/******** program quad **********/ /* 2-d stress analysis using 4-node */ /* quadrilateral elements with temperature */ /* t.r.chandrupatla and a.d.belegundu */ /*********************************************/ #include #include main() { FILE *fptr1, *fptr2; int n,i,j,k,m,i1,i2,i3,ii,jj,m1,nmin,nmax,nrt,nct,it,jt; int ip,nr,nc,in; char dummy[81], title[81], file1[81], file2[81], file3[81]; int ne,nn,nq,nm,nd,nl,nen,ndn,ndim,npr,nbw,nmpc,lc,ipl; int *noc, *nu, *mat, *mpc; float *x, *thick, *pm, *u, *tempr, *s, *f, *beta; float xi,eta,th,q[8],c1,sv; float c, dj, al, pnu, tld, cnst, reaction, s1, s2, s3, ang, r; float b[3][8],d[3][3],db[3][8],se[8][8],str[3],tl[8],xni[4][2]; /*-------------------------------------------------------*/ printf("\n"); puts("Input file name < dr:fn.ext >: "); gets(file1); puts("Output file name < dr:fn.ext >: "); gets(file2); printf("\n"); printf(" 1) plane stress analysis\n"); printf(" 2) plane strain analysis\n"); printf(" choose <1 or 2> "); scanf("%d", &lc); if (lc < 1 || lc > 2) lc = 1; fptr1 = fopen(file1, "r"); fgets(dummy,80,fptr1); fgets(title,80,fptr1); fgets(dummy,80,fptr1); fscanf(fptr1,"%d %d %d %d %d %d\n", &nn, &ne, &nm, &ndim, &nen, &ndn); fgets(dummy, 80, fptr1); fscanf(fptr1,"%d %d %d %d %d\n", &nd, &nl, &nmpc); npr = 3; /* Material properties E, Nu, Alpha */ /* ----- memory allocation ----- */ x = (float *) calloc(nn*ndim, sizeof(float)); noc = (int *) calloc(ne*nen, sizeof(int)); u = (float *) calloc(nd, sizeof(float)); nu = (int *) calloc(nd, sizeof(int)); mat = (int *) calloc(ne,sizeof(int)); thick = (float *) calloc(ne, sizeof(float)); f = (float *) calloc(nn*ndn, sizeof(float)); tempr = (float *) calloc(ne, sizeof(float)); pm = (float *) calloc(nm*npr, sizeof(float)); mpc = (int *) calloc(2*nmpc, sizeof(int)); beta = (float *) calloc(3*nmpc, sizeof(float)); printf("\n\n PLOT CHOICE\n"); printf(" 1) no plot data\n"); printf(" 2) create data file for in-plane shear stress\n"); printf(" 3) create data file for von mises stress\n"); printf(" choose <1 or 2 or 3> "); scanf("%d%*c", &ipl); if(ipl < 1 || ipl > 3) ipl = 1; /* --- default is no data ---*/ if(ipl > 1){ printf("Output file name < dr:fn.ext >:\n"); gets(file3); } /* ----- total dof is nq ----- */ nq = ndn * nn; /* =============== read data ==================== */ /* ----- coordinates ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nn; i++){ fscanf(fptr1, "%d", &n); for (j = 0; j < ndim; j++){ fscanf(fptr1, "%f\n", &c); x[ndim*(n-1)+j] = c; } } /* ----- connectivity, material, thickness, temp-change ----- */ fgets(dummy,80,fptr1); for (i = 0; i < ne; i++) { fscanf(fptr1,"%d", &n); for (j = 0; j < nen; j++) { fscanf(fptr1,"%d", &k); noc[(n-1)*nen+j]=k; } fscanf(fptr1,"%d", &k); mat[n-1] = k; fscanf(fptr1,"%f",&c); thick[n-1] = c; fscanf(fptr1,"%f\n",&c); tempr[n-1] = c; } /* ----- displacement bc ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nd; i++) { fscanf(fptr1, "%d %f\n", &k, &c); nu[i] = k; u[i] = c; } /* ----- component loads ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nl; i++) { fscanf(fptr1, "%d %f\n", &k, &c); f[k-1] = c; } /* ----- material