
Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
(408) 943-2600
April 1996

Part Number CY3120DOC

Warp
VHDL Development System

Reference Manual

Cypress Software License Agreement
Cypress Software License Agreement

LICENSE. Cypress Semiconductor Corporation (“Cypress”) hereby grants
you, as a Customer and Licensee, a single-user, non-exclusive license to use
the enclosed Cypress software program (“Program”) on a single CPU at any
given point in time. Cypress authorizes you to make archival copies of the
software for the sole purpose of backing up your software and protecting
your investment from loss.

TERM AND TERMINATION. This Agreement is effective from the date
the diskettes are received until this Agreement is terminated. The
unauthorized reproduction or use of the Program and/or documentation
will immediately terminate this Agreement without notice. Upon
termination you are to destroy both the Program and the documentation.

COPYRIGHT AND PROPRIETARY RIGHTS. The Program and
documentation are protected by both United States Copyright Law and
International Treaty provisions. This means that you must treat the
documentation and Program just like a book, with the exception of making
archival copies for the sole purpose of protecting your investment from loss.
The Program may be used by any number of people, and may be moved
from one computer to another, so long as there is No Possibility of its being
used by two people at the same time.

DISCLAIMER. THIS PROGRAM AND DOCUMENTATION ARE
LICENSED “AS-IS,” WITHOUT WARRANTY AS TO PERFORMANCE.
CYPRESS EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS OF THIS
PROGRAM FOR A PARTICULAR PURPOSE.

RESELLING. The reselling or distribution of this product can be done by
Cypress authorized distributors only.

LIMITED WARRANTY. The diskette on which this Program is recorded is
guaranteed for 90 days from date of purchase. If a defect occurs within 90
days, contact the representative at the place of purchase to arrange for a
replacement.

BENCHMARKING. This license Agreement does not convey to you the
right to publish performance benchmarking results involving any Cypress
Warp products. Permission to publish performance benchmarking results
involving any Cypress Warp products must be received in writing from
Cypress Semiconductor prior to publishing.
iii

Cypress Software License Agreement
LIMITATION OF REMEDIES AND LIABILITY. IN NO EVENT SHALL
CYPRESS BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM PROGRAM USE, EVEN IF CYPRESS
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
CYPRESS’S EXCLUSIVE LIABILITY AND YOUR EXCLUSIVE REMEDY
WILL BE IN THE REPLACEMENT OF ANY DEFECTIVE DISKETTE AS
PROVIDED ABOVE. IN NO EVENT SHALL CYPRESS’S LIABILITY
HEREUNDER EXCEED THE PURCHASE PRICE OF THE SOFTWARE.

ENTIRE AGREEMENT. This Agreement constitutes the sole and complete
Agreement between Cypress and the Customer for use of the Program and
documentation. Changes to this Agreement may be made only by written
mutual consent.

GOVERNING LAW. This Agreement shall be governed by the laws of the
State of California. Should you have any question concerning this
Agreement, please contact:

Cypress Semiconductor Corporation
Attn: Legal Counsel
3901 N. First Street
San Jose, CA 95134-1599

408-943-2600
iv

The following are trademarks or registered trademarks of Cypress Semiconductor Corporation: Warp,
Warp2, Warp3, Nova, Galaxy, ISR, Flash370, PLA2JED, MAX2JED, MAX340, UltraGen, pASIC380.

The following are trademarks or registered trademarks of Viewlogic Systems:
Powerview, Workview PLUS, Proseries, ViewDraw, ViewSim, ViewSynth.

The following are trademarks or registered trademarks of Microsoft Corporation: Microsoft, Windows.

The following are trademarks or registered trademarks of QuickLogic Corporation: SpDE, pASIC.

The following is a trademark of Altera Corporation: MAX5000.

The following is a registered trademark of Cadence Design Systems Inc.: Verilog.

Cypress Semiconductor Corporation may revise this publication from time to time without notice. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

Copyright © 1996 Cypress Semiconductor Corporation. All rights reserved.

Conten ts

Warp Reference Manual v

Contents

Contents
Chapter 1 Introduct ion .. 1

Overview of Warp Synthesis Compiler 2

Warp Synthesis Compiler Capabilities 3

About This Manual .. 5

Chapter 2 Command Line Language ... 7

Warp Command Line Switches ... 8

Warp Command Syntax .. 8
Warp Command Options ... 9

The -d Option .. 9
The -b Option .. 10
The -a Option .. 11
The -e Option .. 11
The -f Option ... 12
The -h Option .. 14
The -l Option ... 14
The -m Option ... 15
The -o Option .. 15
The -p Option .. 16
The -q Option .. 16
The -r Option ... 16
The -s Option .. 17
The -v Option .. 17
The -w Option ... 18
The -xor2 Option ... 18
The -yb Option .. 18
The -yl Option ... 19
The -ym Option ... 19
The -yp Option .. 19
The -yt Option ... 19
The -ygs Option .. 20
The -yga Option .. 20
The -ygc Option .. 20
The -yv Option .. 20

Recommendations .. 20
vi Warp Reference Manual

Contents
Warp Output .. 21

SpDE Command Line Language .. 21

Chapter 3 Synthesis Direct ives .. 25

Introduction ... 26

Synthesis Directives .. 27

buffer_gen ... 27
dont_touch .. 28
enum_encoding .. 30
fixed_ff .. 31
ff_type ... 32
goal ... 33
lab_force ... 33
max_load .. 34
no_factor ... 35
no_latch .. 36
node_num ... 37
opt_level ... 38
order_code .. 38
pad_gen .. 39
part_name ... 40
pin_avoid .. 41
pin_numbers ... 42
polarity .. 43
state_encoding ... 44
sum_split ... 46
synthesis_off ... 46

Control File .. 49

Warp Synthesis Directives with ViewDraw 51

Warp Synthesis Directives .. 51
Supported ViewDraw Attributes 53
Warp Reference Manual vii

Contents
Chapter 4 VHDL ... 55

Introduction ... 56

Identifiers ... 56

Data Objects ... 57

Data Types .. 59

Pre-Defined Types .. 60
Enumerated Types ... 62
Subtypes ... 63
Composite Types .. 64

Operators .. 65

Logical Operators ... 66
Relational Operators ... 67
Adding Operators .. 68
Multiplying Operators .. 68
Miscellaneous Operators .. 69
Assignment Operations .. 69
Association Operations ... 70
Vector Operations ... 71

Entities .. 73

Architectures ... 74

Behavioral Descriptions .. 76
Structural Descriptions .. 78
Design Methodologies .. 78

Packages .. 115

Predefined Packages .. 120
Libraries .. 132

Additional Design Examples ... 133

DEC24 .. 133
PINS ... 134
NAND2_TS ... 135
CNT4_EXP ... 135
CNT4_REC ... 136
Drink ... 138
Traffic .. 140
Security ... 142

Alphabetical Listing of VHDL Constructs 143
viii Warp Reference Manual

Contents
Alias .. 143
Architecture ... 144
Attribute .. 145
Pre-Defined Attributes .. 147
CASE .. 153
Component ... 155
Constant ... 156
Entity ... 157
Exit .. 158
Generate ... 158
Generic ... 159
If-Then-Else .. 160
Library ... 162
Loops .. 162
Next .. 163
Package .. 164
Port Map ... 166
Generic Map ... 167
Process ... 168
Signal .. 170
Subprograms .. 171
Type .. 174
USE .. 177
Variable ... 178
Wait ... 179

Chapter 5 LPM ..181

Introduction ... 182

LPM Modules .. 183

MCNSTNT .. 183
MINV ... 184
MAND ... 185
MOR ... 186
MXOR ... 187
MBUSTRI .. 188
MMUX ... 190
Warp Reference Manual ix

Contents
MDECODE ... 192
MCLSHIFT .. 194
MADD_SUB .. 196
MCOMPARE ... 198
MMULT ... 199
MCOUNTER ... 200
MLATCH ... 202
MFF .. 204
MSHFTREG .. 206

Other Cypress Modules .. 208

MBUF .. 209
MGND ... 210
MVCC ... 211
IN .. 212
OUT .. 213
TRI .. 214

Cypress Exceptions to LPM Standard 215

Which options of LPM do we support? 215
Hints and Techniques ... 216

How to Best Use the LPM_HINT 216
MADD_SUB .. 217
MCOUNTER ... 218
MCOMPARE ... 219
MCOUNTER ... 220

Chapter 6 Report File ..221

Introduction ... 222

Front End Compiler ... 222

Front End Synthesis and Optimization 224

pASIC Technology Mapping ... 226

CPLD/PLD Fitting .. 229

Technology Mapping and Optimization 229
Equations .. 230
Fitting .. 233
Static Timing Analysis ... 238
x Warp Reference Manual

Contents
Appendix A Error Messages ..239

Appendix B SpDE Error Messages ..267

Import Design Verifier ... 268

Notes .. 268
Warnings ... 268
Errors .. 270

Fatal Errors ... 270

User Errors .. 273

Appendix C Glossary ..285

Appendix D BNF ..299

Index ..317
Warp Reference Manual xi

Contents
xii Warp Reference Manual

Chapter
 1
1
Introduction

Introduction

 1

1.1 Overview of Warp

The Warp™ synthesis compiler is a state-of-the-art VHDL compiler for designing
CPLDs and FPGAs. Warp utilizes a subset of VHDL as its Hardware Description
Language (HDL) for design. Warp accepts VHDL text input, and then synthesizes
and optimizes the design for the target hardware. Warp then outputs a JEDEC
map for programming PLDs and CPLDs, or a QDIF netlist for the place and route
and eventual programming of FPGAs as shown in Figure 1-1.

The JEDEC map that Warp produces when targeting PLDs and CPLDs can be
used to program parts with a device programmer. The map can also be used as
input to the Nova™ functional simulator. Nova is an interactive, graphical
simulator that allows the user to examine the behavior of synthesized designs.

The QDIF file Warp produces when targeting FPGAs can be used as input to the
SpDE™ Toolkit. The SpDE Toolkit is a collection of interactive graphical tools that
perform logic optimization, placement, and routing of pASIC380™ FPGA designs.
2 Warp Reference Manual

Introduction

 1
Figure 1-1 Tool flow for Warp3™ .

1.2 Warp Capabi lities

Warp utilizes a VHDL subset geared for synthesis of designs for programmable
logic.

Viewdraw
schematic

capture

Text Editor
VHDL

Warp
synthesis
compiler

Export VHDL

JEDEC
Map

.QDF
netlist

pASIC380CPLD

Place &
Route

Simulate
Program
Device

Program
Device

.lof

ViewDraw
schematic

capture

Text Editor
VHDL

Warp
synthesis
compiler

Export VHDL

JEDEC
Map

.QDF
netlist

FPGACPLD

Place &
Route

Simulate
Program
Device

Program
Device

.lof

ViewDraw
schematic

capture

Text Editor
VHDL

Warp
synthesis
compiler

Export VHDL

JEDEC
Map

.QDF
netlist

FPGACPLD

Place &
Route

Simulate
Program
Device

Program
Device

.lof

ViewDraw
schematic

capture

Text Editor
VHDL

Warp
synthesis
compiler

Export VHDL

JEDEC
Map

.QDF
netlist

FPGACPLD

Place &
Route

Simulate
Program
Device

Program
Device

.lof
Warp Reference Manual 3

Introduction

 1

Some highlights of Warp:

• VHDL is an open, non-proprietary language, and a de facto standard for
describing electronic systems. It is mandated for use by the DOD and
supported by every major CAE vendor.

• VHDL allows designers to describe designs at different levels of
abstraction. Designs can be entered as descriptions of behavior (high level
of abstraction), as state tables and Boolean entry descriptions
(intermediate level), or at gate level (low level of abstraction).

• Warp supports the IEEE1164 standard which allows the user to specify
three-stated logic and don’t care logic directly in his behavioral VHDL.

• Warp supports numerous data types, including enumerated types,
integer types, user-defined type, and others.

• Warp supports the for... generate loop construct for structural
descriptions, providing a powerful, efficient facility for describing
replication in low-level designs.

• Warp incorporates state-of-the-art optimization and reduction
algorithms, including automatic selection of optimal flip-flop type (D-
type/T- type).

• Warp includes Cypress’ UltraGen™ module generation technology which
automatically identifies complex datapath operators in VHDL code and
replaces them with a speed or area optimized module specific for the
target device.

• While users can specify the signal-to-pin mapping for their designs, Warp
can also map signals from the designs to pins on the target device
automatically, making it easy to retarget designs from one device to
another.

• Warp can automatically assign state encoding (e.g. gray code, one-hot,
binary) for efficient use of device resources.

• Warp supports all Cypress PLD, CPLD and FPGA families, including the
FLASH370 ™, pASIC380, and MAX340 ™ (compatible with the MAX5000™)
series families.

• Warp supports simulation output for many third party simulators
including VHDL and Verilog®.

• Warp3 supports schematic and VHDL libraries based on the Library of
Parameterized Modules (LPM), which will provide easy integration with
third party EDA tools.

• Warp has a sophisticated GUI with an interactive editor for easy
compiling and VHDL library maintenance.
4 Warp Reference Manual

Introduction

 1

1.3 About This Manual

This section describes the contents of the remainder of this manual.

Chapter 2 of the manual describes the command line interface, including:

• Warp command line switches

• SpDE command line switches

• recommendations for synthesizing into CPLD as well as FPGA devices

Chapter 3 describes the use of synthesis directives including:

• format of the Control file (.ctl)

• description and syntax of supported .ctl file directives and attributes

• supported ViewDraw® attributes

Chapter 4 describes the fundamental elements of VHDL, as implemented in Warp
including:

• identifiers

• data objects and data types

• operators

• taking advantage of the UltraGen module generation technology

• using the bit_arith, std_arith, numeric_bit, numeric_std, and int_arith
packages

• design examples

• alphabetical listing of VHDL constructs

Chapter 5 provides a reference to the Library of Parameterized Modules (LPM) as
implemented in Warp including:

• the LPM specification as supported by Warp in ViewDraw and VHDL

• non-LPM symbols included in Warp

• LPM specifications not supported by Warp

• Area vs. speed guidelines for LPM implementations
Warp Reference Manual 5

Introduction

 1

Chapter 6 gives a description of messages found in the report file (.rpt) to aid in
understanding the results of Warp synthesis.

Appendix A provides a numerical listing of Warp error messages.

Appendix B provides a numerical listing of SpDE error messages.

Appendix C is a glossary of Warp/VHDL terminology.

Appendix D contains the BNF of supported VHDL.
6 Warp Reference Manual

Chapter
 2
 2

Command Line
Language

Command Line Language

 2
2.1 Warp Command Line Switches

2.1.1 Warp Command Syntax

On Sun workstations, run Warp by typing the warp command from a shell
window. On IBM PCs and compatibles running Windows, run Warp by typing
the warp command in the Command Line box in response to the File->Run menu
item in the Windows File Manager.

This chapter documents the warp command and its options.

warp [filename]
[-d device]
[-b filename]
[-a[library] filename [filename ...]]
[-e#]
[-f {d | t | o}]
[-f {p | k}]
[-ff]
[-fh]
[-fl]
[-fn]
[-fub]
[-fu {h | l | z}]
[-h]
[-m]
[-l[library]]
[-o {0 | 1 | 2}]
[-p package-name]
[-q]
[-r[library] filename]
[-s[library] path]
[-v#]
[-w#]
[-xor2]
[-yb]
[-yl]
[-ym#]
[-yp]
[-yt]
[-yg {a | s | c}]
[-yv#]
8 Warp Reference Manual

Command Line Language

 2
[] indicates optional arguments.

{ } indicates a selection (one of the choices must be selected).

| implies a choice.

implies a numeric (integer) argument of an option.

The warp command runs the Warp synthesis compiler.

Typing warp with no arguments brings up a help screen showing the available
options for the warp command. This is the same as typing warp -h .

Typing warp followed by the name of a file compiles the named file and, if
compilation is successful, synthesizes the design. This is equivalent to using the
-b command line switch.

All options listed above are case-insensitive; however, filenames may be case-
sensitive depending on the host platform.

2.2 Warp Command Options

Numerous options control the execution of the warp command from the
command line. This section documents Warp’s command line options.

The warp command options used most frequently are -d , -b , and -a . These
three options are described first, followed by the remaining options in
alphabetical order.

Note that when using the Warp command line interface on a Sun workstation, the
command and its options are case-sensitive. On an IBM PC or compatible
computer, they are not.

2.2.1 The -d Option

The -d option specifies a target device for synthesis. If this option is not included
on the command line, Warp chooses a target device in the following order:

• It searches for a part_name attribute in the file being synthesized and
targets the device specified by that attribute.

• If no part_name attribute is found, then it searches for an architecture that
identifies a device as a top-level entity and targets that device.
Warp Reference Manual 9

Command Line Language

 2
• If no such architecture is found, then it uses the last device targeted by a
previous Warp run from the same directory.

• Otherwise, an error is returned.

Example:

warp -d c371 myfile.vhd

The command above compiles and synthesizes a source file named myfile.vhd,
targeting a CY7C371.

Allowable arguments for the -d option consist of the letter c followed by a part
identifier, usually consisting of the three rightmost digits of the part’s name (e.g.,
c335 , c371 , etc.). Notable exceptions to this rule are the arguments c22v10
and c22vp10 , which target a PAL22V10 and PAL22VP10, respectively.

Each time the -d option is used in a warp command, it creates a subdirectory
within the current directory in which compilation results are stored, if such a
subdirectory does not already exist. The name of this subdirectory consists of the
letters lc followed by the part identifier used in the argument to the -d option
(e.g., an argument of c371 creates an lc371 subdirectory). This subdirectory
becomes the work library for that Warp run.

In addition, the -d option causes Warp to look for a library in a subdirectory of
the warp directory (default: c:\warp). This subdirectory is named \lib\lcdevice-
name. This library has the same root name as the -d option’s argument, followed
by the extension .vhd (e.g., the path to the c22v10 library is c:\warp\lib\c22v10
\c22v10.vhd).

When Warp interprets the -d option on the command line, Warp creates a
subdirectory for the specified device if one does not already exist within the
current directory, compiles the appropriate library file(s) for the device within the
new sub-directory, assigns the path of the new subdirectory to the “work” logical
name, and writes or revises the warp.rc file (if necessary) to reflect the new path to
the work library.

2.2.2 The -b Option

The -b option specifies the VHDL source file to compile. All packages
referenced within the file, via the USE clause, are also compiled. If compilation is
successful, this option also causes Warp to synthesize the design, producing either
a .jed file or a .qdf file, depending on the target device.

The -b option assumes that the file to be compiled has an extension of .vhd,
unless a different extension is specified on the command line.
10 Warp Reference Manual

Command Line Language

 2
The -b option is implied if a filename is included on the command line and no
other option is present.

Example:

warp myfile.vhd

The command above compiles a file named myfile.vhd. If compilation is
successful, the file will be synthesized, producing the appropriate output file.

2.2.3 The -a Option

The -a option analyzes one or more files and adds them to the work library or to a
different, user-specified library. To specify a library other than work, follow the
 -a option immediately (i.e., without an intervening space) with the name of the
library.

The -a option assumes that the file to be compiled has an extension of .vhd, unless
a different extension is specified on the command line.

Examples:

warp -a file1 file2 -b myfile.vhd

The command above compiles two files named file1.vhd and file2.vhd and adds
them to the work library. If those two files compile successfully, Warp will then
compile myfile.vhd. If compilation is successful, myfile.vhd will be synthesized,
producing the appropriate output file.

warp -amylib file1 file2 -b myfile.vhd

This command is identical to the previous, except that results from the
compilation of file1.vhd and file2.vhd will be written into a subdirectory called
mylib.

For more information about libraries and their use, refer to Chapter 4, “VHDL.”

2.2.4 The -e Option

The -e option specifies the maximum number of non-fatal errors that can occur
on a single Warp run before Warp exits.

Example:

warp -e5 -b myfile.vhd
Warp Reference Manual 11

Command Line Language

 2
2.2.5 The -f Option

The -f option enables certain global fitter options. -f must be followed (without
an intervening space) by one of the arguments d, t ,o, f, h, l, n, k, u or p. (Multiple
uses of the -f option are allowed on a single line.) Arguments d , t , and o are
mutually exclusive. Arguments k and p are also mutually exclusive. The
meanings of these arguments are as follows:

• -fd forces registered equations to a D-type registered form (i.e., forces
use of D-type flip-flops). For some devices, this may result in a non-
minimal solution for an output register. This is the default if the -f
option is not specified.

Related VHDL attribute: ff_type

• -ft forces the use of T-type flip-flops for registered equations. For some
devices, this may result in a non-minimal solution for an output register.
If the target PLD does not support a physical T-type flip-flop, the
equation is converted to a D-type registered form using the formula
D = T XOR Q. Use of this option may lead to fitter errors if the target
device cannot support either a physical T-type flip-flop or product-term
programmable XOR function.

Related VHDL attribute: ff_type

• -fo tells the fitter to optimize the Warp-generated design for either D-
type or T-type flip-flops, whichever produces the smaller equation set. If
the target PLD does not support a physical T-type flip-flop, the equation
is converted to a D-type registered form using the formula
D = T XOR Q.

Related VHDL attribute: ff_type

• -ff tells the fitter to ignore any user-specified pin assignments and
assign pins itself instead.

Note – In the -ff option, Warp always assigns pins itself, over-
riding any pin assignments made in the source file (e.g., by the
use of the pin_numbers attribute or the control file).

• -fh writes out the JEDEC output file for PLD or CPLD devices in
hexadecimal format. This can effect a considerable (i.e., quadruple)
savings in storage space for JEDEC files but may have some programmer
ramifications.
12 Warp Reference Manual

Command Line Language

 2
• -fk forces the fitter to preserve the user specified polarity for all
outputs. This is the opposite of the -fp option which will optimize for
the optimal polarity. The -fk option is not recommended for most
designs but is useful in certain cases when the user is able to determine
the proper polarity for all the signals, such as when board design
considerations require a certain polarity.

Related VHDL attribute: polarity

• -fl allows the fitter to perform three-level logic factoring instead of the
normal two-level (sum of products) factoring. This is a very important
option when targeting pASIC devices. This option will enable multilevel
logic factoring which can look at the whole design and produce best
factors that can reduce the overall size of the design. This helps to shrink
the size of the design and reduces fanout considerably.

Related VHDL attribute: no_factor

• -fn affects all devices and causes any fixed-node-numbers/fixed-flip-
flops found in the design to be ignored. This is similar to the -ff option
which affects only pins.

• -fp logically reduces output signals via Espresso during the
optimization process. This option selects the output polarity that
produces the minimum number of product terms. This is the opposite of
the -fk option.

Related VHDL attribute: polarity

Note – The -ff a nd -f p arguments can be used in conjunction
with the -fd , -fo , or -ft arguments (e.g., -fo -ff -fp).

Example:

warp -b myfile.vhd -fo -ff -fp

The command above compiles and synthesizes a file
named myfile.vhd. During synthesis, Warp is directed to
optimize the design to use either D- or T-type flip-flops
(-fo), ignore any pin assignments in the file (-ff), and
optimize output polarity (-fp).
Warp Reference Manual 13

Command Line Language

 2
• The -fuh , -ful and -fuz options will cause unused I/Os of the
devices to be programmed to either drive a high (-fuh) or low (-ful)
value or simply three-state (-fuz) it. In Release 3.5, the PLD and CPLD
I/Os were automatically three-stated, and the pASIC I/Os were driven
low. With these options, the user can now control the exact behavior of
such unused I/Os. For certain devices where the macrocell portion of the
cell is used but the I/O is left unused (a buried node), the -fuh and
the -ful options simply connect the output-enable signal to logic level
one causing the I/O pin to see the state of the buried macrocell. This
means that the I/Os associated with the buried nodes switch as the
buried nodes switch. For I/O cells that are connected to unused
macrocells, the macrocell is programmed to drive the value specified by
this option.

• The -fub option is intended to be used in conjunction with the -fuh
and the -ful options. The default behavior of unused I/Os associated
with buried nodes is described above. When this option is used along
with the -fuh and the -ful options, the I/Os related to the buried
nodes are three-stated, and the -fuh and -ful options affect only
the I/Os associated with unused macrocells.

2.2.6 The -h Option

The -h (“help”) option lists the available options, their syntax, and meanings.
Executing warp with this option is the same as executing warp with no
command line options.

Example:

warp -h

The command above prints the warp command’s available options, syntax, and
meanings.

2.2.7 The -l Option

The -l option lists the contents of the work library (default) or of any user-
specified library. To specify a library other than work, follow the -l option
immediately (i.e., without an intervening space) by the name of the library. The
listing of library contents includes the type and name of each design unit and the
name of the file in which the unit is found.

Examples:

warp -l

The command above lists the contents of the work library.
14 Warp Reference Manual

Command Line Language

 2
warp -lmylib

The command above lists the contents of library mylib.

2.2.8 The -m Option

This option, which can be used in conjunction with the -a and -b options,
enables a smart compile of the specified VHDL files. Generally, without this
option, Warp will compile all the specified files. When this option is specified,
Warp will compile only those files that have been modified since the last compile.
Library files (the ones specified with the -a option) are recompiled if they have
been modified since the last compile, if this is the first time one or more of these
files have been modified, or if any of the lower level files have been modified. The
top level file is dependent on the target device. In a PLD or CPLD device, the top
level file depends on the JEDEC (.jed) file, and for pASIC, it depends on the QDIF
(.qdf) file. The top level file also depends on the control (.ctl) file. Warp stores this
dependency information in the warp.mk file in the current directory.

2.2.9 The -o Option

The -o option specifies the level of optimization to perform on the design. The -o
option should be followed by a number which indicates the effort.

• An argument of 0 provides no minimization. In fact, an effort is made to
preserve the equation as-is if the design contained equations in a sum-of-
products form. This option is recommended only when the whole design
has been hand-optimized.

• An argument of 1 provides a fast but inefficient optimization of the
design. This option may produce equations of lower quality; it also will
disable several high level syntheses of structures such as latches,
multiplexers, XORs and design optimization algorithms such as logic
factoring and state machine minimization.

• An argument of 2 provides maximum optimization. This option invokes
the industry standard Espresso logic minimizer resulting in the most
thorough optimization possible. In addition to performing a better
equation optimization, this option enables many other technologies
which cause the design to use fewer device resources. This option is
highly recommended for all designs.

Related VHDL attribute: opt_level
Warp Reference Manual 15

Command Line Language

 2
Example:

warp -d c381a -fl -o2 myfile.vhd

The command compiles and synthesizes a file named myfile.vhd, enabling the
highest level of optimization available.

2.2.10 The -p Option

The -p option specifies the device package and speed bin to use when
synthesizing a design for a target device. This option will affect the specific pin
numbers that are being specified in the VHDL source code or the control file. This
option will also determine the device timing characteristics for PLD and CPLD
devices to be used when generating timing models and timing reports. Valid
package and speed bin combinations can be found in the “Ordering Code”
column of the ordering information table for each device in the Cypress
Semiconductor Programmable Logic Data Book.

Example:

warp -d c371 -p CY7C371-143JC -b myfile.vhd

This command will compile and synthesize the design called myfile.vhd into a
CY7C371-143 in a JC package. This means that any user specified pin numbers
must correspond to the pin numbers on a JC package of a CY7C371.

2.2.11 The -q Option

The -q (“quiet”) option suppresses the printing of status messages during
compilation. This leads to a less cluttered screen when compilation and synthesis
are finished. This is the default when running Warp via the Galaxy graphical user
interface.

Example:

warp -q myfile.vhd

This command compiles and synthesizes a file named myfile.vhd, quietly.

2.2.12 The -r Option

The -r option removes design units contained in one or more files from the work
library or from a user-specified library. To specify a library other than work,
follow the -r option immediately (i.e., without an intervening space) by the name
of the library.
16 Warp Reference Manual

Command Line Language

 2
Examples:

warp -r file1.vhd

This command removes the design units contained in file file1.vhd from the work
library.

warp -rmylib file1.vhd

This command removes the design units contained in file file1.vhd from library
mylib.

2.2.13 The -s Option

The -s option pairs a library name with a path. The name of the library and its
path are written into the warp.rc file in the current directory. To use a library other
than work with a VHDL description, follow the -s option immediately (i.e.,
without an intervening space) with the name of the library.

Example:

warp -smylib c:\usr\myname\mydir

This command pairs the library name mylib with the path
c:\usr\myname\mydir.

2.2.14 The -v Option

The -v option controls a very important aspect of Warp synthesis. After
synthesis, Warp performs a task called virtual substitution. For a more detailed
explanation of virtual substitution, please refer to Chapter 3, “Synthesis
Directives.” The -v option has a numeric argument that controls the
aggressiveness of the virtual substitution algorithm. The range of numbers
allowed is 0 to 11 , where a value of 0 does not perform any virtual substitution
(for compatibility with previous releases) and a value of 11 performs virtual
substitution even against the better judgement of the algorithm to isolate large
combinatorial nodes and force it to a node in the device. The higher the number,
the fewer nodes are created. Typically, for CPLD devices, a high number is a good
choice because these devices tend to have macrocells capable of handling large
equations. Even for pASIC devices, a large number is recommended so that
redundancies in logic can be safely removed, but in rare cases, lowering this
option value can help partition the design better. This option can be viewed as a
cost threshold which, when crossed, will force a device node.

The default value for this option is 10. The example below sets the node creation
threshold at 5.
Warp Reference Manual 17

Command Line Language

 2
Example:

warp -v5 -o2 -fl1 -d c384a -b myfile.vhd

2.2.15 The -w Option

The -w option specifies the maximum number of warnings that can appear as a
result of a single Warp run before Warp quits.

Example:

warp -w5 -b myfile.vhd

2.2.16 The -xor2 Option

The -xor2 option passes along any XOR operators found in the design to the
fitter for PLD or CPLD devices, and to SpDE for pASIC devices. If this option is
disabled, any XOR operators contained within the design are flattened, and it
would be up to the fitter or to SpDE to detect the XOR contained within the
equation. For most devices, an XOR is not available in the target architecture, in
which case the XOR must eventually be expanded. For CPLD devices which
provide an XOR (MAX340 family), the XOR usage is very specific. The pASIC
architecture, however, provides a much better XOR utilization. Even in the case of
pASIC devices, this option is not recommended because with the -o2 option, the
software can decide the best implementation for the set of equations (XORs
versus multiplexors). This option, however, might be useful in certain cases. If a
design consists mostly of XORs (for example, many large parity generators),
which can only be best implemented with a set of XOR gates, this option will
preserve any XOR operators found in the design. This option is global to the
design and will affect XOR operators found in all portions of the design (library
architectures, lower level user design files, etc.).

Example:

warp -d c382a -xor2 myfile.vhd

2.2.17 The -yb Option

Depending on the value specified by the -ym# option for max_load, Warp
normally generates an appropriate number of buffers to reduce fanout. This
option will cause buffer generation to be disabled.

Related VHDL attributes: max_load and buffer_gen.
18 Warp Reference Manual

Command Line Language

 2
2.2.18 The -yl Option

By default (if -o2 is used), Warp will synthesize latches for the FLASH370 family;
however, sometimes this is not desirable if global resources are limited or if
synthesizing latches could potentially affect the partitioning of designs into the
device. The -yl option disables latch synthesis.

Related VHDL Attribute: no_latch.

2.2.19 The -ym Option

This option specifies the default maximum loading allowed for all nodes in the
design. Warp inserts buffers to reduce the fanout. This option is only applicable to
the pASIC family of devices. For the current set of PLD and CPLD devices,
loading is not a concern, and this option is ignored.

Note – Buffers are not generated for signals already being driven
by High-Drive pads or Clock pads.

Related VHDL attributes: max_load and buffer_gen.

Example:

warp -dc381a -o2 -fL -ym8 myfile.vhd

This command will ensure that no signal drives more than 8 inputs.

2.2.20 The -yp Option

The Warp compiler automatically assigns clock pins and other high fan-in inputs
to the FPGA devices to special input PADS which provide higher drive strength
into the device. In some cases, however, the user may want to control exactly
which input signal is assigned to which pin and disable the automatic generation
of PADs in the FPGA devices. The -yp option disables the PAD generation
feature within Warp. This option is applicable to the pASIC380 family of FPGAs
only and has no effect if used when targeting other devices.

2.2.21 The -yt Op tion

Cypress’ FPGA devices do not contain internal three-state buffers. Warp,
however, will automatically convert designs which contain internal three-state
logic into multiplexor logic. This conversion is possible only when the design
configures the three-state buffers in such a way that only one driver is enabled at
any given time. This option disables the normal automatic PAD generation
Warp Reference Manual 19

Command Line Language

 2
feature within the Warp tool. All pins will be assigned to I/O pins unless
otherwise specified, via pin assignments or structural instantiations of specific
input PADS. This option is only applicable to the pASIC380 family of FPGA
devices.

Related VHDL attribute: pad_gen

2.2.22 The -ygs Op tion

This option causes Warp to synthesize all datapath operators found in the design
so that they are optimized for speed.

Related VHDL attribute: goal

2.2.23 The -yga Op tion

This option will cause Warp to synthesize all datapath operators found in the
design so that they are optimized for area.

Related VHDL attribute: goal

2.2.24 The -ygc Op tion

This option will cause Warp to synthesize all datapath operators found in the
design so that they are optimized for neither area nor speed but rather
implemented as simple combinatorial equations. If a simple combinatorial
equation is not available, an area efficient one is selected. If an area one is not
available, then a speed implementation is selected. Every datapath operator has at
least one implementation available.

Related VHDL attribute: goal

2.2.25 The -yv Option

This option controls the amount of information that is reported in the report file.
The -yv option should be followed by a digit. The default is 0. Numbers higher
than zero produce more verbose report files useful for debugging. By default
(with a value of 0), the report file only indicates major events during synthesis.

2.3 Recommendations

Most options described in this section are useful in certain circumstances. For
designs targeting the pASIC380 family of devices, Cypress recommends the
following command line to obtain best results:
20 Warp Reference Manual

Command Line Language

 2
Example:

warp device -o2 -fl1 filename

For designs targeting CPLD and PLDs, Cypress recommends the following
command line:

Example:

warp device -o2 -fo -fp filename

2.4 Warp Output

A Warp run produces numerous output files, of which the following are
important to the user: .jed files for targeting PLDs or CPLDs, .qdf files for targeting
pASIC380 FPGAs, and .rpt files for analyzing compilation results.

A successful Warp run produces two output files in the current directory:

• filename.jed or filename.qdf

• filename.rpt

The .jed file is a fuse map that a PLD programmer can use. The map is also used as
input to the Nova simulator.

The .qdf file, which is produced only when targeting pASIC380 FPGAs, can be
used as input to the SpDE place and route tool.

The .rpt file is an ASCII text file that contains fitter statistics; informational,
warning, and error messages from the Warp run; and pinout information for the
synthesized design.

2.5 SpDE Command Line Language

SpDE is the place and route program that places and routes pASIC designs. SpDE
consists of many sub-tools (placer, router, sequencer, etc.). Although mostly an
interactive tool, SpDE also supports a limited set of command line options
intended mostly to allow batch runs.

On UNIX Platforms
cypspde [filename]

or

cypspde [-runall] [-save] [-critpath | -qtoq] filename
Warp Reference Manual 21

Command Line Language

 2
On the PC
c:\warp\spde\spde.exe [filename]

or

c:\warp\spde\spde.exe [-runall] [-save]
[-critpath | -qtoq] filename

The first form is used to run SpDE graphically. If a filename is specified, SpDE
automatically loads that file at startup. The filename should have one of two
extensions .qdf (a pre-placed and routed netlist) or a .chp (a partially or fully
placed and routed design database) extension.

The second form is used for batch runs.

-runall runs all the necessary tools to produce the results. The results are
logged in the file with the same basename as filename but with a .spd extension.
Individual options for each sub-tool that -runall invokes are specified through
the ~/.spderc file on UNIX platforms and via the c:\warp\spde\data\spde.ini file on
PC platforms.

-save option is used in conjunction with the -runall option to save the post
place and route results in a .chp file. Without this option, even though a summary
of the results is available in the .spd file, the results of the place and route session
are not saved.

-critpath and -qtoq are mutually exclusive options that report the worst
case timing. -critpath reports the worst case combinatorial critical path, and
the -qtoq option reports the worst case timing for operating frequency
calculations. The results are saved in the .spd file. These options can be used on a
.qdf file in conjunction with the -runall option or directly on a .chp file to extract
the timing from an already placed-and-routed result.

filename is the name of the design with either a .qdf or a .chp extension.

Examples:

In the following examples spde represents the command described at the
beginning of this section for invoking SpDE.

spde

The above example invokes the graphical SpDE.

spde filename.qdf
spde filename.chp

The above examples invoke the interactive mode of SpDE and load said designs
into memory.
22 Warp Reference Manual

Command Line Language

 2
spde -runall -qtoq -save mydesign.qdf

The above example runs SpDE in batch mode, runs all the tools, saves the results
into the file mydesign.chp, and also reports the worst case timing for frequency
calculations. A summary is written into the file mydesign.spd.

spde -critpath mydesign.chp

The above example runs the SpDE Path Analyzer on the already placed and
routed file mydesign.chp and reports the worst case critical path into the file
mydesign.spd.
Warp Reference Manual 23

Command Line Language

 2
24 Warp Reference Manual

Chapter
 3

Synthesis Directives
3

Synthesis Directives

3

3.1 Introduction

In three different ways, synthesis directives supplied to the Warp compiler can
control many aspects of Warp synthesis and post synthesis results. Certain
directives have global defaults which command line options or Galaxy can
override. All synthesis directives can be controlled by inserting these directives
directly into the source VHDL design. Most of the directives can also be set in the
control file described in Section 3.3, "Control File.”

Synthesis directives in Warp are specified using the VHDL attribute mechanism.
VHDL allows attributes to be placed on almost any object, but the target
application determines how these attributes are interpreted. Each synthesis
directive that Warp supports has a scope and an inheritance mechanism. Certain
synthesis directives are intended for signals, and others are intended for
components. This defines the scope of the attribute. Warp also supports an
inheritance mechanism for many of the synthesis directives. An attribute
intended for a signal, for example, can be placed on an architecture or entity so
that all signals defined in that architecture or entity and any signals defined in
any of the lower level components obtain that attribute. This method of
inheritance is called hierarchical. Other attributes, however, are not hierarchical
and are meant for the exact object to which they are attached.

Hierarchical attributes also have a certain precedence. Hierarchical attributes can
be placed on the following types of VHDL objects:

• entity

• architecture

• component declaration

• component instantiation (component label)

• signal

Of the above objects, the entity has the lowest precedence, and the signal has the
highest precedence. Thus, a synthesis directive placed on an architecture can be
overridden by a particular signal within that architecture. In other words,
directives placed on an architecture serve as a default for all signals derived by
that architecture.
26 Warp Reference Manual

Synthesis Directives

3

For example, consider the directive ff_type . This directive controls the flip-flop
type for architectures that support multiple flip-flop types (the FLASH370 family
supports both D-type and T-type flip-flops). The following example shows how
to assign D-type flip-flops for all signals in the architecture except for a signal
called x which uses a T-type flip-flop.

architecture myarch of myentity is
signal x,y,z : std_logic ;
attribute ff_type of myarch:architecture is ff_d ;
attribute ff_type of x:signal is ff_t ;

begin

myproc: process (clk)
begin

if (clk’event AND clk = ‘1’) then
x <= NOT x ;
y <= a ;
z <= d ;

end if ;
end process ;
end myarch ;

In the above example, signals y and z will be assigned a D-type flip-flop due to
the inheritance from the architecture, and the signal x will be assigned a T-type
flip-flop because it has a higher precedence.

This chapter shows the syntax, scope, inheritance, and purpose of each synthesis
directive. The user is encouraged to read Chapter 9, “Synthesis, ” in the User’s
Guide for direction on how to best utilize these directives.

3.2 Synthesis Directives

3.2.1 buffer_gen

The buffer_gen directive controls the buffering strategy for signals that have a
high fanout (exceeding max_load).

attribute buffer_gen of signal_name :signal is value ;

The value can be one of buf_none, buf_auto (the default), buf_normal,
buf_duplicate, or buf_register. This option is valid only for the pASIC
family of devices.

• buf_none - This value disables buffer generation for the specified
signal.
Warp Reference Manual 27

Synthesis Directives

3

• buf_auto - This value selects the best buffering strategy. Warp selects
buf_duplicate if the logic driving the signal is small enough to fit in a
pASIC FragA (a 6 input and-gate). Warp then tries buf_normal .
buf_auto never selects the buf_register strategy.

• buf_normal - The max_load for the signal has to be greater than one.
A buffer is inserted into the network in a tree form until the node satisfies
the max_load requirement. For each level in the tree, an attempt is
made to distribute the load evenly. In cases where the fanout reaches
multiple inputs of the same logic cell, an attempt is made to make the
same buffer drive all of those inputs.

• buf_duplicate - This value will cause the logic driving the gate to be
duplicated. If the driver is a an RTL component (one of the lower level
pASIC primitives like PAfragA, PAfragF, logico, etc.), then
buf_duplicate will simply duplicate that driver. When the driver is
an equation, however, buf_duplicate may not duplicate the whole
equation if that equation does not fit in one logic cell. Instead,
buf_duplicate will only duplicate a portion of it.

• buf_register - This value is valid only for registered nodes (nodes
driven by the Q output of a flip-flop). This value is similar to
buf_duplicate except that buf_register applies to flip-flops
only. The D input of the register is made to feed the extra registers that
are created to satisfy the max_load directive.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -yb
Applicable to: pASIC Devices Only

Example:

attribute buffer_gen of my_signal:signal is buf_none;

The above example turns off buffer generation for the signal called my_signal .

3.2.2 dont_touch

The dont_touch directive is used when targeting pASIC FPGAs to specify that
a component is to pass through synthesis and optimization untouched. This
directive “freezes” the structural implementation of an optimized component,
such as a hand-tuned carry-select adder.
28 Warp Reference Manual

Synthesis Directives

3

Note – The dont_touch directive has no effect if the target
device is not a pASIC FPGA.

attribute dont_touch of label-name :label is value ;

or

attribute dont_touch of entity-name :entity is value ;

The dont_touch directive takes the value true or false . The default is
false .

When the dont_touch directive is set to true for an entity or a component
instance, the structural implementation of that entity or component is not
modified by subsequent synthesis or by Level 1 optimization within SpDE.
Setting the dont_touch directive to true is similar to using Level 0
optimization on a component or entity, in that very little optimization or packing
is done. This allows hand-optimized portions of the design to stay untouched
within SpDE while the rest of the design is optimized and packed with SpDE’s
Level 1 or Level 2 optimization.

When using the dont_touch directive, structural or schematic designs must
resolve to pASIC primitives (not equations). These primitives are PAfragA,
PAfragF, PAfragM, PAfragQ, PAlcell and logico, which constitute portions of the
pASIC logic cell.

The dont_touch directive, however, does not apply to packing. For example,
suppose a schematic or a structural implementation uses a PAfragA, PAfragM,
PAfragF, and PAfragQ, and the dont_touch directive is set to true on the
entire schematic or on all the individual instances. Even if components are ideally
connected to each other so that they can be packed together, these four frags may
not pack into a single logic cell (although it is highly likely that they would). To
gain control over the packing of such schematics, higher-level elements like
PAlcell and logico should be used. PAlcell represents the whole logic cell. Logico
represents the whole logic cell except the flip-flop portion and has only one
output.

Another important use of the dont_touch directive is for buffering high fanout
nets or for special buffering situations. Sometimes, the logic optimizer
inadvertently removes gates that the user intended for buffering. Placing the
dont_touch directive forces such gates to be preserved. Buffering is also best
done using the pASIC primitives.
Warp Reference Manual 29

Synthesis Directives

3

Higher level library elements (counters, adders, etc.) available from the library
are already highly optimized with dont_touch placed in strategic locations.
The use of dont_touch within the library elements is rare, however, because in
most cases, small equations feeding such library elements or modules can be
absorbed into the library element. In most instances, better performance or area is
achieved by using this directive sparingly. Using the dont_touch directive
severely constrains the logic optimizer within SpDE.

This directive will also prevent Warp from removing duplicate elements from the
design, which can be useful when buffering is being done within the design, and
the user does not want these buffers to disappear during synthesis or
optimization.

Scope:

Target: Component
Inheritance: Hierarchical
Related Command-Line-Option: None
Applicable to: pASIC Devices Only

Example:

attribute dont_touch of my_adder:entity is true;

The statement in this example applies the dont_touch directive to all signals
contained within the entity my_adder . When this design is targeted to a device
other than a pASIC device, it is ignored.

3.2.3 enum_encoding

The enum_encoding directive specifies the internal encoding to be used for
each value of a user-defined enumerated type. The internal encoding is reflected
in the gate-level design when targeting a device.

attribute enum_encoding of type-name :type is “ string ”;

The enum_encoding directive takes a single argument, consisting of a string of
0s and 1s separated by white space (spaces or tabs). Each contiguous string of 0s
and 1s represents the encoding for a single value of the enumerated type. The
number of contiguous strings in the enum_encoding argument must equal the
number of values in the enumerated type.

When included in a Warp description, the enum_encoding directive overrides
the value of a state_encoding directive appearing in the same description.
30 Warp Reference Manual

Synthesis Directives

3

Scope:

Target: Type
Inheritance: None
Related Command-Line-Option: None
Applicable to: All Devices

Example:

type state is (s0,s1,s2,s3);
attribute enum_encoding of state:type is ”00 01 10 11”;

The first statement in this example declares an enumerated type, called state ,
with four possible values. The possible values of type state can therefore be
represented in two bits. The second statement specifies the internal representation
of each value of type state . Value s0’s internal representation is “00”. Value s1's
internal representation is “01”. Value s2’s internal representation is “10”. Value
s3’s internal representation is “11”.

3.2.4 fixed_ff

The fixed_ff directive is used when targeting pASICs to assign a signal to a
specific internal register. This fixed placement overrides the default placement
that the SpDE Placer assigns.

attribute fixed_ff of signal-name :signal is “ register-loca-
tion” ;

The fixed_ff directive is similar to the pin_numbers directive, in that
fixed_ff locks a signal to a specific fixed placement. The difference is that
fixed_ff applies to fixed internal placement, while the pin_numbers
directive applies to fixed external placement.

A given signal could have both a pin-number and a fixed internal flip-flop
placement. For instance, the output of a register can be fixed both to internal cell
A1 and also to the output pad attached to pin 59 of the chip.

The fixed_ff directive only applies to the Q output signal from a register. If the
fixed_ff directive is attached to any other signal besides the Q output of a
register, the directive is ignored.
Warp Reference Manual 31

Synthesis Directives

3

Scope:

Target: Signal
Inheritance: None
Related Command-Line-Option: -fn
Applicable to: pASIC Devices Only

Example:

attribute fixed_ff of my_signal:signal is “A1”;

The statement in this example assigns the internal registered signal called
my_signal to location A1 within the pASIC device.

3.2.5 ff_type

The ff_type directive specifies the flip-flop type used to synthesize individual
signals.

attribute ff_type of signal-name :signal is value ;

Legal values for the ff_type directive are ff_d , ff_t , ff_opt , and
ff_default .

• A value of ff_d tells Warp to synthesize the signal as a D-type flip-flop.

• A value of ff_t tells Warp to synthesize the signal as a T-type flip-flop.

• A value of ff_opt tells Warp to synthesize the signal to the optimum
flip-flop type (i.e., the one that uses the fewest resources on the target
device).

• A value of ff_default tells Warp to synthesize the signal based on the
default flip-flop type selection strategy, which the command line
switches or dialog box settings used in invoking Warp determine.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -fd or -ft or -fo
Applicable to: PLD and CPLD Devices Only

Example:

attribute ff_type of abc:signal is ff_opt;

The command above tells Warp to optimize the flip-flop type used to synthesize a
signal named abc .
32 Warp Reference Manual

Synthesis Directives

3

3.2.6 goal

The goal directive, which affects the synthesis of datapath operators, can be
used to override the global goal objective on an architecture-by-architecture basis.

attribute goal of architecture_name :architecture is value ;

Legal values for the goal directive are speed , area and combinatorial .

• A value of speed indicates that all datapath operators (+,-,*,=,/
=,<,>,<=,>=,etc.) should be optimized for speed. The Warp synthesizer
will automatically select an implementation of the operator that is
optimized for speed.

• A value of area indicates that all datapath operators (+,-,*,=,/
=,<,>,<=,>=,etc.) should be optimized for area. The Warp synthesizer will
automatically select an implementation of the operator that is optimized
for area.

• A value of combinatorial indicates that all datapath operators (+,-
,*,=,/=,<,>,<=,>=,etc.) are optimized for neither area nor speed but rather
implemented as simple combinatorial equations. If a simple
combinatorial equation is not available, an area efficient one is selected. If
an area one is not available, then a speed implementation is selected.
Every datapath operator has at least one implementation available.

