
Blaze ahead of the competition with

, the only customizable,

reactive test bench generator!

TestBencher Pro

Accelerateyour designcycle towarp speed

Generate VHDL and

Verilog test benches from

a single source

Obtain completecontrol over yourHDLcodegeneration

Freeevaluationcopyavailable for downloadvia Internet

Recent surveys of ASIC/FPGA designers have indicated that creation

and verification of HDL test benches typically consumes over 30% of

the entire ASIC/FPGA design cycle. drastically

reduces test bench coding and verification time by automatically

generating self-checking, HDL

test benches from graphically-

entered, reusable timing

diagrams.

TestBencher Pro generates

reactive Verilog and VHDL test

benches from language-

independent timing diagrams

drawn by the user. The user

creates a bench script that

controls the sequence in

which timing diagrams are

applied duringHDL simulation.Diagramscan also conditionally launch

other diagramsbased on simulation activity and can run in parallel and

asynchronouslywith other diagrams.

Output signals on a timing diagram are translated into HDL signal

assignmentstatementswhichdrive the inputs to the simulationmodel

under test. Variables can be used for state values of a signal, so that

multiple test vector sequences can be generated from a single timing

diagram by varying variable values of the timing diagram. This is

especially useful for specifying bus transactions, where address and

data values typicallyvaryovermultiple transactions.

Sample windows are placed on input signals to indicate expected

condition checks that are to made on signals being output from the

model under test. Conditional checks are expressed as if-then-else

statements. A simple conditional check could test the value of a given

signal over a given time range. More complex conditional checks can

verify the occurrence and sequential order of state transitions on

several signals at different points in time. Predefined and user-defined

actions can conditionally be triggered in response to the success or

failureof a conditionalcheck.

TestBencher Pro is the only test bench generator with customizable

HDL output. Other testbenchgeneratorsallowdirect entry of HDL code

(TestBencher Pro does too), but direct entry of HDL code has two big

weaknesses: (1) the code is specific to a given HDL language and (2)

each use of an HDL code fragmented must be individually entered

(codegeneration is not automated).TestBencherPro users have direct

access to the HDL code generation

routines, so users can add their own

routines (or modify existing routines) to

generate HDL code that meets their own

unique test bench requirements.

Language independence can be

achieved by writing separate code

generation routines for VHDLandVerilog.

Another advantage of TestBencher Pro's

customizability is the ability to specify

custom mappings between values

entered in a timing diagram and the HDL

code generated for the diagram. A

custom mapping could be used, for

i n s t a n c e , t o m a p b e t w e e n

microprocessor instruction names in a

timingdiagramto opcodes in theHDL test bench.

Download a free working copy of from our web site

(http://www.syncad.com). Our web site also contains technical

papersand informationonother EDAproductsofferedbySynaptiCAD.

Or contact directly at 1-800-804-7073. Don't waste

anotherday - call today to shift towarpspeed test generation!

web: http://www.syncad.com

phone: 800-804-7073or 540-953-3390

fax: 540-953-3078

email: sales@syncad.com

mail: SynaptiCAD

POBox10608

BlacksburgVA24062

TestBencher Pro

TestBencher Pro

SynaptiCAD

by SynaptiCAD

The Next Generation in Test Bench Automation

CEB <= '1';

OEB <= '1';

WEB <= '0';

wait for 48640 ps;

WEB <= '1';

wait for 24576 ps;

OEB <= '0';

wait for 9284 ps;

ADDRESS <= addr;

wait for 4000 ps;

CEB <= 'X';

wait for 2000 ps;

CEB <= '0';

wait for 11500 ps;

if (ACKB /= '1') then --sample3-1

assert FALSE

report "Bad state:ACKB /= '1'"

severity WARNING;

end if;

wait for 5000 ps;

if (DBUS /= data) then --sample1

assert FALSE

report "Bad state: DBUS /= data"

severity WARNING;

end if;

wait for 10000 ps;

if (ACKB /= '0') then --sample3-2

assert FALSE

report "Bad state: ACKB /= '0'"

severity WARNING;

end if;

wait for 66000 ps;



Surveys of ASIC/FPGAdesigners indicate that creation and
verification of HDL test benches consumes over 30% of the
entire ASIC/FPGAdesign cycle. This is not surprising since
test bench code typically emulates a complex, system-
specific environment for which few pre-written models
exist. To simplify the creation of HDL test bench code,
SynaptiCADInc. has released a newEDA tool, TestBencher
Pro, that automatically generates HDL test benches from
graphical specifications.