properties ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nm; i++){ fscanf(fptr1, "%d", &k); for (j = 0; j < npr; j++) { fscanf(fptr1, "%f\n", &c); pm[(k-1)*npr+j] = c; } } /* ----- multipoint constraints ----- */ if (nmpc > 0) { fgets(dummy,80,fptr1); for(j=0;j n) nmin = n; if (nmax < n) nmax = n; } n= ndn * (nmax - nmin + 1); if (nbw < n) nbw = n; } for (i = 0; i < nmpc; i++) { n = abs(mpc[2*i] - mpc[2*i+1]) + 1; if (nbw < n) nbw = n; } printf ("the bandwidth is %d\n", nbw); /* ----- allocate memory for stiffness ----- */ s = (float *) calloc(nq*nbw, sizeof(float)); /* ----- global stiffness matrix -----*/ /* ----- corner nodes and integrationpoints ----- */ integ(xni); for (n = 0; n < ne; n++) { printf("forming stiffness matrix of element %d\n", n+1); dmatrix(n,pm,mat,npr,&pnu,&al,lc,d); /* --- element stiffness --- */ elstif(n,lc,se,tl,xni,d,thick,tempr,x,al,pnu,noc); printf (".... placing in global locations\n"); for (ii = 0; ii < nen; ii++) { nrt = ndn * (noc[nen*n + ii] - 1); for (it = 0; it < ndn; it++) { nr = nrt + it; i = ndn * ii + it; for (jj = 0; jj < nen; jj++) { nct = ndn * (noc[nen*n+jj] - 1); for (jt = 0; jt < ndn; jt++) { j = ndn * jj + jt; nc = nct + jt - nr; if (nc >= 0) s[nbw*nr+nc] = s[nbw*nr+nc] + se[i][j]; } } f[nr] = f[nr] + tl[i]; } } } /* ----- decide penalty parameter cnst ----- */ cnst = 0.; for (i = 0; i < nq; i++) { if (cnst < s[i*nbw]) cnst = s[i*nbw]; } cnst = cnst * 10000.; /* ----- modify for displacement boundary conditions ----- */ for (i = 0; i < nd; i++) { k = nu[i]; s[(k-1)*nbw] = s[(k-1)*nbw] + cnst; f[k-1] = f[k-1] + cnst * u[i]; } /* ----- modify for multipoint constraints ----- */ for (i = 0; i < nmpc; i++){ i1 = mpc[2*i]-1; i2 = mpc[2*i+1]-1; s[i1*nbw] = s[i1*nbw] + cnst*beta[3*i]*beta[3*i]; s[i2*nbw] = s[i2*nbw] + cnst*beta[3*i+1]*beta[3*i+1]; n=i1; if (n > i2) n = i2; m = abs(i2-i1); s[n*nbw+m] = s[n*nbw+m]+cnst*beta[3*i]*beta[3*i+1]; f[i1] = f[i1] + cnst*beta[3*i]*beta[3*i+2]; f[i2] = f[i2] + cnst*beta[3*i+1]*beta[3*i+2]; } /* ----- solution of equations using band solver ----- */ bansol(s,f,nq,nbw); /* ----- printing displacements ----- */ fptr1 = fopen(file2, "w"); printf("\n%s\n", title); fprintf(fptr1, "\n%s\n", title); fprintf(fptr1, "bandwidth = %d\n",nbw); if (lc == 1) fprintf(fptr1, "plane stress analysis\n"); if (lc == 2) fprintf(fptr1, "plane strain analysis\n"); fprintf(fptr1, "node# x-displ y-displ\n"); printf ("node# x-displ y-displ\n"); for (i = 0; i < nn; i++) { printf(" %4d %11.4e %11.4e\n",i+1,f[2*i],f[2*i+1]); fprintf(fptr1," %4d %11.4e %11.4e\n",i+1,f[2*i],f[2*i+1]); } /* ----- reaction calculation ----- */ printf("node# reaction\n"); fprintf(fptr1, "node# reaction\n"); for (i = 0; i < nd; i++) { k = nu[i]; reaction = cnst * (u[i] - f[k-1]); printf(" %4d %11.4e\n", k, reaction); fprintf(fptr1, " %4d %11.4e\n", k, reaction); } if (ipl > 1){ fptr2 = fopen(file3, "w"); if (ipl == 2) fprintf(fptr2, "max. in-plane Shear Stress"); if (ipl == 3) fprintf(fptr2, "von Mises stress"); fprintf(fptr2, "(element) for data in file %s\n", file1); } /* ----- stress calculations ----- */ fprintf (fptr1, "elem# von mises stresses