Scope:

Target: Architecture or Entity
Inheritance: None
Related Command-Line-Option: -yga or -ygs or -ygc
Applicable to: All Devices

Example:

attribute goal of my_adder:entity is speed;

This directive optimizes the entity called my_adder for speed.

3.2.7 lab_force

The lab_force directive aids in grouping signals together as a suggestion to
the fitter. This attribute is valid only for CPLDs.

attribute lab_force of signal_name :signal is “ string” ;
Warp Reference Manual 33

Synthesis Directives

3

The string contains the name of the logic block. For the FLASH370 family, this
string can also represent a half logic block (made up of either the top eight
macrocells or the bottom eight macrocells). This directive will force the signal
my_signal to the logic block without actually assigning it to a specific I/O pin.

Normally, the fitter performs partitioning of the design prior to place and route
and produces results that are acceptable for most designs. In some cases,
however, the user might want to constrain the fitter due to board layout
considerations.

This is an advanced directive and should be used only when the user is very
familiar with the features of the CPLD.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: None
Applicable to: CPLD Devices Only

Examples:

attribute lab_force of my_signal:signal is “A”;

The above example will force the signal my_signal to the logic block A.

attribute lab_force of my_signal:signal is “B2”;

The above example will force the signal my_signal to the lower half of logic
block B. The half logic block control is only allowed for the FLASH370 family of
devices. The half logic block designation is achieved by simply appending a 1 or a
2 to specify the top half or the bottom half, respectively.

3.2.8 max_load

The max_load directive specifies the maximum fanout that a signal should
support.

attribute max_load of s ignal_name :signal is integer ;

The integer represents the maximum loading allowed for the signal my_signal .
This directive can be used in conjunction with the buffer_gen directive to
specify what method should be used to reduce the fanout for said signal.

Please refer to the documentation on buffer_gen directive for more
information.
34 Warp Reference Manual

Synthesis Directives

3

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -ym#
Applicable to: pASIC Devices Only

Example:

attribute max_load of my_signal:signal is 8;

The above example instructs Warp to ensure that the signal my_signal should
be restricted to drive a maximum of 8 inputs.

3.2.9 no_factor

The no_factor directive prevents logic factoring within the Warp synthesis
engine to prevent splitting said node.

attribute no_factor of signal_name :signal is value ;

During the optimization phase, the Warp synthesis engine, among other things,
does the following:

• aliases signals which have identical drivers (equations)

• for pASIC devices, creates factors that can be shared among multiple
outputs, thereby reducing the size of the overall design. This feature is
triggered by the -fl option

Using this directive causes equations to bypass the above two actions. This
feature can be useful if the design constraints cause certain identical logic to be
duplicated or if the logic factoring algorithm is being overaggressive.

Scope:

Target: Signal
Inheritance: Hierarchical
Related-Command-line-option: -fl
Applicable to: All Devices
Warp Reference Manual 35

Synthesis Directives

3

Examples:

attribute no_factor of my_signal:signal is true;

The above example prevents the signal my_signal from being aliased or from
being factored.

attribute no_factor of my_architecture:architecture is
true;

The above example prevents all signals in my_architecture and its sub-
architectures from being aliased or factored.

3.2.10 no_latch

The no_latch directive prevents latches from being synthesized automatically
for the signal in question.

attribute no_latch of signal_name :signal is value ;

Normally, when exhaustive optimization is enabled (with the -o2 option), Warp
tries to synthesize latches where possible for the FLASH370 family. The following
example creates a latch with enable as the enable and a as the latched data for
the equation x :

if (enable = ‘1’) then
x <= a;

else
x <= x;

end if;

Creating a latch in this case will save a product term for the x equation; however,
this has certain other side-effects that might not be desirable:

• If the synthesizer also produced asynchronous resets/presets for the
enable, this might have caused more global resources (clocks, resets,
presets) to be used.

• Creating a latch might have caused a slower design and introduced
setup/hold problems.

Using the no_latch directive would cause Warp to create simply a signal with a
combinatorial delay.
36 Warp Reference Manual

Synthesis Directives

3

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -yl
Applicable to: FLASH370 Devices Only

Example:

attribute no_latch of x:signal is true;

In this example, the directive causes latch detection to be disabled for signal x .

3.2.11 node_num

The node_num directive tells Warp to map an internal signal to a specific location
on the target device.

attribute node_num of signal-name :signal is integer ;

The node_num directive can take a value of any integer or the value of
nd_auto . Assigning the nd_auto value to a signal tells Warp to map the signal
to the location of best fit on the target device. The node_num directive will
implicitly apply the synthesis_off directive to that signal as well. For more
information on the synthesis_off directive, see Section 3.2.21,
“synthesis_off.”

Scope:

Target: Signal
Inheritance: None
Related Command-Line-Option: -fn
Applicable to: PLD and CPLD Devices Only

Examples:

attribute node_num of my_signal:signal is nd_auto;

The command above maps a signal named my_signal to a Warp-determined
macrocell in the target device.

attribute node_num of my_signal:signal is 23;

The command above maps a signal named my_signal to a specific node within
the device being targeted. This value is both device and package specific and may
not be portable to other packages or devices.
Warp Reference Manual 37

Synthesis Directives

3

3.2.12 opt_level

The opt_level directive instructs Warp on the amount of effort that should be
spent optimizing certain signals.

attribute opt_level of signal_name :signal is integer ;

The integer represents the amount of effort. Currently, there are three levels of
effort (0, 1 and 2). An opt_level of 0 instructs Warp to turn off all
optimization on said signal. This directive is also passed along to the PLD/CPLD
fitters which do the same thing. An opt_level of 1 causes Warp to perform a
simple and quick optimization of equations. An opt_level of 2 causes Warp to
perform the highest level of optimization available. An opt_level of 2 is
recommended for all designs.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -o#
Applicable to: All Devices

Example:

attribute opt_level of my_signal:signal is 0;

This directive disables all optimization on the signal my_signal .

3.2.13 order_code

The order_code directive tells Warp which device package and speed bin to
use when synthesizing a design for a target device.

attribute order_code of entity-name :entity is “ order-code” ;

The order_code directive specifies the package as well as the speed bin for a
particular device. The order_code tells Warp the pin names and pin ordering
for the device and package that are being targeted.

Legal order codes can be found in the Ordering Code column of the ordering
information table for each device in the Cypress Semiconductor Programmable
Logic Data Book.
38 Warp Reference Manual

Synthesis Directives

3

Scope:

Target: Top-level Entity
Inheritance: None
Related Command-Line-Option: -p
Applicable to: All Devices

Example:

attribute order_code of mydesign:entity is
“PALC22V10-25HC”;

This example specifies a package type of PALC22V10-25HC for the entity named
my_design .

3.2.14 pad_gen

The pad_gen directive directs Warp to a specific type of PAD for a given input.

attribute pad_gen of signal_name :signal is value ;

The value can be one of pad_none , pad_auto (the default), pad_clock ,
pad_hd1 , pad_hd2 , pad_hd3 , pad_hd4 , or pad_io . This option is currently
only valid for the pASIC380 family of devices and is useful only for dedicated
inputs to the design.

• pad_none assigns the input signal to an I/O cell.

• pad_auto (the default) causes Warp to automatically select an
appropriate PAD for the signal.

• pad_clock assigns a clock pad.

• pad_hd1 causes Warp to use a high-drive input pad.

• pad_hd2 causes Warp to connect two high-drive input pads in parallel to
provide even higher drive strength.

• pad_hd3 causes Warp to connect three high-drive input pads in parallel
to provide even higher drive strength.

• pad_hd4 causes Warp to connect four high-drive input pads in parallel
to provide even higher drive strength. Since the current family of devices
does not provide four input pads on the same side of the chip, this value
will use three input pads and a clock pad to achieve the drive strength.

• pad_io is the same as pad_none .

• When using pad_h2 , pad_h3 , or pad_h4 , a like number of pins must
be available on a common side of the target device.
Warp Reference Manual 39

Synthesis Directives

3

The following heuristic is used to allocate pads for the pASIC380 family of
devices:

• All candidate signals must be dedicated inputs to the design.

• Allocate clock pads that were specified either with this directive or by a
pin assignment.

• Allocate input pads (high drive pads) that were specified either with this
directive or by a pin assignment.

• Select highest fanout positive polarity clocks and assign to clock pads.

• Select highest fanout positive polarity clocks and assign to input pads.

• If clocks pads also drive other inputs, assign one of the input pins while
determining best polarity for the signal.

• Obtain the highest fanout input (either polarity) and assign it to the first
available input pad.

• After allocating all possible input pads, if any clock pads are still
available, assign the clock pad to the next highest fanout signal.

When assigning inputs to input pads (which have both polarity outputs), Warp
will attempt to use both of these outputs if the fanout for both polarities exceed
max_load and if enough high drive wires (express-wires) are still available in
the device. When automatically determining the pad type, a pad will only be
assigned to a signal if that signal’s fanout exceeds max_load .

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -yp
Applicable to: pASIC Devices Only

Example:

attribute pad_gen of my_signal:signal is pad_clock;

The above example assigns my_signal to a clock pad.

3.2.15 part_name

The part_name directive specifies the device to target for synthesis.

attribute part_name of entity-name :entity is “ part-name ”;

The part_name directive tells Warp what part is being targeted for synthesis.
40 Warp Reference Manual

Synthesis Directives

3

Scope:

Target:Top-level Entity
Inheritance: None
Related Command-Line-Option: -d
Applicable to: All Devices

Example:

attribute part_name of my_design:entity is “c371”;

This examples specifies the CY7C371 as the target device for synthesis.

3.2.16 pin_avoid

The pin_avoid directive is a string type directive that instructs the fitter to
avoid mapping any signals to the specified pins. This directive is only valid on the
top-level entity of the design.

attribute pin_avoid of entity-name :entity is “ string” ;

The string used in the directive statement consists of one or more pin-numbers.
Each pin-number must be separated by white space (spaces or tabs). This string
can consist of several smaller, concatenated strings.

This feature can be used if certain pins are being used for some special purposes
(such as with In System Reprogrammable devices -- ISR™) or need to be reserved
for some future functionality.

When this feature is used, the report file will indicate these pins as Reserved in
the pin table. Such pins are named as Reserved# where # is an index.

In the case of PLD or CPLD devices where I/O pins have macrocells associated
with them, this feature does not prevent the fitter from using the buried macrocell
portion associated with that particular pin.

Scope:

Target: Top-level Entity.
Inheritance: None
Related Command-Line-Option: None
Applicable to: FLASH370 Devices Only
Warp Reference Manual 41

Synthesis Directives

3

Examples:

attribute pin_avoid of my_design:entity is “2 3 4”;
attribute pin_avoid of my_design:entity is “A1 B1 C1”;

The first example instructs the fitter to avoid the pins 2, 3 and 4 when trying to
place the design into a device. The second example is a case where the package
being used is a Pin-Grid-Array, in which the pin-numbers are actually alpha-
numeric.

3.2.17 pin_numbers

The pin_numbers directive maps the external signals of an entity to pins on the
target device.

attribute pin_numbers of entity-name :entity is “ string” ;

The string used in the directive statement consists of one or more pairs of the
form signal-name:number . Pairs must be separated from each other by white
space (spaces or tabs). This string can consist of several smaller, concatenated
strings.

Note – If the string contains an embedded line break (carriage
return or line feed), a VHDL syntax error may result. Thus, for
target devices with lots of pins, it may be more convenient to
express the signal-to-pin mapping as a series of concatenated
strings, making sure to leave a space between successive concate-
nated sub-strings.

Scope:

Target: Top-level Entity
Inheritance: None
Related Command-Line-Option: -ff
Applicable to : All Devices

Examples:

attribute pin_numbers of my_design:entity is
“sig1:1 ” &
“sig2:2 “ &
“sig3:3 “ &
“sig4:4 “ &
“sig5:5 “ &
42 Warp Reference Manual

Synthesis Directives

3

“sig6:6 “ &
“sig7:7 “ &
“sig8:8”;

This example maps eight signals from entity my_design onto the pins of a target
device. The space character before the endquote on the specifications for signals 4
through 7 guarantees that the string for the pin_numbers directive is
syntactically correct.

Even though this directive is called pin_numbers , it can also assign PGA
package pin-numbers which are in fact alpha-numeric (such as “A1”).

attribute pin_numbers of my_design:entity is
“x:1 y:2 clk:3 a(0):4”;

This example maps four signals from an entity called my_design onto the pins
of a target device. Signal x is mapped to pin 1, signal y to pin 2, signal clk to pin
3, and signal a(0) to pin 4.

Note – When targeting pASICs: the user can use the
pin_numbers directive to assign an input signal to more than
one high-drive pad in order to give the signal a higher drive
strength. The pin-numbers must be separated by commas within
the directive string, e.g., the following line would assign a signal
named in1 to pins 2 and 3 of a pASIC device:

attribute pin_numbers of my_design:entity is “in1:2,3”

This feature assigns a signal to any desired combination of input and input/clock
pins. The pin-numbers specified in the directive string must match the input and
clock pins of the actual device.

3.2.18 polarity

The polarity directive specifies polarity selection for individual signals.

attribute polarity of signal-name :signal is value ;

Legal values for the polarity directive are pl_keep , pl_opt , and
pl_default :

• A value of pl_keep tells Warp to keep the polarity of the signal as
currently specified.
Warp Reference Manual 43

Synthesis Directives

3

• A value of pl_opt tells Warp to optimize the polarity of the signal to use
the fewest resources on the target device.

• A value of pl_default tells Warp to synthesize the signal based on the
default polarity selection strategy. This default is determined by the
command line switches or Galaxy dialog settings, if any, used in invoking
Warp.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -fp or -fk
Applicable to: PLD and CPLD Devices Only

Examples:

attribute polarity of abc:signal is pl_opt;

This example tells Warp to optimize the polarity for signal abc.

attribute polarity of abc:signal is pl_keep;

This example tells Warp to keep the polarity of signal abc as currently specified.

3.2.19 state _encoding

The state_encoding directive specifies the internal encoding scheme for
values of an enumerated type.

attribute state_encoding of type-name :type is value ;

The legal values of the state_encoding directive are sequential ,
one_hot_zero, one_hot_one , and gray .

When the state_encoding directive is set to sequential , the internal
encoding of each value of the enumerated type is set to a sequential binary
representation. The first value in the type declaration receives an encoding of 00;
the second, 01; the third, 10; the fourth, 11; and so on. Sufficient bits are allocated
to the representation to encode the number of enumerated type values included
in the type declaration.

When the state_encoding directive is set to one_hot_zero , the internal
encoding of the first value in the type definition is set to 0. Each succeeding value
in the type definition has its own bit position in the encoding. That bit position is
set to 1 when the state variable has that value. Thus, a one_hot_zero encoding
44 Warp Reference Manual

Synthesis Directives

3

of an enumerated type with N possible values requires N-1 bits. For example, if
an enumerated type had four possible values, three bits would be used in its
one_hot_zero encoding. The first value in the type definition would have an
encoding of 000. The second would have an encoding of 001. The third would
have an encoding of 010. The fourth would have an encoding of 100.

One_hot_one state encoding works similarly to one_hot_zero , except that
no zero encoding is used; every value in the enumerated type has a bit position,
which is set to one when the state variable has that value. Thus, a one_hot_one
encoding of an enumerated type with N possible values requires N bits. For
example, if an enumerated type had four possible values, four bits would be used
in its one_hot_one encoding. The first value in the type definition would have
an encoding of 0001. The second would have an encoding of 0010. The third
would have an encoding of 0100. The fourth would have an encoding of 1000.

When the state_encoding directive is set to gray , the internal encoding of
successive values of the enumerated type follow a Gray code pattern, where each
value differs from the preceding one by only one bit.

Scope:

Target: Type
Inheritance: None
Related Command-Line-Option: None
Applicable to: All Devices

Examples:

type state is (s0,s1,s2,s3);
attribute state_encoding of state:type
is one_hot_zero;

The first statement in this example declares an enumerated type, called state ,
with four possible values. The second statement specifies that values of type
state are to be encoded internally using a one_hot_zero encoding scheme.

type s is (s0,s1,s2,s3);
attribute state_encoding of s:type is gray;

The first line of this example declares an enumerated type, called s , with four
possible values. The second line specifies that values of type s are to be encoded
internally using a Gray code encoding scheme.
Warp Reference Manual 45

Synthesis Directives

3

3.2.20 sum_split

The sum_split directive directs the fitter to chose a sum_splitting strategy.

attribute sum_split of signal_name :signal is value ;

The value of this directive can be one of balanced (the default) or cascaded .
This directive is valid only for CPLDs. If a given product term has 18 product
terms and the device being targeted has a limit of 16 product terms per macrocell,
then the following applies:

• The balanced method, which is the default, uses 3 macrocells. The set
of 18 product terms are split into two macrocells, and the outputs of these
two macrocells are ORed together to form the final output. At the
expense of using more resources, this option provides reliable timing as
the design evolves.

• The cascaded method uses only two macrocells to implement the
equation. One macrocell is used to absorb 16 product terms while another
macrocell is used to absorb the rest of the product terms (2) which are
also ORed with the output of the previous macrocell.There is no control
over which product term is assigned to which macrocell, however, which
makes the timing of the equation unreliable as the design changes. On the
other hand, if this is a registered signal, timing may not be a concern.

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: None
Applicable to: CPLD Devices Only

Example:

attribute sum_split of my_signal:signal is cascaded;

The above example will use the cascaded strategy if the number of product terms
for the signal my_signal exceeds the limit the CPLD imposes.

3.2.21 synthesis_off

The synthesis_off directive controls the flattening and factoring of
expressions feeding signals for which the directive is set to true. This directive
causes a signal to be made into a factoring point for logic equations, which keeps
the signal from being substituted out during optimization.
46 Warp Reference Manual

Synthesis Directives

3

attribute synthesis_off of signal_name:signal is value ;

The synthesis_off directive can only be applied to signals. The default value
of the synthesis_off directive for a given signal is false . This directive
gives the user control over which equations or sub-expressions need to be
factored into a node (i.e., assigned to a physical routing path).

For PLDs and CPLDs:

• When set to true for a given signal, synthesis_off causes that
signal to be made into a node (i.e., a factoring point for logic equations)
for the target technology. This keeps the signal from being substituted out
during the optimization process. This can be helpful in cases where
performing the substitution causes the optimization phase to take an
unacceptably long time (due to exponentially increasing CPU and
memory requirements) or uses too many resources.

• Making equations into nodes forces signals to take an extra pass through
the array, thereby decreasing performance, but may allow designs to fit
better.

• The synthesis_off directive should only be used on combinational
equations. Registered equations are natural factoring points; the use of
synthesis_off on such equations may result in redundant factoring.

For pASICs:

• When set to true for a given signal, synthesis_off causes that
signal to be made into a node (i.e., a factoring point for logic equations)
for the target technology. This keeps the signal from being substituted out
during the optimization process. This can be helpful in cases where
performing the substitution causes the optimization phase to take an
unacceptably long time (due to exponentially increasing CPU and
memory requirements) or uses too many resources.

• Typically, after design flattening (also called virtual-substitution) and
optimization, Warp makes an attempt to reproduce intelligent factors of
small equations. In some cases, however, Warp might not perform as
expected on very large combinatorial signals without synthesis_off
on them. In other words, synthesis_off tells the synthesis and
optimization software which signals in the design should be considered
as factoring points.

• Warp also has the capability of automatically determining large nodes
that might cause an exponential blow-up of equations and automatically
make such nodes factor points.
Warp Reference Manual 47

Synthesis Directives

3

Scope:

Target: Signal
Inheritance: Hierarchical
Related Command-Line-Option: -v#
Applicable to: All Devices

Example:

attribute synthesis_off of sig1:signal is true;

This example sets the synthesis_off directive to true for a signal named
sig1 .

What is Virtual Substitution?
For the following equations:

x <= a OR b OR c;
y <= NOT x OR d;

The optimizer will expand signal x within the equation for y and produce the
following equations:

x <= a OR b OR c;
y <= NOT (a OR b OR c) OR d;

Once this is done, if x is no longer required, the equation for x is removed from
the design; however, if x is also an output pin or if x is being used to drive
something other than an equation (like an RTL component), x is preserved. This
process is repeated for all equations in the design.

This process within Warp is called virtual substitution and is desirable in most
cases. For CPLDs which have a huge appetite for equations, virtual substitution
improves performance and also uses less area. In fine or medium grained
architectures such as the pASIC family of devices, this process aids examination
of the whole design after virtual substitution to extract the best possible factors
automatically. In some cases, however, x could have been a very large equation
or an equation whose negation might have resulted in a very large equation,
causing Warp to take unacceptably long to complete due to constantly expanding
CPU and memory requirements.

A situation might also occur where multiple other outputs (large or small) use
signal x , which might cause the design to use too many resources in the CPLD,
inefficient factoring in pASIC, failure to optimize, etc. In rare situations such as
those mentioned above, setting the synthesis_off directive for signal x to
48 Warp Reference Manual

Synthesis Directives

3

true creates a factoring point during synthesis and fitting. In PLDs and CPLDs,
such nodes are assigned to a macrocell.

For pASIC devices, even though Warp will preserve nodes with
synthesis_off , the logic optimizer within SpDE does not guarantee the same.
The logic optimizer within SpDE, however, does not suffer from the kind of
caveats mentioned above, because the SpDE logic optimizer works on small units
of the design at a time and thus does not need to preserve any nodes.

Warp uses a sophisticated algorithm to determine automatically good factoring
points during the process of virtual substitution. In most cases, the conclusions
made by Warp are good, but in certain cases, Warp may be overly aggressive in
trying to eliminate as many nodes as possible. By reducing this aggressiveness
(using the -v option), it is possible to reduce the complexity of the network. By
using the -v option and controlling the aggressiveness of this algorithm, a user
can typically find which nodes have the potential for reducing the network. Once
such nodes are identified, the user can then select the synthesis_off directive
to fix permanently the nodes and then go back to the default behavior of
aggressive virtual substitution, thus allowing Warp to substitute any nodes that
user deems should be virtually substituted but the software would have made a
hard node with a lower cost setting.

3.3 Control File

A control file provides a common location for setting global synthesis directives
for a given design. This gives the user detailed control over many aspects of
synthesis while maintaining a device and vendor independent VHDL source file.
The control file allows the user to attach synthesis directives via the attribute
mechanism, and the file supports the VHDL syntax for these attributes to allow
the cutting and pasting of these directives between the VHDL source and the
control file. The file can also be used for back-annotating pinout and internal
placement information from fitting and place and route results automatically.

During the process of synthesis, optimization, and factoring, Warp derives many
new signal and node names to realize the design. For example, Warp separates
buses into individual signals. Even though objects such as buses make VHDL
design entry much simpler, no VHDL legal way exists to assign attributes to
portions of a bus. In other cases, Warp produces brand new signal names which
may not have any direct correlation to any single VHDL object within a design.
This situation occurs during factorization where factors are produced by
examining the design globally.
Warp Reference Manual 49

Synthesis Directives

3

Only one control file is allowed per design, and the file should have the same base
name as the top-level design file name. For example, for a top-level design whose
name is mydesign.vhd, the control file must be called mydesign.ctl.

A control file is not required. The creation and editing of the control file is an
iterative process, typically done to refine, improve, or constrain the results of
synthesis.

The format of the control file is similar to VHDL. A comment begins with a “--”
pattern and terminates at the end of the line. All synthesis directives must be
preceded by the keyword attribute . The directives are not case-sensitive.

attribute directive-name [of] object-name [:class] [is]
value [;]

The line must start with the keyword attribute .

The keywords of and is are optional and are simply ignored.

Class refers to the type of VHDL object. If the class is not specified, a signal is
assumed. Other valid classes include entity , architecture , and label .
The label class can be used to specify a directive intended for a component
instantiation.

A synthesis directive is terminated either with a new line, a semi-colon, or a
comment.

Directive-name is any synthesis directive specified in the previous section
except for the following:

• goal

• state_encoding

• enum_encoding

• part_name

• order_code

Object-name is the name of a signal or component-label. This is the object
upon which the synthesis directive is being placed. Any signal that is visible after
the synthesis and in the report file is a valid object-name. Warp also supports the
“*” wild-card character that allows pattern matching.

Value is the value of the directive. The previous section describes valid values
depending upon the directive.
50 Warp Reference Manual

Synthesis Directives

3

Synthesis directives override any directives specified directly in the VHDL text
for the design.

The above syntax allows users to cut and paste attributes directly from the
original VHDL text and vice-versa with minimal editing.

Example:

-- File mydesign.ctl
-- This is a comment
-- Force ff_type to d-type for signal mysig_1
attribute ff_type of mysig_1:signal is ff_d;
-- long syntax
-- Force ff_type to t-type for signal mysig_2
attribute ff_type mysig_2 ff_t -- short syntax
-- Wild_card example, select best ff-type
-- for all signals
-- starting with “abcd”
attribute ff_type of abcd* is ff_opt;

This control file example starts with three lines of comments which are denoted
by the “--” at the start of each line. Line 4 specifies that mysig_1 be
implemented as a D-type flip-flop. Line 7 specifies that mysig_2 be inplemented
as a T-type flip-flop using the short syntax. Line 11 instructs the Warp compiler to
optimize all signals starting with abcd for either D or T-type flip-flops. This
control file is for a design targeting either a PLD or CPLD device, and the same
design targeting an FPGA would simply ignore these attributes.

3.4 Warp Synthesis Directives w ith ViewDraw

3.4.1 Warp Synthesis Directives

When using Warp in conjunction with ViewDraw, most of the synthesis directives
are available directly within the ViewDraw graphical interface. ViewDraw users
have an option to choose either the control file described in the previous section
or to embed synthesis directives directly into the schematic.

A synthesis directive within ViewDraw is specified using the attribute
mechanism. Attributes can be placed or modified within Viewdraw using the
Viewdraw menu items Add->Attr... or Change->Attr....

With the exception of pin_numbers , all the other synthesis directives have the
exact same name as the Warp synthesis directive. ViewDraw uses # as the name of
the pin_numbers attribute. The attributes must be attached to the wire
connecting to the pin and NOT to the pin itself. This is especially true for #.
Warp Reference Manual 51

Synthesis Directives

3

Warp supports the use of the following attributes within ViewDraw:

With the exception of # and pin_avoid , which can only be placed on a top-level
schematic net, these attributes can also be placed as follows:

• on the instance of a symbol (corresponds to VHDL label)

• in the symbol (corresponds to VHDL entity)

• on the schematic (corresponds to VHDL architecture)

Table 3-1 Supported Attributes Within ViewDraw

Attribute Target

Wires (top-level pins only)

buffer_gen Any Wire

dont_touch RTL component (pASIC only)

ff_type Any Wire

fixed_ff Any Wire

lab_force Any Wire

max_load Any Wire

no_factor Any Wire

no_latch Any Wire

node_num Any Wire

opt_level Any Wire

pad_gen Any Wire

pin_avoid Top level symbol

polarity Any Wire

sum_split Any Wire

synthesis_off Any Wire
52 Warp Reference Manual

Synthesis Directives

3

The Warp Export VHDL utility netlists these attributes where they are found, and
Warp uses its hierarchical inheritance rules to interpret these attributes. These
rules are explained at the beginning of this chapter.

3.4.2 Supported ViewDraw Attributes

In addition to the ViewDraw attribute # representing pin assignments, the only
other ViewDraw specific attribute that Warp supports is the $ARRAY attribute.

The $ARRAY component attribute specifies a one- or two-dimensional array of
the component without actually drawing all of the components.

Arrayed components are defined at the schematic level. The $ARRAY attribute is
added to the component to determine the number of occurrences of this
component in the logical database. $ARRAY attributes at the symbol level are
ignored.

The format for a one-dimensional component array is as follows:

$ARRAY=n

The format for a two-dimensional component array is as follows:

$ARRAY=x,y
Warp Reference Manual 53

Synthesis Directives

3

54 Warp Reference Manual

Chapter
 4

VHDL
4

VHDL

4

4.1 Introduction

This section discusses some of the fundamental elements of VHDL implemented
in Warp.

Topics include:

• identifiers

• data objects (constants, variables, signals)

• data types, including pre-defined types, user-definable types, subtypes,
and composite types

• operators, including logical, relational, adding, multiplying,
miscellaneous, assignment, and association operators

• entities

• architectures, for behavioral data flow and structural descriptions

• packages and libraries

Designs in VHDL are created in what are called entity and architecture pairs.
Entities and architectures are discussed in Sections 4.6 and 4.7. Sections leading
up to this discussion cover VHDL language basics such as identifiers, data
objects, data types, operators, and syntax.

4.2 Identifiers

An identifier in VHDL is composed of a sequence of one or more alphabetic,
numeric, or underscore characters.

Legal characters for identifiers in VHDL include uppercase letters (A...Z),
lowercase letters (a...z), digits (0...9), and the underscore character (_).

The first character in an identifier must be a letter.

The last character in an identifier cannot be an underscore character. In addition,
two underscore characters cannot appear consecutively.

Lowercase and uppercase letters are considered identical when used in an
identifier; thus, SignalA, signala, and SIGNALA all refer to the same identifier.

Comments in a VHDL description begin with two consecutive hyphens (--), and
extend to the end of the line. Comments can appear anywhere within a VHDL
description.
56 Warp Reference Manual

VHDL

4

VHDL defines a set of reserved words, called keywords, that cannot be used as
identifiers.

Examples:

-- this is a comment.

-- this is the first line of
-- a three-line comment. Note the repetition
-- of the double hyphens for each line.

entity mydesign is -- comment at the end of a line

The following are legal identifiers in VHDL:

SignalA
Hen3ry
Output_Enable
C3PO
THX_1138

The following are not legal identifiers in VHDL:

3POC -- identifier can’t start with a digit
_Output_Enable -- or an underscore character
My__Design -- or have two consecutive underscores
My_Entity_ -- can’t end with an underscore, either
Sig% -- percent sign is an illegal character
Signal -- reserved word

4.3 Data Objects

A data object holds a value of some specified type. In VHDL, all data objects
belong to one of three classes: constants, variables, or signals.
Warp Reference Manual 57

VHDL

4

Constant Declar ation
constant identifier [, identifier ...]: type := value ;

Variable Declaration
variable identifier [, identifier ...]: type [:= value];

Signal D eclar ation
signal identifier [, identifier ...]: type [:= value];

An object of class constant can hold a single value of a given type. A constant
must be assigned a value upon declaration. This value cannot be changed within
the design description.

An object of class variable can also hold a single value of a given type at any point
in the design description. A variable, however, can take on many different values
within the design description. Values are assigned to a variable by means of a
variable assignment statement.

An object of class signal is similar to an object of class variable in Warp, with one
important difference: signals can hold or pass logic values, while variables
cannot. Signals can therefore be synthesized to memory elements or wires.

Variables have no such hardware analogies. Instead, variables are simply used as
indexes or value holders to perform computations incidental to modeling
components.

Most data objects in VHDL, whether constants, variables, or signals, must be
declared before they can be used. Objects can be given a value at declaration time
by means of the “:=” operator.

Exceptions to the “always-declare-before-using” rule include:

• The ports of an entity are implicitly declared as signals.

• The generics of an entity are implicitly declared as constants.

• The formal function parameters must be constants or signals, and are
implicitly declared by the function declaration. The formal procedure
parameters can be constants, variables, or signals, and are implicitly
declared by the procedure declaration.

• The indices of a loop or generate statement are implicitly declared when
the loop or generate statement begins, and disappear when it ends.
58 Warp Reference Manual

VHDL

4

Examples:

constant bus_width:integer := 8;

This example defines an integer constant called bus_width and gives it a
value of 8.

variable ctrl_bits:std_logic_vector(7 downto 0);

This example defines an eight-element bit_vector called ctrl_bits.

signal sig1, sig2, sig3:std_logic;

This example defines three signals of type std_logic, named sig1 , sig2 ,
and sig3 .

4.4 Data Types

A data type is a name that specifies the set of values that a data object can hold
and the operations that are permissible on those values.

Warp supports the following pre-defined VHDL types:

• integer

• boolean

• bit

• character

• string

• bit_vector

• std_logic

• std_logic_vector

Warp also gives the user the capability to define subtypes and composite types by
modifying these basic types, and to define particular types by combining
elements of different types.

Warp’s pre-defined types, and Warp’s facilities for defining subtypes, composite
types, and user-defined types, are all discussed in the following pages.
Warp Reference Manual 59

VHDL

4

Note – VHDL is a strongly typed language. Data objects of one
type cannot be assigned to data objects of another, and opera-
tions are not allowed on data objects of differing types. Warp pro-
vides functions for converting vectors to integers or integers to
vectors and functions for allowing certain operations on differing
data types.

4.4.1 Pre-Defined Types

Warp supports the following pre-defined VHDL types: integer , boolean ,
bit , character , string , bit_vector , std_logic , and
std_logic_vector .

Integer
VHDL allows each implementation to specify the range of the integer type
differently. However, the range must extend from at least -(2**31-1) to +(2**31-1),
or -2147483648 to +2147483647. Warp allows data objects of type integer to take on
any value in this range.

Boolean
Data objects of this type can take on the values true or false .

BitData
Objects of this type can take on the values 0 or 1.

Character
Data objects of type character can take on values consisting of any of the 128
standard ASCII characters. The non-printable ASCII characters are represented
by two or three-character identifiers, as follows: NUL, SOH, STX, ETX, EOT,
ENQ, ACK, BEL, BS, HT, LF, VT, FF, CC, S0, S1, DLE, DC1, DC2, DC3, DC4,
NAK, SYN, ETB, CAN, EM, SUB, ESC, FSP, GSP, RSP, and USP.

String
A string is an array of characters.

Example:

variable greeting:string(1 to 13):=”Hello, world!”;
60 Warp Reference Manual

VHDL

4

Bit_Vector
A bit_vector is an array of bits in ascending or descending order and provides an
easy means to manipulate buses. Bit_vectors can be declared as follows:

signal a, b:bit_vector(0 to 7);
signal c, d:bit_vector(7 downto 0);
signal e:bit_vector(0 to 5);

Note – bit_vector constants are specified with double quote
marks ("), whereas single bit constants are specified with single
quote marks (’).

If these signals are subsequently assigned the following values:

a <= “00110101”;
c <= “00110101”;
b <= x”7A”;
d <= x”7A”;
e <= O”25”;

then we can compare the individual bits of a and c to discover that a(7) is ‘1’, a(6)
is ‘0’, a(5) is ‘1’, a(4) is ‘0’,..., a(0) is ‘0’ whereas c(7) is ‘0’, c(6) is ‘0’, c(5) is ‘1’, c(4) is
‘1’,... c(0) is ‘1’. This is because the bits of signal a are in ascending order, and the
bits of signal b are in descending order, and the assignment is made simply from
the left most index to the right most index.

The prefix of ’X’ or ’x’ denotes a hexadecimal value; a prefix of ’O’ or ’o’ denotes
an octal value; a prefix of ’B’ or ’b’ denotes a binary value. If no prefix is included,
a value of ’b’ is assumed. Underscore characters may be freely mixed in with the
bit_vector value for clarity. Hexadecimal and octal designators should only be
used if the hexadecimal or octal value can be directly mapped to the size of the
bit_vector. For example, if ’x’ is a bit_vector(0 to 5), then the assignment a <=
x”B”; cannot be made because the hexadecimal number ’B’ uses four bits and
does not match the size of the bit_vector to which it is being assigned.

String Literals
A value that represents a (one-dimensional) string of characters is called a string
literal. String literals are written by enclosing the characters of the string within
double quotes (“...“). String literals can be assigned either to objects of type
string or to objects of type bit_vector (or other types of vectors whose base
type is compatible with the string contents), as long as both objects have been
declared with enough elements to contain all the characters of the string:
Warp Reference Manual 61

VHDL

4

variable err_msg:string(1 to 18);
err_msg := “Fatal error found!”;

signal bus_a:bit_vector(7 downto 0);
bus_a<= “10011110”;

signal bus_b:std_logic_vector(7 downto 0);
bus_b <= "ZZZZZZZZ" ;

std_logic

std_logic is similar to the basic type bit except that it is not defined within
the language. The IEEE std_logic_1164 packages defines std_logic as a type
which can have values ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ’L’, ‘H’, or ‘-’.

For synthesis purposes, however, only ‘0’, ‘1’, ’Z’ and ’-’ are supported as valid
values. The values ’Z’ and ’-’ also have additional restrictions on how and where
they can be used.

The values ‘0’ and ‘1’ can be used anywhere in the design.

The ’Z’ which represents the high impedance state can only be used in an
assignment to a top level output and has to map to a physical pin on the device.

The ’-’ which represents a don’t care can be used in an assignment but cannot be
used to compare values of non-constant signals (in if-then-else or case
statements). The std_match functions defined in the numeric packages, however,
can be used to compare input don’t cares.

std_logic_vector
The std_logic_vector is simply a vector or an array of elements of type
std_logic . Its use is very similar to the bit_vector type . The main
difference between a bit_vector and the std_logic_vector is the type of the
elements of the array.

4.4.2 Enumerated Types

An enumerated type is a type with a user-defined set of possible values.

Enumerated Type Declaration
type name is (value [, value ...]);

The order in which the values are listed in an enumeration type’s declaration
defines the lexical ordering for that type. That is, when relational operators are
used to compare two objects of an enumerated type, a given value is always less
62 Warp Reference Manual

VHDL

4

than another value that appears to its right in the type declaration. The position
number of the leftmost value is 0; the position number of other values is one more
than that of the value to its left in the type declaration.

Examples:

type arith_op is (add,sub,mul,div);

This example defines an enumerated type named arith_op whose possible
values are add , sub , mul , and div .

type states is (state0, state1, state2, state3)

This example defines an enumerated type named states , with four possible
values: state0 , state1 , state2 , and state3 .

4.4.3 Subtypes

A subtype is a subset of a larger type.

Subtype Declaration
subtype type is

base_type range value {to | downto} value ;

Subtypes are useful for range checking or for enforcing constraints upon objects
of larger types.

Examples:

subtype byte is std_logic_vector(7 downto 0);
subtype single_digit is integer range 0 to 9;

These examples define subtypes called byte and single_digit . Signals or
variables that are declared as byte are std_logic_vectors of eight bits in
descending order. Signals or variables that are declared as single_digit are
integers with possible values consisting of the integers 0 through 9, inclusive.

subtype byte is std_logic_vector(7 downto 0);
type arith_op is (add,sub,mul,div);
subtype add_op is arith_op range add to sub;
subtype mul_op is arith_op range mul to div;

This example first defines an enumerated type called arith_op , with possible
values add , sub , mul , and div . It then defines two subtypes: add_op , with
possible values add and sub , and mul_op , with possible values mul and div .
Warp Reference Manual 63

VHDL

4

4.4.4 Composite Types

A composite type is a type made up of several elements from another type. There
are two kinds of composite types: arrays and records.

Array Type Declaration
type name is array ({ low to high }|

{ high downto low }) of base_type ;

Record Type Declaration
record type is record

element:element_type
[;element:element_type...];

end record;

An array is a data object consisting of a collection of elements of the same type.
Arrays can have one or more dimensions. Individual elements of arrays can be
referenced by specifying an index value into the array (see examples). Multiple
elements of arrays can be referenced using aggregates.

A record is a data object consisting of a collection of elements of different types.
Records in VHDL are analogous to records in Pascal and struct declarations in C.
Individual fields of a record can be referenced by using selected names (see
examples). Multiple elements of records can be referenced using aggregates.

Examples:

The following are examples of array type declarations:

type big_word is array (0 to 63) of std_logic;
type matrix_type is array (0 to 15, 0 to 31) of std_logic;
type values_type is array (0 to 127) of integer;

Possible object declarations using these types include:

signal word1,word2:big_word;
signal device_matrix:matrix_type;
variable current_values:values_type;

Some possible ways of assigning values to elements of these objects include:

word1(0)<=’1’; -- assigns value to 0th element in word1
word1(5)<=; -- assigns value to 5th element in word1
word2 <= word1; -- makes word2 identical to word1
word2(63) <= device_matrix(15,31); -- transfers value
-- of element from device_matrix to element of word2
64 Warp Reference Manual

VHDL

4

current_values(0) := 0;
current_values(127) := 1000;

The following includes an example of a record type declaration:

type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
op1:integer;
op2:integer;
end record;

Here are two object declarations using this record type declaration:

variable inst1, inst2:instruction;

Some possible ways of assigning values to elements of these objects include:

inst1.opcode := add; -- assigns value to opcode of inst1
inst2.opcode := sub; -- assigns value to opcode of inst2
inst1.op1 := inst2.op2; -- copies op2 of inst2

-- to op1 of inst2
inst2 := inst1; -- makes inst2 identical to inst1

4.5 Operators

VHDL provides a number of operators used to construct expressions to compute
values. VHDL also uses assignment and association operators.

VHDL’s expression operators are divided into five groups. They are (in
increasing order of precedence): logical, relational, adding, multiplying, and
miscellaneous.

In addition, there are assignment operators that transfer values from one data
object to another and association operators that associate one data object with
another.
Warp Reference Manual 65

VHDL

4

Table 4-1 lists the VHDL operators that Warp supports.

4.5.1 Logical Operators

The logical operators AND, OR, NAND, NOR, XOR, XNOR, and NOT are
defined for predefined types bit and boolean . These operators are also
available for the type std_logic .

AND, OR, NAND, and NOR are "short-circuit" operations. The right operand is
evaluated only if the value of the left operand is not sufficient to determine the
result of the operation. For operations AND and NAND, the right operand is
evaluated only if the value of the left operand is true . For operations OR and
NOR, the right operand is evaluated only if the value of the left operand is
false .

Note that there is no differentiation of precedence among the binary boolean
operators. Thus, successive boolean operators in an expression must be delimited
by parentheses to guarantee error-free parsing and evaluation, e.g.,

a <= b AND c OR d

is not legal;

a <= (b AND c) OR d

is.

Table 4-1 Supported Operators

Logical Operators:
and, or, nand, nor, xor,
xnor, not

Adding Operators:
+, -, &

Multiplying Operators:
*, /, mod, rem

Miscellaneous Operators:
abs, **

Assignment Operators:
<=, :=

Association Operator:
=>

Shift Operators:
sll, srl, sla, sra, rol, ror
66 Warp Reference Manual

VHDL

4

4.5.2 Relational Operators

Relational operators include tests for equality, inequality, and ordering of
operands.

The operands of each relational operator must be of the same type. The result of
each relational operation is of type boolean .

The equality operator “=” returns true if the two operands are equal, false
otherwise. The inequality operator “/=” returns false if the two operands are
equal, true otherwise.

 Two scalar values of the same type are equal if and only if their values are the
same. Two composite values of the same type (e.g., vectors) are equal if and only
if for each element of the left operand there is a matching element of the right
operand, and the values of matching elements are equal.

The ordering operators are defined for any scalar type and for array types (e.g.,
vectors). For scalar types, ordering is defined in terms of relative values (e.g., ‘0’ is
always less than ‘1’). For array types, the relation “<“ (less than) is defined such
that the left operand is less than the right operand if and only if:

• the left operand is a null array and the right operand is a non-null array;
otherwise

• both operands are non-null arrays, and one of the following conditions is
satisfied:

• the leftmost element of the left operand is less than that of the right; or

• the leftmost element of the left operand is equal to that of the right, and
the tail of the left operand is less than that of the right. The tail consists of
the remaining elements to the right of the leftmost element and can be
null.

The relation “<=” (less than or equal to) for array types is defined to be the
inclusive disjunction of the results of the “<“ and “=” operators for the same two
operands (i.e., it's true if either the “<“ or “=” relations are true). The relations “>”
(greater than) and “>=” (greater than or equal to) are defined to be the
complements of “<=” and “<“, respectively, for the same two operands.
Warp Reference Manual 67

VHDL

4

4.5.3 Adding Operators

In VHDL, the “+” and “-” operators perform addition and subtraction,
respectively. The ‘&’ operator concatenates characters, strings, bits or bit/
std_logic vectors. All three of these operators have the same precedence, and so
are grouped under the category “Adding Operators.”

The adding operators “+” and “-” are defined for integers and retain their
conventional meaning.

These operations are also supported for bit_vectors, through the use of the
bit_arith package. (See Section 4.8.1, "Predefined Packages,” later in this chapter
for more information.)

In Warp, concatenation is defined for bits and arrays of bits (bit_vectors). The
concatenation operator in Warp is “&”.

If both operands are bit_vectors, the result of the concatenation is a one-
dimensional array whose length is the sum of the lengths of the operands, and
whose elements consist of the elements of the left operand (in left-to-right order)
followed by the elements of the right operand (in left-to-right order). The left
bound of this result is the left bound of the left operand, unless the left operand is
a null array, in which case the result of the operation is the right operand. The
direction of the result is the direction of the left operand, unless the left operand is
a null array, in which case the direction of the result is that of the right operand.

If one operand is a bit_vector and the other is a bit, or if both are bits, the bit
operand is replaced by an implicit one-element bit_vector having the bit operand
as its only element. The left bound of the implicit bit_vector is 0, and its direction
is ascending. This is in most cases an inconsequential fact if the “&” is being used
during an assignment to a constrained vector (vector with known dimensions)
but may become important if the concatenated vector is being assigned (or passed
to a function) to a unconstrained vector.

4.5.4 Multiplying Ope rators

In VHDL, the ”*” and “/” operators perform multiplication and division,
respectively. Two other operands of the same precedence include the mod and
rem operators. Both operators return the remainder when one operand is divided
by another.

All the multiplication operators are defined for both operands being of the same
integer or bit_vector type. The result is also of the same type as the operands.
68 Warp Reference Manual

VHDL

4

The rem operation is defined as the following:

A rem B = A-(A/B)*B

where “/” in the above example indicates an integer division. The result has the
sign of A and an absolute value less than the absolute value of B.

The mod operation is similar, except that the result has the sign of B. In addition, ,
for some integer N, the result satisfies the relation:

A mod B = A-B*N

Note – Warp predefines the ”*” only. There is currently no built-
in support for ”/”, “mod” or the “rem” operators but can be used
if the user supplies the necessary overloading.

4.5.5 Miscellaneous Operators

The two miscellaneous expression operators in VHDL are “abs” and “**”.

The “abs” operator, defined for integers, returns the absolute value of its operand.

The ”**” operator raises a number to a power of two. It is defined for an integer
first operand and a power-of-two second operand. Its result is the same as
shifting the bits in the first operand left or right by the amount specified by the
second operand.

Note – Warp currently supports these operators for Constant
integers only.

4.5.6 Assignment Operations

VHDL has two assignment operators: “<=” and “:=”. The first is used for signal
assignments, the second for variable assignments.

Variable Assignment

variable_name := expression ;

Signal Assignment

signal_name <= expression ;
Warp Reference Manual 69

VHDL

4

Variable assignments can only occur inside a process. Signal assignments can
occur anywhere inside an architecture.

Assignments to objects of composite types can be assigned values using
aggregates, which is simply a way of specifying more than one value to be
assigned to elements of an object with a single assignment statement. Examples of
the use of aggregates are shown below.

Examples:

type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
op1:integer;
op2:integer;

variable inst1,inst2:instruction;
signal vec1, vec2 : bit_vector(0 to 3):

vec1 <= (‘1’,’0’,’1’,’0’); -- aggregate assignment
vec2 <= vec1; -- another aggregate assignment
inst1 := (add,5,10); -- aggregate assignment to record
vec1 <= (0=>’0’,others=>’1’); -- assign 0 to 0th bit,

-- set others to 1

4.5.7 Association Operations

To instantiate a component in a Warp description, the user must specify the
connection path(s) between the ports of the component being instantiated and the
interface signals of the entity/architecture pair being defined. This is done by
means of an association list within a port map or a generic map.

Warp supports both named and positional association.

In named association, the user uses the "=>" association operator to associate a
formal (the name of the port in the component being instantiated) with an actual
(the name of the signal in the entity being defined). The association operator is
considered an "arrow" indicating direction. It's easy to remember which way to
make the arrow point: it always points to the actual. For example, in the following
instantiation of a predefined D flip-flop,

st0: DSRFF port map(
d => dat,
s => set,
r => rst,
clk=> clk,
q => duh);
70 Warp Reference Manual

VHDL

4

the arrow always points toward the ports of the defined component, the DSRFF in
this case. Named association allows the user to associate the signals in any order
he desires. In the previous example, the user could have listed the “q => duh”
before “d => dat”.

In positional association, the association operator is not used. Instead, the user
lists the actuals (signals names) in the port map in the same order as the formals
of the component being instantiated, without including the formal names at all.

For example, the jkff component is declared as follows:

component jkff port(
j : in bit;
k : in bit;
clk: in bit;
q : out bit);

end component;

An association list for an instantiation of this component could use either named
association, like this:

 jk1:jkff port map(j_in=>j,k_in=>k,clk=>clk,q_out=>q);

or positional association, like this:

 jk1:jkff port map(j_in, k_in, clk, q_out);

Either form maps signals j_in , k_in , clk , and q_out in the entity being
defined to ports j , k , clk , and q, respectively, on the instantiated component.

