Aciom: Application Characteristics-aware Disk and

Network I/O Management on Android Platform
Presented by-Bharti D.Wanjari

Branch-Mtech(CSE)
Email- bharti.wanjari29@gmail.com
ABSTRACT

The last several years have seen a rapid increase in smart phone use. Android offers an open-source software platform on smart phones, that includes a Linux-based kernel, Java applications, and middleware. The Android middleware provides system libraries and services to facilitate the development of performance-sensitive or device-specific functionalities, such as screen display, multimedia, and web browsing. Android keeps track of which applications make use of which system services for some pre-defined functionalities, and which application is running in the foreground attracting the user’s attention. Such information is valuable in capturing application characteristics and can be useful for resource management tailored to application requirements. However, the Linux based Android kernel does not utilize such information for I/O resource management. This paper is the first work, to the best of our knowledge, to attempt to understand application characteristics through Android architecture and to incorporate those characteristics into disk and network I/O management. Our proposed approach, Aciom (Application Characteristics-aware I/O Management), requires no modification to applications and characterizes application I/O requests as time-sensitive, bursty, or plain, depending on which system services are involved and which application receives the user’s focus. Aciom then provides differentiated I/O management services for different types of I/O requests, supporting

minimum bandwidth reservations for time-sensitive requests and placing maximum bandwidth limits on bursty requests. We present the design of Aciom and a prototype implementation on Android. Our experimental results show that Aciom is quite effective in handling disk and network I/O requests in support of time-sensitive applications in the presence of bursty I/O requests.
1. INTRODUCTION
The last two decades have seen an explosive spread of mobile phones all over the world. Recently, a rapidly growing portion of mobile subscribers uses smart phones for more advanced computing ability. Smart phone users are projected to overtake feature phone users in the US at the end of this year Android is introduced to deliver an open-source software platform tailored to mobile devices. Android is reported to be the world’s best-selling smart phone platform and projected to take 49% of the Smartphone market in 2012 The Android platform provides a whole open-source software stack, from operating systems through middleware to applications. Android applications, written in Java, run on their own separate virtual machines over a Linux-based kernel. The Android middleware provides access to a set of native libraries for performance optimization and third-party libraries such as OpenGL and Webkit. In many mobile devices, including smart phones, the applications running in the foreground usually perform user-interactive tasks. The Android middleware keeps track of which application is running in the foreground and which ones are in the background, and the kernel makes use of this information in CPU scheduling and memory management to better support the foreground application’s responsiveness. However, the Android platform does not yet incorporate such information into I/O management, although I/O management is quite critical to the performance of interactive embedded applications because embedded devices are generally subject to insufficient disk and network capacity. For example, interactive applications, such as multimedia applications,

demand time-predictable handling of their I/O requests. I/O-intensive applications, such as download managers, often make bursty I/O requests, striving to consume all the spare bandwidth in the system. I/O requests can be of different priorities depending on the applications running in the system. The I/O managers of the existing Linux-based Android kernel are designed to maximize throughput by handling I/O requests in a fair manner, without paying attention to the characteristics of the I/O requests. This could easily lead to cases in which, for example, the I/O requests of a multimedia application experience longer latencies than their requirements and the application fails to deliver its intended quality of- service (i.e., yielding scree delays and pauses). [image: image1.emf]
Figure 1: The overall architecture of Android platform

