/***************************************/ /* program torsion2 */ /* torsion with 3-noded triangles */ /* t.r.chandrupatla and a.d.belegundu */ /***************************************/ #include #include main() { FILE *fptr1, *fptr2, *fptr3; int i,j,k,m,n,ii,jj,nbw,n1,n2,nmax,nmin,i1,i2,i3,ii1,ii2; char dummy[121], title[81], file1[81], file2[81], file3[81]; int nn,ne,nm,ndim,nen,ndn,nd,nl,npr,nmpc,*noc,*mat,*nu,ipl; float *x,*pm,*f,*u,*s,bt[2][3],detj,torque,sfac,smod; float alpha,tauyz,tauxz; float x32,x13,x21,y23,y31,y12,area,sum,cnst,c; /*-------------------------------------------------------*/ printf("\n"); puts("Input file name < dr:fn.ext >: "); gets(file1); puts("Output file name < dr:fn.ext >: "); gets(file2); printf("\n"); fptr1 = fopen(file1, "r"); fgets(dummy,80,fptr1); fgets(title,80,fptr1); fgets(dummy,80,fptr1); fscanf(fptr1,"%d %d %d %d %d %d\n", &nn, &ne, &nm, &ndim, &nen, &ndn); fgets(dummy, 80, fptr1); fscanf(fptr1,"%d %d %d \n", &nd, &nl, &nmpc); npr = 1; nmpc = 0; nm = 1; /* --- nd = no. of specified stress function values(displacements) --- */ /* --- nl = 0 for stress function formulation of torsion --- */ /* note!! npr = 1 (shear modulus) and nmpc = 0 for this program */ /* element characteristic is not used */ /* number of materials = 1 for this program */ /* ----------- memory allocation ------------ */ x = (float *) calloc(nn*ndim, sizeof(float)); noc = (int *) calloc(ne*nen, sizeof(int)); u = (float *) calloc(nd, sizeof(float)); nu = (int *) calloc(nd, sizeof(int)); mat = (int *) calloc(ne,sizeof(int)); f = (float *) calloc(nn*ndn, sizeof(float)); pm = (float *) calloc(nm*npr, sizeof(float)); /* ------------------------------------------------ */ printf("\n\n PLOT CHOICE\n"); printf(" 1) no plot data\n"); printf(" 2) create data file containing stress function values\n"); printf(" choose <1 or 2> "); scanf("%d%*c", &ipl); if(ipl < 1 || ipl > 2) ipl = 1; /* --- default is no data ---*/ if(ipl > 1){ printf("Output file name < dr:fn.ext >:\n"); gets(file3); } /* =============== read data ==================== */ /* ----- coordinates ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nn; i++){ fscanf(fptr1, "%d", &n); for (j = 0; j < ndim; j++){ fscanf(fptr1, "%f\n", &c); x[ndim*(n-1)+j] = c; } } /* ----- connectivity, material# ----- */ fgets(dummy,80,fptr1); for (i = 0; i < ne; i++) { fscanf(fptr1,"%d", &n); for (j = 0; j < nen; j++) { fscanf(fptr1,"%d", &k); noc[(n-1)*nen+j]=k; } fscanf(fptr1,"%d\n", &k); mat[n-1] = k; } /* ----- boundary conditions (stress function values) ----- */ fgets(dummy,80,fptr1); printf("%s\n",dummy); for (i = 0; i < nd; i++) { fscanf(fptr1, "%d %f\n", &k, &c); nu[i] = k; u[i] = c; } fgets(dummy,80,fptr1); /* ----- shear modulus of material ----- */ fgets(dummy,80,fptr1); for (i = 0; i < nm; i++){ fscanf(fptr1, "%d", &k); for (j = 0; j < npr; j++) { fscanf(fptr1, "%f\n", &c); pm[(k-1)*npr+j] = c; } } /* ----- bandwidth nbw from connectivity noc() ----- */ nbw = 0; for (i = 0; i < ne; i++) { nmin = noc[nen*i]; nmax = nmin; for (j = 0; j < 3;j++) { n = noc[nen*i+j]; if (nmin > n) nmin = n; if (nmax < n) nmax = n; } n = ndn * (nmax - nmin + 1); if (nbw < n) nbw = n; } printf ("the bandwidth is %d\n", nbw); /* ----- allocate memory for stiffness ----- */ s = (float *) calloc(nn*nbw, sizeof(float)); /* --- stiffness matrix --- */ for (i = 0; i < ne; i++) { i1 = noc[nen*i]-1; i2 = noc[nen*i+1]-1; i3 = noc[nen*i+2]-1; x32 = x[2*i3] - x[2*i2]; x13 = x[2*i1] - x[2*i3]; x21 = x[2*i2] - x[2*i1]; y23 = x[2*i2+1] - x[2*i3+1]; y31 = x[2*i3+1] - x[2*i1+1]; y12 = x[2*i1+1] - x[2*i2+1]; detj = x13 * y23 - x32 * y31; area = .5 * fabs(detj); /* --- element nodal forces --- */ c = 2 * area / 