————

‘z
—
o
——————.

— 0.

1!

CY3120

PRELIMINARY CY3125

=== CYPRESS

Features

VHDL (IEEE 1076 and 1164) high-level language compiler
— VHDL facilitates device independent design

— VHDL designs are portable across multiple devices
and/or CAE Environments

— VHDL facilitates the use of industry-standard simulation
and synthesis tools for board and system-level design

— VHDL supports functions and libraries facilitating
modular design methodology

Warp2+ [provides synthesis for a powerful subset of IEEE
standard 1076 and 1164 VHDL including:

— enumerated types
— operator overloading
—for ... generate statements
— integers
State-of-the-art optimizations and reduction algorithms
— Optimization for flip-flop type (D type/T type)
— Automatic selection of optimal flip-flop type
(D type/T type)
— Automatic pin assignment
— Automatic state assignment (grey code, one-hot, binary)

Several design entry methods support high and low-level
design descriptons:

— Behavioral VHDL (IF... THEN...ELSE; CASE...)

— Boolean

— Structural VHDL (RTL)

Designs can include multiple VHDL entry methods in a
single design

Supports all Cypress PLDs and CPLDs, including MAX340 ™
and FLASH370 ™

Supports all Cypress (pASIC380 ™) FPGAs

Functional simulation provided with Cypress NOVA
simulator:

— Graphical waveform simulator
— Entry and modification of on-screen waveforms
— Ability to probe internal nodes

— Display of inputs, outputs, and High Z signals in different
colors

— Automatic clock and pulse creation
— Waveform to JEDEC test vector conversion utility
— JEDEC to symbolic disassembly
— Support for buses
e PC, Sun, and HP platforms
e Windows 3.1

e Motif on Sun workstations IEEE 1076, and is fully 1164 com-
pliant

Functional Description

Warp2 + is a state-of-the-art VHDL compiler for designing with
Cypress PLDs. Warp2 + utilizes a subset of IEEE 1164 VHDL as
its Hardware Description Language (HDL) for design entry.
VHDL provides a number of significant benefits for the design
engineer. Warp2+ accepts VHDL input, synthesizes and opti-

Cypress Semiconductor Corporation o

3901 North First Street °

Warp2+U VHDL Compiler
for PLDs, CPLDs, and FPGASs

mizes the entered design, and outputs a JEDEC map for the de-
sired PLD or CPLD, or outputs a LOF file for the desired FPGA.
(see Figure 1). For simulation, Warp2+ provides the graphical
waveform simulator called NOVA.

VHDL Compiler

VHDL (VHSIC Hardware Description Language) is a powerful,
non-proprietary language that is a standard for behavioral design
entry and simulation. It is mandated for use by the Department of
Defense and is supported by every major vendor of CAE tools.
VHDL allows designers to learn a single language that is useful for
all facets of the design process.

VHDL offers designers the ability to describe designs at many dif-
ferent levels. At the highest level, designs can be entered as a de-
scription of their behavior. This behavioral description is not tied
to any specific target device. As a result, simulation can be done
very early in the design to verify correct functionality, which signifi-
cantly speeds the design process.

Warp2+’s VHDL syntax also includes support for intermediate
level entry modes such as state table and boolean entry. At the low-
est level, designs can be described using gate-level RTL (Register
Transfer Language) descriptions. Warp2+ gives the designer the
flexibility to intermix all of these entry modes.

Inaddition, VHDL allows you to design hierarchically, building up
entities in terms of other entities. This allows you to work either
“top-down” (designing the highest levels of the system and its in-
terfaces first, then progressing to greater and greater detail) or

. [
ac STRUCTURAL
2 BEHAVIORAL VHDL
224 | TiF THEN, ELSE, BOOLEAN uctu
ot L : T
SYNTHESIS
FOR
PLDs/CPLDs / \ FOR FPGAs
OPTIMIZATION OPTIMIZATION

i {

Warp2+ COMPILATION
_—

TIMING
—
FITTING PLACE/ROUTE ANALYSIS
[]
DEVICE LOF FILE

\ JEDEC PROGRAMMER [©
4

WAVEFORM

SIMULATION

!