4.5.8 Vector Operations

Addition, subtraction, multiplication, incrementing, decrementing, shifting
inverting, and relational operators for vectors are defined in the predefined
packages.

With the appropriate package, included within the user’s VHDL file, the user can
gain access to the vector-vector or vector-integer operations. The specific package
that is needed depends on the type of vectors that the user using in the VHDL file.
The following table associates a package with the four predefined vector types
supported within Warp.
Warp Reference Manual 71

VHDL

4

If using bit_vector s, the user will need the following USE clause:

use work.bit_arith.all ;

If using std_logic_vector s:

library ieee ;
use ieee.std_logic_1164.all ;
use work.std_arith.all ;

If using unsigned vectors which are bit based:

use work.numeric_bit.all ;

If using unsigned vectors which are std_logic based:

library ieee ;
use ieee.std_logic_1164.all ;
use work.numeric_std.all ;

The type unsigned is similar to the std_logic_vector or bit_vector
type. This is part of an emerging standard (IEEE 1076.3) for performing numeric
operations on vectored signals. The numeric_bit package defines
unsigned /signed as a vector whose elements are of type bit and the
numeric_std package defines the same with elements of type std_logic .
This means that you cannot use both types of unsigned within the same VHDL
design.

Table 4-2 Package to Use with Vector Type

Vector Type Package

bit_vector bit_arith

std_logic_vector std_arith

unsigned (bit) numeric_bit

unsigned (std_logic) numeric_std
72 Warp Reference Manual

VHDL

4

In all of the above packages, the most significant bit (MSB) for a vector is
considered to be the left-most bit. This means that in the following two vectors:

signal veca : std_logic_vector(3 downto 0) ;
signal vecb : std_logic_vector(0 to 3) ;

veca(3) is the MSB for veca and vecb(0) is the MSB for vecb .

All of the above four packages mentioned also provide certain other utility
functions which are documented in the "Packages” Section, 4.8, of this chapter.

4.6 Entities

VHDL designs consist of entity and architecture pairs, in which the entity
describes the design I/O or interface and the architecture describes the content of
the design.Together, entity and architecture pairs can be used as complete design
descriptions or as components in a hierarchical design or both.

The syntax for an entity declaration is as follows:

ENTITY entity IS PORT(
[signal] [sig-name, ...]:[direction] type
[; signal [sig-nam, ...]:[direction] type]
.
.
);

END entity-name ;

The entity declaration specifies a name by which the entity can be referenced in a
design architecture. In addition, the entity declaration specifies ports. Ports are a
class of signals that define the entity interface. Each port has an associated signal
name, mode, and type.

Choices for mode are in (default), out , inout and buffer . Mode in is used to
describe ports that are inputs only; out is used to describe ports that are outputs
only, with no feedback internal to the associated architecture; inout is used to
describe bi-directional ports; buffer is used to describe ports that are outputs of
the entity but are also fed back internally.
Warp Reference Manual 73

VHDL

4

Two sample entity declarations appear below.

Examples:

entity cnt3bit is port(
q:inout std_logic_vector(0 to 2);
inc,grst,rst,clk:in std_logic;
carry:out std_logic);

end cnt3bit;

entity Bus_Arbiter is port(
Clk, -- Clock
DRAM_Refresh_Request,-- Refresh Request
VIC_Wants_Bus,-- VIC Bus Request
Sparc_Wants_Bus: IN std_logic;-- Sparc Bus Request
Refresh_Control,-- DRAM Refresh Control
VIC_Has_Bus,-- VIC Has Bus
Sparc_Has_Bus: OUT std_logic);-- Sparc Has Bus

end Bus_Arbiter;

The first entity declaration shows the proper declaration for a bidirectional signal
(which, in this case, is also a vector), along with several input signals and an
output signal.

The second entity declaration shows how comments can be included within an
entity declaration to document each signal's use within the entity.

4.7 Architectures

Architectures describe the behavior or structure of associated entities. They can be
either, or a combination of the following:

• behavioral descriptions

These descriptions provide a means to define the
“behavior” of a circuit in abstract, “high level”
algorithms, or in terms of “low level” boolean equations.

• structural descriptions

These descriptions define the “structure” of the circuit in
terms of components and resemble a net-list that could
describe a schematic equivalent of the design. Structural
descriptions contain hierarchy in which components are
defined at different levels.
74 Warp Reference Manual

VHDL

4

The architecture syntax follows:

ARCHITECTURE aname OF entity IS
[type-declarations]
[signal-declarations]
[constant-declarations]

BEGIN
[architecture definition]

END aname;

Each architecture has a name and specifies the entity which it defines. Types,
signals, and constant must all be declared before the beginning of the architecture
definition. The architecture defines the concurrent signal assignments,
component instantiations, and processes.

Examples:

library ieee ;
use work.std_logic_1164.all ;
use work.std_arith.all;
architecture archcounter of counter is
begin
proc1: process (clk)

 begin
 if (clk'event and clk = '1') then
 count <= count + 1;
 end if;
 end process proc1;
 x <= '1' when count = "1001" else '0';

end archcounter;

Archcounter is an example of a behavioral architecture description of a counter
and a signal x that is asserted when count is a particular value. This design is
considered behavioral because of the algorithmic way in which it is described.
The details of such descriptions will be covered later.

library ieee ;
use work.std_logic_1164.all ;
use work.rtlpkg.all;
architecture archcapture of capture is

 signal c: std_logic;
begin

c <= a AND b;
d1: dff port map(c, clk, x);

end archcapture;
Warp Reference Manual 75

VHDL

4

Archcapture is the name of an architectural description that is both structural
and behavioral in nature. It is considered structural because of the component
instantiation, and it is considered behavioral because of the boolean equation.
VHDL provides the flexibility to combine behavioral and structural architecture
descriptions.

4.7.1 Behavioral Descri ptions

Behavioral design descriptions consist of two types of statements:

• Concurrent statements which define concurrent signal assignments by
way of association operators.

• Sequential statements within a process which enable an algorithmic way
of describing a circuit’s behavior. Sequential statements enable signal
assignments to be based on relational and conditional logic.

These types of statements, as well as structural descriptions, may be combined in
any architecture description.

Concurrent Statements
Concurrent statements are found outside of processes and are used to implement
boolean equations, when... else constructs, signal assignments, or generate
schemes. Here are some examples:

u <= a;
v <= u;
w <= a XOR b;
x <= (a AND s) or (b AND NOT(s));
y <= (‘1’ when (a=’0’ and b = ‘1’) else ‘0’;
z <= A when (count = “0010”) else b;

Signal u is assigned the value of signal a and is its equivalent. Likewise, v is
equivalent to both signals u and a . The order of these signal assignments does not
matter because they are outside of a process and are concurrent. The next two
statements implement boolean equations, while the last two statements
implement when... else constructs. The assignment for signal y may be read
as “y gets (is assigned) ‘1’ when a is zero and b is one, otherwise y gets ‘0’.”
Likewise, “z gets a when count is “0010,” otherwise z gets b.”

Sequential Statements
Sequential statements, which must be within a process, allow the user to describe
signal assignments in an algorithmic fashion. All statements in a process are
76 Warp Reference Manual

VHDL

4

evaluated sequentially, and therefore the order of the statements is important. For
example, in the process

proc1: process (x)
begin

a <= ‘0’;
if x = “1011” then

a <= ‘1’;
end if;

end process proc1;

signal a is first assigned ‘0’. Later in the process, if x is found to be equivalent to
“1011” then signal a is assigned the value ‘1’ .

Final signal assignments occur at the end of the process. In other words, the
VHDL compiler evaluates the code sequentially before determining the equations
to be synthesized, whereas the compiler synthesizes equations for concurrent
statements upon encountering them. A process taken as a whole is a concurrent
statement.

The Process
In most cases, a process has a sensitivity list: a list of signals in parentheses
immediately following the key word “process”. Signals assigned within a process
can only change value if one of the signals in the sensitivity list transitions. If the
sensitivity list is omitted, then the compiler infers that signal assignments are
sensitive to changes in any signal.

The user may find it helpful to think of processes in terms of simulation (VHDL is
also used for simulation) in which a process is either active or inactive. A process
becomes active only when a signal in the sensitivity list transitions. In the
following process

proc1: process (rst, clk)
begin

if rst = ‘1’ then
q <= ‘0’;

elsif (clk’event and clk=’1’) then
q <= d;

end if;
end process;

only transitions in rst and clk cause the process to become active. If either clk
or rst transition, then the process becomes active, and the first condition is
checked (if rst = ‘1’). In the case that rst = ’1’ q will be assigned ‘0’, otherwise
the second condition is checked (if clk event and clk = ‘1’). This
condition looks for the rising edge of a clock. All signals within this portion of the
Warp Reference Manual 77

VHDL

4

process are sensitive to this rising edge clock, and the compiler infers a register
for these signals. This process creates a D flip-flop with d as its input, q as its
output, clk as the clock, and rst as an asynchronous reset.

4.7.2 Structural Descriptions

Structural descriptions are net-lists that allow the user to instantiate components
in hierarchical designs. A port map is part of every instantiation and indicates
how the ports of the component are connected. Structural descriptions can be
combined with behavioral descriptions, as in the following example:

architecture archmixed of mixed is
begin
--instantiations
cntl1: motor port map(clk, ld, en, c1, chg1, start1, stop1);
cntl2: motor port map(clk, ld, en, c2, chg2, start2, stop2);
safety: mot_check port map(status, c1, c2);
--concurrent statement
en <= ‘1’ when (status=’1’ and status = ‘1’) else ‘0’;
-- concurrent process with sequential statements
ok:process (clk)

begin
if (clk’event and clk=’1’) then

status <= update;
end if;

end process ok;
end archmixed;

This example shows that two motor components and one mot_check
component are instantiated. The port maps are associated with inputs and
outputs of the motor and mot_check components by way of positional
association. Signal en is assigned by a concurrent statement, and signal status
is assigned by a process that registers a signal using the common clock clk .

4.7.3 Design Methodologies

Designers can choose from multiple methods of describing designs in VHDL,
depending on coding preferences. This section will discuss how to implement
combinatorial logic, registered logic, counters, and state machines. The discussion
of state machines will cover multiple implementations and the design and
synthesis trade-offs for those implementations. Section 4.10, "Additional Design
Examples" contains further design examples. Most of the design examples in this
section can be found in the directory c:\warp\examples.
78 Warp Reference Manual

VHDL

4

Combinatorial Logic
Following are examples of a four-bit comparator implemented in four different
ways, all yielding the same result. In all examples, the entity is the same:

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
entity compare is port(
 a, b: in std_logic_vector(0 to 3);
 aeqb: out std_logic);
end compare;

The entity declaration specifies that the design has three ports: two input ports (a,
b), and one output port (aeqb). The input ports are of type
std_logic_vector and the output port is of type std_logic .

Using a process, the comparator can be implemented as follows:

use work.std_arith.all ;
architecture archcompare of compare is
begin
comp: process (a, b)
 begin
 if a = b then
 aeqb <= '1';
 else
 aeqb <= '0';
 end if;
 end process comp;
end archcompare;

The design behavior is given in the architecture section. The architecture
description consists of the process "comp". The process includes the sensitivity list
(a,b) so that the process becomes active each time there is a change in one of these
signals. The process permits the use of an algorithm to assert aeqb when a
equals b . The std_arith package contains a tuned implementation for the "="
operator.

With one concurrent statement, making use of the case...when construct, the
same comparator can be described like this:

use work.std_arith.all ;
architecture archcompare of compare is
begin
 aeqb <= '1' when (a = b) else '0';
end;
Warp Reference Manual 79

VHDL

4

In this example, the process in the previous example has been replaced by a
concurrent signal assignment for aeqb .

Using boolean equations, the comparator looks like this:

architecture archcompare of compare is
begin
 aeqb <= NOT(
 (a(0) XOR b(0)) OR
 (a(1) XOR b(1)) OR
 (a(2) XOR b(2)) OR
 (a(3) XOR b(3)));
end;

In this example, a boolean equation replaces the when... else construct.

Finally, a structural design which implements a net list of XOR gates, a 4-input
OR gate, and an INV gate looks like this:

use work.lpmpkg.all;
architecture archcompare of compare is
begin

c0: Mcompare
generic map(

lpm_width => aeqb’length, -- Evaluates to 4
lpm_representation => lpm_unsigned,
lpm_hint => speed)

port map(
dataa => a, datab => b,
alb => open, aeb => aeqb, agb => open,
aleb => open, aneb => open, ageb => open);

end;

In this example, the compare architecture is described by instantiating gates much
the same as one would by placing gates in a schematic diagram. The Mcompare
component used in this architecture is the same as those available in the Warp
LPM (Library of Parameterized Elements) library. The port map lists are
associated with the inputs and outputs of the gates through named association for
readability.
80 Warp Reference Manual

VHDL

4

Many other functions or components can be implemented in multiple ways. Here
is one last combinatorial example: a four-bit wide four-to-one multiplexer. In all
versions, the entity is the same:

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
entity mux is port(
 a, b, c, d: in std_logic_vector(3 downto 0);
 s: in std_logic_vector(1 downto 0);
 x: out std_logic_vector(3 downto 0));
end mux;

Using a process, the architecture looks like this:

architecture archmux of mux is
begin
mux4_1: process (a, b, c, d)
 begin
 if s = "00" then
 x <= a;
 elsif s = "01" then
 x <= b;
 elsif s = "10" then
 x <= c;
 else
 x <= d;
 end if;
 end process mux4_1;
end archmux;

Using a concurrent statement with a case... when construct, the architecture
can be written as the following:

architecture archmux of mux is
begin
 x <= a when (s = "00") else
 b when (s = "01") else
 c when (s = "10") else
 d;
end archmux;
Warp Reference Manual 81

VHDL

4

Using boolean equations, the architecture can be written as follows:

architecture archmux of mux is
begin
 x(3) <= (a(3) and not(s(1)) and not(s(0)))
 OR (b(3) and not(s(1)) and s(0))
 OR (c(3) and s(1) and not(s(0)))
 OR (d(3) and s(1) and s(0));

 x(2) <= (a(2) and not(s(1)) and not(s(0)))
 OR (b(2) and not(s(1)) and s(0))
 OR (c(2) and s(1) and not(s(0)))
 OR (d(2) and s(1) and s(0));

 x(1) <= (a(1) and not(s(1)) and not(s(0)))
 OR (b(1) and not(s(1)) and s(0))
 OR (c(1) and s(1) and not(s(0)))
 OR (d(1) and s(1) and s(0));

 x(0) <= (a(0) and not(s(1)) and not(s(0)))
 OR (b(0) and not(s(1)) and s(0))
 OR (c(0) and s(1) and not(s(0)))
 OR (d(0) and s(1) and s(0));

end archmux;

A structural approach can be written like this:

use work.lpmpkg.all ;
architecture archmux of mux is

signal tmpBus : std_logic_vector(
((2**s’length * a’length) - 1) downto 0) ;

begin
tmpBus <= d & c & b & a ; -- Collect all inputs
mux_array: Mmux

generic map(
lpm_width => a’length, -- Width of each input
lpm_size => (2**s’length), -- Number of inputs
lpm_widths => s’length, -- Number of selectors
lpm_hint => speed)

port map(
data => tmpBus,
sel => s,
result => x);

end archmux;
82 Warp Reference Manual

VHDL

4

This design makes use of the multiplexer in the Warp library. Of course, the user
could build up his own multiplexers and instantiate them instead.

Registered Logic
There are two methods for implementing registered logic: instantiating a register
(or other component with registers) or using a process that is sensitive to a clock
edge. For example, if the user wanted to use a D register and a 4-bit counter, he
could simply instantiate these components after including the appropriate
packages:

use work.rtlpkg.all;
use work.lpmpkg.all;
...
d1: dsrff port map(d, s, r, clk, q);-- Defined in rtlpkg
c1: Mcounter -- Defined in lpmpkg

generic map (4)
port map(data, clk, one, one, one, count,

zero, rst, zero, zero, zero, zero
zero, zero, open) ;

Another method of using registered elements is to include a process that is
sensitive to a clock edge or that waits for a clock edge. In processes that are
sensitive to clock edges or that wait for clock edges, the compiler infers a register
for the signals defined within that process. Four basic templates are supported;
each is described below.

process_label: process
begin

wait until clk = ‘1’;
. ..

end process;

This process does not have a sensitivity list. Instead it begins with a wait
statement. The process will become active when clk transitions to a one (clk —
or whatever identifier you give to your clock—can also wait for zero for devices
that support such clocking schemes). All signal assignments within such a process
will be registered, as these signals only change values on clock edges and retain
their values between clock edges.

my_proc: process (clk)
begin

if (clk’event and clk =’1’) then
...

end if;
end process;
Warp Reference Manual 83

VHDL

4

This process is sensitive only to changes in the clock, as the sensitivity list
indicates. The first statement within the process looks for a transition from zero to
one in signal clk . All signals that are assigned within this process are also
registered because the assignments only occur on rising clock edges, and the
signals retain their values between rising clock edges.

your_proc: process (rst, clk)
begin

if rst = ‘1’ then
...

elsif (clk’event and clk=’1’) then
...

end if;
end process;

This process is sensitive to changes in the clock and signal rst , as the sensitivity
list indicates. This process is intended to support signals that must be registered
and have an asynchronous set and/or reset. The first statement within the process
checks to see if rst has been asserted. Signals that are assigned in this portion of
the template are assumed to be registered with rst assigned as either the
asynchronous reset or set of the register, as appropriate. If rst has not been
asserted, then the remainder of this process works as does the previously
described process.

proc1: process (rst, pst, clk)
begin

if rst = ‘1’ then
...

elsif pst = ‘1’ then
...

elsif (clk’event and clk=’1’) then
...

end if;
end process;

This process is sensitive to changes in the clock and signals rst and pst , as the
sensitivity list indicates. This process is intended to support signals that must be
registered and have an asynchronous set and reset. The first statement within the
process checks to see if rst has been asserted. Signals that are assigned in this
portion of the template are assumed to be registered with rst used as either the
asynchronous reset or set of the register, as appropriate. The second condition
assigns pst as the asynchronous reset or set of the register, as appropriate. If rst
and pst have not been asserted, then the remainder of this process works as does
the previous process.
84 Warp Reference Manual

VHDL

4

To register 32-bits with an asynchronous reset, the user could simply write the
following code:

regs32: process (r, clk2)
begin

if (r = ‘1’) then
q <= x”ABC123DE”;

elsif (clk2’event and clk2=’1’) then
q <= d;

end if;
end process;

Assuming that q and d are declared as 32-bit signals or ports, then this code
example implements 32 registers with d(i) as the input, q(i) as the output,
clk2 as the clock, and r as the asynchronous reset for some of the registers and r
as the asynchronous preset for the others. This is because resetting the q to the
value x”ABC123DE” will cause some registers to go high and other registers to go
low when r is asserted.

Counters and state machines designed with processes are described in more
detail in the following discussions.

Counters
This is a 4-bit loadable counter:

library ieee;
use ieee.std_logic_1164.all ;
use work.std_arith.all ;

entity counter is port(
clk, load: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;
Warp Reference Manual 85

VHDL

4

architecture archcounter of counter is
begin
upcount: process (clk)

begin
if (clk’event and clk= ‘1’) then

if load = ‘1’ then
count <= data;

else
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

The use work.std_arith.all ; statement is included to make the integer/
std_logic_vector math package visible to this design. The integer math package
provides an addition function for adding integers to a std_logic_vector. The
native VHDL addition operator applies only to integers. The architecture
description is behavioral. In this design, the counter counts up or synchronously
loads depending on the load control input. The counter is described by the
process “upcount”. The statement if (clk'event AND clk = '1')
then... implies that operation of the counter takes place on the rising edge of
the signal clk . The subsequent if statement describes the loading and counting
operation.

In this description, the if (clk'event AND clk = '1') then...
statement (and its associated end if) could have been replaced by the statement
wait until clk = '1'; .

The following is a 4-bit loadable counter with synchronous reset:

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, reset, load: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto

0));
end counter;
86 Warp Reference Manual

VHDL

4

use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk)

begin
if (clk’event and clk= ‘1’) then

if reset = ‘1’ then
count <= “0000”;

elsif load = ‘1’ then
count <= data;

else
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

In this design, the counter counts up, synchronously resets depending on the
reset input, or synchronously loads depending on the load control input. The
counter is described by the process "upcount.” That the statement if
(clk'event AND clk = '1') then... appears first implies that all
operations of the counter take place on the rising edge of the signal, clk . The
subsequent if statement describes the synchronous reset operation; the counter
is synchronously reset on the rising edge of clk . The remaining operations (load
and count) are described in elsif or else clauses in this same if statement,
therefore the reset takes precedence over loading or counting. If reset is not '1',
then the operation of the counter depends upon the load signal. This operation
is then identical to the counter in the previous example.

The following is a 4-bit loadable, enablable counter with asynchronous reset:

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, reset, load,counten: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto

0));
end counter;
Warp Reference Manual 87

VHDL

4

use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk, reset)

begin
if reset = ‘1’ then

count <= “0000”;
elsif (clk’event and clk= ‘1’) then

if load = ‘1’ then
count <= data;

elsif counten = ‘1’ then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

In this design, the counter counts up, resets depending on the reset input, or
synchronously loads depending on the load control input. This counter is
similar to the one in the previous example except that the reset is asynchronous.
The sensitivity list for the process contains both clk and reset . This causes the
process to be executed at any change in these two signals.

The first if statement, if reset = '1' then..., states that this counter
will assume a value of "0000" whenever reset is ‘1’. This will occur when the
process is activated by a change in the signal reset . The elsif clause that is
part of this if statement, elsif (clk'event AND clk = '1')
then... , implies that the subsequent statements within the if are performed
synchronously (clk'event) on the rising edge (clk = '1') of the signal clk
(providing that the previous If / elsif clauses were not satisfied). The
synchronous operation of this process is similar to the previous example, with the
exception of the counten signal enabling the counter. If counten is not
asserted, then count retains its previous value.

The following is a 4-bit loadable, enablable counter with asynchronous reset and
preset.

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, rst, pst, load,counten: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;
88 Warp Reference Manual

VHDL

4

use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk, rst, pst)

begin
if rst = ‘1’ then

count <= “0000”;
elsif pst = ‘1’ then

count <= “1111”;
elsif (clk’event and clk= ‘1’) then

if load = ‘1’ then
count <= data;

elsif counten = ‘1’ then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

In this design, the counter counts up, resets depending on the reset input,
presets depending upon the pst signal, or synchronously loads depending on
the load control input. This counter is similar to the previous example except
that a preset control has been added (pst). The sensitivity list for this process
contains clk , pst , and rst . This causes the process to be executed at any change
in these three signals.

The first if statement if rst = '1' then. implies that this counter will
assume a value of “0000” whenever rst is ‘1’. This will occur when the process is
activated by a change in the signal rst . The first elsif clause that is part of this
if statement, elsif pst = '1' then, implies that this counter will assume
a value of “1111” whenever pst is ‘1’ and rst is ‘0’. This will occur when the
process is activated by a change in the signal pst and rst is not ‘1’.

The second elsif clause that is part of this if statement, elsif
(clk'event AND clk = '1') then , implies that the subsequent
statements within the if are performed synchronously (clk'event) and on the
rising edge (clk = ‘1’) of the signal clk providing that the previous if /
elsif clauses were not satisfied. In this regard the operation is identical to the
counter in the previous example.

The following is an 8-bit loadable counter. The data is loaded by disabling the
three-state output, and using the same I/O pins to load.
Warp Reference Manual 89

VHDL

4

library ieee ;
use ieee.std_logic_1164.all ;
use work.std_arith.all ;

entity ldcnt is port (
clk, ld, oe: in std_logic;
count_io: inout std_logic_vector(7 downto 0));

end ldcnt;

architecture archldcnt of ldcnt is
signal count, data:std_logic_vector(7 downto 0);

begin
counter: process (clk)

begin
if (clk’event and clk=’1’) then

if (ld = ‘1’) then
count <= data;

else
count <= count + 1;

end if;
end if;

end process counter;
count_io <= count when (oe = ’1’) else "ZZZZZZZZ" ;
data <= count_io ;

end archldcnt;

This design performs a synchronous counter that can be loaded. The load occurs
by disabling the output pins. This allows a signal to be driven from off chip to
load the counter. The three-state for I/O pins is accomplished with the use of an
oe signal which specifies that if oe is high, the output of the counter is driven
onto the I/O pins. Otherwise, the pin should be driven externally with data to be
loaded into the counter. The signal count_io is assigned to the signal data for
readability purposes only and describes the intention of the design. The signal
data can be completely replaced with the count_io signal, and wherever
count_io appears on the right hand side of an equation, it essentially is
referring to the feedback from the output enable from within the I/O pad.
90 Warp Reference Manual

VHDL

4

Conceptually, the above VHDL implements the following circuit:

Figure 4-1 8-bit counter using IOPAD for input and output

State Machines
VHDL provides constructs that are well-suited for coding state machines. VHDL
also provides multiple ways to describe state machines. This section will describe
some coding implementations and how the implementation affects synthesis (the
way in which the design description is realized in terms of logic and the
architectural resources of the target device).

The implementation that is chosen during coding may depend on which
considerations are important: fast time-to-market or squeezing all the possible
capacity and performance out of a device. Often times, however, choosing one
coding style over another will not result in much difference and will meet
performance and capacity requirements while achieving fast time-to-market.

This discussion will include Moore and Mealy state machines, discussing Moore
machines first. Moore machines are characterized by the outputs changing only
with a change in state. Moore machines can be implemented in multiple ways:

• Outputs are decoded from state bits combinatorially.

• Outputs are decoded in parallel using output registers.

• Outputs are encoded within the state bits. A state encoding is chosen
such that a set of the state bits are the required outputs for the given
states.

oe

count_io[7:0]

data[7:0]
count[7:0]

clk

ld

8-bit
counter

(I/O PAD)
Warp Reference Manual 91

VHDL

4

• One-hot encoded. One register is asserted “hot” per state. This encoding
scheme often reduces the amount of logic required to transition to the
next state at the expense of more registers. This implementation is
particularly well suited to FPGA, register-intensive devices.

• Truth Tables. A truth table maps the current state and inputs to a next
state and outputs.

In the following examples, the same state machine is implemented five different
ways as a Moore machine in order to illustrate discussing the design and
synthesis issues. Figure 4-2 shows the state diagram.
92 Warp Reference Manual

VHDL

4

Figure 4-2 Moore State machine

State1

10

State0

00

State3

10

State2

11

State4

11

async rst

id /= 3h

id = 3h

id /= 7h

id = 7h

id >= 7h * id /= 9h

id < 7h

id = 9h

id /= Bh

id = Bh
Warp Reference Manual 93

VHDL

4

Outputs decoded combi natorially
Figure 4-3 shows a block diagram of an implementation in which the state
machine outputs are decoded combinatorially. The code follows:

Figure 4-3 Outputs Decoded Combinatorially

library ieee ;
use ieee.std_logic_1164.all ;
entity moore1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore1;

architecture archmoore1 of moore1 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst)

begin
if rst=’1’ then

state <= state0;
elsif (clk’event and clk=’1’) then

case state is

Inputs Outputs

Logic
State

Output

Registers Logic
94 Warp Reference Manual

VHDL

4

when state0 =>
if id = x”3” then

state <= state1;
else

state <= state0;
end if;

when state1 =>
state <= state2;

when state2 =>
if id = x”7” then

state <= state3;
else

state <= state2;
end if;

when state3 =>
if id < x”7” then

state <= state0;
elsif id = x”9” then

state <= state4;
else

state <= state3;
end if;

when state4 =>
if id = x”b” then

state <= state0;
else

state <= state4;
end if;

end case;
end if;

end process;

--assign state outputs;
y <= “00” when (state=state0) else
 “10” when (state=state1 or state=state3) else
 “11”;
end archmoore1;

The architecture description begins with a type declaration, called an enumerated
type, for states which defines five states labeled state0 through state4 . A
signal, state , is then declared to be of type states. This means that the signal
called state can take on values of state0 , state1 , state2 , state3 , or
state4 .
Warp Reference Manual 95

VHDL

4

The state machine itself is described within a process. The first condition of this
process defines the asynchronous reset condition which puts the state machine in
state0 whenever the signal rst is a ‘1’. If the rst signal is not a ‘1’ and the clock
transitions to a ‘1’-- elsif (clk'event and clk='1') --then the state
machine algorithm is sequenced. The design can be rising edge triggered, as it is
in this example, or falling edge triggered by specifying clk=‘0’ .

On a rising edge of the clock, the case statement (which contains all of the state
transitions for the Moore machine) is evaluated. The when statements define the
state transitions which are based on the input ID. For example, in the case when
the current state is state0 , the state machine will transition to state1 if id=x”3”,
otherwise the state machine will remain in state0 . In a concurrent statement
outside of the process, the output vector y is assigned a value based on the
current state.

This implementation demonstrates the algorithmic and intuitive fashion which
VHDL permits in the description of state machines. Simple case... when
statements enable the user to define the states and their transitions. There are two
design and synthesis issues with this implementation which some designers may
wish to consider: clock-to-out times for the combinatorially decoded state
machine outputs and an alternative state encoding to use minimal product terms.

The clock-to-out times for the state machine outputs are determined by the time it
takes for the state bits to be combinatorially decoded. For designs that require
minimal clock-to-out times, an implementation similar to the one above can be
used with a design modification: a second process could register the outputs after
combinatorial decode. This would introduce a one clock-cycle latency, however.
If this latency is not acceptable, then the user will need to choose from the second
implementation (outputs decoded in parallel registers) or the third
implementation (outputs encoded within state bits).

For designs in which the number product terms must be minimized, the user can
implement a design similar to the on described above, with one exception: rather
than using the enumerated encoding, the user will want to implement his own
encoding scheme. The third implementation shows how to do this.

Outputs D ecoded in Parallel Output Registers
Figure 4-4 shows a block diagram of an implementation in which the state
machine outputs are determined at the same time the next state is, by using
output registers. The code follows:
96 Warp Reference Manual

VHDL

4

Figure 4-4 Outputs decoded in parallel

library ieee ;
use ieee.std_logic_1164.all ;
entity moore2 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore2;

architecture archmoore2 of moore2 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst)

begin
if rst=’1’ then

state <= state0;
y <= “00”;

elsif (clk’event and clk=’1’) then
case state is

Logic

State

Inputs OutputsOutput

Registers

Registers
Warp Reference Manual 97

VHDL

4

when state0 =>
if id = x”3” then

state <= state1;
y <= “10”;

else
state <= state0;
y <= “00”;

end if;
when state1 =>

state <= state2;
y <= “11”;

when state2 =>
if id = x”7” then

state <= state3;
y <= “10”;

else
state <= state2;
y <= “11”;

end if;
when state3 =>

if id < x”7” then
state <= state0;
y <= “00”;

elsif id = x”9” then
state <= state4;
y <= “11”;

else
state <= state3;
y <= “10”;

end if;
when state4 =>

if id = x”b” then
state <= state0;
y <= “00”;

else
state <= state4;
y <= “11”;

end if;
end case;

end if;
end process;

end archmoore2;

This implementation requires that the user specify--in addition to the state
transitions--the state machine outputs for every state and every input condition
98 Warp Reference Manual

VHDL

4

because the outputs must be determined in parallel with the next state. Assigning
the state machine outputs in the synchronous portion of the process causes the
compiler to infer registers for the output bits. Having output registers rather than
decoding the outputs combinatorially results in a smaller clock-to-out time. This
implementation has one design/synthesis issue which some may wish to
consider: while this implementation achieves a better clock-to-out time for the
state machine outputs (as compared to the first implementation), it uses more
registers (and possibly more product terms) than the first implementation. The
next implementation (outputs encoded within state bits) achieves the fastest
possible clock-to-out times while at the same time using the fewest total number
of macrocells in a PLD/CPLD.

Outputs Encoded Within State Bits
Table 4-3 and Figure 4-5 show the state encoding table and a block diagram of an
implementation in which the outputs are encoded within the state registers--the
two least significant state bits are the outputs. Therefore, no decoding is required
for the outputs, and the output signals can be directed from the state registers to
output pins. The code follows:

Table 4-3 Outputs Encoded Within State Registers

State Output State Encoding

s0 00 000

s1 10 010

s2 11 011

s3 10 110

s4 11 111
Warp Reference Manual 99

VHDL

4

Figure 4-5 Outputs Encoded Within State Bits

library ieee ;
use ieee.std_logic_1164.all ;
entity moore1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore1;

architecture archmoore1 of moore1 is
signal state: std_logic_vector(2 downto 0);

-- State assignment is such that 2 LSBs are outputs
constant state0: std_logic_vector(2 downto 0) := “000”;
constant state1: std_logic_vector(2 downto 0) := “010”;
constant state2: std_logic_vector(2 downto 0) := “011”;
constant state3: std_logic_vector(2 downto 0) := “110”;
constant state4: std_logic_vector(2 downto 0) := “111”;
begin
moore: process (clk, rst)

begin
if rst=’1’ then

state <= state0;
elsif (clk’event and clk=’1’) then

case state is

Logic

Inputs
Outputs

State
Registers
100 Warp Reference Manual

VHDL

4

when state0 =>
if id = x”3” then

state <= state1;
else

state <= state0;
end if;

when state1 =>
state <= state2;

when state2 =>
if id = x”7” then

state <= state3;
else

state <= state2;
end if;

when state3 =>
if id < x”7” then

state <= state0;
elsif id = x”9” then

state <= state4;
else

state <= state3;
end if;

when state4 =>
if id = x”b” then

state <= state0;
else

state <= state4;
end if;

when others =>
state <= "---";

end case;
end if;

end process;

--assign state outputs (equal to state bits)
y <= state(1 downto 0);
end archmoore1;

A state encoding was chosen for this design so that the last two bits were
equivalent to the state machine outputs for that state. By using constants, the state
machine could be encoded and the transitions specified as in the first
implementation. The output was specified in a concurrent statement. This
statement shows that the outputs are a set of the state bits . One synthesis issue is
highlighted in this example: the use of when others => .
Warp Reference Manual 101

VHDL

4

When others is used when not all possible combinations of a bit sequence have
been specified in other when clauses. In this, the states “001,” “100,” and “101” are
not defined, and no transitions are specified for these states. If when others is
not used, then next state logic must be synthesized, assuming that if the machine
gets in one of these states, then it will remain in that state. This has the effect of
utilizing more logic (product terms in the case of a PLD/CPLD). Supplying a
simple when others is a quick solution to this design issue.

One-Hot-One State Machines
In a one-hot-one state machine, there is one register for each state. Only one
register is asserted, or “hot,” at a time, corresponding to one distinct state.
Figure 4-6 shows three states of a state machine and how one of the state bits
would be implemented. This implementation demonstrates that the next state
logic is quite simple. The trade-off is the number of registers that is required. For
example, a state machine with eight states could be coded in three registers. The
equivalent one-hot coded state machine would require eight registers. The trade-
off is that the next-state logic is simpler, often times enabling faster performance
in FPGA architectures which are register intensive, whereas sequential encoding
would require multiple levels of logic to decode a complex state transition. The
following is the code:
102 Warp Reference Manual

VHDL

4

Figure 4-6 Implementation of one-hot state machine bits

library ieee ;
use ieee.std_logic_1164.all ;
entity one_hot is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end one_hot;

s1

s2

s5

ab = “10” ab = “01”

D

s1

D

s2

D Q

s5

a

b

Q Q
Warp Reference Manual 103

VHDL

4

architecture archone_hot of one_hot is
type states is (state0, state1, state2, state3, state4);
attribute state_encoding of states:type is one_hot_one;
signal state: states;

begin
machine: process (clk, rst)

begin
if rst=’1’ then

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
when state0 =>

if id = x”3” then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x”7” then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x”7” then
state <= state0;

elsif id = x”9” then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x”b” then
state <= state0;

else
state <= state4;

end if;
end case;

end if;
end process;
104 Warp Reference Manual

VHDL

4

--assign state outputs;
y <= “00” when (state=state0) else
 “10” when (state=state1 or state=state3) else
 “11”;
end archone_hot;

This implementation is almost the same as the first implementation, the only
difference being the additional attribute which causes the state encoding to use
one register for each state.

State Transition Tables
The final Moore implementation of this state machine uses a truth table. The state
transition table can be found in the VHDL code.

The code follows:

library ieee ;
use ieee.std_logic_1164.all ;
entity ttf_fsm is port(

clk, rst:in std_logic;
id: in std_logic_vector(0 to 3);
y: out std_logic_vector(0 to 1));

end ttf_fsm;

use work.table_std.all;
architecture archttf_fsm of ttf_fsm is

signal table_out: std_logic_vector(0 to 4);
signal state: std_logic_vector(0 to 2);

constant state0: std_logic_vector(0 to 2) := “000”;
constant state1: std_logic_vector(0 to 2) := “001”;
constant state2: std_logic_vector(0 to 2) := “010”;
constant state3: std_logic_vector(0 to 2) := “011”;
constant state4: std_logic_vector(0 to 2) := “100”;

constant table: ttf_table(0 to 21, 0 to 11) := (
-- present state inputs nextstate output
-- ------------- ------ --------- ------

 state0 & “--0-” & state0 & “00”,
 state0 & “---0” & state0 & “00”,
 state0 & “0011” & state1 & “10”,
 state1 & “----” & state2 & “11”,
 state2 & “1---” & state2 & “11”,
 state2 & “-0--” & state2 & “11”,
 state2 & “--0-” & state2 & “11”,
 state2 & “---0” & state2 & “11”,
Warp Reference Manual 105

VHDL

4

 state2 & “0111” & state3 & “10”,
 state3 & “0111” & state3 & “10”,
 state3 & “1000” & state3 & “10”,
 state3 & “11--” & state3 & “10”,
 state3 & “101-” & state3 & “10”,
 state3 & “0110” & state0 & “00”,
 state3 & “010-” & state0 & “00”,
 state3 & “00--” & state0 & “00”,
 state3 & “1001” & state4 & “11”,
 state4 & “0---” & state3 & “10”,
 state4 & “100-” & state3 & “10”,
 state4 & “11--” & state4 & “11”,
 state4 & “1010” & state4 & “11”,
 state4 & “1011” & state0 & “00”);

begin
machine: process (clk, rst)

begin
if rst =’1’ then

table_out <= “00000”;
elsif (clk’event and clk=’1’) then

table_out <= ttf(table,state & id);
end if;

end process;
state <= table_out(0 to 2);

--assign state outputs;
y <= table_out(3 to 4);
end archttf_fsm;

This implementation uses the ttf function (truth table function) which enables you
to create a state transition table that lists the inputs, the current state, the next
state, and the associated outputs. Within the architecture statement, a few signals
and constants are defined. The signal called table_out is the vector which will
contain the output from the state table. The signal called state is the state
variable itself. Six constants are defined which contain the state encoding -
state0 , state1 , state2 , state3 , and state4 , and table - which
contains the entire state transition table. The table itself is created as an array with
a certain number of rows designating the number of transitions, and a certain
number of columns designating the number of input bits, present state bits, next
state bits, and output bits.
106 Warp Reference Manual

VHDL

4

Since the ttf function is not a standard part of VHDL, it has been defined in a
separate package and provided as part of the Warp software. This package is
located in the work library and is called table_std. To allow a design to have access
to the ttf function, the user must add the statement use
work.table_std.all; to his VHDL description immediately above his
architecture definition.

Most of the work lies in creating the truth table, and the process becomes fairly
simple. The first portion of the process defines the asynchronous reset. Next, the
synchronous portion of the process (elsif clk’event and clk=’1’) is
defined in which the signal table_out is assigned the returned value of the ttf
function. The function is called with two parameters: the name of the state
transition table, and the set of bits which contain the inputs and the present state
information. The value that is returned is the remainder of the columns in the
table (total number of columns - second parameter). These bits will contain the
next state value and the associated outputs. The only task remaining is to split the
state information from the output information and assign them to the appropriate
signal names. Both of these assignments must occur outside of the process,
otherwise another level of registers will be created, as this portion of the process
defines synchronous assignments.

This design, as implemented, uses more registers than required but could easily
be modified. Registers must be created for both the state registers and the output
registers, as in the second implementation (outputs decoded in parallel). The
truth table can be modified so that the outputs are encoded in the state bits, as in
the third example. Thus, rather than specifying both next state values and
outputs, the user can simply specify next state values in which the outputs are
encoded.

Mealy state machines are characterized by the outputs which can change
depending on the current inputs. This example implements the state machine
shown in Figure 4-7, which has Moore outputs and one Mealy output. Figure 4-8
shows a block diagram of a Mealy machine.

The code follows:

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
w: out std_logic;
y: out std_logic_vector(1 downto 0));

end mealy1;
Warp Reference Manual 107

VHDL

4

architecture archmealy1 of mealy1 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst)

begin
if rst=’1’ then

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
when state0 =>

if id = x”3” then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x”7” then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x”7” then
state <= state0;

elsif id = x”9” then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x”b” then
state <= state0;

else
state <= state4;

end if;
end case;

end if;
end process;

--assign moore state outputs;
y <= “00” when (state=state0) else
 “10” when (state=state1 or state=state3) else
108 Warp Reference Manual

VHDL

4

 “11”;
--assign mealy output;
w <= ‘0’ when (state=state3 and id < x”7”) else
 ‘1’;
end archmealy1;

Figure 4-7 State Diagram for Combination Moore-Mealy State Machine

State0

async rst

id /= 3h|1

id = 3h|1

-|1

id /= 7h|1

id = 7h|1

id >= 7h * id /= 9h|1

id < 7h|0

id = 9h|1

id /= Bh|1

id = Bh|1

State1

State3

State4

State2
Warp Reference Manual 109

VHDL

4

Figure 4-8 Block Diagram of Mealy State Machine

This implementation is almost identical to the first Moore implementation. The
only difference is the additional Mealy output defined at the end of the
architecture. The next example will examine a Mealy state machine, with all
Mealy outputs.

Figure 4-9 is the state diagram for this new Mealy state machine. Two
implementations follow.

Logic

State

Inputs Outputs

Registers
110 Warp Reference Manual

VHDL

4

Figure 4-9 State Diagram for Second Mealy Machine

async rst|00

id /= 3h|00

id = 3h|10

-|11

id /= 7h|11

id = 7h|10

id >= 7h * id /= 9h|10

id < 7h|00

id = 9h|11

id /= Bh|11

id = Bh|00
State0

State1

State2State3

State4
Warp Reference Manual 111

VHDL

4

The following implementation specifies the state transitions in a synchronous
process and the Mealy outputs with a concurrent statement.

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(
 clk, rst: in std_logic;
 id: in std_logic_vector(3 downto 0);
 y: out std_logic_vector(1 downto 0));
end mealy1;

architecture archmealy1 of mealy1 is
 type states is (state0, state1, state2, state3,
state4);
 signal state: states;
begin
machine: process (clk, rst)
 begin
 if rst='1' then
 state <= state0;
 elsif (clk'event and clk='1') then
 case state is
 when state0 =>
 if id = x"3" then
 state <= state1;
 else
 state <= state0;
 end if;
 when state1 =>
 state <= state2;
 when state2 =>
 if id = x"7" then
 state <= state3;
 else
 state <= state2;
 end if;
 when state3 =>
 if id < x"7" then
 state <= state0;
 elsif id = x"9" then
 state <= state4;
 else
 state <= state3;
 end if;
112 Warp Reference Manual

VHDL

4

 when state4 =>
 if id = x"b" then
 state <= state0;
 else
 state <= state4;
 end if;
 end case;
 end if;
 end process;

--assign mealy output;
y <= "00" when ((state=state0 and id /= x"3") or
 (state=state3 and id < x"7") or
 (state=state4 and id = x"B")) else
 "10" when ((state=state0 and id = x"3") or
 (state=state2 and id = x"7") or
 (state=state3 and (id >= x"7") and

(id /= x"9"))) else
 "11";
end archmealy1;

This implementation of the Mealy state machine uses a synchronous process in
much the same way as all of the other examples. An enumerated type is used to
define the states. As in all but the one_hot coding implementation, the user can
choose his own state assignment, as in the third Moore implementation. The
Mealy outputs in this implementation are defined in a concurrent when...else
construct. Thus, the output y is a function of the current state and the present
inputs.

A second implementation of the same state machine follows. This
implementation uses one synchronous process (in which the next state is
captured by the state registers) and one combinatorial process in which the state
transitions and Mealy outputs are defined.

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(
 clk, rst: in std_logic;
 id: in std_logic_vector(3 downto 0);
 y: out std_logic_vector(1 downto 0));
end mealy1;
Warp Reference Manual 113

VHDL

4

architecture archmealy1 of mealy1 is
 type states is (state0, state1, state2, state3,
state4);
 signal state, next_state: states;

begin
st_regs: process (clk, rst)
 begin
 if rst='1' then
 state <= state0;
 elsif (clk'event and clk='1') then
 state <= next_state;
 end if;
 end process;

mealy: process (id)
 begin
 case state is
 when state0 =>
 if id = x"3" then
 next_state <= state1;
 y <= "10";
 else
 next_state <= state0;
 y <= "00";
 end if;
 when state1 =>
 next_state <= state2;
 y <= "11";
 when state2 =>
 if id = x"7" then
 next_state <= state3;
 y <= "10";
 else
 next_state <= state2;
 y <= "11";
 end if;
114 Warp Reference Manual

VHDL

4

 when state3 =>
 if id < x"7" then
 next_state <= state0;
 y <= "00";
 elsif id = x"9" then
 next_state <= state4;
 y <= "11";
 else
 next_state <= state3;
 y <= "10";
 end if;
 when state4 =>
 if id = x"b" then
 next_state <= state0;
 y <= "00";
 else
 next_state <= state4;
 y <= "11";
 end if;
 end case;
 end process;
end archmealy1;

In this implementation, the first process, st_regs, captures the next state value.
The second process, mealy , defines the state transitions and the Mealy outputs.
This second process is not synchronous and is activated each time the signal id
transitions. Because the second process is not synchronous, the outputs can
change even if the state doesn’t, as would be expected in a Mealy state machine.

This concludes the discussion of state machines. Additional state machine,
counter, and logic examples are documented in Section 4.10, "Additional Design
Examples.” The next section will discuss hierarchical design but first will address
the concept of packages.

4.8 Packages

A package can declare components (which are entity and architecture pairs),
types, constants, or functions as a way to make these items visible in other
designs.

The form of a package declaration is as follows:

PACKAGE package_name IS
declarations
Warp Reference Manual 115

VHDL

4

END package_name;

Package declarations are typically used in Warp to declare types, constants, and
components to be used by other VHDL descriptions. Most commonly, the user
places a package declaration (containing component declarations) at the
beginning of a design file (before the entity and architecture pair definitions) in
order to use the components in a subsequent or hierarchical design.

Packages which contain only components do not need a package body. If the user
wishes to write VHDL functions to be used in multiple designs, however, then
these functions must be declared in the package declaration as well as defined in a
package body:

PACKAGE BODY package_name IS
declarations

END package_name;

A package body always has the same name as its corresponding package
declaration and is preceded by the reserved words PACKAGE BODY. A package
body contains the function bodies whose declarations occur in the package
declaration, as well as declarations that are not intended to be used by other
VHDL descriptions.

The following example shows a package that declares a component named demo,
whose design (entity and architecture pair) follows the package declaration:

package demo_package is
component demo
port(x:out std_logic; clk, y, z:in std_logic);
end component;

end package;

entity demo is
port(x:out std_logic; clk, y, z:in std_logic);

end demo;

architecture fsm of demo is
.
.
.
end fsm;

If this description were in the file demofile.vhd, the user could analyze the
package and add it to the current work library with the following commands:

warp -a demofile
116 Warp Reference Manual

VHDL

4

Items declared inside a package declaration are not automatically visible to
another VHDL description. A USE clause within a VHDL description makes
items analyzed as part of a separate package visible within that VHDL design
unit.

USE clauses may take one of three forms:

• USE library_name.package_name;

• USE package_name.object;

• USE library_name.package_name.object;

The portion of the USE clause argument preceding the final period is called the
prefix; that after the final period is called the suffix.

Some examples of use clauses are:

LIBRARY project_lib;
USE project_lib.special_pkg;
USE project_lib.special_pkg.comp1;

The LIBRARY statement makes the library project_lib visible within the current
VHDL design unit. The first USE clause makes a package called “special_pkg”
contained within library project_lib visible within the current VHDL design unit.
The second USE clause makes a component called “comp1,” contained within
“special_pkg,” visible within the current VHDL design unit.

The suffix of the name in the USE clause may also be the reserved word ALL. The
use of this reserved word means that all packages within a specified library, or all
declarations within a specified package, are to be visible within the current VHDL
design unit. Some examples are:

USE project_lib.all;

This example makes all packages contained within library project_lib visible
within the current VHDL design unit.

