25} \{1.34 \text{ A} [T_s T_a]^{0.25}\}^{-1}$
- Example black anodized cube of aluminum 10 cm on a side. $T_s = 120$ C and $T_a = 20$ C.
 - $R_{\theta,conv} = [10^{-1}]0.25([1.34] [6x10^{-2}] [120 20]^{0.25})^{-1}$
 - $R_{\theta,conv} = 2.2$ C/W

Combined Effects of Convection and Radiation

• Heat loss via convection and radiation occur in parallel.

• Steady-state thermal equivalent circuit

•
$$R_{\theta, \text{sink}} = R_{\theta, \text{rad}} R_{\theta, \text{conv}} / [R_{\theta, \text{rad}} + R_{\theta, \text{conv}}]$$

• Example - black anodized aluminum cube 10 cm per side

•
$$R_{\theta,rad} = 2.2$$
 C/W and $R_{\theta,conv} = 2.2$ C/W

•
$$R_{\theta,sink} = (2.2)(2.2)/(2.2 + 2.2) = 1.1 \text{ C/W}$$