VERFICATION
A

JEDEC
TEST VECTORS

Figure 1. Warp2+ Design Flow

SanJose ®© CA 95134 e 408-943-2600
October 1992—Revision October 1995

4
V

I.ﬂ

CY3120

PRELIMINARY CY3125

¥ CYPRESS

“bottom-up” (designing elementary building blocks of the system,
then combining these to build larger and larger parts) with equal
ease.

Because VHDL is an IEEE standard, multiple vendors offer tools
for design entry, simulation at both high and low levels, and synthe-
sis of designs to differentsilicon targets. The use of device indepen-
dent behavioral design entry gives users the freedom to retarget
designs to different devices. The wide availability of VHDL tools
provides complete vendor independence as well. Designers can
begin their project using Warp2+ for Cypress PLDs and FPGAs
and convert to high volume gate arrays using the same VHDL be-
havioral description with industry-standard synthesis tools.

While design portability and device independence are significant
benefits, VHDL has other advantages. The VHDL language al-
lowsusersto define their own functions. User-defined functions al-
low users to extend the capabilities of the language and build reus-
able libraries of tested routines. As a result the user can produce
complex designs faster than with ordinary “flat” languages. VHDL
also provides control over the timing of events or processes. VHDL
has constructs that identify processes as either sequential, concur-
rent, or acombination ofboth. Thisis essential when describing the
interaction of complex state machines.

Cypress chose to offer tools that use the VHDL language because
of the language’ s universal acceptance, the ability to do both de-
vice and vendor independent design, simulation capabilities at
both the chip and system level that improve design efficiency, the
wide availability of industry-standard toolswith VHDL support for
both simulation and synthesis, and the inherent power of the lan-
guages’ syntax.

VHDL is a rich programming language. Its flexibility reflects the
nature of modern digital systems and allows designers to create ac-
curate models of digital designs. Because of its depth and com-
pleteness, it is easier to describe a complex hardware system accu-
rately in VHDL than in any other hardware description language.
Inaddition, modelscreated in VHDL canreadily be transported to
other CAE Environments. Warp2+ supports a rich subset of
VHDL including loops, for ... generate statements, full hierarchi-
cal designs with packages, aswell as synthesis for enumerated types
and integers.

Designing with Warp2+
Design Entry
Warp2+ descriptions specify

1. The behavior or structure of a design, and

2. The mapping of signals in a design to the pins of a PLD/
CPLD/FPGA (optional)

The part of a Warp2+ description that specifies the behavior or
structure of the design is called an entity/architecture pair. Entity/
architecture pairs, as their name implies, can be divided into two
parts: an entity declaration, which declares the design’s interface
signals (i.e., tellsthe world what external signals the design has, and
what their directions and types are), and a design architecture,
which describes the design’s behavior or structure.

Design Entity

If the entity/architecture pair is kept in a separate file, that file is
usually referred to as the design entity file. The entity portion of a
design entity file is a declaration of what a design presents to the
outside world (the interface). For each external signal, the entity
declaration specifies a signal name, a direction and a data type. In
addition, the entity declaration specifies aname by which the entity
can be referenced in a design architecture. In thissection are code

segments from four sample design entity files. The top portion of
each example features the entity declaration.

Behavioral Description

The architecture portion of a design entity file specifies the func-
tion of the design. As shown in Figure 1, multiple design-entry
methods are supported in Warp2+. A behavioral description
in VHDL often includes well known constructs such as
If...Then...Else, and Case statements. Here is a code segment
from a simple state machine design (soda vending machine) that
uses behavioral VHDL to implement the design:

ENTITY drink IS
PORT (nickel,dime,quarter,clock:in bit;
returnDime,returnNickel,giveDrink:out bit);
END drink;

ARCHITECTURE fsm OF drink IS

TYPE drinkState IS (zero,five,ten fifteen,
twenty,twentyfive,owedime);
SIGNAL drinkstatus:drinkState;

BEGIN
PROCESS BEGIN
WAIT UNTIL clock =1

giveDrink <="0";
returnDime <="0";
returnNickel <="0";

CASE drinkStatus IS

WHEN zero =>

IF (nickel ='1") THEN
drinkStatus <= drinkStatus’SUCC
(drinkStatus);

— goto Five

ELSIF (dime ='1") THEN
drinkStatus <= Ten;