USE project_lib.special_pkg.all;

This example makes all declarations contained within package “special_pkg,”
itself contained within library project_lib, visible within the current VHDL design
unit.
Warp Reference Manual 117

VHDL

4

Note the important difference between

USE project_lib.special_pkg;

and

USE project_lib.special_pkg.all;

The first USE clause just makes the package named special_pkg within library
project_lib visible within the current VHDL design unit. While the package name
may be visible, however, its contents are not. The second USE clause makes all
contents of package special_pkg visible to the current VHDL design unit.

Example:

The following code defines a four bit counter:

library ieee ;
use ieee.std_logic_1164.all ;
package counter_pkg is
 subtype nibble is std_logic_vector(3 downto 0);
 component upcnt port(
 clk: in std_logic;
 count: buffer nibble);
 end component;
end counter_pkg;

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
use work.std_arith.all; -- Defines "+"
use work.counter_pkg.all; -- My package

entity upcnt is port(
 clk: in std_logic;
 count: buffer nibble);
end upcnt;

architecture archupcnt of upcnt is
begin
counter:process (clk)
 begin
 if (clk'event and clk='1') then
 count <= count + 1;
 end if;
 end process counter;
end archupcnt;
118 Warp Reference Manual

VHDL

4

The package declaration allows the user to use the upcnt component and the
type nibble in other designs. For example, suppose the user needed five of
these counters but did not want to write five separate process. He might prefer to
simply instantiate the upcnt counter defined above in a new design, creating a
level of hierarchy. The code follows:

use work.counter_pkg.all;

entity counters is port(
 clk1, clk2: in std_logic;
 acnt, bcnt, ccnt: buffer nibble;

deqe: out std_logic);
end counters;

architecture archcounters of counters is
signal dcnt, ecnt: nibble;
begin
counter1: upcnt port map (clk1, acnt);
counter2: upcnt port map (clk2, bcnt);
counter3: upcnt port map (clk => clk1, count => ccnt);
counter4: upcnt port map (clk2, dcnt);
counter5: upcnt port map (count => ecnt, clk => clk2);
deqe <= ‘1’ when (dcnt = ecnt) else ‘0’;
end archcounters;

The initial USE clause makes the counter_pkg available to this design.
Counter_pkg is required for the nibble definition used in the entity and the
upcnt component used in the architecture. Five counters are then instantiated by
using the port map to associate the component I/O with the appropriate entity
ports or architecture signals. Three of the instantiations use positional association
in which the position of the signals in the port map determines which I/O of the
component the signal is associated with. In counter3 and counter5, named
association is used to explicitly define the signal to component I/O connections.
In named association, the order of the signal assignment is not important.

When using Warp to compile and synthesize the counters design, the design file
that contains upcnt must be compiled first, before counters can be compiled and
synthesized. This is because the contents of the counter_pkg must first be added
to the work library. Therefore, when selecting (in Galaxy) the Warp input files to
be compiled and synthesized, select the upcnt design as the first file and the
counters design as the second. This will ensure that upcnt is compiled first.
Once the upcnt design has been added to the current work library, the design does
not need to recompile it when synthesizing the top-level design unless the user
makes changes to it or target the design to a different device.
Warp Reference Manual 119

VHDL

4

4.8.1 Predefined Packages

Special purpose packages are provided with the Warp compiler to simplify
description and synthesis of frequently used and useful structures and operations
not native to VHDL. Additionally the math packages also contain very highly
tuned designs for datapath components used during operator inferencing.

The following packages are supplied standard with the Warp compiler. Synthesis
versions of these packages are found in c:\warp\lib\common. Original versions of
these packages are in c:\warp\lib\prim\presynth and are likely to be more
readable than the synthesis versions.

Table 4-4 Package Name and Purpose

std_logic_1164 This package defines the IEEE 1164 specification
for std_logic.

std_arith/
bit_arith

These two packages define math operations for
std_logic_vectors and bit_vectors. They support
vector-vector operations as well as vector,
integer, integer-vector operations.

int_arith For designs using integer signals, VHDL
predefines operations for integers. However,
using this package in the design will give the
user hand tuned implementations for datapath
operators.

numeric_bit /
numeric_std

These two packages implement the upcoming
IEEE standard for numeric operations. They are
similar to ’std_arith’ and ’bit_arith’. According
to the standard, these packages support
SIGNED and UNSIGNED operations. Warp
currently only supports UNSIGNED
representations.

bv_math Math operations with bit_vector data types.
This package is provided for compatibility
reasons only and will be omitted in the next
release.
120 Warp Reference Manual

VHDL

4

The USE statement is required in a design file to make the package “visible” to the
design file. The USE statement should immediately precede the entity and
architecture pair and appear as follows:

USE work.package_name.all;

where package_name refers to one of the package names listed above. In a file
defines more than one entity and architecture pair, the necessary USE clauses for
each of the architectures have to be listed specifically. This means that the scope
of the USE clause is limited to one entity/architecture pair.

Pack age Contents and Usage of std_ari th, bit_ari th,
numeric_std and numeric_bit.
These packages contain functions which allow arithmetic operations on vectors.
VHDL is a strongly typed language which does not recognize the arbitrary data types
as types compatible with arithmetic manipulation. These packages contain functions
which when invoked in the design file allow arithmetic operations on vectors.

Several of the functions in this package are implemented by “overloading” the
native VHDL operators for arithmetic operations on vectors and integers.
Overloading is a scheme by which one or more functions can be called by use of
the same conventional arithmetic operator symbol. The compiler will call the

int_math Math operations which mix integer and
bit_vector data types. This package is provided
for compatibility reasons only and will be
omitted in the next release.

table_std This package provides a state transition table
format for description of state machines.

rtlpkg This package provides a set of simple logic
functions useful for creation hierarchical
structural VHDL design files.

math34x8_pkg This package defines 8-bit arithmetic
components for use in designs targeted to the
MAX340 family CPLDs implemented using
MAX340 architecture primitive elements.The
math34x12_pkg, math34x16_pkg, and
math34x24_pkg packages provide similar
arithmetic components of widths 12, 16, and 24
respectively.
Warp Reference Manual 121

VHDL

4

correct function by determining the data types of the arguments of the function
call. Multiple functions can be represented by the same symbol as long as no two
functions accept the same combination of argument data types. This means the
“+” sign can be used, for example, to call a vector addition routine since the data
type of the arguments (both of type bit_vector) will signal that “+” should call the
bit_vector addition function.

The contents of all of these packages contain identical support for all arithmetic
operations. The main difference between each of these packages is the type of
vector that they support. The package needed in the design depends on what
kind of vectors are in the design. The following table illustrates the type support
by these packages and the necessary use clauses.

In the above table, the VHDL definition for the vector type each of these packages
support is as follows:

TYPE <Vector> is ARRAY (NATURAL RANGE <>) of <Base> ;

Where <Vector> is the name of the vector and the <Base> is the name of the type
of the elements of the vector.

Note – Even though these packages support Vector to Integer
operations, Warp implementations allow the Integers to be Inte-
ger constants only. This means that these packages do not sup-
port operations between Vectors and Integers where both of the
operands are signals.

Table 4-5 Use Clause Needed for Each Package

Package Vector Base USE clause(s)

std_arith std_logic_vector std_logic
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

bit_arith bit_vector bit use work.bit_arith.all;

numeric_std unsigned std_logic
library ieee;
use ieee.std_logic_1164.all;
use work.numeric_std.all;

numeric_bit unsigned bit use work.numeric_bit.all;
122 Warp Reference Manual

VHDL

4

The common convention followed in all of these packages is that the left most bit
is the MSB (most significant bit) regardless of the direction of the vector.

The following describes each of the operators supported. The conventions here
use:

“a” and “b” for vector signals

“i” for integer constants

.op. for operators.

The operators for which support is provided are:

Addition Oper ators (+, -)

(a .op. b) Operands are both vectors. The resultant vector is the size of the
larger of the two vectors.

(a .op. i) (i .op. a)
One operand is a vector and the other an integer constant. The
resulant vector is the size of “a”. Integers larger than “a” lose their
MSBs.

Multiplication Ope rators (*)

(a .op. b) Operands are both vectors. The resultant vector is the sum of the
sizes of the two vectors.

(a .op. i) (i .op. a)
One operand is a vector and the other an integer constant. The
resulant vector is twice the size of “a”. Integers larger than “a” lose
their MSBs.

Relational Operators (=, /=, <=, >=, <, >)

(a .op. b) Operands are both vectors. The resultant is of type boolean .

(a .op. i) (i .op. a)
One operand is a vector; the other, an integer constant. The result is
of type boolean. The current implementations require that the
number of bits required to represent “i” be less than or equal to “a”s
size.
Warp Reference Manual 123

VHDL

4

Shift Operators (sll, srl, sla, sra, ror, rol)

(a .op. i) For the shift operators, the second operand must be an integer
constant.

Boolean Operators (ALL)

(a .op. b) All boolean operators are supported. For binary operators, the length
of the two vectors has to be the same.

Miscellaneous Functions

std_match (a, "string")

This function is provided in the numeric_std and std_arith
packages only.

This function can be used to compare a vector to a string containing
‘0’, ‘1’ and ’-’. Normally in VHDL, if a is compared to "00-", where the
intention is not to compare the LSB, the result will always be false
unless a(0) is really set to the value ’-’. In synthesis, this will always
evaluate to false. To avoid this problem, the std_match function is
provided. The size of the string has to match the size of the vector.

Usage:
if (std_match(a, "10-11")) then
x <= ’1’ ;

resize (a, size)

to_unsigned (i,s)

This function is provided in the numeric_std and the numeric_bit
packages only.

The argument is an integer that is to be converted, and the size of the
resultant vector and the result is an unsigned vector of size “s”.

to_std_logic_vector(i,s)

This function is provided in the std_arith package only.

The argument is an integer that is to be converted, and the size of the
resultant vector and the result is an std_logic vector of size “s”.

to_bit_vector (i,s)
124 Warp Reference Manual

VHDL

4

This function is provided in the bit_arith package only.

The argument is an integer that is to be converted, and the size of the
resultant vector and the result is an bit_vector of size “s”.

to_integer (a)

This function is provided in all the packages and is given a vector,
returns an integer.

Pack age Contents and Usage of int_arith
The int_arith package should be used when both operands of an operator are
integer signals. If this package is not used, the design will not produce the best
results even though the results will be logically correct. Without this package, the
design will use the VHDL language’s implementations. If this package is
included, it overloads all the operators and provides tuned implementations for
the datapath operators.

Pack age Contents and Usage of bv_math
This package will be omitted in the next release and is provided in this release
only for compatibility purposes. This package should be substituted by one of the
above packages. There is one important difference, however, between this
package and the arithmetic packages described previously. In this package, the
highest index is considered the most significant bit.

The operators for which functions are provided are:

inc_bv(a) increment bit_vector a. If function is assigned to a signal within a
clocked process, the synthesized result will be an up counter.
Equivalent to a <= a + 1;

Usage: a <= inc_bv(a) ;

dec_bv(a) decrement a bit_vector a. If function is assigned to a signal within a
clocked process, the synthesized result will be a down counter.
Equivalent to a <= a - 1;.

Usage: a <= dec_bv(a) ;

+(a; b) regular addition function for two bit_vectors a and b . The “+”
operator overloads the existing “+” operator for definition of
arithmetic operations on integers. The output vector is the same
length as the input vector, so that there is no carry output. If a carry
Warp Reference Manual 125

VHDL

4

out is required, the user should increase the length of the input
vectors and use the MSB as the carry out.

Usage for two vectors of length 8 with carry out:
signal a: bit_vector(0 to 8);
signal b: bit_vector(0 to 8);
signal q: bit_vector(0 to 8);
q <= a + b;

+(a; b) regular addition function for adding to bit_vector a the object b of
type bit. This is the equivalent of a conditional incrementing of
bit_vector a. The “+” operator overloads the existing “+” operator for
definition for arithmetic operations on integers. The output vector is
the same length as the input vector so there is no carry output. If a
carry out is required the user should increase the length of the input
vector and use the MSB as the carry out.

Usage for 16 bit_vector with no carry out:
signal a: bit_vector(0 to 15);
signal b: bit;
signal q: bit_vector(0 to 15);
q <= a + b;

-(a; b) regular subtraction function for two bit_vectors. The “-” operator
overloads the existing “-” operator definition for arithmetic
operations on integers.

Usage:
signal a: bit_vector(0 to 7);
signal b: bit_vector(0 to 7);
signal q: bit_vector(0 to 7);
q <= a - b;

-(a; b) regular subtraction function for subtracting from bit_vector a the
object b of type bit. This is equivalent to the conditional
decrementing of only bit_vector a . The “-” operator overloads the
existing “-” operator definition for arithmetic operations on integers.

Usage:
signal a: bit_vector(0 to 7) ;
signal b: bit;
signal q: bit_vector(0 to 7);
q <= a - b;
126 Warp Reference Manual

VHDL

4

inv(b) unary invert function for object b of type bit. For use in port maps
and sequential assignments.

Usage:
signal b: bit ;
signal z: bit;
z <= inv(b);

inv(a) invert function which inverts each bit of bit_vector a and returns
resulting bit_vector.

Usage:
signal a: bit_vector(0 to 15) ;
signal q: bit_vector(0 to 15);
q <= inv(a);

Pack age Contents and Usage of int_math
This package will be omitted in the next release and is being provided only for
compatibility purposes.

This package contains functions which allow mixed arithmetic operations on
bit_vectors and integers.

VHDL is a strongly typed language which does not recognize the bit data type
as a type compatible with arithmetic manipulation. This package contains
functions, which when invoked in the design file, allow arithmetic operations
which mix integers and bit_vectors.

Several of the functions in this package are implemented by “overloading” the
native VHDL operators for arithmetic operations on integers. Overloading is a
scheme by which one or more functions can be called by use of the same
conventional arithmetic operator symbol. The compiler will call the correct
function by noting the data types of the arguments of the function call. Multiple
functions can be represented by the same symbol as long as no two functions
accept the same combination of argument data types. This means the “+” sign can
be used, for example, to call a routine for adding mixed data types (bit_vector and
integer) since the data type of the arguments will signal that “+” should call the
package function for mixed addition rather than the native function for integer
addition.
Warp Reference Manual 127

VHDL

4

The operators for which functions are provided are:

bv2i(a) converts bit_vector a to an integer.

Usage:
variable z: integer range 0 to 15 ;
signal a: bit_vector(0 to 3);
z := bv2i(a);

i2bv(i; w) converts integer i to binary equivalent and expresses as a bit_vector
of length w.

Usage:
variable i: integer range 0 to 31 ;
signal a: bit_vector(0 to 4);
a <= i2bv(i, 5);

i2bvd(i; w) converts integer i to a binary coded decimal bit_vector of length w.

Usage:
variable i: integer range 0 to 31 ;
signal a: bit_vector(0 to 7);
a <= i2bv(i, 8);

=(a; b) converts bit_vector a to integer and checks for equality with integer
b . Returns boolean value true if equal, false if not equal.
Overloads native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 64;
variable z: boolean;
z := (a = b);

/=(a; b) converts bit_vector a to integer and checks for equality with integer
b . Returns boolean value true if not equal, false if
equal.Overloads native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
variable z: boolean;
z := (a /= b);
128 Warp Reference Manual

VHDL

4

>(a; b) converts bit_vector a to integer and compares with integer b . If a is >
b, returns boolean value true , otherwise returns false . Overloads
native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
variable z: boolean;
z := (a > b);

<(a; b) converts bit_vector a to integer and compares with integer b . If a is <
b, returns boolean value true , otherwise returns false . Overloads
native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
variable z: boolean;
z:= (a < b);

>=(a; b) converts bit_vector a to integer and compares with integer b. If a is
>= b, returns boolean value true , otherwise returns false .
Overloads native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
variable z: boolean;
z:= (a >= b);

<=(a; b) converts bit_vector a to integer and compares with integer b. If a is
<= b, returns boolean value true , otherwise returns false .
Overloads native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 3) ;
variable b: range 0 to 128;
variable z: boolean;
z:= (a <= b);

+(a; b) increments bit_vector a the number of times indicated by the value of
integer b and returns bit_vector result. Implemented by conversion
of integer b to bit_vector and adding to bit_vector a . Overloads
native operator for integer arithmetic.
Warp Reference Manual 129

VHDL

4

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
signal z: bit_vector(0 to 15);
z <= a + b;

-(a; b) decrements bit_vector a the number of times indicated by the value
of integer b and returns bit_vector result. Implemented by
conversion of integer b to bit_vector and subtracting from bit_vector
a . Overloads native operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15) ;
variable b: range 0 to 128;
signal z: bit_vector(0 to 15);
z <= a - b;

Pack age Contents and Usage of table _std
The table_std package describes a truth table function, ttf, which can be used to
implement state transiting tables or other truth tables. A description and example
of the ttf function can be found in Section 4.7.3, "Design Methodologies."

Pack age Contents and Usage of rtlpkg
The package rtlpkg contains VHDL component declarations for basic VHDL
components which can be used to construct structural design files of more
complex logic circuits. These components are useful for controlling
implementation of the design by the Warp compiler to ensure that specific
performance or architecture choices are preserved in the final synthesized design.
These components are generic components which can be used to describe
retargetable designs, which can be synthesized and fit to any desired Cypress
device. The compiler makes the appropriate synthesis choices based on the target
device's architectural resources to achieve the best possible utilization of the
device. By preserving the specified interconnection of the declared components,
the compiler maintains the specific circuit implementation intended by the
designer.

Components contained in the package rtlpkg are:

Name Function

bufoe bidirectional I/O with three state output driver y with type bit
feedback to logic array (yfb)
130 Warp Reference Manual

VHDL

4

dlatch transparent latch with active low latch enable (e) (transparent high)

dff positive edge triggered D-Type flip flop

xdff positive edge triggered D-Type flip flop with XOR of two inputs (x1
& x2) feeding D input

jkff positive edge triggered jk flip flop

buf signal buffer to represent a signal not to be removed during synthesis
to enable visibility during simulation

srl set/reset latch with reset dominant, set and reset active high

srff positive edge triggered set/reset flip flop, reset dominant, set and
reset active high

dsrff positive edge triggered D-Type flip flop without asynchronous set
and reset, reset dominant, set and reset active high

tff toggle flip flop

xbuf two input exclusive OR gate

triout three state buffer with active high output enable input

Pack age Contents and Usage of math34x8_pkg
The packages math34x8_pkg, math34x12_pkg, math34x16_pkg, and
math34x24_pkg contain VHDL component declarations for optimal arithmetic
components to be implemented in the MAX340 family of devices. These
components are useful for controlling implementation of arithmetic functions by
the Warp compiler to ensure that specific performance or architecture choices are
preserved in the final synthesized design. There are four packages containing
components that are functionally the same but operate on signals of different
widths. The usage for these components is the same. These packages are only
available with the 3.5 library. The components included in the math34x8_pkg are
as follows:

Name Function

add_8 eight-bit adder

sub_8 eight-bit subtracter

gt_8 eight-bit greater than comparator
Warp Reference Manual 131

VHDL

4

lt_8 eight-bit less than comparator

ge_8 eight-bit greater than or equal to comparator

le_8 eight-bit less than or equal to comparator

4.9 Libraries

If all information about a design description had to appear in one file, many
VHDL files would be huge and cumbersome, and information re-use would be
impossible. Fortunately, VHDL allows the user to share information between files
by means of two constructs: libraries and packages.

In VHDL, a library is a collection of previously analyzed design elements
(packages, components, entities, architectures) that can be referenced by other
VHDL descriptions. In Warp, a library is implemented as a directory, containing
one or more VHDL files and an index to the design elements they contain.

Note – In VHDL, analysis is the examination of a VHDL descrip-
tion to guarantee compliance with VHDL syntax, and the extrac-
tion of design elements (packages, components, entities,
architectures) from that description. Synthesis is the production
of a file (to be written onto a physical chip) that embodies the
design elements extracted from the VHDL descriptions by analy-
sis.

To make the contents of a library accessible to a VHDL description, use a library
clause. A library clause takes the form:

LIBRARY library_name [, library name...];

For example, the statement

LIBRARY gates, my_lib;

makes the contents of two libraries called gates and my_lib accessible in the
VHDL description in which the library clause is contained.

Library clauses are seldom needed in Warp VHDL descriptions. This is because all
VHDL implementations include a special library, named work. Work is the
symbolic name given to the current working library during analysis. The results
of analyzing a VHDL description are placed by default into the work library for
use by other analyses. (In other words, a library clause is not necessary to make
the work library accessible).
132 Warp Reference Manual

VHDL

4

4.10 Add itio nal Design Examples

Many examples demonstrating design methodologies can be found in Section
4.7.3 of this chapter. Most of these examples can be found in the c:\warp\examples
directory. This section provides a discussion for additional design examples
found in the c:\warp\examples directory but not discussed earlier in this chapter.
These designs include:

Logic
• DEC24: a two-to-four bit decoder.

• PINS: shows how to use the part_name and pin_numbers attributes
to map signals to pins.

• NAND2_TS: a two-input NAND gate with three-state output.

Counters
• CNT4_EXP: Four bit counter with synchronous reset. The counter uses

expressions for clocks and resets.

• CNT4_REC: Four bit counter with load on the bidirectional pins.
Demonstrates use of a record.

State Machines
• DRINK: a behavioral description of a mythical drink machine (the drinks

only cost 30 cents!).

• TRAFFIC: a traffic-light controller.

• SECURITY: a simple security system.

4.10.1 DEC24

This example demonstrates a two-to-four decoder.

library ieee ;
use ieee.std_logic_1164.all ;

-- two to four demultiplexer/decoder

ENTITY demux2_4 IS
PORT(in0, in1: IN std_logic;
 d0, d1, d2, d3: OUT std_logic);

END demux2_4;
Warp Reference Manual 133

VHDL

4

ARCHITECTURE behavior OF demux2_4 IS
BEGIN

d0 <= (NOT(in1) AND NOT(in0));
d1 <= (NOT(in1) AND in0);
d2 <= (in1 AND NOT(in0));
d3 <= (in1 AND in0);

END behavior;

The entity declaration specifies two input ports, in0 and in1 , and four output
ports, d0 , d1 , d2 , and d3 , all of type std_logic .

The architecture specifies the various ways that the two inputs are combined to
determine the outputs. This is one of several ways that a two-to-four decoder can
be implemented.

4.10.2 PINS

This example shows how to use the part_name and pin_numbers attributes
to map signals to pins.

library ieee ;
use ieee.std_logic_1164.all ;

--Signals that are not assigned to pins can be automatically
--assigned pins by Warp. This design uses the C22V10-25DMB.
ENTITY and5Gate IS

PORT (a: IN std_logic_vector(0 TO 4);
 f: OUT std_logic);

ATTRIBUTE part_name of and5Gate:ENTITY IS “C22V10”;
ATTRIBUTE pin_numbers of and5Gate:ENTITY IS

 “a(0):2 a(1):3 “ --The spaces after 3 and 5 are necessary
 & “a(2):4 a(3):5 “ --for concatenation (& operator)
 & “f:23”; --signal a(4) will be assigned a pin by warp

END and5Gate;

ARCHITECTURE see OF and5Gate IS
BEGIN

f <= a(0) AND a(1) AND a(2) AND a(3) AND a(4);
END see;

Of particular importance in this example is the space just before the closing right-
quote of each portion of the attribute value to be concatenated. As shown, this
value resolves to

a(0):2 a(1):3 a(2):4 a(3):5 f:23
134 Warp Reference Manual

VHDL

4

Had the spaces not been included, this value would have been

a(0):2 a(1):3a(0):4 a(1):5f:23

which is an unrecognizable string.

4.10.3 NAND2_TS

This example is a two-input NAND gate with three-state output.

library ieee ;
use ieee.std_logic_1164.all ;

--Two input NAND gate with three-state output
--This design is DEVICE DEPENDENT.

USE work.rtlpkg.all; --needed for triout

ENTITY threeStateNand2 IS
PORT (a, b, outen: IN std_logic;

c: INOUT std_logic);
END threeStateNand2;

ARCHITECTURE show OF threeStateNand2 IS
SIGNAL temp: std_logic;

BEGIN
temp <= a NAND b;
tri1: triout PORT MAP (temp, outen, c);

END show;

This design is implemented by instantiating one triout component from rtlpkg.
Temp is a signal created to be the input to the three-state buffer. Outen is the
output enable, and c is the output (the NAND of signals a and b).

4.10.4 CNT4_EXP

This example is a counter that uses expressions for clocks and resets.

-- Fits to a c344

library ieee ;
use ieee.std_logic_1164.all ;
USE work.std_arith.all;
Warp Reference Manual 135

VHDL

4

ENTITY testExpressions IS
PORT (clk1, clk2, res1, res2, in1, in2: IN std_logic;

 count: BUFFER std_logic_vector(0 TO 3));
END testExpressions;

ARCHITECTURE cool OF testExpressions IS
SIGNAL clk, reset: std_logic;

BEGIN
clk <= clk1 AND clk2; --both clocks must be asserted;
reset <= res1 OR res2; --either reset

proc1:PROCESS
BEGIN
WAIT UNTIL clk = ‘1’;

IF reset = ‘1’ THEN
count <= x”0”;

ELSE
count <= count + 1 ;

END IF;
END PROCESS;

END cool;

The entity declaration specifies two clock signals and two reset signals as external
interfaces, as well as two input data ports and a four-bit_vector for output.

The architecture declares two new signals, clk and reset , which are later
defined to be the AND of clk1 and clk2 and the OR of reset1 and reset2 ,
respectively. Both clocks must be asserted to detect a clock pulse and trigger the
execution of the process. If either reset is asserted when a clock pulse is detected,
the counter resets itself, else it increments by one and waits for the next clock
pulse.

4.10.5 CNT4_REC

This example is a four bit counter with load on the bidirectional pins, and
demonstrates the use of a record.

library ieee ;
use ieee.std_logic_1164.all ;
USE work.std_arith.all;
-- loads on the i/o pins
-- temp is a RECORD used to simplify instantiating bufoe

USE work.rtlpkg.all;
136 Warp Reference Manual

VHDL

4

ENTITY counter IS
PORT (clk, reset, load, outen: IN std_logic;

count: INOUT std_logic_vector(0 TO 3));
END counter;

ARCHITECTURE behavior OF counter IS
TYPE bufRec IS -- record for bufoe

RECORD -- inputs and feedback
cnt: std_logic_vector(0 TO 3);
dat: std_logic_vector(0 TO 3);

END RECORD;
SIGNAL temp: bufRec;

CONSTANT counterSize: INTEGER:= 3;
BEGIN
g1:FOR i IN 0 TO counterSize GENERATE

bx: bufoe PORT MAP(temp.cnt(i), outen, count(i),
temp.dat(i));

END GENERATE;

proc1:PROCESS
 BEGIN

WAIT UNTIL (clk = ‘1’);
 IF reset = ‘1’ THEN

temp.cnt <= “0000”;
ELSIF load = ‘1’ THEN

temp.cnt <= temp.dat;
ELSE

temp.cnt <= temp.cnt + 1; -- increment vector
END IF;

END process;
END behavior;

The entity declaration specifies that the design has four input bits (clk , reset ,
load , and outen) and a four-bit_vector for output.

The architecture implements a counter with synchronous reset and load, and also
demonstrates the use of RECORD types.
Warp Reference Manual 137

VHDL

4

4.10.6 Drink

This example a behavioral description of a mythical drink dispensing machine
(the drinks only cost 30 cents!):

library ieee ;
use ieee.std_logic_1164.all ;

--In keeping with the fact that this is a mythical drink
--machine, the cost of the drink is 30 cents!

entity drink is port (
nickel,dime,quarter,clock : in std_logic;
returnDime,returnNickel,giveDrink: out std_logic);

end drink;

architecture fsm of drink is
type drinkState is (zero,five,ten,fifteen,twenty,twenty-

five,owedime);
signal drinkStatus: drinkState;

begin
process begin

wait until clock = ‘1’;
-- set up default values
giveDrink <= ‘0’;
returnDime <= ‘0’;
returnNickel <= ‘0’;
case drinkStatus is

when zero =>
IF (nickel = ‘1’) then

drinkStatus <= Five;
elsif (dime = ‘1’) then

drinkStatus <= Ten;
elsif (quarter = ‘1’) then

drinkStatus <= TwentyFive;
end if;

when Five =>
IF (nickel = ‘1’) then

drinkStatus <= Ten;
elsif (dime = ‘1’) then

drinkStatus <= Fifteen;
elsif (quarter = ‘1’) then

giveDrink <= ‘1’;
drinkStatus <= zero;

end if;
138 Warp Reference Manual

VHDL

4

when Ten =>
IF (nickel = ‘1’) then

drinkStatus <= Fifteen;
elsif (dime = ‘1’) then

drinkStatus <= Twenty;
elsif (quarter = ‘1’) then

giveDrink <= ‘1’;
returnNickel <= ‘1’;
drinkStatus <= zero;

end if;
when Fifteen =>

IF (nickel = ‘1’) then
drinkStatus <= Twenty;

elsif (dime = ‘1’) then
drinkStatus <= TwentyFive;

elsif (quarter = ‘1’) then
giveDrink <= ‘1’;
returnDime <= ‘1’;
drinkStatus <= zero;

end if;
when Twenty =>

IF (nickel = ‘1’) then
drinkStatus <= TwentyFive;

elsif (dime = ‘1’) then
giveDrink <= ‘1’;
drinkStatus <= zero;

elsif (quarter = ‘1’) then
giveDrink <= ‘1’;
returnNickel <= ‘1’;
returnDime <= ‘1’;
drinkStatus <= zero;

end if;
when TwentyFive =>

IF (nickel = ‘1’) then
giveDrink <= ‘1’;
drinkStatus <= zero;

elsif (dime = ‘1’) then
returnNickel <= ‘1’;
giveDrink <= ‘1’;
drinkStatus <= zero;

elsif (quarter = ‘1’) then
giveDrink <= ‘1’;
returnDime <= ‘1’;
drinkStatus <= oweDime;

end if;
Warp Reference Manual 139

VHDL

4

when oweDime =>
returnDime <= ‘1’;
drinkStatus <= zero;

-- The following WHEN makes sure that the state machine
-- resets itself if it somehow gets into an undefined state.

when others =>
drinkStatus <= zero;

end case;
end process;

end fsm;

The entity declaration specifies that the design has four inputs: nickel , dime ,
quarter , and clock . The outputs are giveDrink , returnNickel , and
returnDime . The last two outputs tell the design when to give change after the
30-cent price of the drink has been satisfied.

The architecture then defines an enumerated type with one value for each
possible state of the machine, i.e., each possible amount of money deposited.
Thus, the initial state of the machine is zero , while other states include five ,
ten , fifteen , etc.

After some initialization statements, the major part of the architecture consists of
a large case statement, containing a when clause for each possible state of the
machine. Each when clause contains an if...then...elsif statement to
handle each possible input and change of state.

4.10.7 Traffic

This example is a traffic-light controller.

library ieee ;
use ieee.std_logic_1164.all ;

-- This state machine implements a simple traffic light.
-- The N - S light is usually green, and remains green
-- for a minimum of five clocks after being red. If a
-- car is travelling E-W, the E-W light turns green for
-- only one clock.

ENTITY traffic_light IS
PORT(clk, car: IN std_logic;--car is E-W travelling
 lights: BUFFER std_logic_vector(0 TO 5));

END traffic_light;
140 Warp Reference Manual

VHDL

4

ARCHITECTURE moore1 OF traffic_light IS
-- The lights (outputs) are encoded in the following states.
-- For example, the
-- state green_red indicates the N-S light is green and the
-- E-W light is red.
-- “001” indicates green light, “010” yellow, “100” red;
-- “&” concatenates

CONSTANT green_red : std_logic_vector(0 TO 5) := “001” &
“100”;

CONSTANT yellow_red : std_logic_vector(0 TO 5) := “010” &
“100”;

CONSTANT red_green : std_logic_vector(0 TO 5) := “100” &
“001”;

CONSTANT red_yellow : std_logic_vector(0 TO 5) := “100” &
“010”;

-- nscount to verify five consecutive N-S greens
SIGNAL nscount: INTEGER RANGE 0 TO 5;

BEGIN
PROCESS
BEGIN

WAIT UNTIL clk = ‘1’;
CASE lights IS

WHEN green_red =>
IF nscount < 5 THEN

lights <= green_red;
nscount <= nscount + 1;

ELSIF car = ‘1’ THEN
lights <= yellow_red;
nscount <= 0;

ELSE
lights <= green_red;

END IF;
WHEN yellow_red =>

lights <= red_green;
WHEN red_green =>

lights <= red_yellow;
WHEN red_yellow =>

lights <= green_red;
WHEN others =>

lights <= green_red;
END CASE;

END PROCESS;
END moore1;
Warp Reference Manual 141

VHDL

4

The states in this example are defined such that the outputs are encoded in the
state, using red/yellow/green triplets for each of the north-south and east-west
light. For example, if the north-south light is red and the east-west light is green,
then the state encoding is “100001”.

In this design, the north-south light remains green for a minimum of five clock
cycles, while the east-west light only remains green for one clock cycle. Note the
use of signal nscount to keep track of the number of clock cycles the north-
south light has remained green. This is less confusing than creating five extra
states that do basically nothing.

4.10.8 Security

This example is a simple security system.

ENTITY securitySystem IS
PORT (set, intruder, clk: IN std_logic;

horn: OUT std_logic);
END securitySystem;

ARCHITECTURE behavior OF securitySystem IS
TYPE states IS (securityOff, securityOn, securityBreach);
SIGNAL state, nextState: states;

BEGIN
PROC1:PROCESS (set, intruder)

BEGIN
CASE state IS
WHEN securityOff =>

IF set = ‘1’ THEN
nextState <= securityOn;

END IF;
WHEN securityOn =>

IF intruder = ‘1’ THEN
horn <= ‘1’; --Mealy output
nextState <= securityBreach;

ELSIF set = ‘0’ THEN
horn <= ‘0’;
nextState <= securityOff;

END IF;
142 Warp Reference Manual

VHDL

4

WHEN securityBreach =>
IF set = ‘0’ THEN

horn <= ‘0’;
nextState <= securityOff;

END IF;
WHEN others =>

nextState <= securityOff;
END CASE;

END PROCESS;
proc2:PROCESS

BEGIN
WAIT UNTIL clk =’1’;
state <= nextState;

END PROCESS;
END behavior;

The entity declaration specifies that the design has three inputs (set , intruder ,
and clk) and one output (horn), all of type std_logic .

The architecture declares an enumerated type with three possible values:
securityOn , securityOff , and securityBreach . It also declares two
state variables, named state and nxtState .

The rest of the architecture defines two concurrent processes that interact via the
nextState signal. The first process is activated whenever a change occurs in
the set or intruder signals, and defines what the new state of the machine will be
as of the next clock signal. The second is activated with each rising clock pulse.

4.11 Alphabetical Listing of VHDL Constructs

The following sections provide an encyclopedic reference to each VHDL language
element that Warp supports.

Each section shows the syntax of each language element, explains the purpose of
the language element, and gives an example of its use.

4.11.1 Alias

ALIAS allows the user to define an alternate name by which to reference a VHDL
object. Use ALIAS to create a shorter reference to a long object name, or to
provide a mnemonic reference to a name that may be difficult to remember
otherwise.
Warp Reference Manual 143

VHDL

4

alias identifier [: subtype_indication] is name;

Identifier is the alias for name in the alias declaration. An alias of a signal denotes a
signal; an alias of a variable denotes a variable; an alias of a constant denotes a
constant.

An alias of an object can be updated if and only if the object itself can be updated.
Thus, an alias for a constant or for a port of mode in cannot be updated.

An alias may be constrained to a sub-type of the object specified in name, but
identifier and name must have the same base type.

Example:

signal Instrctn:std_logic_vector(15 downto 0);
alias Opcode:std_logic_vector(3 downto 0) is

Instrctn(15 downto 12);
alias Op1:std_logic_vector(5 downto 0) is Instrctn(11 downto

6);
alias Op2:std_logic_vector(5 downto 0) is Instrctn(5 downto

0);
alias Sign1:std_logic is Op1(5);
alias Sign2:std_logic is Op2(5);

The first line of this example declares a signal called Instrctn , containing 16
bits. Succeeding lines define several aliases from sub-elements of this
std_logic vector: two six-bit operands (Op1 and Op2) and two sign bits
(Sign1 and Sign2). The alias declarations for Sign1 and Sign2 make use of
previously declared aliases.

4.11.2 Architecture

An architecture (or, more formally, an “architecture body”) describes the internal
view of an entity, i.e., it specifies the functionality or the structure of the entity.

architecture name of entity is
architecture_declarations ;
begin

concurrent_statements ;
end [name];

architecture_declaration ::=
subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_specification
144 Warp Reference Manual

VHDL

4

concurrent_statement ::=
process_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

Architectures describe the behavior, data flow, or structure of an accompanying
entity. (See Section 4.6, "ENTITIES," for more information about entities.)

Architectures start with the keyword architecture , followed by a name for the
architecture being declared, the keyword of , the name of the entity to which the
architecture is being bound, and the keyword is .

A list of architecture declarations follows. This list declares components, signals,
types, constants, and attributes to be used in the architecture. If a USE clause
appears before the architecture, any elements referenced by the USE clause need
not be re-declared.

The architecture body follows, consisting of component instantiation statements,
generate statements, processes, and/or concurrent signal assignment statements.

In practice, architectures in Warp perform one of the following functions:

• They describe the behavior of an entity.

• They describe the data flow of an entity.

• They describe the structure of an entity.

Examples of each of these uses of an architecture are given in Section 4.5,
“Operators” and Section 4.10, “Additional Design Examples.”

4.11.3 Attribute

An attribute is a property that can be associated with an entity, architecture, label,
or signal in a VHDL description. This property, once associated with the entity,
architecture, label, or signal, can be assigned a value, which can then be used in
expressions.

Attribute D eclar ation
attribute attribute-name : type ;

Attribute Specification
attribute attribute-name

of name-list : name-class is expression ;
Warp Reference Manual 145

VHDL

4

Attribute R eference
item-name’attribute-nam e

Attributes are constants associated with names. When working with attributes, it
is helpful to remember the following order of operations; declare-specify-
reference:

• Declare the attribute with an attribute declaration statement.

• Associate the attribute with a name and give the attribute a value with an
attribute specification statement.

• Reference the value of the attribute in an expression.

VHDL contains pre-defined and user-defined attributes.

Pre-defined attributes are part of the definition of the language. Warp supports a
subset of these attributes that relate to synthesis operations. This subset is
discussed in Section 4.11.4, "Pre-Defined Attributes.”

User-defined attributes are additional attributes that annotate VHDL models with
information specific to the user’s application. Several user-defined attributes are
supplied with Warp to support synthesis operations.

Declaring New Attributes
To declare a new attribute, use an attribute declaration:

attribute smart is boolean;
attribute charm is range 1 to 10;

This example declares two attributes. The first is called smart , of type boolean.
The second is called charm and has as possible values the integers 1 through 10,
inclusive.

Associating Attributes With Names
To associate an attribute with a name and assign the attribute a value, use an
attribute specification:

attribute smart of sig1:signal is true;
attribute charm of ent1:entity is 5;

This example associates the attribute smart with signal sig1 , and assigns smart
a value of TRUE, then associates the attribute charm with entity ent1 and
assigns charm a value of 5.
146 Warp Reference Manual

VHDL

4

Referencing Attribute Values
To use the value of an attribute in an expression, use an attribute reference:

if (sig1’smart = TRUE) then a <= 1 else a <= 0;

This example tests the value of the attribute smart for signal sig1 , then assigns
a value to signal a depending on the result of the test.

4.11.4 Pre-Defined Attributes

Warp supports a large set of pre-defined attributes, including value, function,
type, and range attributes.

Table 4-6 lists the pre-defined attributes that Warp supports:

• Value attributes operate on items of scalar type or subtype.

• Function attributes operate on types, objects, or signals.

• Type attributes operate on types.

• Range attributes operate on constrained (i.e., bounded) array types.

Value Attributes
All scalar types or subtypes have the following value attributes:

• ‘LEFT: returns the leftmost value in the type declaration.

• ‘RIGHT: returns the rightmost value in the type declaration.

• ‘HIGH: returns the highest value in the type declaration. For enumerated
types, this is the rightmost value. For integer sub-range types, this is the
value of the highest integer in the range. For other sub-range types, this is
the rightmost value if the type declaration uses the keyword “to” or the
leftmost value if the type declaration uses the keyword “downto”.

• ‘LOW: returns the lowest value in the type declaration. For enumerated
types, this is the leftmost value. For integer sub-range types, this is the
value of the lowest integer in the range. For other sub-range types, this is
the leftmost value if the type declaration uses the keyword “to” or is the
rightmost value if the type declaration uses the keyword “downto”.
Constrained array types have the following value attribute:

• ‘LENGTH(N): returns the number of elements in the N’th dimension of
the array.
Warp Reference Manual 147

VHDL

4

Constrained array objects also use these same attributes. For objects, the attributes
are implemented in VHDL as functions instead of value attributes.

Examples:

For the following type declarations:

type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN,FEB,MAR,APR,MAY,JUN,

 JUL,AUG,SEP,OCT,NOV,DEC);
type Q1 is months range MAR downto JAN;

Table 4-6 Pre-defined Attributes Supported by Warp

Value Attributes ‘Left, ‘Right, ‘High, ‘Low, ‘Length

Function Attributes
(types) ‘Pos, ‘Val, ‘Succ, ‘Pred, ‘Leftof, ‘Rightof

Function Attributes
(objects) ‘Left, ‘Right, ‘High, ‘Low, ‘Length

Function Attributes
(signals) ‘Event

Type Attributes ‘Base

Range Attributes ‘Range, ‘Reverse_range
148 Warp Reference Manual

VHDL

4

The value attributes are:

countup’left = 0 countdown’left = 10
countup’right = 10 countdown’right = 0
countup’low = 0 countdown’low = 0
countup’high = 10 countdown’high = 10
countup’length = 11 countdown’length = 11

months’left = JAN Q1’left = MAR
months’right = DEC Q1’right = JAN
months’low = JAN Q1’low = JAN
months’high = DEC Q1’high = MAR
months’length = 12 Q1’length = 3

Function Attributes (Types)
All discrete (i.e., “ordered”) types and their subtypes have the following function
attributes:

• ‘POS(V): returns the position number of the value V in the list of values in
the declaration of the type.

• ‘VAL(P): returns the value that corresponds to position P in the list of
values in the declaration of the type.

• ‘SUCC(V): returns the value whose position is one larger than that of
value V in the list of values in the declaration of the type.

• ‘PRED(V): returns the value whose position is one smaller than that of
value V in the list of values in the declaration of the type.

• ‘LEFTOF(V): returns the value whose position is immediately to the left
of that of value V in the list of values in the declaration of the type. For
integer and enumerated types, this is the same as ‘PRED(V). For sub-
range types, this is the same as ‘PRED(V) if the type was declared using
the keyword “to”; it is the same as ‘SUCC(V) if the type was declared
using the keyword “downto”.

• ‘RIGHTOF(V): returns the value whose position is immediately to the
right of that of value V in the list of values in the declaration of the type.
For integer and enumerated types, this is the same as ‘SUCC(V). For sub-
range types, this is the same as ‘SUCC(V) if the type was declared using
the keyword “to”; it is the same as ‘PRED(V) if the type was declared
using the keyword “downto”.
Warp Reference Manual 149

VHDL

4

Examples:

For the following type declarations (the same as those used in the previous
example set):

type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN,FEB,MAR,APR,MAY,JUN,

 JUL,AUG,SEP,OCT,NOV,DEC);
type Q1 is months range MAR downto JAN;

the function attributes are:

countup’POS(0) = 0 countdown’POS(10) = 0
countup’POS(10) = 10 countdown’POS(0) = 10
countup’VAL(1) = 1 countdown’VAL(1) = 9
countup’VAL(9) = 9 countdown’VAL(9) = 1
countup’SUCC(4) = 5 countdown’SUCC(4) = 3
countup’PRED(4) = 3 countdown’PRED(4) = 5
countup’LEFTOF(4) = 3 countdown’LEFTOF(4) = 5
countup’RIGHTOF(4) = 5 countdown’RIGHTOF(4) = 3

months’POS(JAN) = 1 Q1’POS(JAN) = 1
months’POS(DEC) = 12 Q1’POS(MAR) = 3
months’VAL(1) = JAN Q1’VAL(1) = MAR
months’VAL(12) = DEC Q1’VAL(12) = error
months’SUCC(FEB) = MAR Q1’SUCC(FEB) = MAR
months’PRED(FEB) = JAN Q1’PRED(FEB) = JAN
months’LEFTOF(FEB) = JAN Q1’LEFTOF(FEB) = MAR
months’RIGHTOF(FEB) = MAR Q1’RIGHTOF(FEB) = JAN

Function Attributes (Objects)
All constrained (i.e., bounded) array objects have the following function
attributes:

• ‘LEFT(N): returns the left bound of the Nth dimension of the array object.

• ‘RIGHT(N): returns the right bound of the Nth dimension of the array
object.

• ‘LOW(N): returns the lower bound of the Nth dimension of the array
object. This is the same as ‘LEFT(N) for ascending ranges, ‘RIGHT(N) for
descending ranges.
150 Warp Reference Manual

VHDL

4

• ‘HIGH(N): returns the upper bound of the Nth dimension of the array
object. This is the same as ‘RIGHT(N) for ascending ranges, ‘LEFT(N) for
ascending ranges.

In the discussion above, the value of N defaults to 1, which is also the lower
bound for the number of dimensions in an array.

Examples:

For the following type and variable declarations:

type two_d_array is array (8 downto 0, 0 to 4);
variable my_array:two_d_array;

the function attributes are:

my_array’left(1)= 8 my_array’left(2) = 0
my_array’right(1) = 0 my_array’right(2) = 4
my_array’low(1) = 0 my_array’low(2) = 0
my_array’high(1) = 8 my_array’high(2) = 4

Function Attributes (Signals)
Warp supports a single function attribute for signals, namely the ‘EVENT
attribute. ‘EVENT is a boolean function that returns TRUE if an event (i.e., change
of value) has just occurred on the signal.

Warp supports the ‘EVENT attribute only for clock signals such as in the
following example.

Example:

PROCESS BEGIN
WAIT UNTIL (clk’EVENT AND clk=’1’);
.
.
.

END PROCESS;

This example shows a process whose statements are executed when an event
occurs on signal clk and signal clk goes to ‘1’.
Warp Reference Manual 151

VHDL

4

Type Attributes
All types and subtypes have the following attribute:

• ‘BASE: returns the base type of the original type or subtype.

At first glance, this attribute doesn’t appear very useful in expressions, since it
returns a type. But it can be used in conjunction with other attributes, as in the
following examples.

Examples:

For the following type declarations:

type day_of_week is (SUN,MON,TUE,WED,THU,FRI,SAT);
subtype work_day is day_of_week range MON to FRI;

the following value attributes are true:

work_day’left = MON work_day’BASE’left = SUN
work_day’right = FRI work_day’BASE’right = SAT
work_day’low = MON work_day’BASE’low = SUN
work_day’high = FRI work_day’BASE’high = SAT
work_day’length = 5 work_day’BASE’length = 7

Range Attributes
Constrained array objects have the following attributes:

• ‘RANGE(N): returns the range of the Nth index of the array. If N is not
specified, it defaults to 1.

• ‘REVERSE_RANGE(N): returns the reversed range of the Nth index of
the array. If N is not specified, it defaults to 1.

The range attributes give the user a way to parameterize the limits of FOR loops
and FOR-GENERATE statements, as in the following example.

Example:

Consider a variable declared as:

variable my_bus:std_logic_vector(0 to 7);
152 Warp Reference Manual

VHDL

4

Then, the value of the ‘RANGE and ‘REVERSE_RANGE attributes for my_bus
are:

my_bus’RANGE = 0 to 7
my_bus’REVERSE_RANGE = 7 downto 0

You could use this attribute in a FOR loop, like this:

for index in my_bus’REVERSE_RANGE loop
.
.
.
end loop;

4.11.5 CASE

The CASE statement selects one or more statements to be executed within a
process, based on the value of an expression.

case expression is
when case1 [| case2 ...] =>

sequence_of_statements ;
when case3 [| case4 ...] =>

sequence_of_statements ;
.
.
.]

[when others =>
sequence_of_statements ;]

end case;

In Warp, the expression that determines the branching path of the CASE
statement must evaluate to a vector or to a discrete type (i.e., a type with a finite
number of possible values, such as an enumerated type or an integer type).

The vertical bar ('|') operator may be used to indicate multiple cases to be
checked in a single WHEN clause. This may only be used if the sequence of
statements following the WHEN clause is the same for both cases.

The keyword OTHERS may be used to specify a sequence of statements to be
executed if no other case statement alternative applies. Because CASE statements
execute sequentially, the test for OTHERS should be the last test in the WHEN
list.
Warp Reference Manual 153

VHDL

4

When Warp synthesizes a CASE statement, it synthesizes a memory element for
the condition being tested (in order to maintain any outputs at their previous
values) unless one of the following conditions occurs:

• All outputs within the body of the CASE statement are previously
assigned a default value within the process.