at 4 integration points\n"); /* ----- stresses at integration points ----- */ for (n = 0; n < ne; n++) { fprintf (fptr1, "%4d ", n+1); for (ip = 0; ip < 4; ip++) { xi = xni[ip][0]; eta = xni[ip][1]; dmatrix(n,pm,mat,npr,&pnu,&al,lc,d); dbmat(n,x,noc,thick,&th,d,b,db,&dj,xi,eta); /* --- stress evaluation --- */ for (i = 0; i < nen; i++) { in = ndn * (noc[nen*n+i] - 1); ii = ndn * i; for (j = 0; j < ndn; j++) { q[ii + j] = f[in + j]; } } c1 = al * tempr[n]; if (lc == 2) c1 = c1 * (1 + pnu); for (i = 0; i < 3; i++) { c = 0; for (k = 0; k < 8; k++) { c = c + db[i][k] * q[k]; } str[i] = c - c1 * (d[i][0] + d[i][1]); } /* --- von mises stress at integration point --- */ c = 0; if (lc == 2) c = pnu * (str[0] + str[1]); c1 = (str[0] - str[1]) * (str[0] - str[1]); c1 = c1 + (str[1] - c) * (str[1] - c); c1 = c1 + (c - str[0]) * (c - str[0]); sv = sqrt((double)(.5 * c1 + 3 * str[2] * str[2])); fprintf(fptr1, " %10.4e ", sv); /* --- maximum shear stress r --- */ c = .25 * (str[0]-str[1])*(str[0]-str[1]); c = c + str[2]*str[2]; r = sqrt((double) c); if (ipl == 2) fprintf(fptr2," %f ", r); if (ipl == 3) fprintf(fptr2, " %f ", sv); } fprintf(fptr1, "\n"); if (ipl > 1) fprintf(fptr2, "\n"); } fclose(fptr1); printf("complete results are in file %s\n", file2); printf("view using a text processor\n"); if (ipl > 1) { fclose(fptr2); printf("element stress data in file %s\n", file3); printf("run bestfit and then contourA or contourB to plot stresses\n"); } return(0); } integ(xni) float xni[][2]; { float c; /* ----- integration points xni() ----- */ c = .57735026919; xni[0][0] = -c; xni[0][1] = -c; xni[1][0] = c; xni[1][1] = -c; xni[2][0] = c; xni[2][1] = c; xni[3][0] = -c; xni[3][1] = c; return(0); } dmatrix(n,pm,mat,npr,pnu1,al1,lc,d) int lc,n,npr,*mat; float *pm,*pnu1,*al1,d[][3]; { int m; float e,c,c1,c2,c3,pnu,al; /* ----- d() matrix ----- */ /* --- material properties --- */ m = mat[n]-1; e = pm[npr*m]; pnu= pm[npr*m+1]; al = pm[npr*m+2]; *pnu1 = pnu; *al1 = al; /* --- d() matrix --- */ if (lc == 1) { /* --- plane stress --- */ c1 = e / (1 - pnu * pnu); c2 = c1 * pnu; } else { /* --- plane strain --- */ c = e / ((1 + pnu) * (1 - 2 * pnu)); c1 = c * (1 - pnu); c2 = c * pnu; } c3 = .5 * e / (1 + pnu); d[0][0] = c1; d[0][1] = c2; d[0][2] = 0; d[1][0] = c2; d[1][1] = c1; d[1][2] = 0; d[2][0] = 0; d[2][1] = 0; d[2][2] = c3; return(0); } elstif(n,lc,se,tl,xni,d,thick,tempr,x,al,pnu,noc) int n,lc,*noc; float al,pnu; float *x,*tempr,*thick,d[][3],tl[8],se[][8],xni[][2]; { int i,j,k,ip; float dte,c,xi,eta,th,dj,b[3][8],db[3][8]; /* ----- element stiffness and temperature load ----- */ for (i = 0; i < 8;i++) { for (j = 0; j < 8; j++) { se[i][j] = 0.; } tl[i] = 0.; } dte = tempr[n]; /* --- weight factor is one --- */ /* --- loop on integration points --- */ for (ip = 0; ip < 4; ip++) { /* --- get db matrix at integration point ip --- */ xi = xni[ip][0]; eta = xni[ip][1]; dbmat(n,x,noc,thick,&th,d,b,db,&dj,xi,eta); /* --- element stiffness matrix se --- */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { c = 0; for (k = 0; k < 3; k++) { c = c + b[k][i] * db[k][j] * dj * th; } se[i][j] = se[i][j] + c; } } /* --- determine