
1

AVR222: 8-Point Moving Average Filter

Features
• 31-Word Subroutine Filters Data Arrays

up to 256 Bytes
• Runable Demo Program

Introduction
The moving average filter is a simple
Low Pass F IR (F in i te Impu lse
Response) filter commonly used for
smoothening an array of sampled data.
This application implements an 8-point
filter to simplify the average calculation.
The application note gives an excellent
demonstration of how the powerful
addressing modes in the AVR architec-
ture can be utilized.

Theory
The moving average filter can be imag-
ined as a window of a certain size (in this
case 8) moving along the array, one ele-
ment at a time. The middle element of
the window (in this case element #4) is
replaced with the average of all ele-
ments in the window. See Figure 1: The
8-Point Averaging Window. It is however
important to remember the value of new
elements and not make the replacement
until the window has passed. This must
be done since all averages shall be
based on the original data in the array.

Figure 1. The 8-Point Averaging Win-
dow

When the ends of the array is filtered
and parts of the window is outside the
array, the averaging must be done on
less elements than when the entire win-
dow is inside the array. This implementa-
tion leaves the ends of the array unfil-
tered to save code. For an 8-point filter,
this means that when n elements are fil-
tered, elements 1, 2, 3, and n-3, n-2, n-1,
n remain unchanged when filtering is
complete. For many applications, this is
no problem.

Implementation
The application defines an 8-byte ring
buffer (R0-R7) which always holds the
data in the current averaging window.
The filter routine calculates the sum of
the window and computes the average,
which is stored back in the array. The
AVR's three pointers are assigned the
following functions:

• Z points to the array element to be
replaced

• Y points inside the ring buffer when
the sum of the buffer contents is
calculated in a program loop.

• X is the ring pointer which holds the
position of new values to the buffer.

CURRENT WINDOW

26 25 23 14 20 16 16 18 1417132225283012

NEW VALUE = (22+13+17+26+25+23+14+20) / 8 = 20

8-Bit
Microcontroller
with
Downloadable
Flash

Application
Note

AVR222

0940A-A–8/97

AVR2222

Usage
To filter an array in SRAM, use the following procedure:

1. Load ZH with the high address of the first element in the
array

2. Load ZL with the low address of the first element in the
array.

3. Load the register variable “t_size” with the number of ele-
ments in the table.

4. Call “mav8”.

Algorithm Description
The following procedure describes how the sorter is imple-
mented on the AVR:

Initialization
1. Clear the X and Y pointers (point to R0).

Fill Ring Buffer Initially:

2. Get the SRAM contents at Z and increment Z.

3. Store in register at Y and increment Y.

4. If Y not 8, goto Step 2.

Find Average
5. Clear the 16-bit register variable “AH:AL” (Average

Value)

6. Clear YL (point to R0).

7. Get the register contents at Y.

8. Add to “AH:AL”.

9. If Y not 8, goto Step 8.

10. Divide “AH:AL” by 8

Write Back Average and Get Next Value to Buffer
11. Get SRAM contents at Z+5 (Next value to buffer)

12. Store to register at X and increment X.

13. Clear the highest 5 bits of XL to make it point to the
start of the buffer if the end is passed.

14. Store AL at Z and increment Z.

15. Decrement “t_size”

16. If “t_size” is not zero (end of array is reached) goto
Step 5.

Figure 2. “mav8” Flow Chart

AH:AL AH:AL
+MAV_TMP

MAV8

CLEAR X AND Y

MAV_TMP @Z
Z Z + 1

@Y MAV_TMP
Y Y + 1

CLEAR AH:AL, YL

MAV_TMP @Y
Y Y + 1

YL = 8 ?

YL = 8 ?

Return

Y

T_SIZE = 0

Y

@X MAV_TMP,
X X + 1

MAV_TMP @(Z+5)

AH:AL AH:AL / 8

T_SIZE T_SIZE - 1

@Z AL,
Z Z + 1

CLEAR X BITS 7,6,5,4,3

Y

NC
A

LC
U

LA
T

E
 A

V
E

R
A

G
E

F
IL

L
R

IN
G

 B
U

F
F

E
R

W
R

IT
E

 B
A

C
K

 A
V

E
R

A
G

E
 A

N
D

 G
E

T
 N

E
X

T
 V

A
LU

E
 T

O
 R

IN
G

 B
U

F
F

E
R

AVR222

3

Performance

Note: SIZE = Number of bytes to filter

Test/Example Program
“avr222.asm” contains a test program which copies 60
bytes of random data from the program memory to SRAM
and calls “mav8” to filter the data. The test program is well
suited for running under the AVR Studio.

Table 1. “mav8” Register Usage

Register Input Internal Output

R0-R7 Ring buffer

R8 “mav_tmp” - temporary storage

R9 “AL” - average low byte

R10 “AH” - average high byte

R16 “t_size” -number of elements “t_size” - loop counter

R26 XL

R27 XH

R28 YL

R29 YH

R30 Z - address of first element ZL

R31 Z - address of first element ZH

Table 2. “mav8” Performance Figures

Parameter Value

Code Size (Words) 30 + return

Execution Time (Cycles) 59 + 75 x (SIZE - 7) + return

Register Usage • Low registers
• High registers
• Pointers

:11
:1
:X, Y, Z

Interrupts Usage None

Peripherals Usage None