• The CASE statement completely specifies the design's behavior following
any possible result of the conditional test. The best way to ensure
complete specification of design behavior is to include an OTHERS clause
within the CASE statement.

When a CASE statement does not specify a branch for all possible results, Warp
synthesizes a memory element for the conditional test. This could use up more
PLD/FPGA resources than would otherwise be required.

Therefore, to use the fewest possible resources during synthesis, either assign
default values to outputs in a process or make sure all CASE statements include
an OTHERS clause.

Example:

In the following example, signal s is declared as

s :in std_logic_vector(0 to 2);

In addition, i and o are declared as eight-element vectors:

i : in std_logic_vector(0 to 7);
o : out std_logic_vector(0 to 7);

The architecture follows:

architecture demo of Barrel_shifter is
begin process (s, i)

begin
case s is

WHEN "000"=>
o <= i;

WHEN "001"=>
o <=(i(1),i(2),i(3),i(4),i(5),i(6),i(7),i(0));

WHEN "010"=>
o <=(i(2),i(3),i(4),i(5),i(6),i(7),i(0),i(1));

WHEN "011"=>
o <=(i(3),i(4),i(5),i(6),i(7),i(0),i(1),i(2));

WHEN "100"=>
o <=(i(4),i(5),i(6),i(7),i(0),i(1),i(2),i(3));
154 Warp Reference Manual

VHDL

4

WHEN "101"=>
o <=(i(5),i(6),i(7),i(0),i(1),i(2),i(3),i(4));

WHEN "110"=>
o <=(i(6),i(7),i(0),i(1),i(2),i(3),i(4),i(5));

WHEN "111"=>
o <=(i(7),i(0),i(1),i(2),i(3),i(4),i(5),i(6));

end case;
end process;

end demo;

In this example, signal s evaluates to a 3- element bit-string literal. The
appropriate statement is executed, depending on the value of s , and output
vector o gets the value given by the specified ordering of elements in input vector
i . Note that the CASE statement completely specifies the results of the
conditional test; all possible values of s are covered by a WHEN clause. Hence, no
OTHERS clause is needed.

4.11.6 Component

A component declaration specifies a component to be synthesized and lists the
local signal names of the component. The component declaration serves the same
purpose in VHDL as a function declaration or prototype serves in the C
programming language.

Component Declaration
component identifier

[generic (generic_list);]
[port (port_list);]
end component;

Example:

component barrel_shifter port(
clk : IN std_logic;
s :in std_logic_vector(0 to 2);
insig :in std_logic_vector(0 to 7);
outsig :out std_logic_vector(0 to 7));

end component;

This example declares a component called barrel_shifter with a 3-bit input
signal, an 8-bit input signal, and an 8-bit output signal.
Warp Reference Manual 155

VHDL

4

Component I nstan tiation
instantiation_label : component_name

[generic generic_mapping]
[port port_mapping];

A component instantiation creates an instance of a component that was
previously declared with a component declaration statement. Think of
component instantiation as “placing” a previously declared component into an
architecture, then “wiring” the newly placed component into the design by means
of the generic map or port map.

Example:

a1:barrel_shifter
port map(

clk=>clock,
s(0)=>s0,
s(1)=>s1,
s(2)=>s2,
insig=>myinput,
outsig=>myoutput);

The line a1:barrel_shifter in the example above instantiates a component
named a1 of type barrel-shifter . The port map statement that follows
maps each signal from this instance of barrel_shifter to signals at a higher
level.

Note that, in this case, the barrel_shifter was defined as accepting a single bit
signal clk , and three vectors s , insig and outsig . For vectored signals, you
can either split the vector up into individual signals, as in the case of s or perform
direct vector to vector connections.

Note also the direction of the "arrow" in each mapping: from the "formal" (the
signal name on the component) to the "actual" (the name of the pin to which the
signal is being mapped).

4.11.7 Constant

A constant is an object whose value may not be changed.

constant identifier_list:type[:=expression];
156 Warp Reference Manual

VHDL

4

Example:

TYPE stvar is std_logic_vector(0 to 1);
constant s0:stvar := "00";
constant s1:stvar := "01";
constant s2:stvar := "10";
constant s3:stvar := "11";

This example declares a vector subtype with length 2, called stvar . It then
defines four constants of type stvar , and gives them values of “00”, “01”, “10”,
and “11”, respectively.

subtype vec8 is std_logic_vector(0 to 7);
type v8_table is array(0 to 7) of vec8;
constant xtbL1:v8_table := (
"00000001",
"00000010",
"00000100",
"00001000",
"00010000",
"00100000",
"01000000",
"10000000");

This example declares a vector subtype with length 8 called vec8 , a 1-
dimensional array type of vec8 called v8_table with eight elements, and a
constant of type v8_table called xtbL1 .

Values are assigned to the constant by concatenating a sequence of string literals
(e.g., "00000001") into vector form. Only characters ‘0’, ‘1’, ’Z’ and ’-’ are allowed
in these string literals, but the values could have been written in hex format (e.g.,
x"01" is the same as "00000001" for this purpose). The result is a table of constants
such that xtbL1(0) is "00000001" and xtbL1(7) is "10000000".

4.11.8 Entity

An entity declaration names a design entity and lists its ports (i.e., external
signals). The mode and data type of each port are also declared.

entity identifier is port(
port_name : mode type [;
port_name : mode type ...])
end [identifier];
Warp Reference Manual 157

VHDL

4

Choices for mode are IN, OUT, BUFFER, and INOUT.

Example:

entity Barrel_Shifter is port(
clk : IN std_logic;
s :in std_logic_vector(0 to 2);
insig :in std_logic_vector(0 to 7);
outsig :out std_logic_vector(0 to 7));

end Barrel_Shifter;

This example declares an entity called barrel_shifter with a 3-bit and an 8-bit
input signal as well as an 8-bit output signal.

4.11.9 Exit

The EXIT statement causes a loop to be exited. Execution resumes with the first
statement after the loop. The conditional form of the statement causes the loop to
be exited when a specified condition is met.

exit [loop_label] [when condition];

Example:

i <= 0;
loop

outsig(i)<=barrel_mux8(i,s,insig);
i <= i+1;
exit when i>7;
end loop;

The EXIT statement in the example above causes the loop to exit when variable i
becomes greater than 7. The example thus calls the function barrel_mux8 eight
times.

4.11.10 Generate

Generate statements specify a repetitive or conditional execution of the set of
concurrent statements they contain. Generate statements are especially useful for
instantiating an array of components.
158 Warp Reference Manual

VHDL

4

label : generation_scheme generate
{ concurrent_statement }

end generate [label];

generation_scheme ::=
for generate_parameter_specification

| if condition

A "generation scheme" in the syntax above refers to either a FOR-loop
specification or an IF-condition specification, as shown in the example below.

Example:

architecture test of serreg is
signal zero : std_logic := ‘0’ ;

begin
m1: for i in 0 to size-1 generate

m2: if i=0 generate
x1:dsrff port map (si, zero, mreset, clk, q(0));
end generate;

m3: If i>0 generate
x2:dsrff port map(q(I-1), zero, mreset,clk, q(I));
end generate;

end generate;
end test;

The example above instantiates a single component labeled x1 , and size-1
components labeled x2 . For size=3, for instance, the code shown above is the
equivalent of

architecture test of serreg is
signal zero : std_logic := ‘0’ ;

begin
x1:dsrff port map(si, zero, mreset, clk, q(0));
x2:dsrff port map(q(0), zero, mreset, clk, q(1));
x3:dsrff port map(q(1), zero, mreset, clk, q(2));

end test;

4.11.11 Generic

Generics are the means by which instantiating (parent) components pass
information to instantiated (child) components in VHDL. Typical uses are to
specify the size of array objects or the number of subcomponents to be
instantiated.

generic(identifier : type [:= value]);
Warp Reference Manual 159

VHDL

4

Example:

component serreg
generic (size:integer:=8);
port (si,

clk,
mreset : in std_logic;
q : inout std_logic_vector(0 to size-1));

end component;

This example declares a component with a bidirectional array of 8 bits, among
other signals. The number of bits is given by the value of the size parameter in the
generic statement.

4.11.12 If-Then-Else

The IF statement selects one or more statements to be executed within a process,
based on the value of a condition.

IF condition THEN sequence_of_statements
[ELSIF condition THEN

sequence_of_statements ...]
[ELSE sequence_of_statements]

END IF;

A condition is a boolean expression, i.e., an expression that resolves to a boolean
value. If the condition evaluates to true, the sequence of statements following the
THEN keyword is executed. If the condition evaluates to false, the sequence of
statements following the ELSIF or ELSE keyword(s), if present, are executed.

When Warp synthesizes an IF-THEN-ELSE statement, it synthesizes a memory
element for the condition being tested (in order to maintain any outputs at their
"previous" values) unless one of the following conditions is true:

• All outputs within the body of the IF-THEN-ELSE statement are
previously assigned a "default" value within the process.

• The IF-THEN-ELSE statement completely specifies the design's behavior
following any possible result of the conditional test. The best way to
ensure complete specification of design behavior is to include an ELSE
clause within the IF statement. (See example following.)

When an IF-THEN-ELSE statement does not specify a branch for all possible
results, Warp synthesizes a memory element for the conditional test. This could
use up more PLD resources than would otherwise be required.
160 Warp Reference Manual

VHDL

4

In short, to use the fewest possible PLD resources during synthesis, either assign
default values to outputs in a process, or make sure all IF-THEN-ELSE statements
include ELSE clauses.

Example:

if (not tmshort=one)then stvar <= ewgo;
elsif (tmlong=one)then stvar <= ewwait;
elsif (not ew=one AND ns=one)then stvar<=ewgo;
elsif (ew=one AND ns=one)then stvar <= ewwait;
elsif (not ew=one)then stvar <= ewgo;
else stvar <= ewwait;
end if;

Note – In the case above, the ELSE statement is to be left out, as
opposed to suggestions made on the previous page.

The example above sets a state variable called stvar . The value that stvar
receives depends on the value of variables tmshort , tmlong , ew, and ns .

Asynchronous Sets, Resets
Use an IF-THEN-ELSE statement to synthesize the operation of a synchronous
circuit containing asynchronous sets or resets.

To do so, use a sensitivity list in the PROCESS statement, naming the sets, resets,
and clock signals that will trigger the execution of the process. Then, use a
sequence of IF-ELSIF clauses to specify the behavior of the circuit.

The structure of the process should be something like this:

process (set, reset, clk) begin
if (reset = ‘0’)then

--assign signals to their “reset” values ;
elsif (set = ‘0’)then

-- assign signals to their “set” values ;
elsif (clk’EVENT AND clk=’1’)then

--perform synchronous operations;
end if;

end process;

The example above shows the VHDL description for active-low set and reset
signals. It could just as easily have been coded for active-high sets and resets by
using the conditions set=‘1’ and reset=‘1’ .
Warp Reference Manual 161

VHDL

4

The assignments made in the statements that follow the set or reset signal
conditions must be “simple” assignments (i.e., of the form name=constant), to a
signal of type std_logic , std_logic_vector , or enumerated type (for state
variables).

4.11.13 Library

In Warp, a library is a storage facility for previously analyzed design units.

library library-name [, library-name];

A library clause declares logical names to make libraries visible within a design
unit. A design unit is an entity declaration, a package declaration, an architecture
body, or a package body.

Example:

library mylib;

The above example makes a library named mylib visible within the design unit
containing the library clause.

4.11.14 Loops

Loops execute a sequence of statements repeatedly.

[loop_label :] [iteration_scheme] loop
sequence_of_statements
end loop [loop_label];

iteration_scheme ::=
while condition
| for loop_parameter in

{ lower_limit to upper_limit
| upper_limit downto lower_limit }

There are three kinds of loops in VHDL:

• Simple loops are bounded by a loop/end loop statement pair. These
kinds of loops require an exit statement, otherwise they execute forever;

• FOR loops execute a specified number of times; and

• WHILE loops execute while a specified condition remains true.
162 Warp Reference Manual

VHDL

4

Examples:

Simple loop:

i := 0;
loop

outsig(i)<=barrel_mux8(i,s,insig);
i := i+1;
if (i>7) then

exit;
END IF;

end loop;

FOR loop:

for i in 0 to 7 loop
outsig(i)<=barrel_mux8(i,s,insig);
end loop;

WHILE loop:

i := 0;
while (i<=7) loop

outsig(i)<=barrel_mux8(i,s,insig);
i := i+1;
end loop;

The examples above show three ways of implementing the same loop. All of these
loops call the function barrel_mux8 eight times. (In all three, i must be defined
as a variable.)

4.11.15 Next

NEXT advances control to the next iteration of a loop.

next [loop_label] [when condition];

Example:

for i in 0 to 7 loop
if ((i =0) or (i=2) or (i=4) or (i=6)) then

outsig(i)<=barrel_mux8(i,s,insig)
else

next i;
end if;

end loop;
Warp Reference Manual 163

VHDL

4

The example above performs an operation on the even-numbered bits of an 8-
element std_logic_vector . It uses a NEXT statement to advance to the next
iteration of the loop for the odd-numbered bits.

4.11.16 Package

A VHDL package is a collection of declarations that can be used by other VHDL
descriptions. A VHDL package consists of two parts: the package declaration and
the package body.

Package Decla ration
package identifier is

function_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| use_clause
[;{function_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| use_clause}...]
end [identifier];

Pack age Body
package body identifier is

{function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| use_clause}
[;{function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| use_clause}...]
end [identifier];
164 Warp Reference Manual

VHDL

4

The package declaration declares parts of the package that can be used by other
VHDL descriptions, i.e., by other designs that use the package.

The package body provides definitions and additional declarations, as necessary,
for functions whose interfaces are declared in the package declaration.

Example: (package declaration)

package bv_tbl is
subtype vec8 is std_logic_vector(0 to 7);
type v8_table is array(0 to 7) of vec8;

-- defining vectors for i2bv8 function
constant xtbl1:v8_table := (
"00000001",
"00000010",
"00000100",
"00001000",
"00010000",
"00100000",
"01000000",
"10000000");
-- function declaration
function i2bv8(ia:integer) return vec8;
subtype vec3 is std_logic_vector(0 to 2);
type v3_table is array(0 to 7) of vec3;

-- defining vectors for i2bv3 function
constant xtbl2:v3_table := (
"000",
"001",
"010",
"011",
"100",
"101",
"110",
"111"
);

--function declaration
function i2bv3(ia:integer) return vec3;

end bv_tbl;
Warp Reference Manual 165

VHDL

4

The example above declares several types, subtypes, constants, and functions.
These items become available for use by any VHDL description that uses package
bv_tbl.

Example: (package body)

package body bv_tbl is

function i2bv8(ia:integer) return vec8 is
-- translates an integer between 1 and 8
-- to an 8-bit vector
begin
return xtbl1(ia);
end i2bv8;

function i2bv3(ia:integer) return vec3 is
-- translates an integer between 1 and 8
-- to a three-bit vector
begin

return xtbl2(ia);
end i2bv3;

end bv_tbl;

The example above defines two functions whose declarations appeared in the
package declaration example, shown previously.

4.11.17 Port Map

A port map statement associates the ports of a component with the pins of a
physical part.

port map ([formal_name =>] actual_name
[,[formal_name =>] actual_name]);

The port map statement associates ports declared in a component declaration,
known as formals, with the signals (known as actuals) being passed to those ports.

If the signals are presented in the same order as the formals are declared, then the
formals need not be included in the port map statement.

Port map statements are used within component instantiation statements. (See
Section 4.11.6, "Component,” for more information about component
instantiation statements.)
166 Warp Reference Manual

VHDL

4

Example:

and_1: AND2
port map(A => empty_1,

B => empty_2,
Q => refill_bin);

The example above instantiates a two-input AND gate. The port map statement
associates three signals (empty_1 , empty_2 , and refill_bin , respectively)
with ports A, B, and Q of the AND gate.

If the three ports appear in the order A, B, and Q in the AND2 component
declaration, the following (shorter) component instantiation would have the same
effect:

and_1: AND2
port map(empty_1,empty_2,refill_bin);

Cypress recommends, however, using the name association method instead of
positional association for both port maps and generic maps. In general, name
association is a lot more readable, less error prone, and insulates the code from
changes to lower level components to a certain extent.

4.11.18 Generic Map

A generic map statement associates the generics of a component with the values
defined at an upper level architecture.

generic map ([formal_name =>] actual_name
[,[formal_name =>] actual_name]);

The generic map statement associates generics declared in a component
declaration, known as formals, with the values (known as actuals) being passed to
those generics.

If the values are being passed in the same order as the formals declared, then the
formals need not be specified in the generic map.

Generic map statements are used within component instantiation statements. (See
Section 4.11.6, "Component,” for more information about component
instantiation statements.)

When using association pairs (formals being specified in the generic map), the
user can omit the specification of certain generics if those generics have defaults
defined for them in the component declaration.
Warp Reference Manual 167

VHDL

4

Example:

u0: MADD_SUB
generic map(lpm_width => myOutput’length,

lpm_representation => lpm_unsigned,
lpm_direction => lpm_add,
lpm_hint => speed) ;

port map(dataA => myDataA, dataB => myDataB,
cin => zero, add_sub => one,
result => myOutput, cout => open,
overflow => open) ;

The above example instantiates an add/sub component defined in the LPM
library supplied with Warp. In the instantiation, the Madd_sub LPM modules is
being configured as an adder only without a carry-in. The carry-out or the
overflow outputs are not being used.

Since the Madd_sub moduled defined in the LPM library provided a default for
lpm_hint (speed), this association could have been omitted in the generic map.
The very first generic lpm_width has no default value, however, and must be
specified. The choice of what can be omitted and what has to be defined depends
on the component declaration.

Using positional association, the same example could have been written as

u0: MADD_SUB
generic map(myOutput’length, lpm_unsigned,

lpm_add, speed) ;
port map(myDataA,myDataB, zero, one,

myOutput, open, open) ;

Cypress recommends using the name association method instead of positional
association for both port maps and generic maps. In general, name association is a
lot more readable, less error prone, and insulates the code from changes to lower
level components to a certain extent.

4.11.19 Process

A process statement is a concurrent statement that defines a behavior to be
executed when that process becomes active. The behavior is specified by a series
of sequential statements executed within the process.
168 Warp Reference Manual

VHDL

4

[label :] process [(sensitivity_list)]
[process_declarative_part]
begin

sequential_statement
[; sequential_statement ...];

end process [label];

process_declarative_part ::=
function_declaration
| function_body
| type declaration
| subtype declaration
| constant declaration
| variable declaration
| attribute specification

sequential_statement ::=
wait_statement
| signal_assignment_statement
| variable_assignment_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

A process which is executing is said to be active; otherwise, the process is said to
be suspended. Every process in the VHDL description may be active at any time.
All active processes are executed concurrently with respect to simulation time.

Processes can be activated in one of two ways: by means of a WAIT statement or
by means of a sensitivity list (a list of signals enclosed in parentheses appearing
after the process keyword).

When a process includes a WAIT statement, the process becomes active when the
value of the clock signal goes to the appropriate value (‘0’ or ‘1’).

When a process includes a sensitivity list, the process becomes active when one or
more of the signals in the list changes value.
Warp Reference Manual 169

VHDL

4

Example:

process (s, insig) begin
for i in 0 to 7 loop

outsig(i)<=barrel_mux8(i,s,insig);
end loop;

end process;

The example above shows a process that executes whenever activity is sensed on
either of two signals, s or insig .

4.11.20 Signal

A signal is a pathway along which information passes from one component in a
VHDL description to another. Signals are also used within components to pass
values to other signals, or to hold values.

Signal D eclar ation
signal name [, name ...]: type ;

Signal Assignment)
signal_name <= expression

[when condition [else expression]];

Signals must be declared before they can be used. Declaring a signal gives it a
name and a type. Signal declarations often appear as part of port or component
declarations.

To assign a value to a signal, replace its current value with the value of some
expression of the same type as the signal, using the signal name and the "<="
operator.

The user may also specify a condition under which the replacement is to be made,
as well as an alternative value for the signal if the condition is not met. This form
of the signal assignment statement uses the "when" and "else" keywords.

Example:

(Signal Declaration examples)

signal c0,c1,cin1,cin2:std_logic;
170 Warp Reference Manual

VHDL

4

This example declares four signals (c0 , c1 , cin1 , and cin2), each of type
std_logic .

type State is (s1, s2, s3, s4, s5);
signal StVar : State;

This example declares an enumerated type named State , with five possible
values. It then declares a signal named StVar of type State . Thus, StVar can
have values s1 , s2 , s3 , s4 , or s5 .

(Unconditional Signal Assignment examples)

c_in <= '1';

This example sets a variable of type std_logic named c_in to ‘1’.

StVar <= s1;

This example assigns the value s1 to a signal named StVar . Presumably, StVar
is a signal of some enumerated type, having s1 as one of its possible values.

(Conditional Signal Assignment example)

c_in2 <= '1' when (stvar=s1) OR (stvar=s2) else '0';

The above example illustrates the use of conditional signal assignment. Signal
c_in2 is assigned one value if the specified conditions are met; otherwise, it is
assigned a different value.

4.11.21 Subprograms

Subprograms are sequences of declarations and statements that can be invoked
repeatedly from different parts of a VHDL description. VHDL includes two kinds
of subprograms: procedures and functions.

Procedure Declaration
procedure designator [(formal-parameter-list)];

Procedure Body
procedure designator [(formal-parameter-list)] is

[declarations]
begin

{ sequential-statement ;}
end [designator];
Warp Reference Manual 171

VHDL

4

Function Declaration
function designator [(formal-parameter-list)]

return type_mark ;

type_mark ::= type_name | subtype_name

Function Body
function designator [(formal-parameter-list)]

return type_mark is
[declarations]

begin
{ sequential-statement ;}

end [designator];

A subprogram is a set of declarations and statements that can be used repeatedly
from many points within a VHDL description.

There are two kinds of subprograms in VHDL: procedures and functions.
Procedures may return zero or more values. Functions always return a single
value. In practice, procedures are most often used to sub-divide a large behavioral
description into smaller, more modular sections. Functions are most often used to
convert objects from one data type to another or to perform frequently needed
computations.

VHDL allows the user to declare a subprogram in one part of a VHDL description
while defining it in another. Subprogram declarations contain only interface
information: name of the subprogram, interface signals, and return type (for
functions). The subprogram body contains local declarations and statements, in
addition to the interface information.

Function calls are expressions; the result of a function call is always assigned to a
signal or variable, or otherwise used in a larger statement (e.g., as a parameter to
be passed to a procedure call). Procedure invocations, by contrast, are entire
statements in themselves.

In both procedures and functions, actual and formal parameters may use
positional association or named association.

To use positional association, list the parameters to be passed to the subprogram
in the same order that the parameters were declared, without naming the
parameters.
172 Warp Reference Manual

VHDL

4

To use named association, give the formal parameter (the name shown in the
subprogram declaration) and the actual parameter (the name passing to the
subprogram) within the procedure invocation or function call, linking the formal
and actual parameters with the “=>” operator. In named association, parameters
can be listed in any order.

Example:

Consider a procedure, whose declaration is shown below, that takes three signals
of type std_logic as input parameters:

procedure crunch(signal sig1,sig2,sig3:in std_logic);

Then, the invocation

crunch(trex,raptor,spitter);

uses positional association to map signal trex to sig1 , signal raptor to sig2 ,
and signal spitter to sig3 . You could use named association in the following
procedure invocation, however, and get the same result:

crunch(sig2=>raptor,sig3=>spitter,sig1=>trex);

More information about procedures and functions is included on the following
pages.

4.11.21.1 Procedures

Procedures describe sequential algorithms that may return zero or more values.
Procedures are most frequently used to decompose large behavioral descriptions
into smaller, more modular sections, which can be used by many processes.

Procedure parameters may be constants, variables, or signals, and their modes
may be in, out, or inout. Unless otherwise specified, a parameter is by default a
constant if it is of mode in, and a variable if it is of mode out or inout.

In general, procedures can be used both concurrently (outside of any process) and
sequentially (inside a process). If any of the procedure parameters are variables,
however, the procedure can only be used sequentially (since variables can only be
defined inside a process). Any variables declared inside a procedure cease to exist
when the procedure terminates.

A procedure body can contain a wait statement, while a function body cannot;
however, a process that calls a procedure with a wait statement in it cannot have a
sensitivity list. (Processes can’t be sensitive to signals and made to wait
simultaneously.)
Warp Reference Manual 173

VHDL

4

4.11.21.2 Functions

Functions describe sequential algorithms that return a single value. Their most
frequent uses are: (1) to convert objects from one data type to another; and (2) as
shortcuts to perform frequently used computations.

Function parameters must be of mode in and must be signals or constants. If no
mode is specified for a function parameter, the parameter is interpreted as having
mode in.

A function body cannot contain a wait statement. (Functions are only used to
compute values that are available instantaneously.)

Any variables declared inside a function cease to exist when the function
terminates (i.e., returns its value).

One common use of functions in VHDL is to convert objects from one data type to
another. Warp provides several conversion functions in the various packages for
type conversions (integer to vector, vector to integer etc.). Functions can also be
used to overload operators or perform simple combinatorial functions.

Example:

function count_ones(vec1:std_logic_vector)
return integer is

-- returns the number of ‘1’ bits in a std_logic vector
variable temp:integer:=0;
begin

for i in vec1’low to vec1’high loop
if vec1(i) = ‘1’ then

temp := temp+1;
end if;

end loop;
return temp;

end count_ones;

This function counts the number of ‘1’s in a vector.

4.11.22 Type

In VHDL, objects are anything that can hold a value. Signals, constants, or
variables are common objects. All VHDL objects have a type, which specifies the
kind of values that the object can hold.
174 Warp Reference Manual

VHDL

4

Enumerated Type Declaration
type name is (value [, value ...]);

Subtype Declaration
subtype name is base_type

[range { lower_limit to upper_limit
| upper_limit downto lower_limit }];

Vector Declaration
subtype name is std_logic_vector

 (lower_limit to upper_limit
| upper_limit downto lower_limit);

Record Declaration
type name is record
 name: type ;

[name : type ;...]
end record;

Warp has the following pre-defined types:

• integer: VHDL allows each implementation to specify the range of the
integer type differently, but the range must extend from at least -(2**31-1)
to +(2**31-1), or -2147483648 to +2147483647. Only variables (not signals)
can have type integer.

• boolean: an enumerated type, consisting of the values "true" and "false";

• std_logic: an enumerated type, consisting of the values '0','1', ‘Z’, ‘-’.
std_logic in its strictest definition also has values of ‘H’, ‘L’, ‘U’, ‘X’ and
‘W’ which should not be used in VHDL that is intended for synthesis.

• character: an enumerated type, consisting of one literal for each of the 128
ASCII characters. The non-printable characters are represented by two or
three-character identifiers, as follows: NUL, SOH, STX, ETX, EOT, ENQ,
ACK, BEL, BS, HT, LF, VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3, DC4,
NAK, SYN, ETB, CAN,EM, SUB, ESC, FSP, GSP, RSP, and USP.

VHDL objects can take other, user-defined, types as well. Possibilities include:

• enumerated types: This type has values specified by the user. A common
example is a state variable type, where the state variable can have values
labeled state1, state2, state3, etc.
Warp Reference Manual 175

VHDL

4

• sub-range types: This type limits the range of a larger base type (such as
integers) to a smaller set of values. Examples would be positive integers,
or non-negative integers from 0 to 100, or printable ASCII characters.

• arrays (especially vectors): This type specifies a collection of elements of a
single base type. A commonly used example is the std_logic_vector type,
declared in the std_logic_1164 package from IEEE, which denotes an
array of std_logic bits.

• records: This type specifies a collection of elements of possibly differing
types.

Enumerated Type Declaration Example
type sigstates is (nsgo, nswait, nswait2,
 nsdelay, ewgo, ewwait, ewwait2, ewdelay);

This example declares an enumerated type and lists eight possible values for it.

Sub-range Type Declaration Example
type column is range (1 to 80);type row is

range (1 to 24);

The above examples declare two new sub-range integer types, column and row .
Legal values for objects of type column are integers from 1 to 80, inclusive. Legal
values for objects of type row are integers from 1 to 24, inclusive.

Vector Type Declaration Example
subtype vec8 is std_logic_vector(0 to 7);
signal insig, outsig : vec8;
.
.
insig <= "00000010";
.
.
outsig<=insig(2 to 7) & insig(0 to 1);

The above example declares a vector type called vec8 . It then declares two
signals of type vec8 , insig and outsig . The signal assignment statement that
concludes the example left-shifts insig by two places. (Outsig then contains the
value "00001000".)
176 Warp Reference Manual

VHDL

4

Record Type Declaration Example
subtype vec5 is std_logic_vector(1 to 5);
-- define a record type containing a 5-bit vector
-- and a single bit
type arec is record

abc:vec5;
def:std_logic;
end record;

-- define a type containing
-- an array of five records
type twodim is array (1 to 5) of arec;
-- now define a couple of signals
signal v:twodim;
signal vrec:arec;
.
.
-- in record 1 of v, set array field to all 0's
v(1).abc <= "00000";

-- in record 2 of v, set first three bits to 0's,
-- others to 1's
v(2).abc <= ('0', '0', '0', others => '1');

-- set fifth bit in array within record #5 to 0.
v(5).abc(5) <= '0';

-- set bit field within record to 1
vrec.def <= '1';

-- set 3rd bit within vrec's array to 1
vrec.abc(3) <= '1';

The example above defines a record type and a type consisting of an array of
records. The example then demonstrates how to assign values to various elements
of these arrays and records.

4.11.23 USE

The USE statement makes items declared in a package visible inside the current
design unit. A design unit is an entity declaration, a package declaration, an
architecture body, or a package body.

use name {, name};
Warp Reference Manual 177

VHDL

4

Example:

use work.cypress.all;
use work.rtlpkg.all;
use work.brl4pkg.all;

The example above makes the items declared in the specified packages available
for use in the design unit in which the use statements are contained.

Note – The scope of a USE statement extends only to the design
unit (entity, architecture, or package) that it immediately
precedes.

4.11.24 Variable

A variable is a VHDL object (similar to a signal) that can hold a value.

Variable de claration
variable name [, name ...]: type [:= expression];

Variable assignment
signal_name <= expression ;

Variables differ from signals in that variables have no direct analogue in
hardware. Instead, variables are simply used as indices or value-holders to
perform the computations incidental to higher-level modeling of components.

Example:

function admod(i,j,max:integer) return integer is
variable c:integer;
begin
c:=(i+j) mod (max+1);
return c;
end admod;

The function in the example above declares a variable c as a value-holder for a
computation, then uses it and returns its value in the body of the function.
178 Warp Reference Manual

VHDL

4

4.11.25 Wait

The WAIT statement suspends execution of a process until the specified condition
becomes true.

wait until [condition];

A WAIT statement, if used, must appear as the first sequential statement inside a
process.

Example:

wait until clk='1';

The example above suspends execution of the process in which it is contained
until the value of signal clk goes to ‘1’.
Warp Reference Manual 179

VHDL

4

180 Warp Reference Manual

Chapter 5
5

LPM

LPM

5

5.1 Introduction

This chapter provides necessary information about each component in the Warp
LPM system libraries.

For each component, the following information is given:

• a diagram of the component’s symbol, as instantiated on a schematic

• a listing of the VHDL entity declaration for the component. This
information is useful for determining the order, direction, and type of
each port when instantiating the component in a VHDL file.

• a description of the functionality of the component

The chapter contains the following sections:

• Section 5.2 - LPM Modules

• Section 5.3 - Other Cypress Modules

• Section 5.4 - Cypress Exceptions to LPM Standard

• Section 5.5 - Hints and Techniques

To use any of the components described in this chapter within a VHDL
description, include the following line in the VHDL file, immediately above the
entity and architecture declarations:

use work.lpmpkg.all;

In the description portion of the component definitions, the following
conventions apply:

Port names are identified by: result
Generics are identified by: lpm_width
Values of generics are identified by: lpm_logical

Many of the components in this library have ports that can be selected or
deselected in the symbol. If the port is deselected, it will not show up on the
symbol but will be netlisted to its default value. If these components are
implemented with VHDL structural code, those ports must be both included in
the port map and connected to a ‘0’ or ‘1’ if the functionality that each particular
port allows is not needed.
182 Warp Reference Manual

LPM

5

5.2 LPM Modules

5.2.1 MCNSTNT

Module Constant Symbol

Entity Descri ption

Description
The result output is a vector lpm_width bits long representing the binary value of
lpm_cvalue.

The lpm_hint value is not used in the architecture.

[7:0]

CONST

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_CVALUE=0[7:0]

CONST

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_CVALUE=0

entity Mcnstnt is
generic(lpm_width : positive;

lpm_cvalue : string;
lpm_hint : goal_type);

port(result : out std_logic_vector
((lpm_width-1) downto 0));

end Mcnstnt;
Warp Reference Manual 183

LPM

5

5.2.2 MINV

Module Inverter Symbol

Entity Descri ption

Description
result <= NOT data;

This component represents an expandable inverter. Its size is determined by
lpm_width.

The lpm_hint value is not used in the architecture.

/8 LPM_HINT=SPEED

LPM_WIDTH=8

/8 LPM_HINT=SPEED

LPM_WIDTH=8

entity Minv is
generic(lpm_width : positive;

lpm_hint : goal_type);
port(data : in std_logic_vector

((lpm_width-1) downto 0);
result : out std_logic_vector

((lpm_width-1) downto 0));
end Minv;
184 Warp Reference Manual

LPM

5

5.2.3 MAND

Module AND Symbol

Entity Descri ption

Description
for i in 0 to (lpm_width-1) :
resulti <= data0i AND data1i AND ... data[lpm_size-1]i

This component represents an array of lpm_width AND gates each having lpm_size
inputs.

The generics lpm_data_pol and lpm_result_pol are used to select the polarity of each
bit of their respective ports. The position of a bit in the string is the same as it is in
the port vector with a ‘1’ indicating a non-inverted port while a ‘0’ represents an
inverted one. If the generic is not present, the entire port is non-inverted. Access
to each bit of each port is available only from VHDL; the schematic GUI allows
polarity selection of the entire port only.

The lpm_hint value is not used in the architecture.

LPM_SIZE=4/8

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_SIZE=4/8

LPM_WIDTH=8

LPM_HINT=SPEED

entity Mand is
generic(lpm_width : positive;

lpm_size : positive;
lpm_hint : goal_type);
lpm_data_pol : string;
lpm_result_pol : string);

port(data : in std_logic_vector
(((lpm_width*lpm_size)-1)
downto 0);

result : out std_logic_vector((lpm_width-1)
downto 0));

end Mand;
Warp Reference Manual 185

LPM

5

5.2.4 MOR

Module OR Symbol

Entity Descri ption

Description
for i in 0 to (lpm_width-1) :
resulti <= data0i OR data1i OR ... data[lpm_size-1]i

This component represents an array of lpm_width OR gates each having lpm_size
inputs.

The generics lpm_data_pol and lpm_result_pol are used to select the polarity of each
bit of their respective ports. The position of a bit in the string is the same as it is in
the port vector with a ‘1’ indicating a non-inverted port while a ‘0’ represents an
inverted one. If the generic is not present, the entire port is non-inverted. Access
to each bit of each port is available only from VHDL; the schematic GUI allows
polarity selection of the entire port only.

The lpm_hint value is not used in the architecture.

LPM_SIZE=4/8

LPM_HINT=SPEED

LPM_WIDTH=8

LPM_SIZE=4/8

LPM_HINT=SPEED

LPM_WIDTH=8

entity Mor is
generic(lpm_width : positive;

lpm_size : positive;
lpm_hint : goal_type;
lpm_data_pol : string;
lpm_result_pol : string);

port(data : in std_logic_vector
(((lpm_width*lpm_size)-1)
downto 0);

result : out std_logic_vector((lpm_width-1)
downto 0));

end Mor;
186 Warp Reference Manual

LPM

5

5.2.5 MXOR

Module Exclusive-OR Symbol

Entity Descri ption

Description
for i in 0 to (lpm_width-1) :
resulti <= data0i XOR data1i XOR ... data[lpm_size-1]i

This component represents an array of lpm_width Exclusive-OR gates each having
lpm_size inputs.

The generics lpm_data_pol and lpm_result_pol are used to select the polarity of each
bit of their respective ports. The position of a bit in the string is the same as it is in
the port vector with a ‘1’ indicating a non-inverted port while a ‘0’ represents an
inverted one. If the generic is not present, the entire port is non-inverted. Access
to each bit of each port is available only from VHDL; the schematic GUI allows
polarity selection of the entire port only.

The lpm_hint value is not used in the architecture.

LPM_SIZE=4/8

LPM_HINT=SPEED

LPM_WIDTH=8

LPM_SIZE=4/8

LPM_HINT=SPEED

LPM_WIDTH=8

entity Mxor is
generic(lpm_width : positive;

lpm_size : positive;
lpm_hint : goal_type;
lpm_data_pol : string;
lpm_result_pol : string);

port(data : in std_logic_vector
(((lpm_width*lpm_size)-1)
downto 0);

result : out std_logic_vector((lpm_width-1)
downto 0));

end Mxor;
Warp Reference Manual 187

LPM

5

5.2.6 MBUSTRI

Module Bus Tri-State Symbol

Entity Descri ption

Description

EnableDT EnableTR TriData Data Result

L L Hi-Z X Hi-Z

L H L X L (TriData)

L H H X H (TriData)

H L L (Data) L Hi-Z

H L H (Data) H Hi-Z

H H L (Data) L L (Data)

H H H (Data) H H (Data)

/8

/8

LPM_HINT=SPEED

LPM_WIDTH=8

entity Mbustri is
generic(lpm_width : positive;

lpm_hint : goal_type);
port(tridata : inout std_logic_vector((lpm_width-1)

downto 0);
data : in std_logic_vector((lpm_width-1)

downto 0);
enabletr : in std_logic;
enabledt : in std_logic;
result : out std_logic_vector((lpm_width-1)

downto 0));
end Mbustri;
188 Warp Reference Manual

LPM

5

Tridata plus either result or data must be present. If data is present, then
enabledt must be present; if result is present, then enabletr must be present.

If either enabletr or enabledt is ‘0’ is not used, the default value is ‘0’.

The lpm_hint value is not used in the architecture.
Warp Reference Manual 189

LPM

5

5.2.7 MMUX

Module Multi plexor Symbol

Entity Descri ption

Description

Selectlpm_widths-1 . . . Select1 Select0 Resulti

L L L L Datai0

L L L H Datai1

L L H L Datai2

L L H H Datai3

.

H Datai[lpm_size-1]

LPM_HINT=SPEED

LPM_WIDTHS=3

LPM_SIZE=8

LPM_WIDTH=4

/4

MUX

S=3

7
6
5
4

3
2
1
0

LPM_HINT=SPEED

LPM_WIDTHS=3

LPM_SIZE=8

LPM_WIDTH=4

/4

MUX

S=3

7
6
5
4

3
2
1
0

entity Mmux is
generic(lpm_width : positive;

lpm_size : positive;
lpm_widths : positive;
lpm_hint : goal_type);

port(data : in std_logic_vector
(((lpm_width*lpm_size)-1)
downto 0);

sel : in std_logic_vector
((lpm_widths-1) downto 0);

result : out std_logic_vector
((lpm_width-1) downto 0));

end Mmux;
190 Warp Reference Manual

LPM

5

Lpm_widths can be any value >= Log2(lpm_size), where lpm_size must be > 1.

The lpm_hint value is not used in the architecture.
Warp Reference Manual 191

LPM

5

5.2.8 MDECODE

Module Decoder Symbol

Entity Descri ption

Description

Enable Datalpm_width-1 . . . Data1 Data0
Eqlpm_width
High

L X X X X None

H L L L L Eq0

H L L L H Eq1

H L L H L Eq2

H

H H H H H Eqlpm_decodes-1

LPM_DECODES=7

LPM_WIDTH=3

DECODE

ENABLE

EQ[6:0]

DATA[2:0]

LPM_HINT=SPEED

LPM_DECODES=7

LPM_WIDTH=3

DECODE

ENABLE

EQ[6:0]

DATA[2:0]

LPM_HINT=SPEED

entity Mdecode is
generic(lpm_width : positive;

lpm_decodes : positive;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

enable : in std_logic;
eq : out std_logic_vector((lpm_decodes-1)

downto 0));
end Mdecode;
192 Warp Reference Manual

LPM

5

Enable is optional, and the default value is ’1’ if not used on the symbol.

There must be at lease 1 eq bit and can be no more than 2lpm_width (2lpm_width >=
lpm_decodes > 0).

If eqi is not connected or does not appear in the symbol, the selection of ’I’ will
result in all outputs being low.

The lpm_hint value is not used in the architecture.
Warp Reference Manual 193

LPM

5

5.2.9 MCLSHIFT

Module Combinatorial Logic Shifter Symbol

Entity Descri ption

Description
The result will be a vector lpm_width wide resulting from the input data vector
lpm_width wide shifted distance bits in the direction (1=right, 0=left) specified.
The size of the distance port is determined by the value of lpm_widthdist.

The type of shift is specified by lpm_shifttype as either lpm_logical (Default),
lpm_arithmetic, or lpm_rotate.

The sign bit is only extended for lpm_arithmetic and ’0’s are shifted in for
lpm_logical.

LPM_SHIFTTYPE=LPM_LOGI

LOGIC SHIFT

RESULT[7:0]

OVERFLOW

UNDERFLOW

DATA[7:0]

DISTANCE[2:0]

DIRECTION LPM_WIDTH=8

LPM_WIDTHDIST=3

LPM_HINT=SPEED

LOGIC SHIFT

RESULT[7:0]

OVERFLOW

UNDERFLOW

DATA[7:0]

DISTANCE[2:0]

DIRECTION

LPM_SHIFTTYPE=LPM_LOGICAL

LPM_WIDTH=8

LPM_WIDTHDIST=3

LPM_HINT=SPEEDLOGIC SHIFT

RESULT[7:0]

OVERFLOW

UNDERFLOW

DATA[7:0]

DISTANCE[2:0]

DIRECTION

LPM_SHIFTTYPE=LPM_LOGICAL

LPM_WIDTH=8

LPM_WIDTHDIST=3

LPM_HINT=SPEED

entity Mclshift is
generic(lpm_width : positive;

lpm_widthdist : natural;
lpm_shifttype : shift_type;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

distance : in std_logic_vector((lpm_widthdist-1)
downto 0);

direction : in std_logic;
result : out std_logic_vector((lpm_width-1)

downto 0);
overflow : out std_logic;
underflow : out std_logic);

end Mclshift;
194 Warp Reference Manual

LPM

5

Overflow occurs when the shifted result exceeds the precision of the result port.
For lpm_logical values, overflow occurs when a ’1’ is shifted past resultn-1. For
lpm_arithmetic values, overflow occurs when the most significant bit (a ’1’ for
positive values or ’0’ for negative values) is shifted past resultn-1.

Underflow occurs when the shifted result contains no significant digits.

The direction, overflow, and underflow ports are optional, and the default value
for direction is ’0’ if it is not used on the symbol.

Lpm_widthdist must be <= log2(lpm_width).

The lpm_hint value is not used in the architecture.
Warp Reference Manual 195

LPM

5

5.2.10 MADD_SUB

Module Add/Su btract Symbol

Entity Descri ption

Description
result <= dataa + datab + cin when
(add_sub = ‘1’ or lpm_direction = lpm_add) else
dataa - datab - cin when
(add_sub = ‘0’ or lpm_direction = lpm_sub) else
null;

cout <= (dataalpm_width-1 AND datablpm_width-1)
OR (dataalpm_width-1 AND Clpm_width-2)
OR (datablpm_width-1 AND Clpm_width-2);

overflow <= Clpm_width-2 XOR Clpm_width-1

LPM_REPRESENTATION=LPM_UNSIGNED

LPM_WIDTH=8

ADD_SUB

ADD_SUB

CIN

COUT

DATAB[7:0]

DATAA[7:0]

RESULT[7:0]

LPM_DIRECTION=LPM_NO_TYP

LPM_HINT=SPEED

LPM_REPRESENTATION=LPM_UNSIGNED

LPM_WIDTH=8

ADD_SUB

ADD_SUB

CIN

COUT

DATAB[7:0]

DATAA[7:0]

RESULT[7:0]

LPM_DIRECTION=LPM_NO_TYP

LPM_HINT=SPEED

entity Madd_sub is
generic(lpm_width : positive;

lpm_representation : repre_type;
lpm_direction : arith_type;
lpm_hint : goal_type);

port(dataa : in std_logic_vector((lpm_width-1)
downto 0);

datab : in std_logic_vector((lpm_width-1)
downto 0);

cin : in std_logic;
add_sub : in std_logic;
result : out std_logic_vector

((lpm_width-1) downto 0);
cout : out std_logic;
overflow : out std_logic);

end Madd_sub;
196 Warp Reference Manual

LPM

5

It should be noted that overflow is not meaningful for unsigned numbers and
only lpm_unsigned is valid for lpm_representation. It is still included in the port
map in anticipation of future enhancements.

The cin, add_sub, cout, and overflow ports are optional. The default value for
add_sub is ’1’ if it is not used on the symbol, and the default value for cin is ’0’ if
it is not used on the symbol. This latter default may cause an unobvious and
perhaps undesired affect because of the definition of cin, which states:

• if OP = ADD then: low = +0, high = +1

• if OP = SUBTRACT then: low = -1, high = -0

This implies that if the cin port is not used and the component is adding, there is
no carry-in. When subtracting, however, there is always a borrow-in or the
subtractor will always be subtracting datab - 1 from dataa.

The lpm_direction generic, which is optional, can be either lpm_add (default) or
lpm_sub. If it is used, the add_sub port may not be.

The lpm_hint generic is applicable to all parts except C38x. The area version
implements a series of 2-bit ripple adders (subtractors) while the speed version
implements a series of 2-bit carry-look-ahead adders (subtractors).
Warp Reference Manual 197

LPM

5

5.2.11 MCOMPARE

Module Compare Symbol

Entity Descri ption

Description

alb <= ‘1’ when dataa < datab else ‘0’;
aeb <= ‘1’ when dataa = datab else ‘0’;
agb <= ‘1’ when dataa > datab else ‘0’;
ageb <= ‘1’ when dataa >= datab else ‘0’;
aleb <= ‘1’ when dataa <= datab else ‘0’;
aneb <= ‘0’ when dataa = datab else ‘1’;

All six output ports are individually optional, but at least one must be connected.

Only lpm_unsigned is valid for lpm_representation. The lpm_hint is only valid for
the pASIC380 family.

OMPARE

AGEB
AGB

ANEB
AEB

ALEB
ALB

AB[7:0]

AA[7:0]

LPM_REPRESENTATION=LPM_UNS

LPM_HINT=AREA

LPM_WIDTH=8

COMPARE

AGEB
AGB

ANEB
AEB

ALEB
ALB

DATAB[7:0]

DATAA[7:0] LPM_WIDTH=8

LPM_REPRESENTATION=LPM_UNSIGNED

LPM_HINT=AREA

entity Mcompare is
generic(lpm_width : positive;

lpm_representation : repre_type;
lpm_hint : goal_type);

port(dataa : in std_logic_vector((lpm_width-1)
downto 0);

datab : in std_logic_vector((lpm_width-1)
downto 0);

alb : out std_logic;
aeb : out std_logic;
agb : out std_logic;
ageb : out std_logic;
aleb : out std_logic;
aneb : out std_logic);

end Mcompare;
198 Warp Reference Manual

LPM

5

5.2.12 MMULT

Module Multiplier Symbol

Entity Descri ption

Description
result <= dataa * datab + sum;

If lpm_widthp < max((lpm_widtha + lpm_widthb),lpm_widths), then only the
lpm_widthp most significant bits are present.

Only lpm_unsigned is valid for lpm_representation.

The sum port is optional, as is its width generic lpm_widths, which has a default
value of ‘0’.

The lpm_hint value is not used in the architecture.

