A Reference Model of Cloud Operating and Open Source Software Implementation
Mapping


Abstract—in this article, a reference model is proposed. The
model divides the cloud computing system with various
components in a 3-layer hierarchy called infrastructure,
platform and application. The details of the components are
presented for its functionality assumed. Also the open source
software implementation for the components in the model is
addressed
Keywords- Reference Model, Cloud Computing, Open Source
Software, FCAPS
I. INTRODUCTION
Retrospect the past 20 years of those acceleration
factors in the computing service evolution, the simplicity of
the UNIX and the open source software such as LINUX
plays an important role. As cloud application developers and
utility users, some common points can be abstracted to a
reference model. Following the analogy of the operation
system, those common points can still be presented in the
way that the traditional application developers are familiar
with such as UNIX/LINUX architecture with a 3-layer
hierarchy. With the open approach like LINUX,
interoperability and communication can be made by the
protocol defined as the component interfaces and those open
source solutions can also be put into the stack like LINUX
in the computing service ecology system.
II. DETAIL DESCRIPTION OF THE REFERENCE MODEL
In the model, the cloud system is clarified with a 3-
layer hierarchy as follow:
􀁺 Cloud computing infrastructure layer provides a cluster
of hardware resource such as CPU, memory,
bandwidth and storage.
􀁺 The platform layer includes the components such as
 AUTHORS:
AKASH VAIDYA1,
RATNESH KUMAR2,
DHAMMAPAL WADHEKAR3,




kernel, distributed file system; cloud IO, computing
driver/engine, management and UI interface.
􀁺 The application layer host business domain specific
application.
The model is showed in the following diagram:
Figure 1. Reference model for the cloud computing utility users and
application developers
Cloud Computing Infrastructure:
It provides basic environment delivering high
scalability with network connection of the physical
computing and data storage unit with virtualization service.
Those basic physical cloud units can be a cluster of the
commodity PC hardware or mainframe. In the basic
physical cloud unit, the OS, network protocol
implementation and virtualization software are needed for
the functionality of this layer. The memory, storage device
and network communication are managed by the operating
system of the basic physical cloud units. Open source
software such as LINUX/XEN can support the basic
physical unit management and virtualization computing.
With the infrastructure layer, the platform layer can
work independent with the hardware resource and provide
cloud user with high scalability and manageability benefit.
The infrastructure can be a public service such as Amazon
EC2/S3 and others [1] or private owned solution.
a hierarchical name space among multiple name node
servers. A DFS implementation takes the following
functions [2]:
􀁺 Provide high data availability in the face of node
failure, heavy load by allowing share in multiply
different location;
􀁺 Provide a consistent view of the data seen by all clients
in a DFS, and reliability in the case of failures, write
operations are allowed to complete only after the data
has been committed to stable storage
􀁺 To scale-up the commodity devices easily and
economically on the large-scale cloud computing
infrastructure. This includes the incremental scalable
capability which is to add more devices to scale up the
system in incremental fashion.
􀁺 Provide an effective secure manner.
Several implementations of distribute file system
already existed. For example, Hadoop Distributed File
System is an open source distributed parallel fault tolerant
file system. It is designed to reliably store very large files
across a large-scale cluster (HDFS) [3]. Google File System
is a proprietary DFS for its own network level search engine.
It is designed to provide efficient, reliable access to data
using large clusters of commodity hardware (GFS) [4].
RedHat Global File System is an open-standard based
system with great modularity and compatibility with
interconnects, networking components and storage hardware.
(RGFS) [5]. Amazon S3 also is one of the commercial
services for it.
Kernel:
The kernel plays the role of global resource
management on the basis of the infrastructure. It consists of
four sub-components such as distributed tasks management,
distributed memory management, system status monitor and
communication utility.
Getting request from application, kernel take charge of
tasks creation, assignment, schedule and execution
exception handle based on the resource status. For the
domain specific application, different task management
implementation can be used according to application’s
characteristic, for example Goolge uses MapReduce [6] for
its internet search service and All-InParis model is another
one for the data intensive computing [7].