3; f[i1] = f[i1] + c; f[i2] = f[i2] + c; f[i3] = f[i3] + c; /* --- element stiffness and placing in global loc. --- */ bt[0][0] = y23 / detj; bt[0][1] = y31 / detj; bt[0][2] = y12 / detj; bt[1][0] = x32 / detj; bt[1][1] = x13 / detj; bt[1][2] = x21 / detj; for (ii = 0; ii < 3; ii++) { ii1 = noc[nen*i+ii]-1; for (jj = 0; jj < 3; jj++) { ii2 = noc[nen*i+jj]-1; if (ii1 <= ii2) { sum = 0; for (j = 0; j < 2; j++) { sum = sum + bt[j][ii] * bt[j][jj]; } n = nbw*ii1+ii2-ii1; s[n] = s[n] + sum * area; } } } } /* --- modify for boundary conditions --- */ cnst = s[0]; for (i = 1; i < nn; i++) { if (cnst < s[nbw*i]) cnst = s[nbw*i]; } cnst = cnst * 1000000; for (i = 0; i < nd; i++) { n = nu[i]-1; s[nbw*n] = s[nbw*n] + cnst; f[n] = f[n] + cnst * u[i]; } /* --- equation solving --- */ bansol(s,f,nn,nbw); fptr2 = fopen(file2, "w"); fprintf(fptr2, "%s\n", title); printf("%s\n", title); fprintf(fptr2, "node no. stress function value\n"); printf("node no. stress function value\n"); for (i = 0; i < nn; i++) { fprintf(fptr2, "%4d %11.4e\n", i+1, f[i]); printf("%4d %11.4e\n", i+1, f[i]); } if (ipl == 2 ) { fptr3 = fopen(file3, "w"); fprintf( fptr3, "nodal stress function values\n"); for (i = 0; i < nn; i++) { fprintf(fptr3, " %11.4e\n", f[i]); } fclose(fptr3); printf("\n"); printf ("nodal stress function value data in file %s \n", file3); printf ("run contourA or contourB to plot costant stress fn contours\n"); } sum = 0; for (i = 0; i < ne; i++) { i1 = noc[nen*i]-1; i2 = noc[nen*i+1]-1; i3 = noc[nen*i+2]-1; x32 = x[2*i3] - x[2*i2]; x13 = x[2*i1] - x[2*i3]; x21 = x[2*i2] - x[2*i1]; y23 = x[2*i2+1] - x[2*i3+1]; y31 = x[2*i3+1] - x[2*i1+1]; y12 = x[2*i1+1] - x[2*i2+1]; detj = x13 * y23 - x32 * y31; sum = sum + fabs(detj) * (f[i1] +f[i2] + f[i3])/3; } fgets(dummy,80,fptr1); fscanf(fptr1, "%f\n", &torque); /* symmetry factor (eg. if 1/4 symmetry, then = 4.0) */ fgets(dummy,80,fptr1); fscanf(fptr1, "%f\n", &sfac); fclose(fptr1); smod = pm[0]; alpha = torque / smod / sum / sfac; fprintf(fptr2, "twist per unit length = %f\n", alpha); printf("twist per unit length = %f\n", alpha); fprintf(fptr2, "shearing stresses tauyz, tauxz in each element\n"); fprintf(fptr2, "elem# tauyz tauxz\n"); printf("elem# tauyz tauxz\n"); for (i = 0; i < ne; i++) { i1 = noc[nen*i]-1; i2 = noc[nen*i+1]-1; i3 = noc[nen*i+2]-1; x32 = x[2*i3] - x[2*i2]; x13 = x[2*i1] - x[2*i3]; x21 = x[2*i2] - x[2*i1]; y23 = x[2*i2+1] - x[2*i3+1]; y31 = x[2*i3+1] - x[2*i1+1]; y12 = x[2*i1+1] - x[2*i2+1]; detj = x13 * y23 - x32 * y31; bt[0][0] = y23 / detj; bt[0][1] = y31 / detj; bt[0][2] = y12 / detj; bt[1][0] = x32 / detj; bt[1][1] = x13 / detj; bt[1][2] = x21 / detj; tauyz = -(bt[0][0] * f[i1] + bt[0][1] * f[i2] + bt[0][2] * f[i3]); tauxz = bt[1][0] * f[i1] + bt[1][1] * f[i2] + bt[1][2] * f[i3]; tauyz = tauyz * smod * alpha; tauxz = tauxz * smod * alpha; fprintf(fptr2,"%4d %11.4e %11.4e\n", i+1, tauyz, tauxz); printf("%4d %11.4e %11.4e\n", i+1, tauyz, tauxz); } fclose(fptr2); return(0); } /* ----- band solver ----- */ bansol(s,f,nq,nbw) int nq, nbw; float *s, *f; { int n1,k,nk,i,i1,j,j1,kk; float c1; /* ----- band solver ----- */ n1 = nq - 1; /* --- forward elimination --- */ for (k = 1; k <= n1; k++) { nk = nq - k + 1; if (nk > nbw) nk = nbw; for (i = 2; i <= nk; i++) { c1 = s[nbw*(k-1)+i-1] / s[nbw*(k-1)]; i1 = k + i - 1; for (j = i; j <= nk; j++) { j1 = j - i + 1; s[nbw*(i1-1)+j1-1] = s[nbw*(i1-1)+j1-1] - c1 * s[nbw*(k-1)+j-1]; } f[i1-1] = f[i1-1] - c1 * f[k-1]; } } /* --- back-substitution --- */ f[nq-1] = f[nq-1] / s[nbw*(nq-1)]; for (kk = 1; kk <= n1;kk++) { k = nq - kk; c1 = 1 / s[nbw*(k-1)]; f[k-1] = c1 * f[k-1]; nk = nq - k + 1; if (nk > nbw) nk = nbw; for (j = 2; j <= nk; j++) { f[k-1] = f[k-1] - c1 * s[nbw*(k-1)+j-1] * f[k + j - 2]; } } return(0); }