LPM_WIDTHS=8

TIPLIER

SULT[7:0]

7:0]

AB[3:0]

AA[3:0]

LPM_WIDTHA=4

LPM_WIDTHB=4

LPM_WIDTHP=8

LPM_REPRESENTATION=LPM_UN

LPM_HINT=SPEED

MULTIPLIER

RESULT[7:0]

SUM[7:0]

DATAB[3:0]

DATAA[3:0]

LPM_WIDTHP=8

LPM_HINT=SPEED

LPM_WIDTHS=8

LPM_WIDTHA=4

LPM_WIDTHB=4

LPM_REPRESENTATION=LPM_UNSIGNED

entity Mmult is
generic(lpm_widtha : positive;

lpm_widthb : positive;
lpm_widths : natural;
lpm_widthp : positive;
lpm_representation : repre_type;
lpm_hint : goal_type);

port(dataa : in std_logic_vector
((lpm_widtha-1) downto 0);

datab : in std_logic_vector
((lpm_widthb-1) downto 0);

sum : in std_logic_vector
((lpm_widths-1) downto 0);

result : out std_logic_vector
((lpm_widthp-1) downto 0));

end Mmult;
Warp Reference Manual 199

LPM

5

5.2.13 MCOUNTER

Module Counter Symbol

Entity Descri ption

LPM_SVALUE=

COUNTER

TESTOUT
TESTIN

TESTENAB

SLOAD
SCLR
SSET

ALOAD
ACLR
ASET

Q[7:0]

UPDOWN
CLK_EN
CNT_EN

DATA[7:0]

LPM_HINT=SPEED

LPM_PVALUE=

LPM_WIDTH=8

LPM_DIRECTION=LPM_NO_DIR

LPM_AVALUE=

LPM_SVALUE=

COUNTER

TESTOUT
TESTIN

TESTENAB

SLOAD
SCLR
SSET

ALOAD
ACLR
ASET

Q[7:0]

UPDOWN
CLK_EN
CNT_EN

DATA[7:0]

LPM_HINT=SPEED

LPM_PVALUE=

LPM_WIDTH=8

LPM_DIRECTION=LPM_NO_DIR

LPM_AVALUE=

entity Mcounter is
generic(lpm_width : positive;

lpm_direction : ctdir_type;
lpm_avalue : string;
lpm_svalue : string;
lpm_pvalue : string;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

clock : in std_logic;
clk_en : in std_logic;
cnt_en : in std_logic;
updown : in std_logic;
q : out std_logic_vector((lpm_width-1)

downto 0);
aset : in std_logic;
aclr : in std_logic;
aload : in std_logic;
sset : in std_logic;
sclr : in std_logic;
sload : in std_logic;
testenab : in std_logic;
testin : in std_logic;
testout : out std_logic);

end Mcounter;
200 Warp Reference Manual

LPM

5

Description

testout <= qlpm_width-1;

Aset will set q to the value of lpm_avalue if that generic is present, otherwise it will
set q to all ‘1’s. If the lpm_avalue is present, then aclr cannot be used. Aclr will set
the value of q to all ‘0’s. The same is true for sset and sclr with lpm_svalue. The
load ports (aload and sload) will set q to the value present on data. The clr is
dominant over the set if both are asserted simultaneously for both synchronous
and asynchronous operations.

Clock and q are the only required ports, all others are optional.
If cnt_en is not used on the symbol, its default value is ‘1’. The same is true for
updown. The default value for aset, aclr, aload, sset, sclr, and sload is ‘0’ if they
are not used on the symbol. If aload or sload are used, then there must be a data
port.

Testenab, testin and testout are optional; testenab and testin have a default
value of ‘0’ if they are not used on the symbol. Either all or none of the test ports
must be connected.

Lpm_direction can have values of lpm_up or lpm_down, and if it is used, the
updown pin cannot be used. The lpm_pvalue is unused in the architecture.

The lpm_direction generic can have values of lpm_up which implements an up
count only (q <= qprev + 1) or lpm_down which implements a down count only (q
<= qprev - 1).

Asynch
Control

Synch
Control clock cnt_en clk_

en
test-
enab

up-
down q

H L X X X X X Async. value.

L H L->H X H X X Sync. value.

L H L->H X L X X No change

H H X X X X X Undefined

L L L->H H L X X No change

L L L->H H H X U see 1pm_direction

L L L->H H H X H qprev +1

L L L->H H H X L qprev -1

L X L->H X X H X qi-1, q0 <= testin
Warp Reference Manual 201

LPM

5

5.2.14 MLATCH

Module Latch Symbol

Entity Descri ption

LATCH

TESTOUT
TESTIN

TESTENAB

ACLR
ASET

Q[7:0]
DATA[7:0]
GATE

LPM_WIDTH=8

LPM_AVALUE=

LPM_PVALUE=

LPM_HINT=SPEED

LPM_HINT=SPEED

LPM_WIDTH=8

LATCH

ACLR
ASET

Q[7:0]
DATA[7:0]
GATE LPM_AVALUE=

LPM_PVALUE=

entity Mlatch is
generic(lpm_width : positive;

lpm_avalue : string;
lpm_pvalue : string;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

gate : in std_logic;
q : out std_logic_vector((lpm_width-1)

downto 0);
aset : in std_logic;
aclr : in std_logic);

end Mlatch;
202 Warp Reference Manual

LPM

5

Description

Aset will set q to the value of lpm_avalue if that generic is present; otherwise, Aset
will set q to all ‘1’s. If the lpm_avalue is present, then aclr cannot be used. Aclr will
set the value of q to all ‘0’s.

Gate and q are the only required ports; all others are optional. If data is not used,
then aset or aclr must be used.

Testenab, testin and testout are not incorporated for this component. The
lpm_pvalue and lpm_hint are not used in the architecture.

datai gate aset aclr qi

X L L X qi

L H L L L

H H L L H

X X H L lpm_avaluei if
present else H

X X L H L

X X H H L
Warp Reference Manual 203

LPM

5

5.2.15 MFF

Module Flip-Flop Symbol

Entity Descri ption

LPM_SVALUE=

TFF

TESTOUT
TESTIN

TESTENAB

SLOAD
SCLR
SSET

ALOAD
ACLR
ASET

Q[7:0]

ENABLE

DATA[7:0]

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_FFTYPE=LPM_TFF

LPM_AVALUE=

LPM_PVALUE=

LPM_SVALUE=

TFF

TESTOUT
TESTIN

TESTENAB

SLOAD
SCLR
SSET

ALOAD
ACLR
ASET

Q[7:0]

ENABLE

DATA[7:0]

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_FFTYPE=LPM_TFF

LPM_AVALUE=

LPM_PVALUE=

entity Mff is
generic(lpm_width : positive;

lpm_fftype : fflop_type;
lpm_avalue : string;
lpm_svalue : string;
lpm_pvalue : string;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

clock : in std_logic;
enable : in std_logic;
q : out std_logic_vector((lpm_width-1)

downto 0);
aset : in std_logic;
aclr : in std_logic;
aload : in std_logic;
sset : in std_logic;
sclr : in std_logic;
sload : in std_logic;
testenab : in std_logic;
testin : in std_logic;
testout : out std_logic);

end Mff;
204 Warp Reference Manual

LPM

5

Description

testout <= qlpm_width-1;

Aset will set q to the value of lpm_avalue if that generic is present; otherwise Aset
will set q to all ’1’s. If the lpm_avalue is present, then aclr cannot be used. Aclr will
set the value of q to all ’0’s. The same is true for sset and sclr with lpm_svalue. The
load ports (aload and sload) will set q to the value present on data. The clr is
dominant over the set if both are asserted simultaneously for both synchronous
and asynchronous operations.

The required ports on this component are data, clock, and q, all others are
optional.

Testenab, testin and testout are optional; testenab and testin have a default
value of ’0’ if they are not used on the symbol. Either all or none of the test ports
must be connected.

The lpm_pvalue and lpm_hint are not used in the architecture.

Asynch
Control

Synch
Control datai clock enable testenab qi

H X X X X L Async value

L H X L->H L L No change

L H X L->H H L Sync value

L L X L->H X L No change

L L L L->H H L

qi for
lpm_fflop_type =
lpm_tff
datai for
lpm_fflop_type=
lpm_dff

L L H L->H H L

datai XOR qi for
lpm_fflop_type =
lpm_tff
datai for
lpm_fflop_type=
lpm_dff

L L X L->H H H qi-1, q0 <= testin
Warp Reference Manual 205

LPM

5

5.2.16 MSHFTREG

Module Shift Regis ter Symbol

Entity Descri ption

LPM_SVALUE=

SHIFT LEFT REG

TESTOUT
TESTIN

TESTENAB

SCLR
SSET
LOAD

ACLR
ASET

DATA[7:0]

SHIFTOUT

SHIFTIN

Q[7:0]

ENABLE

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_DIRECTION=LPM_LEFT

LPM_AVALUE=

LPM_PVALUE=

LPM_SVALUE=

SHIFT LEFT REG

TESTOUT
TESTIN

TESTENAB

SCLR
SSET
LOAD

ACLR
ASET

DATA[7:0]

SHIFTOUT

SHIFTIN

Q[7:0]

ENABLE

LPM_WIDTH=8

LPM_HINT=SPEED

LPM_DIRECTION=LPM_LEFT

LPM_AVALUE=

LPM_PVALUE=

entity Mshftreg is
generic(lpm_width : positive;

lpm_direction : shdir_type;
lpm_avalue : string;
lpm_svalue : string;
lpm_pvalue : string;
lpm_hint : goal_type);

port(data : in std_logic_vector((lpm_width-1)
downto 0);

clock : in std_logic;
enable : in std_logic;
shiftin : in std_logic;
load : in std_logic;
q : out std_logic_vector((lpm_width-1)

downto 0);
shiftout : out std_logic;
aset : in std_logic;
aclr : in std_logic;
sset : in std_logic;
sclr : in std_logic;
testenab : in std_logic;
testin : in std_logic;
testout : out std_logic);

end Mshftreg;
206 Warp Reference Manual

LPM

5

Description

shiftout <= qlpm_width-1;
testout <= qlpm_width-1;

Aset will set q to the value of lpm_avalue if that generic is present; otherwise Aset
will set q to all ’1’s. If the lpm_avalue is present, then aclr cannot be used. Aclr will
set the value of q to all ’0’s. The same is true for sset and sclr with lpm_svalue. The
clr is dominant over the set if both are asserted simultaneously for both
synchronous and asynchronous operations.

The only required port on this component is clock, all others are optional. If
enable is not used on the symbol, its default value is ’1’. The default value for
aset, aclr, aload, sset, sclr, and sload is ’0’ if they are not used on the symbol. If
aload or sload are used, then there must be a data port. If data is not used, then
aset or aclr must be used.

Testenab and testin have a default value of ’0’ if they are not used on the symbol.
Either all or none of the test ports must be connected.

The lpm_pvalue and lpm_hint are not used in the architecture.

Asynch
Control

Synch
Control clock enable load testenab qi

H X X X X L Async value

L H L->H L X L No change.

L H L->H H X L Sync value.

L L L,H X X L No change.

L L L->H H H L datai

L L L->H H L L qi-1, q0 <= shif-
tin

L L L->H H X H qi-1, q0 <= testin
Warp Reference Manual 207

LPM

5

5.3 Other Cypress Modules

To use any of the components described in this chapter within a VHDL
description, include the following line in the VHDL file, immediately above the
entity and architecture declarations:

use work.lpmpkg.all;

In the Description portion of the component definitions, the following
conventions apply:

Port names are identified by: result
Generics are identified by: lpm_width
Values of generics are identified by: lpm_logical

Many of the components in this library have ports that can be selected or
deselected in the symbol. If the port is deselected, it will not show up on the
symbol but will be netlisted to its default value. If these components are
implemented with VHDL structural code, those ports must be both included in
the port map and connected to a ’0’ or ’1’ if the functionality that each particular
port allows is not needed.

All examples of the entities are presented in std_logic form.
208 Warp Reference Manual

LPM

5

5.3.1 MBUF

Module Buffer Symbol

Entity Descri ption

Description
result <= data;

This component represents an expandable buffer. Its size is determined by
lpm_width.

The lpm_hint value is not used in the architecture.

LPM_WIDTH=8

/8 LPM_HINT=SPEED

LPM_WIDTH=8

/8 LPM_HINT=SPEED

entity Mbuf is
generic(lpm_width : positive;

lpm_hint : goal_type);
port(data : in std_logic_vector((lpm_width-1)

downto 0);
result : out std_logic_vector((lpm_width-1)

downto 0));
end Mbuf;
Warp Reference Manual 209

LPM

5

5.3.2 MGND

Module Ground Symbol

Entity Descri ption

Description

x <= (OTHERS => ‘0’);

This component represents an expandable ground. Its size is determined by
lpm_width.

8

GND

LPM_WIDTH=8
8

GND

LPM_WIDTH=8

entity Mbuf is
generic(lpm_width : positive);
port(x : out std_logic_vector((lpm_width-1)

downto 0));
end Mbuf;
210 Warp Reference Manual

LPM

5

5.3.3 MVCC

Module VCC Symbol

Entity Descri ption

Description

x <= (OTHERS => ‘1’);

This component represents an expandable VCC. Its size is determined by
lpm_width.

8

VCC
LPM_WIDTH=88

VCC
LPM_WIDTH=8

entity Mvcc is
generic(lpm_width : positive);
port(x : out std_logic_vector((lpm_width-1)

downto 0));
end Mvcc;
Warp Reference Manual 211

LPM

5

5.3.4 IN

Module In Marker

Description
This is an expandable INPUT marker to be used on signals that have mode of IN.
Its size is determined by lpm_width.

8
LPM_WIDTH=8

8
LPM_WIDTH=8
212 Warp Reference Manual

LPM

5

5.3.5 OUT

Module Out Marker

Description
This is an expandable OUTPUT marker to be used on signals that have mode of
OUT. Its size is determined by lpm_width.

8
LPM_WIDTH=8

8
LPM_WIDTH=8
Warp Reference Manual 213

LPM

5

5.3.6 TRI

Module Three-state Marker

Description
This is an expandable THREE-STATE marker to be used on signals that have
mode of INOUT. Its size is determined by lpm_width.

8
LPM_WIDTH=8

8
LPM_WIDTH=8
214 Warp Reference Manual

LPM

5

5.4 Cypress Exc eptions to LPM Standard

5.4.1 Which Options of LPM Do We Support?

The LPM specification is written so that many features can be implemented
without forcing all implementations to be identical. This feature is made possible
by using a large number of optional parameters and behaviors in the architectures
of the components.

The following is a summary of Cypress’ implementation of those options in the
LPM library:

• LPM_POLARITY -in Release 4.0, only the MAND, MOR, and MXOR will
have selectable polarity.

• LPM_HINT - this property is vendor unique and is used to specify a
synthesis guide. It can take the value of SPEED (default), AREA, or
COMBINATORIAL.

• LPM Values - the value properties used in the Cypress LPM library are
implemented as strings.

• Signed/Unsigned - the Cypress LPM library offers only
LPM_UNSIGNED types.

• Async operations - the exceptions for asynchronous operations are noted
by the fitter during compilation.

• Scan Test - all appropriate Cypress LPM library components will have the
scan test feature available. The only exception is the MLATCH
component.

• The following LPM components have no equivalent in the Cypress LPM
library:

• LPM_ABS

• LPM_RAM_DQ

• LPM_RAM_IO

• LPM_ROM

• LPM_TTABLE

• LPM_FSM
Warp Reference Manual 215

LPM

5

• LPM_INPAD

• LPM_OUTPAD

• LPM_BIPAD

5.5 Hints and Techniques

5.5.1 How to Best Use the LPM_HINT

The Cypress LPM library includes a few components that may be implemented
with the optional LPM_HINT attribute. This attribute can be set to the values of
SPEED, AREA and COMBINATORIAL. Although this “hint” is used in many
ways for module generation, there are only three components affected by it in the
LPM library. Those components are:

• MADD_SUB for CPLDs

• MCOUNTER for CPLDs and pASICs

• MCOMPARE for pASICs

The following sections describe the differences obtained for area and speed for
example design components.

The devices used for these examples were the CY7C375 for the CPLD versions
and CY7C386A for the FPGA version.

Note – These values are only a guideline and are extremely
dependent upon the particular implementation. Any circuitry
added before or after these components will affect the synthesis
of the component.
216 Warp Reference Manual

LPM

5

5.5.2 MADD_SUB

Table 5-1 Resul ts for CY7C375

Design
Name

AREA SPEED
Comments

PTs MCs Passes PTs MCs Passes

ADD1/
SUB1 7 2 1 7 2 1

Designs
include
carry-in &
carry-out

ADD4/
SUB4 46 6 2 46 8 2

ADD8/
SUB8 92 12 4 95 18 3

ADD16/
SUB16 184 24 8 205 38 3

ADD24/
SUB24 276 36 12 331 58 3

ADD32/
SUB32 368 48 16 473 78 3
Warp Reference Manual 217

LPM

5

5.5.3 MCOUNTER

Table 5-2 Results for CY7C375

Design
Name

AREA SPEED
Comments

PTs MCs Passes PTs MCs Passes

UPCNTR1/
DNCNTR1

Same as SPEED

4 2 1

Designs
include
load,
enable, and
carry-out.

* Down
counters
use one
fewer
product
term.

UPCNTR4/
DNCNTR4 13* 5 1

UPCNTR8/
DNCNTR8 25* 9 1

UPCNTR16/
DNCNTR16 49* 17 1

UPCNTR24/
DNCNTR24 73* 25 1

UPCNTR32/
DNCNTR32 98* 34 2 97* 33 1
218 Warp Reference Manual

LPM

5

5.5.4 MCOMPARE

Table 5-3 Results for CY7C386A

Design
Name

AREA SPEED

Comments
Logic
Cells
(whole/
partial)

Critical
Path

Logic
Cells
(whole/
partial)

Critical
Path

EQCMP2

Same as SPEED

2/1 2

Equal to
Compare

EQCMP4 3/1 2

EQCMP8 5/1 2

EQCMP16 10/1 3

EQCMP24 14/0 3

EQCMP32 19/1 3

MGCMP2 3/0 2 1/0 1

Greater
Than
Compare

MGCMP4 5/0 4 4/1 2

MGCMP8 9/0 5 9/1 3

MGCMP16 17/0 8 20/0 3

MGCMP24 25/0 10 32/1 4

MGCMP32 33/0 13 44/1 4

EMCMP2 5/1 2 3/1 2

Greater
Than or
Equal to
Compare

EMCMP4 8/1 4 6/0 2

EMCMP8 14/1 4 14/2 3

EMCMP16 27/1 8 30/1 3

EMCMP24 39/0 10 46/1 4

EMCMP32 52/1 13 63/2 4
Warp Reference Manual 219

LPM

5

5.5.5 MCOUNTER

The critical path data may change depending upon implementation, part selected
and device parameters. This data is to be used as a guide only and is not absolute.

Table 5-4 Results for CY7C386A

Design Name

AREA SPEED

Comments
Logic
Cells
(whole/
partial)

* Critical
Path (Q
to Q, ns)

Logic
Cells
(whole/
partial)

* Critical
Path (Q
to Q, ns)

UPCNTR1/
DNCNTR1 1/0 4.4 1/0 4.9

Designs
include
load,
enable,
and carry-
out.

UPCNTR4/
DNCNTR4 6/2 7.4 6/2 7.7

UPCNTR8/
DNCNTR8 13/3 10.6 13/1 8.4

UPCNTR16/
DNCNTR16 26/6 14.9 28/0 10.9

UPCNTR24/
DNCNTR24 38/7 19.3 45/1 13.6

UPCNTR32/
DNCNTR32 52/10 28.2 65/1 19.4

UPDN1 2/1 5.1 2/1 4.7

UPDN4 9/0 9.8 9/0 9.7

UPDN8 20/1 14.3 21/1 13.0

UPDN16 40/0 18.9 45/0 15.5

UPDN24 61/0 24.4 78/1 19.3

UPDN32 83/1 31.8 115/0 23.1
220 Warp Reference Manual

Chapter
 6
6

Report File

Report File

6

6.1 Introduction

This chapter provides an anatomy of the report file generated by Warp. The
report file generated by Warp has the same base name as the design VHDL file
but with an .rpt extension. Interpreting the report file is very important and can
help reduce the amount of time spent debugging designs.

A report file is generated for every file that Warp compiles. If a design is split up
among multiple files, the report file that will probably be most useful is the one
for the top level design.

The report file can be broken down into three main sections:

• Front End Compiler section

• Front End Synthesis and Optimization section

• CPLD/PLD Fitting section

The Front End sections are common for all devices. The Fitting section, however,
is only applicable to the CPLD/PLD families of devices. For pASIC, the Fitting is
more complex and is run by a separate tool called SpDE, which is more like a
place and route tool with a graphical user interface and various support tools of
its own. SpDE also appends information to the report file, which consists mostly
of the device PIN information and will not be described in this manual.

In conjunction with this section, see Appendix A, “Error Messages.”

6.2 Front End Compiler

Warp is essentially a combination of multiple tools that perform various
functions. They are run in the following order:

• front end (VHDLFE and TOVIF)

• synthesis and optimization (TOPLD)

• fitting (PLA2JED, MAX2JED or C37XFIT)

This section describes the VHDLFE and the TOVIF tools.

After the initial Copyright information is printed, the file being compiled is listed
along with the current set of options in effect. The first tool that runs on a design
is the VHDL parser (called VHDLFE). VHDLFE first associates the symbolic
VHDL library work with a given device. This is a very important step for
subsequent phases to produce optimal or correct implementations of the design
for the device being targeted. VHDLFE then parses the VHDL file and reports any
222 Warp Reference Manual

Report File

6

direct external references (libraries, packages, etc.) that are being made from the
current VHDL file.

VHDLFE’s (parser) main function is to parse or read the VHDL file and check for
syntax errors and a few semantic errors. A syntax check, which is strictly a
grammatical check of the VHDL, deals with the specification of the design. A
semantic check, on the other hand, deals with the meaning of the VHDL being
interpreted. Some semantic errors can be caught by the parser right away and are
thus reported by the VHDLFE program.

VHDLFE also reports one other important aspect of a design. VHDLFE detects all
datapath components of a design (essentially VHDL operators that perform math
or comparisons). If these messages do not appear and the design uses these
operators, then more than likely the user has his own implementations for these
operators or the user is NOT using the proper math libraries for device optimized
implementations of datapath operators (see Chapter 4, “VHDL”). Although these
messages about datapath operators are informational, the user should be
concerned if they do not appear when non-constant operations are in his design.

Once the VHDL has been found to be syntactically error free, the VHDL file goes
through high level synthesis, and the components of the VHDL file (packages,
functions, entities, architectures, etc.) are then converted to an intermediate
format (an expression tree) that can be translated into simple equations and
registers (RTL components and equations) in the next phase of Synthesis and
Optimization. The program that performs this functions called TOVIF, where VIF
is an acronym for “VHDL Intermediate Format”. When designs are composed of
multiple files and external references, it is important to note what files/directories
are being reported. A common error in compiling libraries is including multiple
files that define VHDL components with identical names. When this happens,
Warp only uses the last file that was compiled.
Warp Reference Manual 223

Report File

6

The following is an example of a Report File for this section:

| | | | | | |

 -| |-
 -| |-
 -| |-
 -| CYPRESS |-
 -| |-
 -| |- Warp VHDL Synthesis Compiler:Version 4 IR x49
 -| |- Copyright (C) 1991, 1992, 1993,
 |_______________| 1994, 1995, 1996 Cypress Semiconductor

| | | | | | |

==
Compiling: cpu.vhd
Options: -d c374 -fo -o2 cpu.vhd
==

vhdlfe V4 IR x49: VHDL parser
Sun Jan 21 11:33:35 1996

Library ‘work’ => directory ‘lc374’
Library ‘ieee’ => directory ‘c:\warp\lib\ieee\work’
Using ‘c:\warp\lib\ieee\work\stdlogic.vif’.
Using ‘c:\warp\lib\common\stdlogic\mod_gen.vif’.
cpu.vhd (line 209, col 47): Note: Substituting module ‘warp_cmp_2s_ss’ for ‘=’.
cpu.vhd (line 209, col 70): Note: Substituting module ‘warp_add_2s_ss’ for ‘+’.
cpu.vhd (line 211, col 48): Note: Substituting module ‘warp_add_1s1c_ss’ for ‘+’

vhdlfe: No errors.

tovif V4 IR x49: High-level synthesis
Sun Jan 21 11:34:01 1996

Using ‘c:\warp\lib\common\stdlogic\mod_gen.vif’.
Using ‘c:\warp\lib\common\stdlogic\fdec.vif’.
Using ‘c:\warp\lib\common\stdlogic\finc.vif’.

tovif: No errors.

6.3 Front End Synthesis and Optimization

The next phase the VHDL design file goes through is called “Synthesis and
Optimization”. The program that performs this function is called TOPLD. In this
phase, intermediate level constructs (like expression trees, sub-components) are
flattened and converted into their simplest forms (registers, equations, three-state
buffers, etc.). The exact form depends on the features provided by the device
being targeted.

One of the most important functions this phase performs is state machine
synthesis. State machines are typically specified in VHDL using enumerated
types and encoding schemes. For every state machine detected, its encoding is
printed.

Copyright and version information

File and options

Date and time of compilation

External references

Operator inferencing

High level synthesis
224 Warp Reference Manual

Report File
6

Since this phase also flattens any hierarchical components being referenced from
other VIF files, the report file includes this information. The following is an
example of a report file targeting a CPLD/PLD.

topld V4 IR x49: Synthesis and optimization
Sun Jan 21 11:35:17 1996

State variable ‘cpu_state’ is represented by a Bit_vector (0 to 1).
State encoding (sequential) for ‘sd_state’ is:

sreset := b”00” ;
idle := b”01” ;
add := b”10” ;
compare := b”11” ;

Using ‘c:\warp\lib\lc370\stdlogic\c370.vif’.

Alias Detection

Aliased 174 equations, 334 wires.

Circuit simplification

Circuit simplification results:

Deleted 100 equations/components.
Expanded 130 signals.
Turned 0 signals into soft nodes.
Maximum expansion cost was set at 10.

Optimization involves various steps. The “Alias Detection” stage looks for
redundant equations and simple wires and eliminates them from the system.
“Circuit Simplification” collapses intermediate signals into their fanout (also
called Virtual Substitution) and eliminates unused equations. During virtual
substitution, certain nodes could potentially become very large. When such a
condition is detected, it is made into a soft node (a node that remains in the
network), and the process continues. If soft nodes are created, they will appear in
the report file. If the Detailed Report file option is chosen in Galaxy, more
information will appear during Virtual Substitution and Alias Detection.

The process that follows after this stage depends on the architecture of the device
being targeted. See the following two sections for more information.

State variable, number of bits

State encoding

Optimization

Summary of optimization
Warp Reference Manual 225

Report File

6

6.4 pASIC Technology Mapping

TOPLD and SpDE perform different kinds of Optimization and Technology
Mapping, both of which are necessary to achieve good results. Technology
Mapping is the process of converting equations into a form that is supported by
the target architecture (in this case, pASIC).

For pASIC devices, additional optimization phases are performed by TOPLD.
They involve factoring and mux detection, but these phases are not reported in
the report file. When these kinds of optimizations are performed, however, they
may produce additional equations that may have to be deleted. If the Detailed
Report file option is chosen in Galaxy, more information may appear in the report
file. The goal of this kind of optimization is reducing the overall network size.

The final phase of TOPLD for pASIC devices involves PAD and BUFFER
generation in conjunction with producing a QDIF (a .qdf file) netlist for input to
SpDE.

Before PAD and BUFFER generation begins, important resources available for the
device are listed. First, the maximum available resources are listed. This may
change depending upon the exact device. Express Wires are wires capable of
higher drive strengths than other kinds of wires and are needed to use an INPUT
only pad. Clock pads can also connect to these Express Wires or to the clock
distribution tree which provides very low skew. Clock distribution trees connect
only to the Clock, Reset, and Preset terminals of a flip-flop. So, if a signal is used
both as a clock and in other combinatorial equations, that signal must use one of
the express wires to make that connection. If such a situation occurs, the report
file will indicate it.

To interpret the PAD and BUFFER generation portion of the report file, the user
must first be familiar with the features of the individual pASIC devices and the
way synthesis directives can be used to control the use of these features.
226 Warp Reference Manual

Report File

6

The following is an example of a report file using some of these resources:

Max resources.

 Express Wires = 4
 Clock PADS = 2
 Input PADS = 6

Critical resources used by design before PAD generation.

 Express Wires = 0
 Clock PADS = 0
 Input PADS = 0

--
Begin PAD Generation.
--
Created CLKPAD for signal ‘tclock’
 Above signal drives 66 Clocks, 0 Set/Resets. Total = 66
 And 4 other inputs (active low).
 Above signal consumed 1 express wire
Created CLKPAD for signal ‘xclock’
 Above signal drives 12 Clocks, 6 Set/Resets. Total = 18
Created HD1PADi for signal ‘resetn’
Above signal drives 0 Clocks, 60 Set/Resets, 0 other inputs. Total = 60
Created HD1PAD for signal ‘ad_25’
Above signal drives 0 Clocks, 0 Set/Resets, 14 other inputs. Total = 14

Input/Clock PAD resources unused

 Express Wires = 1
 Clock PADS = 0
 Input PADS = 4
--
Begin Buffer Generation.
--
[max_load = 13, fanout = 17] Created 1 buffers [Duplicate] for ‘cpu_en’
[max_load = 9, fanout = 17] Created 2 buffers [Normal] for ‘cpu_stateSBV_0’
[max_load = 9, fanout = 25] Created 2 buffers [Normal] for ‘cpu_stateSBV_1’

Primitives synthesized: 612
Primitives instantiated: 80

Total primitives: 692
Percentage synthesized: 88%

Muxes detected: 11

topld: No errors.

In the above example, tclock is being used by the design both as a clock which
connects directly to a flip-flop and as an input to a combinatorial signal (probably
as a product term clock). In a case like this, the report file indicates that the signal
tclock not only used a clock PAD but also used one express wire to connect the
other 4 inputs. The 4 other inputs, in this case also happen to be active low. Since
a clock PAD can produce either an active high or active low input, the software
indicates which of these inputs are actually used.

Max available resources

Resources used by user

Clock + comb. signal

Clock only input

Active high input

Active low input

Unused resources

Buffer generation

Final statistics

Pad generation
Warp Reference Manual 227

Report File

6

The signal xclock drives 12 clocks and 6 Set/Reset inputs (a hypothetical case).
Since all of these inputs drive a flip-flop directly, this signal only uses the clock
distribution tree.

The signal resetn drives 60 flip-flops but is active low. In this case, the report
file indicates that the active low input of the HDPAD was used. This is denoted
by the ‘i’. The last input ‘ad_25’ connects to 14 inputs and is active high. When
reporting HDPADS, the following convention is used.

HDnPAD[i]

where “n” is the number of HDPADSs that are paralleled and the optional “i”, as
described above, is used only if the active low output of the HDPAD is in use.

Note – When multiple HDPADs are paralleled to improve drive
strength, it still only uses one (1) express wire.

In the BUFFER generation phase, all buffers that Warp generates are listed. For
each signal for which buffers are generated, the name of the signal is listed, the
maximum loading is specified, and the fanout that it drives before buffer
generation is also listed. The number of buffers generated represents the number
of additional FRAGS used to create the buffers. For example, for the signal
cpu_en, only one additional FRAG was used because the strategy used for
buffer generation for this signal is Logic Duplication (Duplicate). The strategy can
either be user specified (via synthesis directives) or automatically determined by
Warp. The exact strategy used for this signal is also listed. Please refer to Chapter
3, “Synthesis Directives,” for more information on buffering strategies.

Finally, the last section of the report file prints the statistics of the design.
“Primitives Synthesized” is a count of the number of 2-input Nand-gate or 1-
selector muxes required to implement the design. “Primitives instantiated” is a
measure of the number of flip-flops and FRAGS instantiated by the design (some
of these can also come from operator inferencing). These numbers can be used as
a guide to the size of the design and do NOT represent the actual number of
pASIC Logic Cells required to implement the design. In general, however, the
higher these numbers are, the more Logic Cells will be required to represent the
design. The “Percentage synthesized” also indicates if any obvious improvements
can be made by tweaking the design. Typically, if this percentage is low, this
means that most of the design was probably entered or synthesized as
combinatorial equations, which means that a knowledgeable pASIC designer
could probably save some area or gain performance by using logic design
techniques. A large number indicates that the design is probably mostly flip-flops
228 Warp Reference Manual

Report File

6

or hand crafted designs consisting of FRAGs which means that although
improvement is still possible, it might be more difficult.

The “Muxes Detected” simply indicates how well Warp’s Mux-Detection
performed on this particular design.

Finally, the last line should indicate “No errors.” If any errors were detected, the
QDF output is NOT generated. The user should also aim to eliminate all
“Warnings.”

6.5 CPLD/PLD Fitting

6.5.1 Technology Mapping and Optimization

The last thing TOPLD does is to output a PLA file that is then processed by the
fitter. The fitter is really more than just a Place and Route tool. Its responsibilities
include optimizing and technology mapping the equations to reduce resource
utilization before actual Place and Route can begin.

The optimization phase is conducted in many phases depending upon the options
that are currently in effect and the nature of the design. Optimization is
conducted by two programs called DSGNOPT and MINOPT. DSGNOPT can be
considered as the decision maker and MINOPT as the optimizer.

The first phase of DSGNOPT reduces the design by removing any equations or
wires that can be expanded into their fanout. DSGNOPT also determines if there
are any equations that need to be converted to nodes. (A node is an equation that
will require a macrocell resource). Among other things, DSGNOPT also performs
the following functions:

• technology mapping (converts all equations to a form supported by the
PLD being targeted)

• register optimization (selects the best of D-type or T-type
implementations)

• polarity optimization (selects the best of Active High and Active Low
implementations

• sum-splitting (equations too large for a macrocell are split)

• global resource reduction (for global resources like resets/presets, tries to
adjust the equations to minimize these resources)
Warp Reference Manual 229

Report File

6

The types of optimizations depends on the device being targeted. For example,
certain PLDs do not support a T-type flip-flop. This means that Register
Optimization is not performed.

6.5.2 Equations

After all the different phases of DSGNOPT, the actual fitter or Place and Route
tool is finally invoked. The exact fitter depends on the type of device being
targeted. The FLASH370 family of devices requires the C37XFIT; the MAX340
family requires MAX2JED; and all other PLDs require PLA2JED. All of these
fitters use the exact same conventions in their report files, but the exact content
depends on the design and the device.

The first thing any of the aforementioned fitters do is print the final equations.
This is probably the most important part of a report file for debugging a design.
To help understand this portion of the report file, the user will have to
understand how equations or macrocells operate in the particular fitter. Typically,
a macrocell has many features. Some of these include an asynchronous preset,
asynchronous reset, output enable, etc. The fitter also treats the I/O cells (with or
without and output enable) simply as a feature of a macrocell. Each feature of the
macrocell is given a one to two letter acronym. Each equation printed in the
report file is expected to be mapped to a particular macrocell and is actually
printed as a group of equations with a common base-name which represents the
name of a macrocell. For example, the following represents an equation for one
macrocell “bterr ” which is currently using four features of the macrocell:

bterr.D =
 b_stateSBV_0.Q * /b_stateSBV_3.Q

bterr.AP =
 GND

bterr.AR =
 /resetn

bterr.C =
 tclock

The conventions used in printing the equations are as follows:

• / represents an inversion

• * represents an AND function

• + represents an OR function

• = is an assignment

• VCC and GND represent constant logic values ’1’ and ’0’ respectively.
230 Warp Reference Manual

Report File

6

The following table describes the common extensions that are used to represent
the various features of a macrocell:

In the above table, certain combinations are illegal. For example, a macrocell will
not be allowed to be a D-type as well as a T-type. The number of features that are
listed per macrocell/equations depends on the design and the features of the
device.

Table 6-1 Common Report File Extensions

Extension Meaning Comment

No extension means combina-
torial output or input.

.C Clock

.D D-Type flip-flop or Latch input Requires a .C

.T T-Type flip-flop input Requires a .C

.AR,.AP Asynchronous Reset/Preset

.SR,.SP Synchronous Reset/Preset

.OE Output Enable

.Q
Registered feedback from mac-
rocell

.CMB
Combinatorial Feedback from
macrocell

.LH Latch enable

.X1,.X2 Two inputs of an XOR Used where there is an XOR
in front of the macrocell.

.DI
Latch/D-flip-flop input latch/
register

.QI
Feedback from input register/
latch

.ARI,.API Async. reset/preset for .DI

.SRI,.SPI Sync. reset/preset for .DI
Warp Reference Manual 231

Report File

6

Sometimes equations may begin with a ‘/’. This indicates that the equation is
considered to be active low. This can happen due to one of two reasons:

• The device may only support active low input to the feature. For
example, AR in the MAX340 devices must be active low.

• During the DSGNOPT phase, the fitter determined that active low input
requires fewer resources.

Any inversions that exist for signals in the right hand side of the equation literally
refer to the active-low sense of the signal. This is important to note when a signal
is being fed back into the array and is being generated by a macrocell which is
configured to be active low. Consider the following two examples:

Example 1:

a =
c + d

b =
a.CMB * d

Example 2:

/a =
/c * /d

b =
a.CMB * d

The above two examples represent identical functionality. The first example is
simple with everything being active high. In the second example , a is being
represented as an active low signal; however, the signal b ’s equation is not
modified to compensate for this. This is done so that when the user is examining
b’s equation he does not have to consider the polarity of each of its inputs.
Depending upon the device and the macrocell features, the fitter automatically
adjusts the polarity during the routing phase. This convention also insulates the
equations from the all the various types of macrocells. For example, in some
macrocells, even though the D-input of a D-flip-flop can be generated in active
low form from the product term array, there might be a programmable inverter
just before register, which means that the macrocell might always have an active
high output. In some other devices, such an inverter is available after the
macrocell feedback.
232 Warp Reference Manual

Report File

6

Note – Regardless of what polarity the fitter uses to implement
the individual equations, all outputs at the pins represent the
design’s original intentions. This means that if a certain set of
inputs should produce a logic level ’0’ at the pin, that logic level
will be preserved regardless of whether the fitter produced an
active low implementation or active high implementation.

If a signal is being used in an equation and has no extension, it always means that
this signal is being fed into the product term directly from the PIN (Input or I/O).
When equations are too large to be implemented in a macrocell (for example,
greater than 16 product terms for the FLASH370 family), such equations are split.
Each of the sub equations is named as prefix “S_n” where “n” is a unique
number. When expanders are produced for the MAX340 family, each of these
expander terms is labelled “E_n” where “n” is a number.

6.5.3 Fitting

After the equations are printed, the place and route phase begins. The exact
message that appears depends on the architecture of the device being targeted.
These messages are mostly informational. One of the actions that happen in this
phase is the combination of a buried node with an INPUT only signal. A buried
node represents a signal that is assigned to a macrocell but never routed to a PIN.
When such signals are assigned to a macrocell which in turn is connected to
an I/O pin, the I/O pin can still be used as a pure input to the design. The buried
nodes are printed within parentheses with the INPUT PIN name concatenated to
it. For example, the phrase “(my_internal) my_input” implies that “my_internal”
is a buried node and “my_input” is an input pin sharing the same macrocell.

For small PLDs, the fitting stage is very simple and obvious. The FLASH370 family
fitting, however, deserves some explanation. Once the fitter determines a
solution, it prints the solution for each of the Logic Blocks and for the resources
used by each Logic Block individually. Since the FLASH370 family also uses a
unique way of sharing product terms, the report file also shows how these
product terms are mapped.
Warp Reference Manual 233

Report File

6

The following is an example of one of the Logic Blocks placements printed by the
FLASH370 family fitter. “X” represents a product term (PT) in the PT array, and a
“+” represents an empty slot in the PT array. Since the product terms are shared, a
“+” means that the PT is unused for the current macrocell but could be in use by
another neighboring macrocell.

LOGIC BLOCK A PLACEMENT (11:43:47)

Messages:

__
1111111111222222222233333333334444444444555555555566666666667777777777

01234567890123456789012345678901234567890123456789012345678901234567890123456789
__
| 0 |(CUBEtmp3)trseln
XXXX++XX++XX++XX..
| 1 |(buffer_1)
......+++X++++++++++++..
| 2 |eokn
.......... XX++XX++XX++XXXX..
| 3 |(syscmd_enb)
..............+++++++++++++X++..
| 4 >|smdseln
..................++++++++++++XXXX..
| 5 |(bterr)
......................+++++++++++++X++..
| 6 |cycerrn
..........................X+XX++++++++++++......................................
| 7 |(CUBEtmp1)
..............................++++++++X+++++++..................................
| 8 |smseln
..................................X+++++++++++++++..............................
| 9 |(CUBEtmp0)
......................................XXXX+XXXXX++++++..........................
|10 |smdman
..X+++++++++++++++......................
|11 |UNUSED
..++++++++++++++++..................
|12 |mioreqn
..XX++++++++++++++..............
|13 |UNUSED
..++++++++++++++++..........
|14 |[i/p]
..++++++++++++++++......
|15 |(c_stateSBV_1)
..XXXXXXXXXXX+++++
__

Total count of outputs placed = 13
Total count of unique Product Terms = 45
Total Product Terms to be assigned = 55
Max Product Terms used / available = 50 / 80 = 62.5 %

Macrocell number

eokn shares PTs with CUBEtmp3

Buried node

Output with pin fixed

Output with pin floating

Macrocell used as Input only

Product term number

Buried node with Input
234 Warp Reference Manual

Report File

6

In the map for the Logic Block above, the following lines are worth notice. The
first column of the Logic Block indicates the macrocell number within the Logic
Block. If the macrocell number has a “>” sign next to it (for example macrocell #4),
the placement was suggested or fixed by the user. Notice that the first macrocell
has a buried node as well as an input. For macrocell #8, the assignment of the
signal was done by the fitter. Macrocell #14 is being used as an input.

In the overall statistics for product term utilization, the “Total count of outputs
place” represents how many macrocells are in use for logic. This number comes
out to be 13 because macrocells 11, 13 and 14 have no product terms assigned to
them. The “Total count of unique Product Terms” specify exactly that. The next
item specifies the total number of unique and non-unique product terms. The
next line describes the number of product terms actually used to implement the
solution. In most cases, this matches the total number of unique product terms. In
this case, these numbers did not match because the placement caused the sharing
to be less than optimal, possibly due to the output enable banking or other
placement constraints.
Warp Reference Manual 235

Report File

6

The following extract from the report file represents the Logic Block from a device
pin-out standpoint (for example, pin #4 is eokn), and the signals on the left side
of the diagram indicate the inputs to the product term array and their positions
within the Programmable Interconnect Multiplexing unit.

Logic Block A
 __
 | |= >ad_26 | |
 | |= >ad_27 | |
 | |= >c_stateSBV_.. | |
 | |= >sdrmready.Q | |
 | |= >smwrrdyn | 3|=(CUBEtmp3)trseln
 | |= >ad_22 | |
 | |= >dmardyn (buffer_1) =| |
 | |= >miogntn | |
 | |= >ad_23 | 4|= eokn
 | |> not used:94 | |
 | |= >ad_25 (syscmd_enb) =| |
 | |= >ad_28.Q | |
 | |= >ad_28 | 5|= smdseln
 | |= >CUBEtmp1.CMB | |
 | |> not used:99 (bterr) =| |
 | |= >CUBEtmp0.CMB | |
 | |> not used:101 | 6|= cycerrn
 | |= >adhi_30 | |
 | |= >dmardyn.Q (CUBEtmp1) =| |
 | |= >resetn | |
 | |> not used:105 | 7|= smseln
 | |= >smerrn | |
 | |= >b_stateSBV_.. (CUBEtmp0) =| |
 | |= >ccrdyn | |
 | |= >syscmd_4 | 8|= smdman
 | |= >bt_count_2.Q | |
 | |= >bt_count_0.Q not used:408 *| |
 | |= >ad_24 | |
 | |= >syscmd_enb.Q | 9|= mioreqn
 | |= >c_stateSBV_.. | |
 | |= >pvalidn not used:410 *| |
 | |= >adhi_31 | |
 | |= >c_stateSBV_.. | 10|= syscmd_2
 | |> not used:118 | |
 | |> not used:119 (c_stateSBV_1) =| |
 | |= >smdseln.Q | |
 | |= >btrdy.Q | |
 | |> not used:122 | |
 | |= >syscmd_3 | |
 __
236 Warp Reference Manual

Report File

6

 Information: Macrocell Utilization.

 Description Used Max

 | I/O Macrocells | 8 | 8 |
 | Buried Macrocells | 6 | 8 |
 | PIM Input Connects | 32 | 36 |

 46 / 52 = 88 %

The above table shows the macrocell utilization statistics. A macrocell is counted
as used if any part of the macrocell is in use.

After such information is printed for each Logic Block in the device, a pin
information table is printed that is essentially a PINOUT for the design targeting a
particular device or package. Following the pin information table, overall
statistics for the whole device are listed. These statistics display the total available
resources of the device and the features of the device.

The following is an example for a FLASH370 device.

Information: Macrocell Utilization.

 Description Used Max

 | Dedicated Inputs | 2 | 2 |
 | Clock/Inputs | 4 | 4 |
 | I/O Macrocells | 56 | 64 |
 | Buried Macrocells | 27 | 64 |
 | PIM Input Connects | 166 | 312 |

 255 / 446 = 57 %

 Required Max (Available)
 CLOCK/LATCH ENABLE signals 1 4
 Input REG/LATCH signals 1 69
 Input PIN signals 4 4
 Input PINs using I/O cells 14 14
 Output PIN signals 42 50

 Total PIN signals 62 70
 Macrocells Used 69 128
 Unique Product Terms 271 640

Most items above are self-explanatory. The “I/O Macrocells” and the “Buried
Macrocell” count reflects a count of macrocells where any portion of that
macrocell is used. This report file says that a total of 83 (56 + 27) macrocells (or
portions of) are being used; however, the line that reads “Macrocells Used”
Warp Reference Manual 237

Report File

6

indicates that only 69 macrocells are used. This is because some of the I/O
macrocells are being used purely as input. This is indicated by the line that reads
“Input PINs using I/O cells” whose value is 14. This is the reason the “Macrocells
Used” line reads 69 (83 - 14).

6.5.4 Static T iming Analysis

The last section of the report file for CPLDs contains a static timing analysis report
along with the worst case timing numbers for various parameters. While reading
this information, it is important to note the speed grade of the device that was
chosen. There are many terms that are used in this section of the report file that
may not be familiar to the user. These terms and the waveforms they represent
are described in the datasheets for the devices. Refer to the Cypress
Semiconductor Programmamble Logic Databook. An important thing to note,
however, would be that for paths that require multiple passes through the arrays,
the intermediate nodes are also listed.
238 Warp Reference Manual

Appendix
 A

Error Messages
 A

Error Messages

 A
This appendix lists the error messages that may be returned by the Warp
compiler. A brief explanation is included if the error message is not self-
explanatory. Sometimes, a group of error message refers to the same explanation,
and such error messages are grouped together above the explanation.

Note – %s refers to any string, %d to a decimal.

E1 :%s: Abort:
E2 :Abort:

This is usually the result of running out of memory. Please contact the system
administrator to see if increasing virtual or real memory is possible on the system.

E3 :Need a '<=' or ':=' here.

An equal sign instead of an assignment operator was used in an expression.

E4 :Missing 'PORT MAP'.

You might be trying to instantiate a component and list a set of ports to be
connected but without the key words PORT MAP.

E5 :Use '=', not ':=' here.

The assignment rather than the comparison operator was used in an expression.

E7 :Can't open file.

An input file couldn't be opened for some reason (usually, because the file doesn't
exist or isn't in the current path).

E8 :Syntax error: Can't use '%s' (a %s) here.

An attempt was made to use the wrong character or keyword, or a delimiter is
missing.

E9 :Can't take attribute '%s' here.

An attribute was used where not allowed.
240 Warp Reference Manual

Error Messages

A

E10 :Syntax error at/before reserved symbol ‘%s’.

You used a reserved word in an illegal fashion, e.g., as a signal or variable name.

E14 :%s (line %d, col %d):

This message is more of an informative message than an error message. It tells
you where to look for an error. The message usually appears as part of another
message.

E18 :Missing THEN.

A THEN is missing from an IF-THEN-ELSE statement.

E19 :Not a TYPE or SUBTYPE name: %s

A variable or signal was defined that has an unknown type (e.g., "signal x:nerp").

E20 :'%s' already used

An attempt has been made to define a symbol that already exists.

E21 :%s not an enumeration literal of %s

You have attempted to assign or compare a state variable to a value that is not
within its defined enumeration set.

E30 :';' after last item in interface list.

A semicolon was used after the last item in an interface list (the port declaration
or parameter list for a function) instead of a right parenthesis.

E31 :Missing en d-quote.

E32 :’%s’ is not an attribute name.

E34 :Undeclared name: %s

You have attempted to use an undeclared (undefined) variable.

E36 :Variable declaration must be in a PROCESS statement.

You have attempted to declare a variable inside an architecture. Signals can be
declared in architectures, but variables have to be declared within a process.
Warp Reference Manual 241

Error Messages

 A
E40 :Declaration outside ARCH ITECTURE or ENTITY.

An attempt was made to declare a variable outside an architecture or sub-
program.

E41 :Not a valid ENTITY declarative i tem.

You have attempted to declare a variable inside an entity. Variables must be
declared within a process.

E42 :Can't open standard library '%s'.

File cypress.vhd or std.vhd must be available but couldn't be found in the current
path.

E43 :'%s' must be a R ECORD

You have attempted to use as a record a variable or symbol that was not a record.

E44 :Must be a constant.

A constant is required.

W45 :NULL range: %s %s %s.

You defined a bit vector in the wrong range.

E46 :Error limit (%d) ex ceeded

The default error limit is 10 errors. More than 10 errors causes an abort.