temperature load tl --- */ c = al * dte; if (lc == 2) c = (1 + pnu) * c; for (i = 0; i < 8; i++) { tl[i] = tl[i] + th * dj * c * (db[0][i] + db[1][i]); } } return(0); } dbmat(n,x,noc,thick,th1,d,b,db,dj1,xi,eta) float *x,*dj1,*thick,*th1,xi,eta; float d[][3],b[][8],db[][8]; int n,*noc; { int n1,n2,n3,n4,i,j,k; float x1,y1,x2,y2,x3,y3,x4,y4,tj11,tj12,tj21,tj22,dj,c; float th,a[3][4],g[4][8]; /* ----- db() matrix ----- */ /* --- nodal coordinates --- */ th = thick[n]; *th1 = th; n1 = noc[4*n]; n2 = noc[4*n+1]; n3 = noc[4*n+2]; n4 = noc[4*n+3]; x1 = x[2*(n1-1)]; y1 = x[2*(n1-1)+1]; x2 = x[2*(n2-1)]; y2 = x[2*(n2-1)+1]; x3 = x[2*(n3-1)]; y3 = x[2*(n3-1)+1]; x4 = x[2*(n4-1)]; y4 = x[2*(n4-1)+1]; /* --- formation of jacobian tj --- */ tj11 = ((1 - eta) * (x2 - x1) + (1 + eta) * (x3 - x4)) / 4; tj12 = ((1 - eta) * (y2 - y1) + (1 + eta) * (y3 - y4)) / 4; tj21 = ((1 - xi) * (x4 - x1) + (1 + xi) * (x3 - x2)) / 4; tj22 = ((1 - xi) * (y4 - y1) + (1 + xi) * (y3 - y2)) / 4; /* --- determinant of the jacobian --- */ dj = tj11 * tj22 - tj12 * tj21; *dj1 = dj; /* --- a[3,4] matrix relates strains to --- */ /* --- local derivatives of u --- */ a[0][0] = tj22 / dj; a[1][0] = 0; a[2][0] = -tj21 / dj; a[0][1] = -tj12 / dj; a[1][1] = 0; a[2][1] = tj11 / dj; a[0][2] = 0; a[1][2] = -tj21 / dj; a[2][2] = tj22 / dj; a[0][3] = 0; a[1][3] = tj11 / dj; a[2][3] = -tj12 / dj; /* --- g[4,8] matrix relates local derivatives of u --- */ /* --- to local nodal displacements q[8] --- */ for (i = 0; i < 4; i++) { for (j = 0; j < 8; j++) { g[i][j] = 0; } } g[0][0] = -(1 - eta) / 4; g[1][0] = -(1 - xi) / 4; g[2][1] = -(1 - eta) / 4; g[3][1] = -(1 - xi) / 4; g[0][2] = (1 - eta) / 4; g[1][2] = -(1 + xi) / 4; g[2][3] = (1 - eta) / 4; g[3][3] = -(1 + xi) / 4; g[0][4] = (1 + eta) / 4; g[1][4] = (1 + xi) / 4; g[2][5] = (1 + eta) / 4; g[3][5] = (1 + xi) / 4; g[0][6] = -(1 + eta) / 4; g[1][6] = (1 - xi) / 4; g[2][7] = -(1 + eta) / 4; g[3][7] = (1 - xi) / 4; /* --- b[3,8] matrix relates strains to q --- */ for (i = 0; i < 3; i++) { for (j = 0; j < 8; j++) { c = 0; for (k = 0; k < 4; k++) { c = c + a[i][k] * g[k][j]; } b[i][j] = c; } } /* --- db[3,8] matrix relates stresses to q[8] --- */ for (i = 0; i < 3; i++) { for (j = 0; j < 8; j++) { c = 0; for (k = 0; k < 3; k++) { c = c + d[i][k] * b[k][j]; } db[i][j] = c; } } return(0); } /* ----- band solver ----- */ bansol(s,f,nq,nbw) int nq, nbw; float *s, *f; { int n1,k,nk,i,i1,j,j1,kk; float c1; /* ----- band solver ----- */ n1 = nq - 1; /* --- forward elimination --- */ for (k = 1; k <= n1; k++) { nk = nq - k + 1; if (nk > nbw) nk = nbw; for (i = 2; i <= nk; i++) { c1 = s[nbw*(k-1)+i-1] / s[nbw*(k-1)]; i1 = k + i - 1; for (j = i; j <= nk; j++) { j1 = j - i + 1; s[nbw*(i1-1)+j1-1] = s[nbw*(i1-1)+j1-1] - c1 * s[nbw*(k-1)+j-1]; } f[i1-1] = f[i1-1] - c1 * f[k-1]; } } /* --- back-substitution --- */ f[nq-1] = f[nq-1] / s[nbw*(nq-1)]; for (kk = 1; kk <= n1;kk++) { k = nq - kk; c1 = 1 / s[nbw*(k-1)]; f[k-1] = c1 * f[k-1]; nk = nq - k + 1; if (nk > nbw) nk = nbw; for (j = 2; j <= nk; j++) { f[k-1] = f[k-1] - c1 * s[nbw*(k-1)+j-1] * f[k + j - 2]; } } return(0); }