
1

AVR 305: Half Duplex Compact Software UART

Features
• 32 Words of Code, Only
• Handles Baud Rates of up to 38.4 kbps

with a 1 MHz XTAL
• Runs on Any AVR Device, Only Two Port

Pins Required
• Does Not Use Any Timer

Introduction
In many applications utilizing serial com-
munication, the software handling com-
munication does not have to be per-
formed as a background task. This appli-
cation note describes how to implement
a polled software UART capable of han-
dling speeds up to 614 400 bps on an
AT90S1200. This implementation is
intended for applications where small
code is preferred. All bit delays are soft-
ware delays, so no timer is required. The
controller can not perform any other
tasks while receiving or transmitting, but
when the operation is complete, the con-
troller is free to continue program execu-
tion.

Theory of Operation
In asynchronous serial communication,
no clock information is transferred. The
data is transferred serially, one bit at a
time. In idle state, the line is held at logi-
cal ‘1’. When data is to be transferred,
the first bit is a so called start bit, often
given the symbol S. The start bit is a ‘0’,
causing a ‘1’ to ‘0’ transition at the line.
This can be detected by the receiver,
signaling that data is coming. The follow-
ing bits transferred are the data bits, with
the LSB first. Then, one or more stop
bits (P) are transferred. The stop bit is a
logical ‘1’, putting the line back to idle
state before a new start bit followed by a
data byte can be transferred. There must
be at least one stop bit, so that a ‘1’ to ‘0’
t ransi t ion can be detected by the
receiver, indicating a new start bit. The
frame shown in Figure 1 has got eight
data bits and one stop bit. Sometimes, a
parity bit is included between the last
data bit and the stop bit, and there can
be several stop bits.

Figure 1. Frame Format

The receiver must sample the data line
in the middle of every bit in order to
receive the data properly. The bit length
has to be equal for all bits, so that the
receiver knows when to sample the line.
The receiver is synchronized with the
transmitter by the falling edge of the start
bit. The receiver must have an internal
timer in order to sample the bits at the
right time.

The bit length must be the same for both
transmitter and receiver, and some stan-
dard speeds are defined in bits per sec-
ond, bps.

S D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 P

8-Bit
Microcontroller

Application
Note

AVR305

0952A-A–9/97

AVR3052

Implementation
Bit Length Delays - UART_delay
The delay between the bits are generated by calling a
delay subroutine twice (as the subroutine generates a half-
bit delay, see receiving data). If very short delays are
required (when transmitting and receiving at very high
speed), the delay must be implemented inside the putchar
and getchar routines. The required delay length in clock
cycles can be calculated using the following formula:

where c is the bit length in clock cycles and fCLCL is the
crystal frequency.

Both putchar and getchar use 9 CPU cycles to send or
receive a bit. Hence, a delay of c - 9 cycles must be gener-
ated between each bit. The rcall and ret instructions require
a total of 7 cycles. If the subroutine is to be called twice to
generate the required delay, the delay has to be d cycles:

If the delay is generated as shown below, the total execu-
tion time is 3·b cycles plus 7 cycles for rcall and ret.

rcall UART_delay

UART_delay: ldi temp,b

UART_delay1: dec temp

brne UART_delay1

ret

The value b is found by the equation

The actual delay generated, calling delay twice is

From this, the minimum and maximum delays are dmin = 29
and dmax = 1 559 cycles. The c and b values for some bit
rates and frequencies are shown in Table 8.

Transmitting Data - putchar
The putchar subroutine transmits the byte stored in the reg-
ister Txbyte. The data bits are shifted into the carry bit. The
easiest way to generate stop bits is to let the zeros shifted
into the transmitted byte be interpreted as ones. If the data
byte is inverted before it is shifted, a ‘0’ in carry must give a
‘1’ on the line, and a ‘0’ in carry gives a ‘1’ on the line.
When 0’s are shifted into the data byte, they are handled as
1’s. This way, any number of stop bits can generated by

c
fCLCL

bit rate
------------------=

d c 9–
2

------------ 7–=

b

c 9–
2

------------ 7–

3

c 23–
6

---------------= =

d 3 b 7+×() 2 9+× 6 b 23+×= =

Table 1. “UART_delay” Subroutine Performance Figures

Parameter Value

Code Size 4 words

Execution Cycles Min: 7 cycles Max: 772 cycles (including ret)

Register Usage Low registers

 High registers
 Global

:None

:None
:1

Table 2. “UART_delay” Register Usage

Register Input Internal Output

R17 “temp” - count variable

AVR305

3

just repeating the transmittal loop. The start bit is generated
by setting the carry bit before data are shifted out.

The algorithm for transmitting data is shown in the flow-
chart:

Figure 1. putchar subroutine

Receiving Data - getchar
First, the routine waits for a logical ‘0’ (not a transition).
When the start bit is detected, a 1.5 bit delay is generated.
This is performed by calling the delay subroutine three
times. Sampling then starts at 1 bit intervals. The carry is
set or cleared according to the logic value at the RxD-pin. If
less than eight data bits are received, the carry is shifted
into the receive byte. If not, the routine returns with the
received byte in Rxbyte.