Code in HDL test benches
generally falls into one of three categories: raw data (test
patterns/RAM data), functional models which emulate the
interface and internal computationsof components, and bus-
functional models (BFMs) which emulate a component's
interface without emulating its full computational
capabilities. BFMs like the kind generated by TestBencher
Pro are often used instead of full models to model complex
components such as microprocessors for three reasons: (1)
BFMs are easier to code than full models, (2) component
interface information is generally publicly available
whereas information about internal component operation is
usually vendor proprietary, and (3) they execute faster. Full
functionality is generally not required in test bench
components since it is the functioning of the model under
test that is of interest.

A typical BFM might be used to model a
microprocessor's interactions with an IO device or memory
subsystem.This typeofBFMwouldneed to generate control
and data signals from the microprocessor for each type of
microprocessor bus transaction (e.g. read cycle, write cycle,
interrupt processing)with exact timing requirements.BFMs
also perform checks on outputs from themodel under test so
that simulation waveform results don't have to checked
manually by designers. In addition, BFMs are typically
reactive models; that is their output depends on the activity
of themodel under test. For example, amicroprocessorBFM
might have to wait for a data valid signal from a memory
subsystem before completing a read cycle. Most BFMs are
hand-coded in HDL from signal interface and timing
information (timing diagrams) published by component
vendors. This type of HDL code is difficult to create and
maintain because it is difficult to visualize the waveforms
generated by the HDL code and compare them to vendor
timingdiagrams.

To simplify the task of creating BFMs, SynaptiCAD has
introduced TestBencher Pro, the first customizable reactive
test bench generator. Users create re-usable timing diagrams
with TestBencher Pro's built-in timing diagram editor that

describe the types of protocol transactions between the
model under test (MUT)and the outsideworld.These timing
diagramscontain stimulus to apply to theMUTand expected
output data from the MUT. Signal states values can be
specified as hard-coded Boolean or Hex values or they can
be variables which are set to different values each time a
diagram is executed.Users place "samples"onMUToutputs
to control how the test bench reacts to output activity from
the MUT. For example, a sample on an interrupt line could
stop execution of a diagram and begin execution of an
interrupt acknowledge diagram. Time markers can also be
placed in a diagram to indicate areas of a diagram that should
repeat or times at which user-writtenHDL sequences should
be executed. The overall execution sequence of the timing
diagrams is controlled by a bench script written by the user
which contains calls to execute diagrams, loops, and
conditional statements. Bench scripts can be written with a
combinationof nativeHDLandPerl code.

This means
the generated code is easy to understand and integrate with
existing HDL code and doesn't suffer from code bloating
problems that could slow down test bench execution. A
TestBencher test bench consists of a component model for
each timing diagram, a sequencer component generated
from the primary bench script that controls diagram
execution order, and a top-level structural component that
connects test benchcomponentsand themodel(s)under test.

TestBencher
also supports import of waveforms from popular logic
simulators and logic analyzers. These waveforms can be
edited as desired in TestBencher and then used to generate
HDL test bench code. TestBencher can also generate
waveform stimulus to drive SPICE and many popular gate-
level simulators. In addition, TestBencher Pro's built-in Perl
scripting language allows users to import/exportwaveforms
and other timing diagram data to any simulator or test
equipment waveform format, including internal formats
usedby customers.

One unique aspect of TestBencher is
that the Perl source code that generates HDL code from the
timing diagrams is shipped with the product, giving end
users the ability to customize HDL output to meet any
specializedrequirementsfor their testingenvironment.

, visit SynaptiCADatwww.syncad.com.
You can also get a free evaluation kit by contacting
SynaptiCADdirectly:
Sales: (800)804-7073 Email: sales@syncad.com
Phone: (540)953-3390 Web: http://www.syncad.com
Fax: (540)953-3078

Most HDL test bench coding consists of writing
bus-functional models.

Although BFM's are easier to create than full
models, they still require considerable coding
effort because they usually model very complex
parts.

TestBencher Pro generates reactive bus-
functional models directly from timing diagrams.

TestBencher generates small, efficient HDL code
similar to manually coded test benches.

TestBencher Pro can import/export waveforms
from simulators and test equipment.

TestBencher Pro's test bench code generation is
user-customizable.

To download a FREE functional evaluation of
TestBencherPro