ELSIF (quarter ='1") THEN
drinkStatus <= TwentyFive;

ENDIF;

WHEN Five =>

IF (nickel ='1") THEN
drinkStatus <= Ten;

ELSIF (dime ='1") THEN
drinkStatus <= Fifteen;

ELSIF (quarter ='1") THEN
giveDrink <="1";
drinkStatus <= drinkStatus’PRED
(drinkStatus);

— goto Zero
ENDIF;

WHEN oweDime =>
returnDime <="1";
drinkStatus <= zero;

when others =>
— This ELSE makes sure that the state
— machine resets itself if

M

CY3120

PRELIMINARY CY3125

4

=‘CYPRESS

— it somehow gets into an undefined state.
drinkStatus <= zero;

END CASE;

END PROCESS;

END FSM,;

VHDL is a strongly typed language. It comes with several prede-
fined operators, such as + and /= (add, not-equal-to). VHDL of-
fers the capability of defining multiple meanings for operators
(such as +), which results in simplification of the code written. For
example, the following code segment shows that “count = count
+1” can be written such that count is a bit vector, and 1 is an
integer.

ENTITY sequence IS
port (clk: in bit;
s : inout bit);
end sequence;

ARCHITECTURE fsm OF sequence IS
SIGNAL count: INTEGER RANGE 0 TO 7,
BEGIN
PROCESS BEGIN
WAIT UNTIL clk ='1";
CASE count IS

WHENO|1|2]|3=>
s<="1";
count <= count + 1;
WHEN 4 =>
<=0
count <= count + 1;
WHEN 5 =>
<=1
count<="0’;
WHEN others =>
s <="0
count <="0’;
END CASE;

END PROCESS;

END FSM;

In this example, the + operator is overloaded to accept both inte-
ger and bitarguments. Warp2 + supports overloading of operators.

Functions

A major advantage of VHDL is the ability to implement functions.
The support of functions allows designs to be reused by simply
specifying a function and passing the appropriate parameters.
Warp2+ features some built-in functions such as ttf (truth-table
function). The ttf function is particularly useful for state machine
or look-up table designs. The following code describes a seven-
segment display decoder implemented with the ttf function:

ENTITY seg7 IS
PORT(
inputs: IN BIT_VECTOR (0 to 3)
outputs: OUT BIT_VECTOR (0 to 6)

):

END SEG7;

ARCHITECTURE mixed OF seg7 IS

CONSTANT truthTable:
x01 _table (0 to 11, 0 to 10) := (

—input & output
"0000" & "0111111"
"0001” & "0000110",
"0010" & "1011011",
"0011" & "1001111"
"0100" & "1100110"
"0101” & "1101101",
"0110" & "1111101",
"0111” & "0000111",
"1000" & "11111117,
"1001" & "11011117,
"101x" & "1111100", --creates E pattern
"111x* & "1111100"
);

BEGIN

outputs <= ttf(truthTable,inputs);
END mixed;

Boolean Equations

A third design-entry method available to Warp2+ usersis Boolean
equations. Figure 2 displays a schematic of a simple one-bit half ad-
der. The following code describes how this one-bit half adder can
be implemented in Warp2+ with Boolean equations:

--entity declaration
ENTITY half_adder IS
PORT (x,y : IN BIT;
sum, carry : OUT BIT);
END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS
BEGIN
sum <= Xx XOR y;
carry <= x AND y;
END behave;

Structural VHDL (RTL)

While all of the design methodologies described thus far are high-
level entry methods, structural VHDL provides a method for de-
signing at a very low level. In structural descriptions (also called
RTL), the designer simply lists the components that make up the
design and specifies how the components are wired together. Fig-
ure 3 displays the schematic of a simple 3-bit shift register and the
following code shows how this design can be described in Warp2 +
using structural VHDL:

X : carry
S

Figure 2. One-Bit Half Adder

3
V

CY3120

PRELIMINARY CY3125

ENTITY shifter3 IS port (
clk : IN BIT;
X : IN BIT;
g0 : OUT BIT;
gl : OUT BIT;
g2 : OUT BIT);
END shifter3;

ARCHITECTURE struct OF shifter3 IS

SIGNAL q0_temp, g1_temp, q2_temp : BIT;

BEGIN
dl1: DFF PORT MAP(x,clk,q0_temp);
d2 : DFF PORT MAP(qO_temp,clk,q1_temp);
d3 : DFF PORT MAP(q1_temp,clk,q2_temp);
g0 <= q0_temp;
gl <=ql_temp;
g2 <= q2_temp;

END struct;

All of the design-entry methods described can be mixed as desired.
The ability to combine both high- and low-level entry methodsin a
single file is unique to VHDL. The flexibility and power of VHDL
allows users of Warp2 + to describe designs using whatever method
is appropriate for their particular design.