The routine waits for one bit length after the last data bit
and terminates in the middle of the stop bit. This is done to

Table 3. “putchar” Subroutine Performance Figures

Parameter Value

Code Size 14 words

Execution Cycles Depends on bit rate

Register Usage Low registers
 High registers
 Global

:None
:None
:2

Table 4. “putchar” Register Usage

Register Input Internal Output

R16 “bitcnt” - counts the number of
bits transfered

R18 “Txbyte” - the byte to send

putchar

bit counter =
 9 + sb

Invert Txbyte

Set carry

If carry
is...

TxD = 0TxD = 1

0 1

Shift Txbyte righ t

Is b it
coun ter 0?

Decrem ent
b it counter

Re turn

Yes

No

sb = num ber o f stop bits

delay

delay

AVR3054

prevent detection of a false startbit if the routine is called
again immediately after a complete reception.

The algorithm for receiving data is:

Figure 2. getchar subroutine

Table 5. “getchar” Subroutine Performance Figures

Parameter Value

Code Size 14 words

Execution Cycles Waits until byte received

Register Usage Low registers
 High registers
 Global

:None
:None
:2

Table 6. “getchar” Register Usage

Register Input Internal Output

R16 “bitcnt” - counts the number of
bits received

R18 “Rxbyte” - the received byte

putchar

bit counter =
 9 + sb

Invert Txbyte

Set carry

If carry
is...

TxD = 0TxD = 1

0 1

Shift Txbyte righ t

Is b it
coun ter 0?

Decrem ent
b it counter

Re turn

Yes

No

sb = num ber o f stop bits

delay

delay

AVR305

5

Example Program
The example program receives a character with getchar
and echoes it back with putchar.
Table 7. Overall Performance Figures

Parameter Value

Code Size 32 words - UART routines only
40 words - Complete application note

Register Usage Low registers
 High registers
 Global

:None
:4
:None

Interrupt Usage None

Peripheral Usage Port D pin 0 and 1 (any two pins can be used)

AVR3056

Table 8. Baud Rate Table
1 MHz 1.8432 MHz 2 MHz

BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error %

2400 417 66 0.6 2400 768 124 0.1 2400 833 135 0.0
4800 208 31 0.3 4800 384 60 0.3 4800 417 66 0.6
9600 104 14 2.7 9600 192 28 0.5 9600 208 31 0.3

14400 69 8 2.2 14400 128 18 2.3 14400 139 19 1.4
19200 52 5 1.8 19200 96 12 1.0 19200 104 14 2.7
28800 35 2 0.8 28800 64 7 1.6 28800 69 8 2.2

57600 17 1 67.0 57600 32 2 9.4 57600 35 2 0.8
115200 9 1 234.1 115200 16 1 81.3 115200 17 1 67.0

2.4576 MHz 3.276 MHz 3.6864 Mhz

BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error %

2400 1024 167 0.1 2400 1365 224 0.1 2400 1536 252 0.1
4800 512 82 0.6 4800 683 110 0.0 4800 768 124 0.1
9600 256 39 0.4 9600 341 53 0.1 9600 384 60 0.3

14400 171 25 1.4 14400 228 34 0.2 14400 256 39 0.4
19200 128 18 2.3 19200 171 25 1.4 19200 192 28 0.5
28800 85 10 2.7 28800 114 15 0.7 28800 128 18 2.3

57600 43 3 3.9 57600 57 6 3.7 57600 64 7 1.6
115200 21 1 35.9 115200 28 1 2.0 115200 32 2 9.4

4 MHz 4.608 MHz 7.3728 MHz

BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error %

2400 1667 274 0.0 2400 1920 316 0.1 2400 3072 508 0.0
4800 833 135 0.0 4800 960 156 0.1 4800 1536 252 0.1
9600 417 66 0.6 9600 480 76 0.2 9600 768 124 0.1

14400 278 42 1.0 14400 320 50 0.9 14400 512 82 0.6
19200 208 31 0.3 19200 240 36 0.4 19200 384 60 0.3
28800 139 19 1.4 28800 160 23 0.6 28800 256 39 0.4

57600 69 8 2.2 57600 80 10 3.8 57600 128 18 2.3
115200 35 2 0.8 115200 40 3 2.5 115200 64 7 1.6

8 MHz 9.216 MHz 11.059 MHz

BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error %

2400 3333 552 0.0 2400 3840 636 0.0 2400 4608 764 0.0
4800 1667 274 0.0 4800 1920 316 0.1 4800 2304 380 0.0
9600 833 135 0.0 9600 960 156 0.1 9600 1152 188 0.1

14400 556 89 0.3 14400 640 103 0.2 14400 768 124 0.1
19200 417 66 0.6 19200 480 76 0.2 19200 576 92 0.2
28800 278 42 1.0 28800 320 50 0.9 28800 384 60 0.3

57600 139 19 1.4 57600 160 23 0.6 57600 192 28 0.5
115200 69 8 2.2 115200 80 10 3.8 115200 96 12 1.0

14.746 MHz 16 MHz

BaudRate Cycles
required

b-value Error % BaudRate Cycles
required

b-value Error %

2400 6144 1020 0.0 2400 6667 1107 0.0
4800 3072 508 0.0 4800 3333 552 0.0
9600 1536 252 0.1 9600 1667 274 0.0

14400 1024 167 0.1 14400 1111 181 0.2
19200 768 124 0.1 19200 833 135 0.0
28800 512 82 0.6 28800 556 89 0.3

57600 256 39 0.4 57600 278 42 1.0
115200 128 18 2.3 115200 139 19 1.4