E47 :'%s' not a formal port.

The named item is not a formal port.

E48 :Warning limit (%d) e xceeded

The default number of warnings has been exceeded, causing an abort.

E49 :Not a polymorphic object file.
E50 :Bad polymorphic object file version.

The application stopped running before completion or has not been updated
correctly. Delete all files that are not part of the design (temporary files such as
*.vif, *.prs files), then re-load and re-run the Warp.

If Warp is complaining about a library file, however, this is an indication of a
corrupted Warp installation.
242 Warp Reference Manual

Error Messages

A

E51 :Variable '%s' al ready mapped.

A port is mapped to more than one pin.

E52 :Symbol '%s' declared twice

The same name has been declared twice.

E53 :Name '%s' at end of %s, but no name at start

An un-named construct (e.g., a process) was referred to by a named label at its
conclusion.

E54 :Name '%s' at end of %s does not match '%s' at start

The label referenced at the end of a construct does not match the name the
construct was given at its beginning.

E55 :%s used as an identifier

You have attempted to use a reserved word as an identifier.

E56 :Expected %s, but got %s
E57 :Expected %s
E58 :Expected %s or %s
E59 :Expected %s or %s, but got %s

Syntax error: Warp expected a particular character or keyword, but found
something else.

E60 :Extra COMMA at end of list

A comma appeared after the last item but before the closing parenthesis in a
PORT statement.

E61 :'%s' mode not compatible with '%s' mode

An input port was mapped to an output pin, or vice versa.

E62 :Warning:

The beginning portion of a warning message.

E64 :Out of memory.

The application is out of memory. Remove memory resident programs and
drivers and re-run the application.
Warp Reference Manual 243

Error Messages

 A
E65 :Fatal error

The beginning portion of a fatal error message.

E66 :Can't index into '%s'

An attempt was made to use the named string as an array when the string is not
an array.

E67 :Can't open report file '%s'

The report file couldn’t be opened or created. The most likely causes are that the
disk is write-protected or out of disk space.

E68 :Missing right parenthesis

Syntax error.

E69 :Use '<=' for signal assignments.

Used ":=" instead of "<=" as assignment operator.

E70 :Actual '%s' type ‘ %s’ not compatible w ith formal '%s' type
‘%s’

A type mismatch was found.

E71 :Positional choice follows named choice

Positional (unspecified formal port) entries may not follow named entries during
a component instantiation.

E72 :Can't RETURN when in a f init e-state-machine

A return statement inside a finite state machine description (a case statement on
an enumerated type) is not supported.

E74 :'%s' not a field in re cord '%s' of type '%s'

An attempt was made to use an inappropriate string as a field in a record.

E75 :Sensit ivity name not a SIGNAL

A sensitivity list on a process must consist only of signals.

E76 :Unconst rained arrays not allowed here.
244 Warp Reference Manual

Error Messages

A

E77 :’%s’ not a '%s' en umeration l iteral

Inappropriate use was made of the named string as an enumeration literal.

E78 :Positional parameter follows named parameter

A positional (unspecified formal port) parameter may not follow a named
parameter.

E79 :%s has no parameter to match '%s'

The port map contains a missing parameter.

E80 :Value '%s' out of range ‘%s’.

A limit, such as a vector limit, is out of range. Re-declare the variable or rework
the design.

E81 :Illegal char. '%c' in literal

The named character is not allowed in this literal.

E82 :'%s' co nversion to VIF not supported

Synthesis of this VHDL object is not supported.

E83 :'%s' co nversion to PLD not supported

Synthesis of this VHDL object is not supported.

E86 :Procedure '%s' body not found

The named procedure was declared, but the body of the procedure could not be
located.

E87 :Division by 0

E88 :Operation '%s' not sup ported

The named arithmetic operation is not supported.

E89 :'%s' must be a CONSTANT or VARIABLE

A constant or variable is required in the named instance.
Warp Reference Manual 245

Error Messages

 A
E91 :Not in a loop
E92 :Not in a loop labelled '%s'

An EXIT or a NEXT statement was found that is not inside a loop.

E95 :FOR variable '%s' not a constant

The named FOR variable is not known at compile time.

E96 :Only integer range suppor ted.

An attempt was made to assign an invalid integer range, such as an enumeration
range.

E97 :Missing generations scheme.

E98 :Negative exponent %ld

Negative exponents are not supported.

E99 :Cannot assign this to an array or record.

Only an aggregate with a list of values or another array or record may be assigned
to an array or record.

E100 :Too many values (%d) for '%s' of size %d

The list of values in the aggregate was too large for the aggregate to be assigned to
an array or record.

E101 :Can't handle function call '%s' here

The named function call cannot be handled.

E102 :Variable expected.

Symbol was incorrectly declared. The symbol must be a variable, not a signal.

E103 :'%s' must be an ARRAY

The named string must be an array.

E104 :Field name or 'OTHERS' expected

Invalid case statement qualifier.
246 Warp Reference Manual

Error Messages

A

E105 :Can't delete '%s' from library '%s'

I/O error. The named string cannot be deleted from the named library.

E106 :You need to declare this as a SUBTYPE.

You declared something as a TYPE that should have been declared a SUBTYPE.

E108 :Function '%s' b ody not found

The named function was declared, but the statements associated with the function
could not be located.

E109 :Expected '%s' to return a constant

A function that was expected to return a constant didn't.

E110 :Array sizes don't match for operation %s

You tried a dyadic logical operation (AND, OR, XOR) on two bit vectors of
different sizes.

E112 :Positional parameter ' %s' follows named parameter

A positional parameter may not follow a named parameter.

E113 :No funct ion '%s' with these parameter types

The named function with the specified expressions was not found.

E114 :Al ias type mismatch

E115 :'%s' is not a visible LIBRARY or PACKAGE name

Warp cannot identify the named string as a valid name for a library or package.

E116 :'%s' not in PAC KAGE '%s'

The named string is not in the named package.

E117 :Missing/open field '%s' in %s

Missing parameter or port in the named port list.

E118 :Illegal i nteger/identifier '%s'

Identifiers must begin with a letter.
Warp Reference Manual 247

Error Messages

 A
E119 :Slice (%d TO %d) is outside array '%s' range (%d TO %d)

The named index range of the slice is outside the named index range of the
specified array. The indices of a slice must be within the indices of an array.

E120 :'%s' not an array

The named string is not an array.

E121 :'%s' is not a PACK AGE.

The named string is not a package.

E122 :'%s' must be a SIGNAL or function(SIGNAL).

The named port map parameter may not be an expression, variable, or constant; it
must be a signal or signal function.

E123 :Output parm. '%s' must be a SIGNAL or VA RIABLE

The named output parameter must be a single entity, like a signal or variable.

E124 :'%s' is not a COMPONENT

The named string is not a component.

E125 :-s requires a path.

The -s command line option requires a path to the library.

E126 :Wrong number (%d) of indices. %d needed.

The listed number of indices is incorrect for the multi-dimensional array.

E127 :Constraint dimension (%d) doesn't match type dimension
(%d)

The named constraint dimension doesn't match the named type dimension
(constraint must be in the same number of indices as the array).

E128 :Can’t use mul tiple- dimension index constraint here.

E129 :Illegal '&' opera nds: '%s' and '%s'.

Concatenation is not allowed for the named strings. Concatenation is allowed
only for identically typed one-dimensional arrays.
248 Warp Reference Manual

Error Messages

A

E130 :Bad dimension (%d) for attribute '%s'

The named dimension is incorrect for the named array.

E131 :'%s' mapped twice.

The same actual parameter was mapped to two formals.

E132 :Can’t set elements of unconstrained array

E133 :'%s' wasn't mapped

The actual parameter identified in the message was not mapped to a formal in the
port map.

E134 :Error occurred w ithin '%s' at line %d, column %d in %s.

A descriptive message to inform the user of the exact error location.

E135 :Unexpected '%s'.

Syntax error.

E136 :'%s' is not a known ENTITY

An attempt was made to use the named string as an entity name.

E137 :Can't use OTHERS for unconstrained array '%s'

Syntax error.

E138 :OTHERS must be the last case statement alternative

No case statement alternatives may follow OTHERS.

E139 :Can't use actual function w ith formal output '%s'

Data is not allowed with the named formal output port.

E140 :Use ':=' for variable assignments.

A string other than ":=" was used for a variable assignment.

E141 :Can't use function(formal) w ith formal input '%s'

You used an fbx() or fxb() (or some other translation function) in the wrong
direction.
Warp Reference Manual 249

Error Messages

 A
E142 :’%s’ not visible here.'

A symbol/variable was used but not declared in the current scope. This typically
happens during a component instantiation or an entity declaration.

E143 :Underbar not allowed at start or end of identifier.

E144 :Only assignments to a single SIGNAL or VARIABLE are
suppor ted.

Assignments to aggregates are not yet supported by Warp.

E145 :Illegal character ‘%c’.

E146 :You must ASSIGN function to a signal or variable.

E147 :VAL att ribute not allowed for ‘%s’

E148 :Position %ld out of range

Indicates that the index you have asked for is out of range.

E149 :Duplicate label ‘%s’.

More than one component/generate statement might have the same label. All
labels must be unique within their scope.

E150 :’%s’ length %ld doesn’t match ‘ %s’ length %ld.

Please examine the port maps for the component. All mappings must have a
length that matches the component declaration.

E151 :’%s’ alre ady has attribute ‘%s’

Please remove one of the duplicate attributes.

E152 :Access variable ‘%s’ is NULL

You probably are trying to access a field of a record which is invalid.

E153 :WAIT not allowed in a process w ith a sensiti vity list.

E154 :Use NOT instead of ‘/’.

VHDL uses ‘NOT’ as the inversion operator.
250 Warp Reference Manual

Error Messages

A

W156 :NULL slice. Direction does not match subtype’s.

When extracting a slice of a vector, the direction (to or downto) of the slice
specification should match the direction of the original vector.

E157 :Cannot evaluate %s(non-constant). Too many values (%ld)
in range.

When expanding an array, Warp found too many elements in an array (more than
200). This might be caused due to indexing an array with a non-constant.

E158 :Too few values (%ld) for ‘ %s’ of size %ld

The length of the arrays have to match.

E159 :Can’t find ‘%s’ of class ‘%s’ in current declarative region.

The class specification for the item to which an attribute is being set is not valid.

E160 :Block s pec. ‘%s’ isn’t an architecture of ‘%s’

E161 :Deferred constant ‘%s’ was never given a value.

E162 :Can’t use ‘%s’ here.

W163 :Array sizes %ld and %ld don’t match for ‘%s’.

E164 :’%s’ is not a discrete type.

E165 :L abel ‘%s’ not visible here.

E166 :Guarded assignment to ‘%s’ is not inside a guarded block.

E167 :LENGTH not al lowed for ‘%s’. Array required.

E168 :Double underbar not allowed.

E169 :’%s’ is not a group template.

E170 :Group l ist is not compatible with template ‘%s’.

E171 :WAIT not allowed in function or procedure called from
function (%s).
Warp Reference Manual 251

Error Messages

 A
E300 :VHDL parser

Message indicating progress of compilation (not really an error).

E360 :Library file ‘%s’ is out of date. Recompile w ith -a.
E361 :Bad l ibrary object f ile ‘%s’
E362 :Error writ ing to library index
E363 :Error copying '%s' to library
E364 :Can't create library index '%s'

File I/O.

E365 :Bad l ibrary index '%s'

The named index for the library is corrupted. Delete the library and load another
copy.

E366 :Can't create library '%s' with path '%s'

File I/O.

W367 :’%s’ li brary object is missing or is an old version.

Please recompile the library. This is also an indication that some files have been
deleted out of the Warp Library directories or that the installation is improper/
incomplete.

E368 :Error deleting existing library index entries
E369 :Can't open library '%s' with path '%s'
E370 :Error reading library '%s'
E371 :Can't find '%s' in library '%s'
E372 :Can't open library module '%s'
E374 :'%s' not a PACKAGE

File I/O.

E375 :'%s' is not in '%s'

The named package is not in the named library.

W377 :'%s' from '%s' replaces that from '%s' in library '%s'

Warning message. When a module is compiled into a library, module design
units with names the same as existing names overwrite the existing design units.
252 Warp Reference Manual

Error Messages

A

E378 :Don't work from within your library directory ('%s')

An attempt was made to run Warp with the named library directory as the current
directory.

E411 :GENERATE condi tion ‘%s’ do esn’t si mplify to a constant.

E412 :Port '%' in RTL component '%s' is missing or i mproper

An attempt was made to use the named RTL component without assigning the
named port or assigning it inappropriately.

E413 :Cannot use SIGNAL ‘%s’ here. No node # is assigned to it.

A signal is used in an expression, but the signal has not been assigned to any node
or pin in a chip.

E414 :Expression too complex: %s

Output assignments must follow a specific format.

E419 :Component’s ‘ %s’ mode does not match mode of ‘ %s’ in
entity.

E426 :Component’s ‘ %s’ type ‘ %s’ not compatible w ith type ‘%s’ in
entity.

E427 :Target must be a variable.

Target may not be a constant or an aggregate.

E428 :Could not find ent ity '%s (%s)' for comp onent '%s'
E429 :Could not find ent ity '%s' for c omponent '%s'

Warp was unable to find the named entity for the named component.

E430 :No entity for architecture '%s'

No entity exists for the named architecture.

E431 :'%s' has already been used as an output.

You attempted to assign two outputs to the same pin.

E432 :Conversion from AONG to '%s' not s upported

Finite state machine enumerated type synthesis is not supported.
Warp Reference Manual 253

Error Messages

 A
E433 :Need assignment of a constant for async. reset/preset of
‘%s’.

E434 :Unsup ported PLD '%s'

An attempt was made to compile to an unsupported or nonexistent device.

E435 :Pin ‘%s’ assigned to ‘%s’ is invalid - Please check package
pinout.

E436 :Only simple waveform supported. Ignoring assignment.

Warp allows only simple wave forms with no timing information.

E437 :All dr ivers of '%s' are not internal three-states.

You may have a condition where some of the drivers (equations) for a multiple
driven signal are three-state drivers and some are not. Warp cannot synthesize
such constructs.

W437 :Converting multi-driven PORT '%s' to int ernal t ristate.

This is simply a warning indicating that a multiple driven signal was also found
to be a primary I/O signal which currently cannot be mapped to a device. Such
signals are converted to equations which means that the I/O signal will never
really be in high impedance mode.

E438 :RTL '%s' not supported for %s

An attempt was made to use the named built-in component for an incorrectly
named device.

E439 :RTL f ield '%s' too complex: ‘%s’

E440 :Missing RTL field '%s'

An RTL component is missing a port.

E441 :Component formal ' %s' has no match in ‘%s’.

Check for an invalid port map or a typo during a component instantiation.

E442 :Size mi smatch between array types ‘ %s’ and ‘%s’
254 Warp Reference Manual

Error Messages

A

E443 :Unresolved signal '%s' has more than one driver

An attempt was made to use more than one driver with the named signal using
an unresolved VHDL type (like bit).

E444 :Device '%s' not sup ported.

Warp does not support the named device.

E445 :No binding archi tecture found.

You probably used the wrong device name, or the installation is incomplete, or
wrong CYPRESS_DIR env. variable.

E446 :Can’t handle mul tiple drivers for ‘ %s’ in sel ected device.

Multiple drivers are not supported by default for certain devices (CPLD/PLDs).
Even in pASIC only certain kinds of multiple drivers are supported.

E447 :Can’t handle drivers of di fferent types (components and
equations) for signal ‘ %s’.

When creating multiple drivers for the purpose of double buffering or HDnPADS
(where n > 1), all the drivers must be identical.

E448 :Reset signal ‘ %s’ must be in sensitivity list.

E449 :Only ‘0’ and ‘1’ allowed in user code.

When using user defined state encoding, only ‘0’s and ‘1’s are allowed.

E450 :Too few (%d) bits. %d required.

E451 :Clock signal ‘ %s’ must be in sensitivity list.

E452 :WAIT UN TIL statement must be first in process.

E453 :RESET must be a sim ple assignment.

E454 :This design produ ces 0 nodes.

E455 :Async. reset condition is a constant.

The asynchronous reset condition evaluated to a constant. This is probably not
the intention of the design and should be corrected.
Warp Reference Manual 255

Error Messages

 A
E457 :Infinite c omponent instant iation recursion at %s:%s.

Even though it is possible for component A to invoke component B which in turn
invokes component A (or a case where component A invokes itself), Warp was
unable to resolve the recursion because it was too deep. The design must be
simplified.

E458 :Call depth is %d. Infinite rec ursion?

You have exceeded an internal limit of 1000 nested function calls. More than
likely you might have an infinite recursion.

E459 :Unconst rained arrays not allowed for binding architecture
(%s).

The top level of the design cannot have unconstrained arrays.

W460 :’%s’ unassigned in arch. ‘%s’ of ‘%s’.

E461 :Output-enable not supported beneath a WAIT.

E462 :Duplicate CASE choice ‘%s’, alre ady seen on line %d.

E464 :Generic ‘%s’ needs default value for binding architecture
(%s).

W465 :Top-level entity ‘%s’ has no output ports.

W466 :WAIT condi tion is a constant.

E467 :’%s’ not allowed in device.

E468 :CASE st atement needs an OTHERS choice.

E469 :CASE st atement is missing %d choices.

You must enumerate all possible choices or use the OTHERS clause to define the
missing choices from a CASE statement.

E470 :’IF ... ELSIF (<clock expression>)’ must be 1st in process.
256 Warp Reference Manual

Error Messages

A

E471 :Can’t find state codes array ‘%s’.
E472 :State codes obj ect ‘%s’ must be a CONSTANT array.
E473 :State codes array ‘%s’ must have indi ces of type ‘%s’.
E474 :Enum. code %s has different length than prev. codes.

More than likely you have violated a state machine template supported by Warp.

E476 :Output-enabled/three-stated signal ‘ %s’ must be an OUT or
INOUT port.

W477 :Attribute ‘%s’ on ‘%s’ was not u sed during synthesis.

E500 :Can't handle '%s' expression.

An unsupported operation was included in an expression.

E503 :Initiali zer of '%s' must be an enum. literal

You have attempted to initialize a state variable to a value not included in its
enumerated list.

W507 :No entry to st ate '%s' of '%s'.

Warp cannot find an entry to the named state, so the state is not used and can be
removed.

W508 :No exit f rom state '%s' of '%s'.

Warp cannot find an exit from the named state, so the state is a sink.

E509 :Array sizes don't match for operation %s

You attempted a dyadic logical operation (AND, OR, XOR) on two bit vectors of
different sizes.

E510 :Operation '%s' not sup ported for vectors/ integers

Implementation is not supported.

E511 :BIT or array required

Warp does not synthesize integers; a bit or array is required.

E512 :Can’t handle expression '%s' in final equations.
Warp Reference Manual 257

Error Messages

 A
E513 :'%s' not a BIT or array

Warp does not synthesize integers; a bit or array is required.

E514 :Only multiplication/divi sion by 2**n is supported.

E515 :Unsup ported use of enumeration literal ‘%s’

W520 :Loop appears to be infinite.

E521 :Exi t/next not supported under a non-constant condi tion.

E522 :Illegal operands for addition/subtraction

E600 :Array lengths %ld, %ld don't match for '%s'.

For the named operation, the named array lengths do not match.

E601 :Bad operand types '%s' and '%s' for operator '%s'.

Type check violation.

E602 :Bad operand type '%s' for operator '%s'.

Type check violation.

E603 :Wrong character '%c' in string

Type check violation.

E604 :Expression type '%s' d oes not match target type '%s'.

Type check violation.

E605 :BOOLEAN required here.

Type check violation.

E606 :Numeric expression required here.

Type check violation.

E607 :Choice type '%s' doesn't match c ase type '%s'.

Type check violation.
258 Warp Reference Manual

Error Messages

A

E608 :'%s' not readable. Mode is OUT.

The mode is defined as OUT, so you can't put it on the right side of an expression.

E609 :'%s' not writable. Mode is IN.

The mode is defined as IN, so you can't put it on the left side of an expression.

E610 :SEVERITY_LEVEL requi red here

An ASSERT statement requires a severity level.

E611 :RETURN not in a function or procedure

A return statement was found that was not inside a function or procedure.

E612 :Can't RETURN a value from a procedure

The application cannot return a value from a procedure; a function is required.

E613 :Function RETURN needs a value.

You attempted to return from a function without specifying a value.

E614 :Return type '%s' does not match function type '%s'.

Syntax error.

E615 :Can't assign to CONSTANT '%s'.

Invalid constant.

E617 :Type m ismatch in range.

E618 :’%s’ is of mode LINKAGE.

E619 :Type ‘ %s’ does not match element type ‘%s’.

E620 :Only a guarded signal or access variable may be assigned
NULL.

E621 :Choice must be locally static.

E622 :CASE e xpr. must be discrete, or an array of characters.

E623 :Right operand of ‘ %s’ must be an i nteger.
Warp Reference Manual 259

Error Messages

 A
E624 :Left operand of ‘%s’ must be a 1-dim. array of bits or
booleans.

E701 :Can’t handle expression ‘%s’ in final equations.

E750 :Can’t open file ‘ %s’.

E751 :Error writ ing to file ‘%s’.

E752 :File n ame must be a STRING.

E753 :Filename must evaluate to a simple STRING.

E754 :Missing parameter ‘%s’.

E755 :File I/O rout ine not yet supported

E1100 :Missing pin number: ‘%s’

Please check the pin_numbers attribute for the missing pin number specification.
The pin name should be immediately followed by a “:” and then a pin number (or
an alpha numeric for PGA packages).

E1101 :’%s’ not a port name in entity ‘%s’

Invalid name in the pin_numbers attribute.

E1102 :Can’t set pin number of composite ‘%s’

One pin number cannot be assigned to a group of signals that might be derived
from a composite or an array.

E1103 :Missing ‘)’ after ‘%s’

Syntax error during a pin_number specification.

E1104 :’%s’ not an array or integer.

You have tried to index into a non-array type signal during a pin_numbers
specification.
260 Warp Reference Manual

Error Messages

A

E1105 :Index ‘%d’ out of range for array ‘%s’
E1106 :’%s’ not a record.
E1107 :Can’t set pin reference name ‘%s’ of composite ‘%s’
E1108 :Pin number %d assigned more than once.
E1110 :Missing space af ter pin number for ‘%s’.

Invalid pin_numbers specification.

E1320 :Unexpected expression type for multi-driven SI GNAL ‘%s’.

Only simple 6-input (max of 3 active high and 3 active low) AND equations are
allowed.

W1320 :fixed_ff attribute on comp. ‘% s’, signal ‘%s’ ignored.

Found the fixed_ff attribute on a non registered output signal. This is ignored.

E1321 :Multi-driven signal expr. for ‘%s’ must be 1 term.

Only simple 6-input AND (max of 3 active high and 3 active low) equations are
allowed which evaluate to a single product term.

E1322 :Multi-driven signal expr. for ‘%s’ uses too many signals.

More than 6 signals are not allowed for an equation participating in double-
buffering.

E1323 :Bad pin names ‘%s’. Cannot use more than one clock cell.

When assigning multiple input/clock pads to a signal for high drive strength, you
can have a maximum of one clock pad involved.

E1324 :Unrecognized pac kage: ‘%s’. Defaulting to ‘%s’.

E1325 :Bad pin name ‘%s’.

The pin name was neither alpha numeric nor numeric.

E1326 :I/O pad for ‘%s’ has nothing co nnected.

An I/O pad was found (pASIC only) where no connections are being made to it,
so that it can be driven.

E1327 :Bad pin names ‘%s’. Only clock/input p ads are legal for
multi-pin assignments.

For HDnPADS (where n > 1), you can only use a combination of input/clock pins.
Warp Reference Manual 261

Error Messages

 A
E1328 :Can’t handle expression ‘%s’ in final equations.

E1329 :Failed to read clock pads from devices.dat. C heck
ordercode.
E1330 :Failed to read high-drive pads from devices.dat. Check
ordercode.

Most likely, an internal error or wrong package specification.

E1332 :Can’t open Warp QDF library ‘%s’.

Please check the CYPRESS_DIR environment variable.

E1333 :Internal Error: Mis connected port

E1334 :’%s’ con nected to PAD is not a top level port.

Warp found an internal net connected to the output of an I/O pad which is
supposed to go to the external world.

E1336 :Can’t open QDF output file ‘%s’.

File I/O.

E1337 :Can’t handle multi-dr iven IO pad for signal ‘%s’.
E1338 :Invalid multi driver ‘%s’ for pad signal ‘%s’

I/O pads cannot be used in parallel to increase drive strength. Only Clock and
Input pads are allowed.

E1339 :More than one clock pad not allowed for multi-driven signal
‘%s’

When assigning multiple input/clock pads to a signal for high drive strength, you
can have a maximum of one clock pad involved.

W1340 :Cannot assign bidirectional port ‘ %s’ to C LOCK pad

Clock pads can only be assigned to input-only signals.
262 Warp Reference Manual

Error Messages

A

W1341 :Cannot assign ‘%s’ to CLOCK pad, CLOCK pad
resources(%d) exhausted.
W1342 :Please try assigning port ‘%s’ to dedicated input

pASIC devices have a limited number of Clock PADS. Please check the pad_gen
attribute and any instantiated clock pads (or through pin_numbers) to see if any
resources can be freed up. You can also use an INPUT pad as an alternative.

W1343 :Cannot assign bidirectional port ‘ %s’ to HD pad

HD pads (INPUT pads) can only be assigned to input-only signals.

W1344 :Cannot assign ‘%s’ to HD pad, HD pad resources
exhausted.

W1345 :Cannot assign ‘%s’ to INPUT pad, High drive wires
resources exhausted.

W1346 :Not enough HD p ads for port ‘%s’, %d requested, %d
assigned

W1347 :When using multiple high-drive pads, manual pin
assignment is suggested

W1350 :Signal ‘%s’ connected to purely to fli p-flops assigned
HD%dPAD. Converting to CLKPAD

W1352 :Gate ‘%s’ needs to be paral leled %d times. Setting
max_load=%d

W1354 :Out of express wires. Failed pin assignment for ‘%s:%s’

E1355 :Signal ‘%s’ illegally assig ned to input/clock pin ‘%s’

E1356 :Bad HD4PAD assignment for ‘%s’. HD4PAD requires exactly
1 clock pin to be feasible

W1357 :Signal ‘%s’ has no driver?
Warp Reference Manual 263

Error Messages

 A
W1358 :Signal ‘%s’ has too many feedbacks for duplicate buffering.
Increasing maxload to from %d to %d

The number of feedbacks for the signal is higher than the maximum loading
allowed for the signal. Please increase max_load for the signal or use other
buffering methods.

W1359 :max_load for signal ‘ %s’ must be more than 1 for Normal/
Registered buffering.

E1360 :Max number of pads (4) exceeded for multi-driven signal
‘%s’

E1361 :Too many(%d) drivers (max=2) for double buffered signal
‘%s’

E1362 :Invalid eqn for double buffered signal ‘ %s’. Must fit in FragA
and be identical.

E1363 :Components driving ‘%s’ are not identical.

E1364 :Pad ‘%s’ has 4 drivers. One of them must be a clock- input
PAD.

E1365 :Invalid driver for double buffered signal ‘ %s’. Use
PAfrag_a’s

E1400 :Bad file number

E1500 :Error writ ing ‘%s’.
E1501 :Can’t create ‘%s’. You don’t have write permission.
E1502 :Can’t write ‘%s’. Out of disk space.
E1503 :Can’t create ‘%s’. Too many open files.
E1504 :Can’t write ‘%s’. Device is busy.
E1505 :Can’t create ‘%s’. Re ad-only file system.

File I/O
264 Warp Reference Manual

Error Messages

A

W1715 :Espresso failed for ‘ %s’.

Warp uses technology from University of California, Berkeley to perform logic
optimization. The equations in the design may have encountered certain
limitations within Espresso. The message simply indicates, however, that the
equation was not minimized using Espresso and instead a simpler kind of
optimization was performed which could potentially produce non-optimal but
logically correct solutions.

Sometimes it helps to look at the design and use factoring techniques (buffering
or synthesis_off) to reduce the fan-in of the equation.

You may also see these kinds of messages from ‘minopt’ during CPLD/PLD
fitting. This is usually a result of the fitter trying to perform polarity/register
optimization and an exponential blowup of the equation occurs. When this
happens, it helps if the node in question has these kinds of optimizations turned
off (using the polarity and/or ff_type directives).

E1800 :Missing ‘seek’ data in ‘devices.dat’.
E1801 :Section ‘%s’ appears twice in ‘devices.dat’.
E1803 :Section ‘%s’ not found in ‘devices.dat’.
E1804 :Could not find ‘devices.dat’.
E1805 :’devices.dat’ line is too long: %s.
E1806 :Already at top of ‘devices. dat’.
E1807 :Can’t find end of ‘%s’ section in ‘devices.dat’.
E1808 :Bad seek data ‘%s’ in ‘devices.dat’.

Check your CYPRESS_DIR environment variable.

E1820 :Unknown order code ‘ %s’ for ‘%s’.
E3001 :illegal device

Check legal device/package names in Galaxy.

W3002 :phase ignored

The fitter is ignoring a statement in the .pla file. It is a warning message.
Warp Reference Manual 265

Error Messages

 A
E3003 :internal error couldn’t find signal
E3004 :illegal qualifier
E3005 :illegal character in array
E3010 :bad number of output lines
E3013 :can’t ask whether a Nodea is_l atched
E3016 :couldn’t f ind domain
E3018 :stated number of nodes w rong
E3022 :already have node, and it doesn’t allow that dir

These are all internal errors.

E4003 :File Open error

Unable to open file for read/write.

E4006 :Syntax error

Syntax error encountered in .vhd file.

E4010 :Can not create ‘vlg’ directory.

Make sure that you have write permissions to the current directory.

E4031 :File ‘%s’ Open error

If the file extension in the above message is .atr, this error appears while trying to
run the back-annotation tool for pASIC devices, with SpDE back-annotation
turned off. Make sure that you run SpDE with back-annotation turned on.

For other file extensions, the error appears when the back-annotation tool does
not have permissions to create or write a file.

E4032 :Syntax error.

This is just a warning. All lines in the control file having syntax errors are ignored.

E4034 :Warning : ‘Proceeding with default option. Back annotating
pins only’

This is just a warning. The back-annotation tool has been called without any
option, so compilation continues with the default option of back-annotating pins.
266 Warp Reference Manual

Appendix
 B

SpDE Error Messages
 B

SpDE Error Messages

 B
This appendix is a reference of all SpDE messages. You may get error messages
after different actions using the SpDE toolkit.

1. Import - QDIF from the SpDE menu: refer to the section of this appendix
titled Import Design Verifier.

2. All numbered error messages from SpDE: refer to the section of this
appendix titled User Errors.

3. Error messages from other design tools: refer to the documentation for
that tool.

B.1 Import Design Verifier

The Design Verifier, which runs when a design is loaded into SpDE, presents
Notes, Warnings, and Errors in an interactive list box.

B.1.1 Notes

Notes are intended to bring a situation to the designer’s attention. The situation is
probably not a problem, but should be verified nevertheless.

B.1.2 Warnings

Warnings alert the designer to a problematic situation, commonly associated with
a real problem.

Gate <gate> is not used, and is being removed.

The Design Verifier has determined that the gate is not being
used. This “stripper” function can be deactivated from the
SpDE Tools Options dialog box.

Exceeded recommended limit of high-drive nets.

Too many nets are sourced by HDPADs, CKDPADs, and/or
double-buffers (parallel AND gates); the router may not be
able to complete. Using fewer signals in tandem with these
pads guarantees routability.
268 Warp Reference Manual

SpDE Error Messages

B

Gate <gate> cannot have a fixed placement.

The specified gate cannot have a fixed placement. Fixed
placements can be applied to logic cells, which utilize the flip-
flop in the logic cell.

Gate <gate> has no net on pad.

There is no external net defined for an input or an output of
the design. The path analyzer will not be able to use this gate
as a defined start or stop point in analysis. Add a net and a net
name to the pad.

Net <net> drives no inputs.

The specified net has a fanout of zero. (The net has a driving
gate, but no other connections.)

Net <net> has high I/O pad fanout of <fanout>.

The specified net has exceeded the recommended fanout limit
for a bi-directional pad driver. If the net is speed-critical,
employ buffering or paralleling techniques.

Net <net> has high input pad fanout of <fanout>.

The specified net has exceeded the recommended fanout limit
for an input pad driver. If the net is speed-critical, employ
buffering or paralleling techniques.

Net <net> has high logic cell fanout of <fanout>.

The specified net has exceeded the recommended fanout limit
for a logic cell driver. If the net is speed-critical, employ
buffering or paralleling techniques.

Pin <pin#> (<gate>) drives set or reset, disabling ATVG.

One of the restricted testing pins (labeled I/SCLK or I/SM in
pinout diagrams) is driving a set or reset, directly or indirectly.
These pads are restricted testing pins, and require that ATVG
be disabled.
Warp Reference Manual 269

SpDE Error Messages

 B
B.1.3 Errors

Errors flag genuine error conditions that would prevent parts from being
programmed. However, the tools can still be run for experimental purposes and
examination.

B.2 Fatal Er rors

Fatal errors flag serious error conditions that prevent the tools from being run.

Pin <pin#> (<gate>) paralleled, disabling ATVG.

One of the restricted testing pins (labeled I/SCLK or I/SM in
pinout diagrams) is wired in parallel with another pin. These
pads are restricted testing pins, and require that ATVG be
disabled.

Gate <gate> has floating input.

The specified gate has one or more unconnected inputs.
Floating inputs are not allowed.

Net <net> driven by multiple I/O pads.

The specified net is driven by more than one I/O pad. A net
cannot be driven by multiple I/O pads.

Net <net> has fanout of <24, but >2 drivers.

The specified net has too many high-drive pads. Remove one
high-drive pad and re-try.

Net <net> has no driver.

The specified net does not have a driving cell; thus, the inputs
of the attached cells are floating.

Clock net <net> has multiple drivers.

The specified net is driven by more than one clock pad. Clock
nets must be driven by one and only one clock pad.
270 Warp Reference Manual

SpDE Error Messages

B

Dual drive gate <gate> is illegally connected.

You have tried to use double-buffering, but incorrectly, OR
you illegally tied the outputs of two gates together.

Gate has illegally connected outputs.

Two gates have their outputs tied together illegally. (You may
have double-buffered them incorrectly.)

Gate <gate> is placed on incompatible cell.

The specified gate has an invalid fixed placement. A bi-
directional pad macro may have been placed on an input cell,
or vice versa.

Gates <gate> and <gate> are placed on the same cell.

Two gates cannot be placed on the same cell.

High-drive net <net> has opposing pads in a corner.

A net, driven by a high-drive pad, cannot drive a pair of bi/
tripads that are at a 90-degree angle to each other in a corner of
the chip (e.g., one on the top, one on the right side). Move one
of the pads away from the corner and re-try.

High-drive net <net> has pads on top and bottom.

Multiple high-drive pads (HD2PAD, HD3PAD, HD4PAD)
must have fixed placements. Multiple high-drive pads must be
placed on the same side of the chip (e.g., all on the top or all on
the bottom of the chip). This error also occurs if you are
driving tri-state enables directly from HDPADs. In this case,
you cannot fix a pin driven from the HDPAD on the opposite
side of the chip from the HDPAD.

Net <net> uses clock pad to drive logic inputs.

The clock output tree of the CKPAD cannot be used to drive
any logic except for clock pins, asynchronous presets, and
clears. Consider using one of the two high-drive outputs of the
CKPAD (IN or IZ).
Warp Reference Manual 271

SpDE Error Messages

 B
Net <net> driven by more than two logic outputs.

The specified net is driven by more than two logic cells. A net
can be driven by two logic cells in the case of double-buffering,
but a net can never be driven by more than two logic cells.

Net <net> driven by multiple sources.

The specified net has an illegal configuration of multiple
drivers. The only valid configuration of multiple drivers is
two, three, or four high-drive pads.

Net <net> is on both sides of an I/O pad.

The specified net has been wired both inside and outside the
boundary of a single pASIC. Often, a net attached outside the
chip (to a pad, for example) will be named accidentally with a
name already used inside the chip.

Net <net> uses clock pad to drive logic inputs.

A clock net is being used to drive logic cells. The dedicated
clocking structures (CKPADs) may only drive clocks, sets, or
resets of logic cells.

Pad on net <net> must be pre-placed.

When using HDPADs to drive the enables of more than 16 tri/
bipads, the tri/bipads must be pre-placed either on the same
side or adjacent sides of the HDPAD placement. The tri/
bipads may not be located on the opposite side of the HDPAD.
If there are 16 or fewer pads driven from an HDPAD, the
Design Verifier performs the placement automatically.

Used <number> bi-directional pads with <max> available.

You have used more general I/O pads than are available on
the chosen device. Remember that some pin positions require
special pads, such as input-only pads or clock pads.
272 Warp Reference Manual

SpDE Error Messages

B

B.3 User Errors

SpDE reports user errors using an Error dialog box. These errors represent design
or system errors that can be fixed by the user. The list below is organized by tool
code; the first two letters of the error code indicate the tool.

XX—(starting with any two letters)

Used <number> clock pads with <max> available.

You have used more general I/O pads than are available on
the chosen device. There are only two clock pads (CKPADs)
on each pASIC device.

Used <number> flip-flops with <max> available.

You have used more flip-flops in your design than are
available in the chosen device.

Used <number> input-only pads with <max> available.

You have used more HDPADs in your design than are
available on the chosen device. There are six HDPADs
available on all
pASIC devices.

xx0100-
xx0199

Out of memory.

SpDE has requested more memory than Windows
currently has available. Try closing other
applications and re-running SpDE. If the problem
persists, try re-starting Windows. Many memory
problems can be solved by creating a larger
Windows swap file. Windows offers very efficient
memory management; refer to the Microsoft®
Windows User’s Guide for complete details.
Warp Reference Manual 273

SpDE Error Messages

 B
CH—Chip file to QDIF file converter (loads old design files)

DB—the SpDE Database Module

ED—EDIF Netlist Reader

ET—EDIF Netlist Reader (EDIF to SpDE Translator)

CH0001-
CH0002

Error loading binary file:<filename>.

Cannot save QDIF file: <filename>.

The converter software is having trouble loading
the source design or saving to the destination.
This could be due to a full disk, or to a lack of read
or write access to the files.

DB0001-
DB0002

Invalid package type.

An invalid package topic has been chosen for the
pASIC chip being targeted.

ED0002-
ED0003

Syntax error on line <line number>.

Illegal syntax has been used at line <line number>
in the EDIF file.

ET0006 Unknown package type: <package>

A package that SpDE does not recognize is
specified in the EDIF file.

ET0007 Package has incorrect pin bonding

A pin that does not exist (or is not bonded out) on
the selected package is used in the EDIF file.
Either the pin number or package type are
incorrect.
274 Warp Reference Manual

SpDE Error Messages

B

GP—Graphing Package

JE—LOF Netlister

GP0001-
GP0002

Error opening clipboard
Error opening picture

The Grapher could not properly open the picture
or clipboard with Windows calls. Try re-booting
your computer.

GP0003-
GP0005

Error closing picture
Error closing clipboard

The Grapher could not properly close the picture
or clipboard with Windows calls. Try re-booting
your computer.

GP0004 Error putting picture onto clipboard

The Grapher could not complete the operation of
copying the graph to the clipboard. You may be
low on memory, or Windows could be unstable.
Try re-booting your computer.

JE0001 Could not open file <filename>

<filename> specified by the user either does not
exist, or does not have a read attribute.

JE0002 No LOF support for part <part>

The device used for the current design (<part>) is
currently not supported by the LOF Netlister.
Warp Reference Manual 275

SpDE Error Messages

 B
LS—Load and Save Files

PA—Path Analyzer

LS0001-
LS0004

Could not open binary file <filename>

<filename> specified by the user either does not
exist, or does not have a read attribute.

LS0002-
LS0005

Wrong part file DB version in file <file>

An old version of the specified part file exists in
the SpDE data directory. Check your WIN.INI file
to ensure that the ini-path entry in the [SpDE]
section has been properly set.

LS0003-
LS0006

Unknown part name <part>

The part specified in the design file does not exist,
or does not have an associated part file. Check
your WIN.INI file to ensure that the ini-path entry
has been properly set.

LS0007-
LS0010

Part File Errors

This error occurs if SpDE cannot find a current,
valid part file. If this error occurs, you may want
to re-install SpDE.

LS0011 Unknown package type: <package>

A package that SpDE does not recognize is
specified in the QDIF file.

LS0200 <error> at approximately line <line number>

The parsing error <error> occurred while reading
line <line number> of the QDIF file.

PA000x Clipboard Errors

These errors indicate that the Path Analyzer could
not use the Windows clipboard properly. Try re-
booting your computer.
276 Warp Reference Manual

SpDE Error Messages

B

PK—Packer (Level 0 Optimizer)

RT—Router

PK0000
PK0001
PK0002
PK0003

Cannot pack - too many logic cells
Too many HDPADs (input-only pads) used
Too many I/O pads used
Too many CKPADs (clock pads) used

The design requires more of the specified
resources than are available in the selected pASIC
device. Use fewer of the specified components, or
select a larger device.

PK0004 Illegal fixed I/O location

An I/O cell has been assigned to an incompatible
pin location. For example, a high-drive pad was
placed on a bi-directional pin. Move the fixed
placement to an appropriate location.

RT0000
RT0001
RT0002

Could not complete routing
Could not complete clock routing
Could not complete hi-drive routing

The router does not have enough resources to
complete routing. In the case of hi-drive routing,
refer to “Special Routing Cases” in Section Router.
Otherwise, try re-placing after changing the placer
seed.

RT0003 Out of express wires in channel <x><y>. Re-run
placer with another seed.

The router requires more express wires than are
available in the specified channel. This problem is
most often caused by an excess of signals attached
to the high-drive input pads. Employing four or
fewer signals in tandem with these pads
guarantees routability of these signals.
Warp Reference Manual 277

SpDE Error Messages

 B
SD—SDF Writer

SP—SpDE

SQ—Sequencer

TM—Technology Mapper (Level 1 Optimizer)

SD0001 Cannot open file: <filename>

The SDF writer cannot open the SDF file that it
needs to create. This could be due to a full disk, or
a write-protected file or directory.

SP0004 SPDE.INI is read-only or does not exist.

SpDE could not find its initialization file SPDE.INI
for saving defaults. This could mean that the file
has been erased or that the file is read-only.

SQ0000 Sequencer could not complete. Re-run Router
with a different seed.

The sequencer could not determine an order in
which to program the Via-Links in the part. Re-
running the placer and/or the router with
different seeds should correct the problem.

TM0001
TM0002
TM0003
TM0004

Cannot pack - too many high-drive pads
Cannot pack - too many I/O pads
Cannot pack - too many clock pads
Cannot pack - too many logic cells

The Technology Mapper has determined that the
design needs more resources than are available.
You may need to select a larger device, or change
the design accordingly.
278 Warp Reference Manual

SpDE Error Messages

B

UI—User Interface

UI0001 There is (are) <number> dll(s) not in SpDE’s
path.

SpDE has detected <number> DLL’s that it needs
that are not in the current spDE directory.

UI0002 Cannot convert chip file <filename>

SpDE could not convert the chosen chip (.CHP)
file to the latest version. Possibly a non-chip file or
a chip file from a very old version of SpDE has
been selected.

UI0003 Unable to complete command <command>
successfully.

SpDE tried to execute the command <command>,
without success.

UI0004 Invalid directory: <directory>

The chosen directory cannot be accessed. This
may happen if the chosen directory is a DOS drive
that has been “joined” to a network directory.
Also, the directory may not exist.

UI0005 Can’t change to specified directory

Unable to successfully change to chosen directory.
This will happen if the chosen directory is a DOS
drive that has been “joined” to a network
directory.

UI0006
UI0023
UI0024

SPDE.INI is read-only. Cannot save options

SpDE could not read and/or modify the SPDE.INI
file. Make sure this file is not in a read-only
directory. You may also check the WIN.INI file
under [SpDE] to see that the ini-path points to the
directory where this file exists (.spderc in home
directory for SUN users).
Warp Reference Manual 279

SpDE Error Messages

 B
UI0008 PKZIP.EXE was not found in path

The LOF file cannot be properly compressed
unless PKZIP version 1.01 is in the DOS path.
Either put PKZIP in the path, or ZIP the file
manually using PKZIP 1.01.

UI0009 Unable to run command: <command>
Reason: <reason>

SpDE could not run a Windows application
because of <reason>. This could indicate an
improper configuration.

UI0010 No printer connected

SpDE could not detect a printer device under
Windows. Check Printer Setup in the Windows
Control Panel.

UI0011 Printer not set up

SpDE could not print to the default device. Check
Printer Setup in the Windows Control Panel.

UI0015 File <filename> is from a later version of SpDE...

You have chosen to open a file that was created
from a later version of SpDE than is running
currently. If you did not intend this, check your
configuration, or re-install the latest SpDE tools.

UI0016 Unable to convert <filename>

SpDE could not properly convert <filename> to the
current version of SpDE.

UI0017 Can’t initialize gang programmers

You may have a configuration problem with the
gang programmers, or a problem with your serial
card.
280 Warp Reference Manual

SpDE Error Messages

B

UI0018 No gang programmers found

Check to make sure all gang programmers are
connected and plugged in, and that the correct
COM port has been chosen.

UI0019 No automatic place and route tools were run -
Check Place and Route option settings.

You have chosen to Run All Tools after all the
tools have already been run. If you wish to iterate,
change seeds in the Tools Options, then re-run
tools with Run Selected Tools.

UI0020
UI0021

Cannot process SPDE.INI file

The SPDE.INI file has been corrupted.

UI0022 Error opening report file <filename>

SpDE could not open the report file it has created.
This could happen if you were too low on
memory to load the chosen editor, or if the chosen
editor could not be loaded properly. Change the
chosen editor from View/Preferences.

UI0034 Cannot load QDIF file <filename>

An error was detected while reading a QDIF file.
The file may have a syntax error, or the file may
have been damaged.

UI0037 Ini-path not found in win.ini.
Using c:\pasic\spde\data

SpDE expects to find the variable ini-path under
the heading [SpDE] in the win.ini file. The
installation program will do this automatically.
Check the win.ini file, or re-install SpDE.
Warp Reference Manual 281

SpDE Error Messages

 B
VE—SpDE Physical Viewer

VG—Verilog Netlister

UI005x Save Error

A DOS error was detected while trying to save a
file. This may be caused by a write-protect
violation or insufficient disk space.

UI006x Load Error

A DOS error was detected while trying to load a
file. This may be caused by choosing the wrong
file type to load, or trying to load a file without a
read attribute.

VE0007
VE0010
VE0012

Value must be between <min> and <max>

The value you have entered is out of the allowable
range. Enter a value between <min> and <max>.

VE0009
VE0011

Bad (unsigned) integer value

The value you have entered does not represent a
proper integer value. If SpDE is expecting an
unsigned integer, make sure the number is
positive. Always make sure integers do not have
decimal points.

VG0001 Error: cannot open file: <filename>

The Verilog netlister cannot open the output file it
is trying to create. This could be due to a full disk
or a read-only directory.
282 Warp Reference Manual

SpDE Error Messages

B

VL—Viewlogic Netlister

VL0000-
VL0004,
VL0006

Error: cannot open file: <filename>

The Viewlogic netlister could not access the
specified file. Check Viewlogic environment
variables and write-access of specified directory;
also check to be sure specified file exists.

VL0005
VL0007

Cannot write to file: <filename>

The Viewlogic netlister could not write to the
specified file. Check available disk space and
write permission on the specified directory and
file.
Warp Reference Manual 283

SpDE Error Messages

 B
284 Warp Reference Manual

Appendix C
C

Glossary

Glossary

C

Listed here are the definitions of terms encountered frequently in using VHDL,
using Warp, and using programmable logic. Note that the context for the VHDL
definitions is that of synthesis (as opposed to simulation) modeling.

1076 VHDL - the IEEE specification of the VHDL language.

1164 VHDL - the IEEE specification of the std_logic data type.

actual - in port maps used in binding architectures, the name of the pin to which
the signal is being mapped.

analysis - the examination of a VHDL description to ensure that it complies with
VHDL syntax rules. During analysis, Warp determines the design
elements (packages, components, entities, and architectures) that
make up the description and places these design elements into a
VHDL library and an associated index. The library and index are
then available for use in synthesis by other descriptions.

antifuse - whereas a fuse provides an electrical connection of wires that is initially
intact, broken only after a programming voltage is applied across
the fuse, an antifuse is an interconnection between wires that is
initially broken and formed only after a programming voltage is
applied across the antifuse.