The distributed memory management delivers the
service to the application which requires large volume
memory to host consistent cache data. For data sharing and
cache functionalities, both the distributed file system and
memory system can be the solution candidates. Difference
between the two approaches lies in whether the hardware IO
operation is needed. In the bandwidth inversion cloud utility,
the distributed memory approach is a more attractive one.
The communication utility serves the location
independent data exchange which is requested from task and
memory management component. For example in
MapReduce model, it communicates data after Map
complete and before Reduce begins [6].
To support high reliability distributed management, the
resource monitor is a part of the kernel. It provides task and
memory management with the health information of cloud
computing system, such like status of bandwidth, CPU,
memory and storage.
Open source software such as Apache Hadoop is a good
candidate for the implementation and it uses MapReduce as
task management model.
Cloud IO:
The Cloud IO encapsulates various kinds of data
protocols and supports the data exchange for the tasks
managed by the kernel. The cloud IO is independent with
the hardware operation and the hardware operation is
handled by the infrastructure layer. Cloud IO is a library
waiting for service calling. The IO delivers its service
directly to the kernel tasks. The IO also can provide data
exchange service among different clouds with a defined
protocol in the way such as web service.
In Apache open source software Hadoop, various IO
encapsulated protocols are provided. Based on the
framework and IO specification users can develop
customized IO to support application specific need.
Computing Driver and Engine:
It provides the domain specific computing utility
service to the application. In the scientific computing
domain, the GNU octave [8] is such a kind of driver and
Matlab is one of the commercial utility. Besides the
scientific computing, compute engine in various domains
can also be integrated as the driver component providing the
specific computing capability to the domain specific
application.
Management and User interface:
It provides the management console for the system
admin and user as interface to the cloud. It supports system
admin and users to monitor and manage cloud platform and
applications. It includes fault management, configuration
management, accounting management, performance
management, and security management referred from TMN
FCAPS model [9]. In this domain, many open source
technology can be considered. The Web2.0 technology is a
good candidate to play role in the building of user interface,
which make cloud easily access through the Internet and
WAN delivering desktop-like experience to the users.
System and User Application:
It is the application layer for the cloud; it can be system
application which provides service to other application or the
user application which serves the end-user. The application
is domain specific, service oriented and its life cycle is
managed by the system admin.
III. CONCLUSION
Mapping to the reference model proposed, some
components like kernel, distributed file system already have
many implementations with commercial or open source
software. For application developers, they don’t need to care
much detail of the service such as task management,
memory, storage, communication any more. Contrarily, they
only need to focus on application design including the
application specific IO, distribute task design and domain
use cases implementation. With the model proposed in this
paper, the application developers can reuse the existed
experience from traditional computing OS such as
UNIX/LINUX and get a faster learning curve as the cloud
utility users – which also make the communication more
effective with the same context.
REFERENCES
[1] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal “Market-
Oriented Cloud Computing:Vision, Hype, and Reality for Delivering
IT Services as Computing Utilities” The 10th IEEE International
Conference on High Performance Computing and Communications ,
pp.10 Table 1
[2] Tran Doan Thanh; Subaji Mohan1;et al, "A Taxonomy and Survey on
Distributed File Systems”, School of Business IT, Kookmin
University, Seoul, Korea, 2008
[3] Apache Hadoop Documentation http://hadoop.apache.org/core
[4] Ghemawat, S., Gobioff, H., Leung, S.T., “The Google file system”,
ACM SIGOPS Operating Systems Review, Volume 37 , Issue 5, pp.
29-43, December, 2003.
[5] Red Hat Global File System, White Paper,
http://www.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf.
[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters”, Communications of the ACM, ACM, January
2008.
[7] Christopher Moretti, Jared Bulosan, Douglas Thain, and Patrick J.
Flynn, “All-Pairs: An Abstraction for Data-Intensive Cloud
Computing”, Parallel and Distributed Processing, 2008. IEEE
International Symposium
[8] GNU Octave Documentation http://www.gnu.org/software/octave/
[9] ISO/IEC 10040, 1998, "Information technology - Open Systems
Interconnection - Systems management overview"
65