2. ACIOM OVERVIEW

This section presents an overview of the Aciom (Application Characteristics-aware I/O Manager) system. The goal of Aciom is to provide differentiated I/O management services for Android applications according to their characteristics. For example, Aciom delivers prioritized or guaranteed I/O management services to user interactive applications such that those applications can produce prompt or delay-bounded responses to users. Toward this goal, this

section first classifies applications according to the characteristics of their I/O requests and discusses the limitations of the current Linux I/O management in support of application characteristics. It then outlines how Aciom can capture application characteristics in Android and how they can be incorporated into differentiated disk and network management services. Application characterization with I/O requests. Applications can be classified as time-sensitive if they impose timing constraints on their I/O requests, or as time-insensitive otherwise. As an example, let us consider a multimedia application that plays a live streaming video at 30 FPS (frame-per-second). The kernel should be able to handle the incoming packets of this application with a low latency, say, a latency smaller than 33ms. Time-insensitive applications can be further characterized as bursty if they often make a burst of I/O requests, or plain if they do not. Bursty applications tend to consume all the bandwidth available in the system and often delay time-sensitive I/O requests. Hence, an I/O management scheme is required that can satisfy the timing constraints imposed by time-sensitive requests, even in the presence of bursty requests. Figure 2 shows how we categorize Android services. Figure 3 shows three different patterns of application I/O requests. The first phase is measured from the web-kit service (plain),

the second phase is from the media service (time-sensitive), and the third phase is from the download server (bursty). There is another types of application characteristic, named F/B

dependent (Foreground/Background dependent). From the user’s viewpoint, applications running on mobile devices, such as smart phones, can have different characteristics according to the user attention. In other words, some applications can have two different types of characteristics depending on whether the application is user-interactive or not. For example, let us consider an internal database service, called SQLite service. Such a service can be considered as time-sensitive, if it provides database handling, which usually includes intensive I/O requests, for the foreground application. Or, it can be classified as bursty if no foreground application

makes use of its database I/O requests. In the latter case, it could be considered as harmful to time-sensitive applications.

Limitations of the current Linux platform.
The Linux I/O managers do not incorporate the characteristics of applications into policies that determine when and in what order I/O requests are serviced. Their default policies are designed to allocate I/O bandwidth in such a way that the system throughput is maximized, oblivious

to the applications’ requirements associated with disk and network requests. This can be detrimental to especially time-sensitive applications. For example, consider a time-sensitive multimedia application making I/O requests at the same time as a download application is making a burst of I/O requests. In this case, the Linux I/O managers can handle a batch of requests coming from the download application ahead of the multimedia application’s requests, imposing longer delays on the latter requests. This could lead to a significant degradation of quality of the multimedia service. The multimedia application can play a movie at a much lower FPS, producing unacceptable random screen delays and pauses. As such, Linux does not provide applications with differentiated I/O management services. Therefore, it is inappropriate for embedded systems with insufficient resource capacity, and this requires a new application characteristics-aware I/O manager for embedded systems.

 [image: image2.emf]
Figure 2: The overall architecture of Aciom platform

3 ACIOM Network Management

The Aciom network manager primarily aims to handle network I/O requests according to application characteristics. Similar to therole of the Aciom disk manager does, the network manager also tries to secure the required network bandwidth for time-sensitive applications at the expense of limiting the bandwidth allocation for bursty applications. However, the Aciom network manager faces several different challenges in achieving this goal, compared to the case of disk management, because there are prominent differences between network and disk I/O requests. For example, disk I/O requests are synchronous, while network I/O requests are asynchronous, in a sense that disk I/O requests are initiated by the applications inside the system while incoming packets are initiated by applications outside the system. This introduces a big difference into the process of I/O management. Disk managers are able to directly throttle disk I/O requests through local queue management in order to limit disk bandwidth allocations, however, network managers are not capable of simply limiting the network bandwidth allocations for incoming packets by local queue management.

4. CONCLUSION

To the best of our knowledge, this paper presents the first attempt to understand application characteristics through Android architecture and to incorporate those characteristics into disk and network I/O management. Our prototype implementation shows that ourproposed approach can support time-sensitive applications, allowing them to meet their performance requirements even when running with bursty I/O applications. Our future work will include extending the proposed approach to other aspects of resource management, such as power management. In addition, in this paper, we consider only application characteristics. However, context (i.e., location, time) can also affect an application’s behavior, and this can be important information in resource management. We plan to develop a context-aware system of resource management in order to better support application performance requirements.