Compilation

Once the VHDL description of the design is complete, it is com-
piled using Warp2+. Although implementation is with a single
command, compilation is actually a multistep process as shown in
Figure 1). The first part of the compilation process is the same for
all devices. The input VHDL description is synthesized to alogical
representation of the design. Warp 2% synthesis is unique in that
the input language (VHDL) supports device-independent design
descriptions. Competing programmable logic compilers require
very specific and device-dependent information in the design de-
scription.

The second step of compilationis aninteractive process of optimiz-
ing the design and fitting the logic into the targeted device. Logical
optimization in Warp2+ is accomplished using Espresso algo-
rithms. The optimized design is automatically fed to the Warp2+
fitter if the user is targeting a PLD or CPLD. This fitter supports
the automatic or manual placement of pin assignments as well as
automaticselection of D or T flip-flops. After the optimization and
fitting step is complete, Warp2 + creates a JEDEC file for the speci-
fied PLD or CPLD.

qo0 at g2

|

clk clk — > clk

—1> ck

Figure 3. Three-Bit Shift Register Circuit Design
Document #: 38—00218—C

If the target device is an FPGA, Warp2+ outputs a QDIF netlist
file after optimization thatis read into the Warp2+ place and route
software, SpDE. SpDE determines the placement of logic in the
FPGA and routing of the interconnect that maximizes the speed of
operation and minimizes the area utilization of the design. After
the place and route is complete, the design timing can be checked
by the SpDE’s path analyzer, and a LOF file is output for program-
ming.

Simulation

Warp2+ includes Cypress’s NOVA Simulator. NOVA features a
graphical waveform simulator that can be used to simulate PLD/
CPLD designs generated in Warp2+. The NOVA simulator pro-
vides functional simulation for PLDs/CPLDs and featuresinterac-
tive waveform editing and viewing. The simulator also provides the
ability to probe internal nodes, automatically generate clocks and
pulses, and generate JEDEC test vectors from simulator wave-
forms. FPGA static timing analysis is available with that tool flow.
(Higher level simulation support is available with Warp3
[CY3130].)

Programming

The result of Warp2+ compilation is a JEDEC or LOF file that im-
plements the input design in the targeted device. Using this file,
Cypress devices can be programmed on Cypress’s Impulse3 pro-
grammer or on any qualified third-party programmer.

System Requirements

For PCs

IBM PC-AT or equivalent (486 or higher recommended)
PC-DOS version 3.3 or higher

8 Mbytes of RAM (16 Mbytes recommended)

EGA, VGA, or Hercules monochrome display

70-Mbyte hard disk space

1.2-Mbyte 5%-inch or 1.44-Mbyte floppy disk drive or CD-ROM
Two- or three-button mouse

Windows Version 3.1

For Sun Workstations

SPARC CPU

Sun OS 4.1.1 or later

16 Mbytes of RAM
1.44-Mbyte 3%-inch disk drive

Ordering Information

CY3120 Warp2+ for Windows PLD Compiler includes:
3Y%-inch, 1.4-Mbyte floppy disks
Warp2+ User’s Guide
Warp2+ Synthesis Reference
Registration Card

CY3125 Warp2+ for Sun PLD Compiler includes:
3Y-inch, 1.4-Mbyte floppy disks
Warp2+ User’s Guide
Warp2+ Synthesis Reference
Registration Card

Warp2+ and FLASH370 are a trademarks of Cypress Semiconductor Corporation.

PC-AT is a trademark of IBM Corporation.

© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for
the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semicon-
ductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant
injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies

Cypress Semiconductor against all damages.