APR - (Automatic Place and Route) for pASIC the placing of a design, described
in the QDIF format, into a part. The output is saved as a .chp file.

architecture - the part of a VHDL description that specifies the behavior or
structure of an entity. Entities and architectures are always paired
in VHDL descriptions.

attribute - a named characteristic of a VHDL item. An attribute can be a value,
function, type, range, signal, or constant. An attribute can also be
associated with one or more names in a VHDL description,
including entity names, architecture names, labels, and signals.
Once an attribute value is associated with a name, the value of the
attribute for that name can be used in expressions.

ATVG - (Automatic Test Vector Generation) - is the last tool run from SpDE when
placing and routing an FPGA design. These test vectors are run
after the part is programmed to test for functionality.
286 Warp Reference Manual

Glossary
C
automatic clock pad generation - the algorithm in Warp that assigns clock pins or

input pins to ckpads and hdpads on the pASIC devices.

back annotation - the process whereby timing or pin placement information is sent
back to the simulator or design entry tools.

back end simulation - see simulation back end.

banked output enable - (oe) for FLASH370 CPLDs, a bank is defined as half of a
lab and the output enable control for the upper bank of the lab
(macrocells 1 to 8) is separate from the output enable control for
the lower bank of the lab (macrocells 9 to 16).

behavioral VHDL - refers to the coding style of VHDL where the code uses higher,
more abstract constructs, such as “if then else, ” rather than lower,
less abstract constructs, such as boolean equations, to describe a
digital design.

binding architecture - an architecture used to map the ports of an entity to the pins
of a PLD.

bit_vector - a collection of bits addressed by a common name and index number
(an array of bits).

buffer generation - see directive driven fanout buffering.

cell fragments - in pASIC, each logic cell is composed of multiple fragments which
can be individually used to place logic. For example, the A
fragment is a 6 input AND gate where the output controls a mux
and also drives out of the logic cell.

chp files - in pASIC, the place and route output file from SpDE.

ckpads - in pASIC, the clock pads which connect directly to the internal clock
buffer tree and can be connected to the clock, set, or reset of the
register in the logic cell. (see clock buffer tree)

clock buffer tree - for pASIC, the ckpads connect directly through express wires to
an internal clock buffer distribution tree that provides buffering
per half column of logic cells to ensure a high speed, low skew
clock across the entire chip.

combinatorial - any datapath that is not registered or latched, and therefore does
not have a clock or latch enable associated with its timing
parameters.
Warp Reference Manual 287

Glossary

C

component - a description of a design that can be used in another design.

component declaration - that part of a VHDL description that defines a
component. The component declaration is usually encapsulated
in a package for export via the library mechanism.

component instantiation statement - a statement in a VHDL description that
creates an instance of a previously defined component.

concurrent statement - a statement in an architecture that executes or is modeled
concurrently with all other statements in the architecture.

constant declaration - an element of a VHDL description that declares a named
data item to be a constant value.

control file - (CTL) a file used for attaching synthesis directives, attributes, and pin
node information to signals and components to a VHDL design.
Separating this from the VHDL file enables the file to be device
independent.

CPLD - (Complex Programmable Logic Device) is a higher density PLD that
employs a central programmable interconnect matrix to internally
connect multiple LABs together.

crosslink - in pASIC, a vialink used to connect a vertical wire to a horizontal wire.

design architecture - an architecture paired with a previously declared entity that
describes the behavior or structure of that entity.

design unit - an entity declaration, a package declaration, an architecture body, or
a package body.

directive driven fanout buffering - for pASIC, directives to specify how the
software will choose among many options available to reduce the
propagation delay on internal signals.

directive driven module generation - directives that will specify either a speed or
area optimized implementing of a component from a given
operator. For instance, the “+” operator could be recognized as an
adder.

directives - instructions to specify software flow. For instance, a synthesis directive
such as pad_gen in Warp tells the clock pad generator how to
allocate dedicated input pins in a design.
288 Warp Reference Manual

Glossary
C
don’t care synthesis/optimization - the use of the don’t care conditions to

synthesize the most minimum boolean equations describing a
design.

EDIF - (Electronic Data Interchange Format) an industry standard netlist
representation of a design that is often used to transport a
schematic design from one design platform to another.

entity - that part of a VHDL description that lists or describes the ports (the
interfaces to the outside) of the design. An entity describes the
names, directions, and data types of each port.

export1076/1164 - the algorithm that takes in a schematic entry and outputs a
structural VHDL representation, which can be read directly into a
VHDL compiler such as Warp.

express wires - for pASIC, a routing wire that extends the entire vertical or
horizontal distance across the device and does not have any
passlinks in its path.

factoring point - in synthesis, the preservation of an intermediate node. For
instance, in the following equations, “x <= a or b” and “ y <= x or
c”, the node “x” could be made a factoring point in the design by
the synthesis tool or the node “x” could be eliminated by
implementing “y <= a or b or c”. (see synthesis_off attribute)

fanout - the number of gates that a node must drive.

finite state machine - (FSM) a digital design characterized by multiple states
(signals held in registers) and at least one output such that
external or feedback inputs enable transitions from one state to
another.

fitting - a process which converts a description of a design into a programming
file, which a programmer can use to program a logic device such
as a PLD or a CPLD.

fixed macrocell assignment - forces a given function into a specific macrocell in a
PLD or a CPLD.

formal - in port maps used in binding architectures, the signal name on the
component.
Warp Reference Manual 289

Glossary

C

FPGA - (Field Programmable Gate Array) a class of programmable logic device

characterized by an array of logic cells with horizontal and
vertical routing resources between and surrounding the logic cells
that functions as an interconnect.

fragments (pASIC) - see cell fragments.

front end simulation - see simulation front end.

function - a subprogram whose invocation is an expression and which therefore
returns a value. See subprogram and procedure.

function body - a portion of a VHDL description that defines the implementation
of a function.

function declaration - a portion of a VHDL description that defines the parameters
passed to and from a function invocation, such as the function
name, return type, and list of parameters.

function invocation - a reference to a function from inside a VHDL description.

functional simulation - see simulation front end.

Galaxy - the name for the Graphical User Interface for the Warp synthesis tool.

generic - a VHDL construct that is used with an entity declaration to allow the
communication of parameters between levels of hierarchy. A
generic is typically used to define parameterized components
wherein the size or other configuration are specified during the
instantiation of the component. See entity.

generic map - a VHDL construct that enables an instantiating component to pass
environment values to an instantiated component. Typically, a
generic map is used to size an array or a bit vector or provide
true/false environment values.

GUI - (Graphical User Interface) the Galaxy interface for Warp.

half lab - in FLASH370 CPLD devices, the macrocells 1 to 8 or 9 to 16 within a logic
block.

HDL - (hardware description language) is a language such as VHDL or Verilog
used to describe a digital design as an alternate method to
schematic entry.

hdpads - (high drive pads) in pASIC, the dedicated input pins which have higher
drive capacity than the I/O pads.
290 Warp Reference Manual

Glossary
C
HD(2/3/x) pads - for pASIC, the connection of multiple hdpads together inside the

device to increase its drive capability.

hierarchical VHDL - uses the instantiation(placement) of pre-defined blocks
(components) to build a structural design.

highlight net - for pASIC, enables the easy viewing of a node after a design has
gone through APR.

instantiation - the process of creating an instance (a copy) of a component and
connecting it to other components in the design.

JEDEC file - for PLDs and CPLDs, the programming file created from the Warp
compiler.

library - a collection of previously analyzed VHDL design units. In Warp, a library
is a directory containing an index and one or more VHDL files.

license file - is needed only for Warp3 users to run the Viewlogic tools.

LOF file - (Link Object Format) for pASIC, this is the programming file that is
generated from SpDE.

logic block - (LAB) one of multiple blocks of logic within a CPLD that are
interconnected together via a global interconnect. A logic block in
a CPLD is similar in nature and capability to a small PLD such as
the 22V10. A logic block typically consists of a product term array,
a product term distribution scheme, and a set of macrocells.

logic cell - a replicated element of logic within an FPGA device that typically
contains a register and additional logic that forms the basic
building block for implementing logic in the device.

logic minimization - in the Warp compiler, the part of the synthesis where the
boolean equations of a design are reduced to the smallest number
of product terms.

Logic optimizer - for pASIC, part of the place and route algorithm of the SpDE tool
that runs the packer and technology mapper.

LPM - (Library of Parameterizable Modules) the new schematic library that
enables the user to select customized components that are
optimized for area or performance.
Warp Reference Manual 291

Glossary

C

macrocell - a replicated element of logic in PLD and CPLD architectures that

typically contains a configurable memory element, polarity
control, and one or more feedback paths to the global
interconnect.

mixed mode VHDL - in schematic capture, a description of a design that mixes
symbols described in textual VHDL with schematic elements.

mode - associated with signals defined in a VHDL entity’s port declaration. A
mode defines the direction of communication a signal can have
with other levels of hierarchy.

module generation/operator inferencing - See UltraGen.

Nova - the name of the functional simulator.

OTP - (One Time Programmable) pertains to the pASIC family on the vialink
technology.

package - a collection of declarations, including component, type, subtype, and
constant declarations, that are intended for use by other design
units.

package body - the definition of the elements of a package. A package body
typically contains the bodies of functions declared within the
package.

package declaration - the declaration of the names and values of components,
types, subtypes, constants, and functions contained in a package.

packing - for pASIC, the process within SpDE where the design, described in
pASIC fragments, is mapped into the logic cells of the device.

pad generation - for pASIC, the program within Warp that automatically assigns
input pins to ckpads and hdpads.

partitioning - in an HDL compiler, this is the breakdown of a digital design to a
boolean description of the design. This can also mean the
placement of a large design into more than one target device.

pASIC - (Programmable Application Specific Integrated Circuit) is the name given
to the FPGA 380 family of devices.
292 Warp Reference Manual

Glossary
C
passlink - in pASIC, a vialink used to connect a vertical wire to a vertical wire or

a horizontal wire to a horizontal wire.

path analyzer - for pASIC within SpDE, the tool that provides timing information
after a design has been placed and routed.

performance - the maximum clock frequency or slowest propagation delay of a
design as implemented in a particular programmable logic
device. Performance is typically measured in nanoseconds for
propagation delay or in megahertz for clock frequency.

Physical Viewer - displays the actual layout of a pASIC part after APR.

PIM - (Programmable Interconnect Matrix) in CPLDs, the means with which
signals (dedicated inputs, I/O inputs, and macrocell outputs) are
fed back to the same logic block or distributed to the other logic
blocks of the device. The design of the PIM varies among CPLD
vendors and affects the speed, routability, and timing
characteristics of the device.

PKZIP.EXE - for pASIC, a compression utility commonly used to reduce the size
of LOF files.

PLA format - for CPLDs and PLDs, this is the intermediate sum of products
boolean description of a design that is the input file into the fitter
for placing the design into a specific device.

place and route - the process of transforming a gate-level representation of a circuit
into a programming file that may be used to program an FPGA
device. This process requires two steps: one to place the required
logic into logic cells, and one to route the logic cells via the
horizontal and vertical routing channels to each other and the I/
O pins. See synthesis, fitting and logic cell.

placer - for pASIC, the process within SpDE in which the logic cells are placed
within the device to minimize routing delays.

PLD - (Programmable Logic Device) is the name of a broad range of products
whose architecture is composed of an AND product term array, a
fixed “Oring” of the product terms, a programmable macrocell
(on some PLDs), and an output macrocell (on some PLDs).

port – a point of connection between a component and anything that uses the
component.
Warp Reference Manual 293

Glossary

C

port map - an association between the ports of a component and the signals of an

entity instantiating that component. Within the context of a
binding architecture, a port map is a VHDL construct that
associates signals from an entity with pins on a PLD.

Powerview - the name of Viewlogic’s design entry and simulation tools, included
in Warp3, that runs on the SUN workstation.

primitives - a schematic element or VHDL component that is not built from other
schematic elements or components.

procedure - a subprogram whose invocation is a statement and which therefore
does not return a value. See subprogram and function.

procedure body - a portion of a VHDL description that defines the implementation
of a procedure.

procedure declaration - a portion of a VHDL description that defines the
parameters passed to and from a procedure invocation, such as
the procedure’s name and list of parameters.

procedure invocation - a reference to a procedure from inside a VHDL
description.

process - a collection of sequential statements appearing in a design architecture.

product term - for CPLDs and PLDs, this is the boolean “anding” of a variable
number of signals to form the “products” part of the “sum of
products” implementation that feeds into the macrocell of the
device.

Proseries - the name of Viewlogic’s low-end design entry and simulation tools that
run on the PC.

QDIF file - for pASIC, this is the output file generated from Warp synthesis that is
then used as the input file into SpDE to place and route (fit) into a
pASIC device.

quad wires - for pASIC devices 7C385 and greater, the vertical routing wires that
span 4 logic cells before passing through a passlink and then
horizontal routing wires that span 4 logic cell columns before
passing through a passlink.

router - for pASIC, this is the software within SpDE that determines which
horizontal and vertical routing wires will be used to connect the
logic cell outputs or inputs to logic cells or I/O pins.
294 Warp Reference Manual

Glossary
C
segmented wires - for pASIC, if it is vertical, then the routing wire passes through

a passlink as it passes from one logic cell to another logic cell, and
if it is horizontal passes through a passlink as it goes from one
column of logic cells to another column of logic cells.

sensitivity list - a list of signals that appears immediately after the process
keyword and specifies when the process statements are activated.
The process is executed when any signal in the sensitivity list
changes value.

sequencer - for pASIC, the SpDE tool that determines the order of how the
vialinks are to be programmed.

sequential statement - a statement appearing within a process. All statements
within a process are executed sequentially.

signal - a data path from one component to another.

signal declaration - a statement of a signal name, its direction of flow, and the type
of data that it carries.

simulation front end - the functional simulation on VHDL code done before the
design is synthesized to a particular device.

simulation back end - the functional or timing simulation done after a design is
synthesized to a particular device.

skew - a measure of the maximum difference between two or more delay paths.

source level simulation - same as simulation front end.

SpDE - (Seamless pASIC Design Environment) is the name of the place and route
tool for all pASIC devices.

std_logic - 1164 VHDL types for individual objects that expands the 1076 VHDL
type of “ bit” to include the high impedance state “Z” as well as
other types. (see type)

std_logic_vector - same as std_logic except for multiple bits.

structural VHDL - describes a design much like a schematic which
instantiates(places) pre-defined blocks (components) and
specifies the exact connection of these components.
Warp Reference Manual 295

Glossary

C

subprogram - a sequence of declarations and statements that can be invoked

repeatedly from different locations in a VHDL description. VHDL
recognizes two kinds of subprograms: procedures and functions.

subtype - a restricted subset of the legal values of a type.

subtype declaration - a VHDL construct that declares a name for a new type,
known as a subtype. A subtype declaration specifies the base type
and declares the value range of the subtype.

sum-splitting - for PLDs, the result of implementing a large sum or products
equation in more than one pass through the AND array by
implementing portions of the product terms in one or more
macrocells on the first pass and ORing the partial results in
another macrocell as a second pass through the AND array.

synthesis - the production of a file to be mapped to a PLD containing the design
elements extracted from VHDL descriptions during the analysis
phase. The file is a technology-mapped structural netlist
description that is fitted to a user-specified device.

synthesis_off - see factoring point.

technology mapper - in pASIC place and route, the SpDE tool that optimizes the
utilization of the logic cell by manipulating inversion bubbles and
merging gates.

type - an attribute of a VHDL data object that determines the values that the object
can hold. Examples of types are bit and std_logic . Objects of
type bit can hold values 0 or 1 . Objects of type std_logic can hold
values of U, X, 0 , 1 , Z, W, L , H, or - .

UltraGen - the ability of the Warp compiler to infer operations from behavioral
VHDL code, which results in optimal implementations of the
basic operations.

Verilog - an alternate HDL to VHDL.

VHDL - (Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language) is a powerful language used to describe digital designs
and is the language interpreted by the Warp compiler.

vialink - the programmable antifuse element used to connect wires in a pASIC.

ViewDraw - the schematic capture tool from Viewlogic that is the schematic
capture tool for Warp3.
296 Warp Reference Manual

Glossary
C
ViewSim - the timing simulation tool from Viewlogic that is used in Warp3.

Workview PLUS - the name of Viewlogic’s design entry and simulation tools,
provided with Warp3 that runs on the PC.
Warp Reference Manual 297

Glossary

C

298 Warp Reference Manual

Appendix
 D
D

BNF

BNF

D

BNF of Supported VHDL

This appendix presents a simplified Backus-Naur Form (BNF) of the VHDL
subset supported by Warp.

Conventions Used In This Appendix

The form of a VHDL description is described by means of context-free syntax,
together with context-dependent syntactic and semantic requirements expressed
by narrative rules. The context-free syntax of the language is described using a
simple variant of Backus-Naur Form, in particular:

1. Lower case words, some containing embedded underlines, are used to
denote syntactic categories, for example:
formal_port_list

2. Boldface is used to denote reserved words and literal characters, for
example:
array

3. A vertical bar separates alternative items, unless it appears in boldface
immediately after an opening brace, in which case it stands for itself:
letter_or_digit ::= letter | digit
choices ::= choice { | choice}

4. Square brackets enclose optional items. Thus, the following two rules are
equivalent:
return_statement ::= return [expression];
return_statement ::= return; | return expression;

5. Braces enclose a repeated item. The item may appear zero or more times;
the repetitions occur from left to right as with an equivalent left-recursive
rule. Thus, the following two rules are equivalent:
term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

6. If the name of any syntactic category starts with an italicized part, it is
equivalent to the category name without the italicized part. The italicized
part is intended to convey some semantic information. For example,
type_name and subtype_name are both equivalent to name alone.

7. The term simple_name is used for any occurrence of an identifier that
already denotes some declared entity.
300 Warp Reference Manual

BNF

D

BNF

actual_designator ::=
expression
| signal_name
| variable_name
| open

actual_parameter_part ::=
parameter_asociation_list

actual_part ::=
actual_designator
| function_name (actual_designator)

adding_operator ::=
+ | - | &

aggregate ::=
(element_association {, element_association})

alias_declaration ::=
alias identifier:subtype_indication is name;

architecture_body ::=
architecture identifier of entity_name is
architecture_declarative_part
begin

architecture_statement_part
end [architecture_simple_name];

architecture_declarative_part ::=
{block_declarative_item}

architecture_statement_part ::=
{concurrent_statement}

array_type_definition ::=
unconstrained_array_definition
| constrained_array_definition

assocation_list ::=
assocation_element {, association_element}

association_element ::=
[formal_part =>] actual_part
Warp Reference Manual 301

BNF

D

attribute_declaration ::=
attribute identifier:type_mark;

attribute_designator ::=
attribute_simple_name

attribute_name ::=
prefix ' attribute_designator [(expression)]

attribute_specification ::=
attribute attribute_designator of entity_specification
is expression

block_declarative_item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| alias_declaration
| component_declaration
| attribute_specification
| use_clause

block_declarative_part ::=
{ block_declarative_item }

block_statement ::=
block_label:
block block_declarative_part
begin

block_statement_part
end block [block_label];

block_statement_part ::=
{ concurrent_statement }

case_statement ::=
case expression is case_statement_alternative
{ case_statement_alternative }
end case;

case_statement_alternative ::=
when choices => sequence_of_statements
302 Warp Reference Manual

BNF

D

choice ::=
simple_expression
| discrete_range
| element_simple_name
| others

choices ::=
choice [| choice]

component_declaration ::=
component identifier
[local_generic_clause]
[local_port_clause]
end component;

component_instantiation_statement ::=
instantiation_label:

component_name
[generic_map_aspect]
[port_map_aspect];

composite_type_definition ::=
array_type_definition
| record_type_definition

concurrent_signal_assignment_statement ::=
[label:] conditional_signal_assignment
| [label:] selected_signal_assignment

concurrent_statement ::=
block_statement
| process_statement
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

condition ::=
boolean_expression

conditional_signal_assignment ::=
 target <= options conditional_waveforms;

conditional_waveforms ::=
{ waveform when condition else } waveform
Warp Reference Manual 303

BNF

D

condition_clause ::=
until condition

constant_declaration ::=
constant identifier_list:subtype_indication [:=expression];

constrained_array_definition ::=
array index_constraint of element_subtype_indication

constraint ::=
range_constraint
| index_constraint

declaration ::=
type_declaration
| subtype_declaration
| object_declaration
| interface_declaration
| alias_declaration
| attribute_declaration
| component_declaration
| entity_declaration
| subprogram_declaration
| package_declaration

designator ::=
identifier | operator_symbol

direction ::=
to | downto

discrete_range ::=
discrete_subtype_indication
| range

element_association ::=
[choices =>] expression

element_declaration ::=
identifier_list : element_subtype_definition;

element_subtype_definition ::=
subtype_indication
304 Warp Reference Manual

BNF

D

entity_class ::=
entity | architecture | configuration
| function | package | type
| subtype | constant | signal
| variable | component | label

entity_declaration ::=
entity identifier is

entity_header
entity_declarative_part

[begin
entity_statement_part]

end [entity_simple_name];

entity_declarative_item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause

entity_declarative_part ::=
{entity_declarative_item}

entity_designator ::=
simple_name | operator_symbol

entity_header ::=
[formal_generic_clause]
[formal_port_clause]

entity_name_list ::=
entity_designator {, entity_designator}
| others
| all

entity_specification ::=
entity_name_list : entity_class
Warp Reference Manual 305

BNF

D

enum_literal ::=
identifier | character_literal

enum_type_definition ::=
(enum_literal {,enum_literal})

exit_statement ::=
exit [loop_label] [when condition];

expression ::=
relation { and relation}
| relation { or relation}
| relation { xor relation}
| relation { nand relation}
| relation { nor relation}

factor ::=
primary
| not primary

formal_designator_ ::=
generic_name
| port_name
| parameter_name

formal_parameter_list ::=
parameter_interface_list

formal_part ::=
formal_designator
| function_name (formal_designator)

full_type_declaration ::=
type identifier is type_definition;

function_call ::=
function_name [(actual_parameter_part)]

generate_statement ::=
generate_label:

generation_scheme generate
{ concurrent_statement }

end generate [generate_label];
306 Warp Reference Manual

BNF

D

generation_scheme ::=
for generate_parameter_specification
| if condition

generic_clause ::=
generic (generic_list);

generic_list ::=
generic_interface_list

identifier_list ::=
identifier {, identifier}

if_statement ::=
if condition then sequence_of_statements
{elsif condition then sequence_of_statements}
[else sequence_of_statements]
end if;

indexed_name ::=
prefix (expression {, expression})

index_constraint ::=
(discrete_range {, discrete_range})

index_subtype_definition ::=
type_mark range <>

integer_type_definition ::=
range_constraint

interface_constant_declaration ::=
[constant] identifier_list: [in] subtype_indication

[:=static_expression]

interface_declaration ::=
interface_constant_declaration
| interface_signal_declaration
| interface_variable_declaration

interface_element ::=
interface_declaration

interface_list ::=
interface_element {; interface_element}
Warp Reference Manual 307

BNF

D

interface_signal_declaration ::=
[signal] identifier_list: [mode] subtype_indication [bus]

[:=static_expression]

interface_variable_declaration ::=
[variable] identifier_list: [mode] subtype_indication

[:=static_expression]

iteration_scheme ::=
while condition
| for loop_parameter_specification

label ::=
identifier

literal ::=
numeric_literal
| enumeration_literal
| string_literal
| bit_string_literal
| null

logical_operator ::=
and | or | nand | nor | xor

loop_statement ::=
[loop_label:]

[iteration_scheme] loop sequence_of_statements
 end loop [loop_label]

miscellaneous_operator ::=
** | abs | not

mode ::=
in | out | inout | buffer | linkage

multiplying_operator ::=
* | / | mod | rem
308 Warp Reference Manual

BNF

D

name ::=
simple_name
| operator_symbol
| selected_name
| indexed_name
| slice_name
| attribute_name

next_statement ::=
next [loop_label] [when condition];

null_statement ::=
null;

numeric_literal ::=
abstract_literal
| physical_literal

object_declaration ::=
constant_declaration
| signal_declaration
| variable_declaration

operator_symbol ::=
string_literal

options ::=
 [guarded] [transport]

package_body ::=
package body package_simple_name is

package_body_declarative_part
end [package_simple_name];

package_body_declarative_item ::=
function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| alias_declaration
| use_clause

package_body_declarative_part ::=
{package_body_declarative_item}
Warp Reference Manual 309

BNF

D

package_declaration ::=
package identifier is

package_declarative_part
end [package_simple_name];

package_declarative_item ::=
function_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| use_clause

package_declarative_part ::=
{package_declarative_item}

parameter_specification ::=
identifier in discrete_range

port_clause ::=
port (port_list);

port_list ::=
port_interface_list

prefix ::=
name
| function_call

primary ::=
name
| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)
310 Warp Reference Manual

BNF

D

procedure_call_statement ::=
procedure_name [(actual_parameter_part)];

process_declarative_item ::=
function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause

process_statement ::=
[process_label]
process [(sensitivity_list)]

process_declarative_part
begin

process_statement_part
end process [process_label];

process_statement_part :=
{ sequential statement }

range ::=
range_attribute_name
| simple_expression direction simple_expression

range_constraint ::=
range range

record_type_definition ::=
record

element_declaration
{element_declaration}

end record

relation ::=
simple_expression [relational_operation simple_expression]

relational_operator ::=
 + | /= | < | <= | > | >=
Warp Reference Manual 311

BNF

D

return_statement ::=
return [expression];

scalar_type_definition ::=
enum_type_definition
| integer_type_definition

selected_name ::=
prefix.suffix

selected_signal_assignment ::=
with expression select

target <= options selected_waveforms

selected_waveforms ::=
{waveform when choices,}
waveform when choices

sensitivity_clause ::=
on sensitivity_list

sensitivity_list ::=
signal_name {, signal_name}

sequence_of_statements ::=
 { sequential_statement }

sequential_statement ::=
wait_statement
| signal_assignment_statement
| variable_assignment_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

sign ::=
+ | -

signal_assignment_statement ::=
target <= [transport] waveform;
312 Warp Reference Manual

BNF

D

signal_declaration ::=
signal identifier_list:subtype_indication

[signal_kind] [:=expression]

signal_kind ::=
register | bus

simple_expression ::=
[sign] term {adding_operator term}

simple_name ::=
identifier

slice_name ::=
prefix (discrete_range)

subprogram_body ::=
subprogram_specification is

subprogram_declarative_part
begin

subprogram_statement_part
end [designator];

subprogram_declaration ::=
subprogram_specification;

subprogram_declarative_item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause

subprogram_declarative_part ::=
{subprogram_declarative_item}

subprogram_specification ::=
procedure designator [(formal_parameter_list)]
| function designator [(formal_parameter_list)] return type_mark
Warp Reference Manual 313

BNF

D

subprogram_statement_part ::=
{sequential_statement}

subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::=
[resolution_function_name} type_mark [constraint]

suffix ::=
simple_name
| character_literal
| operator_symbol
| all

target ::=
name
| aggregate

term ::=
factor {multiplying_operator factor}

timeout_clause ::=
for time_expression

type_declaration ::=
full_type_declaration

type_definition ::=
scalar_type_definition
| composite_type_definition
| access_type_definition

type_mark :=
type_name
| subtype_name

unconstrained_array_definition ::=
array (index_subtype_definition{, index_subtype_definition})

of element_subtype_indication

variable_assignment_statement ::=
target := expression;

variable_declaration ::=
variable identifier_list:subtype_indication [:=expression];
314 Warp Reference Manual

BNF

D

wait_statement ::=
wait [sensitivity_clause] [condition_clause] [timeout_clause];

waveform ::=
waveform_element {, waveform_element}

waveform_element ::=
value_expression
Warp Reference Manual 315

BNF

D

316 Warp Reference Manual

Index

 I

Using Warp
1164 VHDL...4

A
-a option..11
Actuals, defined ..166
Adding operators..68
Alias, VHDL language element 143-144
Analysis in libraries132, 162
APR (automatic place and route)22
Architectures of VHDL. See also Design

methodologies
 behavioral descriptions 76-78
 generally ... 74-76
 language element 144-145
 structural descriptions..............................78

Array composite type............................... 64-65
Association operations 70-71
Attributes, VHDL language element

 declaration.. 145-146
 function... 149-153
 names, associating with146
 pre-defined...147
 range ... 152-153
 reference ...146, 147
 type..152
 value.. 147-149

Automatic place and route (APR)22

B
-b option ... 10-11
Backus-Naur Form (BNF) of supported

VHDL.. 300-315
Banked output enable...................................235

Behavioral VHDL.................................. 160-162
Bit_Vector VHDL type...................................61
Bit VHDL type...60
BNF (Backus-Naur Form) of supported

VHDL.. 300-315
Boolean VHDL type..60
Buffer_gen directive 27-28
BUFFER generation for pASIC 226-228

C
CASE statement, VHDL language element

... 153-155
Character VHDL type60
Chp file ...22
Class of VHDL object50
Clock distribution trees for pASIC..... 226-228
CNT4_EXP design example 133, 135-136
CNT4_REC design example 133, 136-137
Combinatorial logic in design

methodologies 79-83
Command options

 -a option ...11
 -b option ... 10-11
 -d option... 9-10
 -e option..11
 -f option .. 12-14
 generally...9
 -h option ...14
 -l option .. 14-15
 -m option..15
 -o option ... 15-16
 -p option...16
 -q option ...16
 -r option.. 16-17

Index

 I
 recommendations for specific devices
... 20-21

 -s option..17
 -v option ... 17-18
 -w option ..18
 -xor2 option..18
 -yb option ...18
 -yl option ..19
 -ym option..19
 -yp option...19
 -yt option.. 19-20
 -ygs option ...20
 -yga option ...20
 -ygc option ...20
 -yv option ...20

Compiler
 front end... 222-224
 synthesis ... 2-4

Component declaration, VHDL language
element 155-156

Component instantiation statements
...156, 166

Composite data type................................. 64-65
Concurrent statements76
Constant class of data objects.................. 57-59
Constant, VHDL language element ... 156-157
Constructs. See VHDL constructs
Control file ... 49-51
Counter design examples 133, 135-137
Counters in design methodologies......... 85-91
CPLD/PLD fitting

 equations .. 230-233
 fitting process 233-237
 static timing analysis238
 technology mapping and optimization

... 229-230
Cypress exceptions to LPM standard

specifications.............................. 215-216
Cypress modules

 component definition conventions.......208
 IN (module in marker)212
 MBUF (module buffer symbol)209
 MGND (module ground symbol).........210
 MVCC (module VCC symbol)211
 OUT (module out marker).....................213
 TRI (module three-state marker)214

D
-d option... 9-10
Data objects in VHDL............................... 57-59
Data types

 composite ... 64-65
 definition of ...59
 enumerated.. 62-63
 pre-defined... 60-62
 subtypes ...63

DEC24 design example 133-134
Design methodologies. See also State

machines
 combinatorial logic 79-83
 counters .. 85-91, 133
 examples of 133-143
 generally...78
 logic...133
 one-hot-one state machines 102-105
 outputs decoded combinatorially..... 94-96
 outputs decoded in parallel output

registers .. 96-99
 outputs encoded within state bits .. 99-102
 registered logic 83-85
 state machines91, 133
 state transition tables...................... 105-115

Directive driven fanout buffering228
Directive-name synthesis directive50
Directives, generally26
Don't care logic ..4
Dont_touch directive 28-30
Drink design example 133, 138-140
DSGNOPT program229

E
-e option..11
Entities in VHDL design 73-74
Entity declaration, VHDL language

element 157-158
Enum_encoding directive........................ 30-31
Enumerated data type.............. 62-63, 175, 176
Equations

 conventions used in printing230
 in CPLD/PLD fitting...................... 230-233
 report file extension list..........................231
318 Warp User’s Guide

Index

 I
Error messages
 SpDE ... 268-283
 Warp compiler................................. 240-266

Exit statement, VHDL language element ..158
Express wires ...40, 228

F
-f option .. 12-14
Factoring point ..47
Fanout

 defined..225
 pASIC, used in...228

Ff_type directive..32
Fitting process in CPLD/PLD fitting,

place and route phase.......................233
Fixed_ff directive 31-32
Flash ...370

 device equations in the...........................230
 family fitting ..233
 logic blocks....................................... 234-236
 macrocell utilization237
 product term utilization.........................235
 split equations ...233

Flattening.. 47-49
Formals, defined..166
FRAGS in pASIC................................... 228-229
Front end compiler 222-224
Front end synthesis and optimization

... 224-225
Function body subprogram.........................172
Function declaration subprogram..............172
Functions, defined...174

G
Galaxy...226
Generate statement, VHDL language

element 158-159
Generic map statement, VHDL language

element 167-168
Generic, VHDL language element...... 159-160
Global resource reduction in the

DSGNOPT program229
Glossary.. 286-297

Goal directive ..33
GUI in Warp ..4

H
-h option ...14
Half logic block in FLASH370.......................34
Hardware description language (HDL)2
HDPAD in pASIC...228
Hierarchical VHDL...26

I
Identifiers in VHDL.................................. 56-57
If-then-else statement, VHDL language

element 160-162
IN (module in marker) Cypress module ...212
Instantiation of a component156
Integer VHDL type...60

J
.jed file ..21
JEDEC map, overview......................................2

L
-l option .. 14-15
Lab_force directive 33-34
Libraries. See also LPM (Library of

Parameterized Modules); LPM
modules

 described ..132
 language element in VHDL...................162

Line switches, Warp command 8-9
Logic block... 234-236
Logic cells in pASIC......................................228
Logic design examples 133-135
Logical operators...66
Loops, VHDL language element 162-163
LPM component definition conventions

 lpm_logical.......................................182, 208
 lpm_width..182, 208
 result ...182, 208
Warp User’s Guide 319

Index

 I
LPM_HINT attribute216
LPM (Library of Parameterized Modules)

library..4, 80
LPM modules. See also Cypress modules

 MADD_SUB component for CY7C375
...217

 MADD_SUB (module add/subtract
symbol) 196-197

 MAND (module AND symbol)185
 MBUSTRI (module bus tri-state

symbol) 188-189
 MCLSHIFT (module combinatorial

logic shifter symbol) 194-195
 MCNSTNT (module constant symbol)

...183
 MCOMPARE component for

CY7C386A..219
 MCOMPARE (module compare

symbol) ...198
 MCOUNTER component for CY7C375

...218
 MCOUNTER component for

CY7C386A..220
 MCOUNTER (module counter

symbol) 200-201
 MDECODE (module decoder symbol)

... 192-193
 MFF (module flip-flop symbol) 204-205
 MINV (module inverter symbol)..........184
 MLATCH (module latch symbol)...............

... 202-203
 MMULT (module multiplier symbol)..199
 MMUX (module multiplexor symbol)

... 190-191
 MOR (module OR symbol)....................186
 MSHFTREG (module shift register

symbol) 206-207
 MXOR (module exclusive-OR symbol)

...187
LPM standard specifications, Cypress

exceptions to 215-216

M
-m option..15

MADD_SUB component for CY7C375217
MADD_SUB (module add/subtract

symbol) LPM module............... 196-197
MAND (module AND symbol) LPM

module..185
Max_load directive 34-35
MBUF (module buffer symbol) Cypress

module..209
MBUSTRI (module bus tri-state symbol)

LPM module 188-189
MCLSHIFT (module combinatorial logic

shifter symbol)........................... 194-195
MCNSTNT (module constant symbol)

LPM module183
MCOMPARE component for CY7C386A..219
MCOMPARE (module compare symbol)

 LPM module198
MCOUNTER component for CY7C375218
MCOUNTER component for CY7C386A ..220
MCOUNTER (module counter symbol)

LPM module 200-201
MDECODE (module decoder symbol)

LPM module 192-193
Mealy state machines 107-115
MFF (module flip-flop symbol) LPM

module.. 204-205
MGND (module ground symbol) Cypress

module..210
MINOPT program ..229
MINV (module inverter symbol) LPM

module..184
Miscellaneous operators69
MLATCH (module latch symbol) LPM

module.. 202-203
MMULT (module multiplier symbol)

LPM module199
MMUX (module multiplexor symbol)

LPM module 190-191
Modules. See Cypress modules; LPM

modules
Moore state machines............................... 91-93
MOR (module OR symbol) LPM module

...186
MSHFTREG (module shift register symbol)

LPM module 206-207
Multiplying operators 68-69
320 Warp User’s Guide

Index

 I
MVCC (module VCC symbol) Cypress
module..211

MXOR (module exclusive-OR symbol)
LPM module187

N
NAND2_TS design example133, 135
Next, VHDL language element........... 163-164
No_factor directive 35-36
No_latch directive..................................... 36-37
Node, defined..225, 229
Node_num directive.......................................37
Nova functional simulator...............................2

O
-o option ... 15-16
Object-name, defined......................................50
One-hot-one state machines 102-105
Operators. See also Predefined packages

 adding operators68
 assignment operations........................ 69-70
 association operations 70-71
 generally ...65
 logical..66
 miscellaneous...69
 multiplying .. 68-69
 relational...67
 vector operations................................. 71-73

Opt_level directive..38
Optimization, front end 224-225
Options. See Command options
Order_code directive................................ 38-39
OUT (module out marker) Cypress

module..213
Output files ..21

P
-p option ...16
Package. See also Package contents;

Predefined packages
 body .. 116, 164-166
 declaration.. 164-165

 generally... 115-119
 use clauses.. 117-119
 VHDL language element 164-166

Package contents
 bv_math package 125-127
 int_arith package.....................................125
 int_math package............................ 127-130
 mth34x8_pkg package.................... 131-132
 rtlpkg package................................. 130-131
 table_bv package.....................................130
 use clauses.. 121-123

Pad_gen directive 39-40
PAD generation for pASIC............ 40, 226-228
Part_name directive.................................. 40-41
pASIC

 pad allocation guide.................................40
 technology mapping....................... 226-229

Pin_avoid directive................................... 41-42
Pin_numbers directive 31, 42-43
PINS design example 133, 134-135
Place and route phase in CPLD/PLD

fitting...233
Polarity directive....................................... 43-44
Polarity optimization in the DSGNOPT

program..229
Port map statement, VHDL language

element 166-167
Predefined packages. See also Attributes,

VHDL language element; Package
contents

 addition operators123
 boolean operators124
 miscellaneous functions................. 124-125
 multiplication operators123
 relational operators.................................123
 shift operators..124
 standard.. 120-121
 use clauses..122

Primitives ...228
Procedure declaration subprogram171
Process in VHDL architecture................. 77-78
Process statement, VHDL language

element 168-170
Warp User’s Guide 321

Index

 I
Q
-q option ...16
.qdf file ..21, 22
QDIF file ...2, 226

R
-r option.. 16-17
Record composite type 64-65
Record type declaration175, 177
Register optimization in the DSGNOPT

program..229
Registered logic in design methodologies.......

... 83-85
Relational operators..67
Report file

 CPLD/PLD, targeting of........................225
 extension list ..231
 generally ...222

.rpt file...21

S
-s option..17
Security design example 133, 142-143
Sensitivity lists in registered logic 83-84
Sequential statements 76-77
Signal assignment operation 69-70
Signal class of data objects....................... 57-59
Signal declaration..170
Signal, VHDL language element 170-171
Soft node...225
SpDE command line language

 pASIC, use in ...226
 PC .. 22-23
 Unix platforms...21

SpDE error messages............................ 268-283
State_encoding directive.......................... 44-45
State machines

 design examples...................... 133, 138-143
 Mealy state machines 107-115
 Moore state machines......................... 91-93
 one-hot-one state machines 102-105
 outputs decoded combinatorially..... 94-96

 outputs decoded in parallel output
registers .. 96-99

 outputs encoded within state bits .. 99-102
 state transition tables...................... 105-115
 synthesis... 224-225

State transition tables 105-115
Static timing analysis in CPLD/PLD

fitting...238
Std_logic_vector VHDL type62
Std_logic VHDL type62
String literals VHDL type........................ 61-62
String VHDL type ...60
Structural descriptions78
Subprograms, VHDL language element

 functions...174
 generally... 171-173
 procedures ...173

Sub-range type declaration..........................176
Subtype data type...63
Subtype declaration................................63, 175
Sum_split directive ...46
Sum-splitting in the DSGNOPT program.......

...229
Syntax, Warp command............................... 8-9
Synthesis and optimization, front end.............

... 224-225
Synthesis compiler

 capabilities of... 3-4
 overview...2

Synthesis directives
 attribute mechanism.................................26
 buffer_gen .. 27-28
 dont_touch ... 28-30
 enum_encoding................................... 30-31
 ff_type...32
 fixed_ff.. 31-32
 goal..33
 hierarchial attributes26
 inheritance mechanism26
 lab_force ... 33-34
 max_load.. 34-35
 no_factor... 35-36
 no_latch .. 36-37
 node_num ..37
 opt_level ...38
 order_code ... 38-39
322 Warp User’s Guide

Index

 I
 pad_gen .. 39-40
 part_name .. 40-41
 pin_avoid.. 41-42
 pin_numbers.................................. 31, 42-43
 polarity ... 43-44
 state_encoding..................................... 44-45
 sum_split ..46
 synthesis_off 37, 46-49
 ViewDraw graphical interface 51-53
Synthesis_off directive 37, 46-48

T
Technology mapping

 CPLD/PLD fitting and................... 229-230
 DSGNOPT program and........................229
 pASIC.. 226-229

Three-stated logic..4
Tool flow for Warp3 ...3
TOPLD

 CPLD/PLD fitting229
 generally ...224
 pASIC and..226

TOVIF tools.. 222-224
Traffic design example 133, 140-142
TRI (module three-state marker) Cypress

module..214
Truth table.. 105-107
Type, VHDL language element 174-177

U
Use statement, VHDL language element

... 177-178

V
-v option ... 17-18
Value of the directive50
Variable assignment operation 69-70
Variable class of data objects 57-59
Variable, VHDL language element178
Vector operations 71-73
Vector type declaration175, 176

VHDL. See also Architectures of VHDL;
Data types; Operators; Package

 data objects... 57-59
 entities... 73-74
 generally...56
 identifiers ... 56-57
 libraries...132

VHDL constructs
 alias ... 143-144
 architecture 144-145
 attribute .. 145-147
 attributes, pre-defined.................... 147-153
 case .. 153-155
 component 155-156
 constant .. 156-157
 entity ... 157-158
 exit...158
 functions...174
 generate .. 158-159
 generic .. 159-160
 generic map 167-168
 if-then-else.. 160-162
 library ...162
 loops.. 162-163
 next.. 163-164
 package... 164-166
 port map... 166-167
 procedures ...173
 process .. 168-170
 signal... 170-171
 subprograms.................................... 171-173
 type ... 174-177
 use ... 177-178
 variable ...178
 wait..179

VHDLFE tools 222-224
ViewDraw graphical interface

 $ARRAY attribute.....................................53
 attributes of .. 52-53
 generally...51

Virtual substitution
 circuit simplification...............................225
 defined.. 48-49
 design flattening47
Warp User’s Guide 323

Index

 I
W
-w option ..18
Wait statement, VHDL language element.......

...179
Warp3 tool flow...3

X
-xor2 option..18

Y
-yb option ...18
-yl option ..19
-ym optin ..19
-yp option...19
-yt option.. 19-20
-ygs option ...20
-yga option ...20
-ygc option ...20
-yv option ...20
324 Warp User’s Guide

	Warp Reference Manual
	Cypress Software License Agreement
	Contents
	Chapter 1: Introduction
	1.1 Overview of Warp
	1.2 Warp Capabilities
	1.3 About This Manual

	Chapter 2: Command Line Language
	2.1 Warp Command Line Switches
	2.1.1 Warp Command Syntax

	2.2 Warp Command Options
	2.2.1 The -d Option
	2.2.2 The -b Option
	2.2.3 The -a Option
	2.2.4 The -e Option
	2.2.5 The -f Option
	2.2.6 The -h Option
	2.2.7 The -l Option
	2.2.8 The -m Option
	2.2.9 The -o Option
	2.2.10 The -p Option
	2.2.11 The -q Option
	2.2.12 The -r Option
	2.2.13 The -s Option
	2.2.14 The -v Option
	2.2.15 The -w Option
	2.2.16 The -xor2 Option
	2.2.17 The -yb Option
	2.2.18 The -yl Option
	2.2.19 The -ym Option
	2.2.20 The -yp Option
	2.2.21 The -yt Option
	2.2.22 The -ygs Option
	2.2.23 The -yga Option
	2.2.24 The -ygc Option
	2.2.25 The -yv Option

	2.3 Recommendations
	2.4 Warp Output
	2.5 SpDE Command Line Language

	Chapter 3: Synthesis Directives
	3.1 Introduction
	3.2 Synthesis Directives
	3.2.1 buffer_gen
	3.2.2 dont_touch
	3.2.3 enum_encoding
	3.2.4 fixed_ff
	3.2.5 ff_type
	3.2.6 goal
	3.2.7 lab_force
	3.2.8 max_load
	3.2.9 no_factor
	3.2.10 no_latch
	3.2.11 node_num
	3.2.12 opt_level
	3.2.13 order_code
	3.2.14 pad_gen
	3.2.15 part_name
	3.2.16 pin_avoid
	3.2.17 pin_numbers
	3.2.18 polarity
	3.2.19 state_encoding
	3.2.20 sum_split
	3.2.21 synthesis_off

	3.3 Control File
	3.4 Warp Synthesis Directives with ViewDraw
	3.4.1 Warp Synthesis Directives
	3.4.2 Supported ViewDraw Attributes

	Chapter 4: VHDL
	4.1 Introduction
	4.2 Identifiers
	4.3 Data Objects
	4.4 Data Types
	4.4.1 Pre-Defined Types
	4.4.2 Enumerated Types
	4.4.3 Subtypes
	4.4.4 Composite Types

	4.5 Operators
	4.5.1 Logical Operators
	4.5.2 Relational Operators
	4.5.3 Adding Operators
	4.5.4 Multiplying Operators
	4.5.5 Miscellaneous Operators
	4.5.6 Assignment Operations
	4.5.7 Association Operations
	4.5.8 Vector Operations

	4.6 Entities
	4.7 Architectures
	4.7.1 Behavioral Descriptions
	4.7.2 Structural Descriptions
	4.7.3 Design Methodologies

	4.8 Packages
	4.8.1 Predefined Packages

	4.9 Libraries
	4.10 Additional Design Examples
	4.10.1 DEC24
	4.10.2 PINS
	4.10.3 NAND2_TS
	4.10.4 CNT4_EXP
	4.10.5 CNT4_REC
	4.10.6 Drink
	4.10.7 Traffic
	4.10.8 Security

	4.11 Alphabetical Listing of VHDL Constructs
	4.11.1 Alias
	4.11.2 Architecture
	4.11.3 Attribute
	4.11.4 Pre-Defined Attributes
	4.11.5 CASE
	4.11.6 Component
	4.11.7 Constant
	4.11.8 Entity
	4.11.9 Exit
	4.11.10 Generate
	4.11.11 Generic
	4.11.12 If-Then-Else
	4.11.13 Library
	4.11.14 Loops
	4.11.15 Next
	4.11.16 Package
	4.11.17 Port Map
	4.11.18 Generic Map
	4.11.19 Process
	4.11.20 Signal
	4.11.21 Subprograms
	4.11.22 Type
	4.11.23 USE
	4.11.24 Variable
	4.11.25 Wait

	Chapter 5: LPM
	5.1 Introduction
	5.2 LPM Modules
	5.2.1 MCNSTNT
	5.2.2 MINV
	5.2.3 MAND
	5.2.4 MOR
	5.2.5 MXOR
	5.2.6 MBUSTRI
	5.2.7 MMUX
	5.2.8 MDECODE
	5.2.9 MCLSHIFT
	5.2.10 MADD_SUB
	5.2.11 MCOMPARE
	5.2.12 MMULT
	5.2.13 MCOUNTER
	5.2.14 MLATCH
	5.2.15 MFF
	5.2.16 MSHFTREG

	5.3 Other Cypress Modules
	5.3.1 MBUF
	5.3.2 MGND
	5.3.3 MVCC
	5.3.4 IN
	5.3.5 OUT
	5.3.6 TRI

	5.4 Cypress Exceptions to LPM Standard
	5.4.1 Which Options of LPM Do We Support?

	5.5 Hints and Techniques
	5.5.1 How to Best Use the LPM_HINT
	5.5.2 MADD_SUB
	5.5.3 MCOUNTER
	5.5.4 MCOMPARE
	5.5.5 MCOUNTER

	Chapter 6: Report File
	6.1 Introduction
	6.2 Front End Compiler
	6.3 Front End Synthesis and Optimization
	6.4 pASIC Technology Mapping
	6.5 CPLD/PLD Fitting
	6.5.1 Technology Mapping and Optimization
	6.5.2 Equations
	6.5.3 Fitting
	6.5.4 Static Timing Analysis

	Appendix A: Error Messages
	Appendix B: SpDE Error Messages
	B.1 Import Design Verifier
	B.1.1 Notes
	B.1.2 Warnings
	B.1.3 Errors

	B.2 Fatal Errors
	B.3 User Errors

	Appendix C: Glossary
	Appendix D: BNF
	Index

