

MAGIC

(Multi Target Graphical User Interface)

Pankaj P. Babhare ,Khushbu W. Patre
VIII Semester Dept. of Information Technology

Vilasrao Deshmukh College of Engineering , Mouda, Nagpur
India

pankajbabhare010@gmail.com 20khushbu13@gmail.com

9403348837 8551831843

Abstract
Our goal is to design a better, simple and easy to understand
graphical interface description language (MAGIC Script).
The script has to be converted to the target languages as per
the need of the user; making the compiler Multi-Target. The
system consists of a compiler for compiling and translating
MAGIC script into specified target language, which may be
Java Swing, Java AWT, XUL or C#. The system must be
expandable for inclusion of new languages. An IDE for
developing the MAGIC Script is to be provided. First the end
user will submit the Graphical user interface designed using
the MAGIC Script as the input to the system i.e. MAGIC
Compiler. Next, he will select the target language in which
he wants the code to be converted. The system in the
meantime will generate tokens and parse them for finding
token and syntax errors in the MAGIC Script submitted and
report any errors to the user. From the target language
selection the MAGIC Compiler will generate the code in the
specified language.

key words- Magic, scope, working, prototype, design, testing.

I. INTRODUCTION

Magic was made to be Multi-Target for most IDEs generate a
GUI in a single Language; making the task of converting them
to other languages difficult. MAGIC Script is convertible to
many well-known and much used GUI definition languages.
 To work with MAGIC, the most important decision was to
decide on the language for the compiler to compile MAGIC
SCRIPT. After many deliberations we decided on using JAVA
as the compiler Language.
 To write the Parser we have used JavaCC. JavaCC is a parser
generator and a lexical analyzer generator. Parsers and lexical
analyzers are software components for dealing with input of
character sequences. Compilers and Interpreters incorporate
lexical analyzers and parsers to decipher files containing
programs. It is a tool that reads a grammar specification and
converts it to a Java program that can recognize matches to the
grammar. Another important task was to select target

languages for MAGIC. We zeroed on Java Swing, Java AWT,
and XUL and C #.NET. Type Style and Fonts.

II. SCOPE
Design and develop a scripting language which we are
calling as MAGIC script Design syntax and semantics for
the MAGIC scripting language. Develop a compiler which
will be able to understand and execute the MAGIC script
written by the developers of MAGIC Develop a compiler
component (can be called as a translator) which will be able
to translate the code written in MAGIC script to various
implementation languages supported by MAGIC.
Design a IDE which can be used by the developers of the
MAGIC script, it will assist in developing the user interface
code in MAGIC and will also be able to compiler, translate
and execute the script written.

III. SYSTEM DESCRIPTION
MAGIC is a script which more or less resembles a modular
design of the graphical user interface. The system has an
IDE where the developers of MAGIC will be writing the
code/programs. The IDE is with facilities which will assist
the users in developing the code, such as syntax colorizing,
inline compiling options, output console window etc.
The users will be writing a code for graphical user interface
and will compile it with the MAGIC compiler. MAGIC
compiler is the heart of the system and is used for
compiling, executing and translating the MAGIC code.
The final output can be seen with the MAGIC IDE, also
according to the user options, the code written in MAGIC
script can be translated to various languages supported by
MAGIC environment. One code written in MAGIC script
can be translated to various implementation languages
without the need of rewriting. This will help the developers
of the graphical user interface to save time and effort

IV. WORKING OF THE SYSTEM

The main component of the system here is the MAGIC
script and its syntax. We here are presenting some of the
major components of the graphical user interface

development and are providing the MAGIC scripts for the
same. Actual working of MAGIC (Multi target Graphical
Interface Compiler) is as shown below.

Fig 1: Magic compiler

Our system works in the following manner:

First the end user will submit the Graphical user interface
designed using the MAGIC Script as the input to the system
i.e. MAGIC Compiler. Next, he will select the target language
in which he wants the code to be converted.
The system in the meantime will generate tokens and parse
them for finding token and syntax errors in the MAGIC Script
submitted and report any errors to the user. From the target
language selection the MAGIC Compiler will generate the
code in the specified language.

A. FEASIBILITY STUDY

Feasibility means practical implementation and practical
usage. Our MAGIC is having such a design that is scalable in
nature that means many other languages can be added to it. We
have already implemented the units for generating target
languages-AWT, Swing; XUL and C#.NET .Other languages
can be added as per users’ requirements.

MAGIC can be easily used for small to medium sized projects.
Its usability for beginners is particularly high.

B. TECHNICAL FEASIBILITY

The development of MAGIC requires very basic resources like
Java2sdk 1.4.1, JavaCC parser, XUL Runner and Visual studio
with .NET framework. In absence of Visual Studio any C#
running software may be used. MAGIC can run on most OS
as java is supported by all OSs. So, there are no technical
feasibility issues as far as development and implementation of
MAGIC is concerned.

As such MAGIC only requires Java Runtime Environment to
be installed at user site. It doesn’t require any other software

or DLLs to run. Also no other special hardware requirements
are there. Hence is very much technically feasible for the user.

C. ECONOMIC FEASIBILITY

MAGIC doesn’t require any costly hardware or software.
All the software used is freely available. At user site also
there is no requirement of any software only JRE is
required.

V. PROJECT PROCESS MODEL

Development occurs as a succession of releases with
increasing functionality. Testing and feedback on each
release is used in deciding requirements and improvements
for next release. There is no “maintenance” phase – each
version includes both problem fixes as well as new features.
This may also include “re-engineering” – changing the
design and implementation of existing functionality, for
easier maintainability.
We have followed a spiral model like approach for our
project as it has a large no of units. So, prototyping at each
stage is necessary. The spiral model is a software
development process combining elements of both design
and prototyping-in-stages, in an effort to combine
advantages of top-down and bottom-up concepts. Also
known as the spiral lifecycle model, it is a systems
development method (SDM) used in information
technology (IT). This model of development combines the
features of the prototyping model and the waterfall model.
The spiral model is intended for large, expensive and
complicated projects.

Fig 2: Spiral Model

VI. MAGIC PROTOTYPES

Prototype 1:

a) No support for layouts in frames, windows or panels
b) No deterministic statements, only followed what was

given in definitions
c) No sharing of GUI properties, only refer their own

properties provided
d) Simple but good code generation translates MAGIC

into Java files
e) No compiler output messages informing users what's

happening
f) No simple way of adding new components by editing

very few areas of definitions file
g) Support for: frames, panels, menus, menuItems,

textfields, textareas, buttons, labels and windows
h) Need to sort out these problems by rewriting the

definitions file
i) No support for action listeners in MAGIC
j) Future support for scrollbars, actions and other

features that are non-GUI related
Prototype 2:

a) Rewritten Java files and definitions file
b) Support for layouts in frames, windows and panels
c) Compiler messages exist now, needs a few

adjustments
d) Same code generation, needs some improvements
e) Sharing of GUI properties by the use of Java

inheritance
f) Simple addition of new components by editing very

few areas of definitions file
g) Dynamic checking and solving of properties of

components
h) Nothing done on future support as of yet
i) Actions will be present in next prototype

Prototype 3:

a) Final JavaCC definitions are written to create the new
compiler

b) Now contains support for procedures, integers,
strings, assignment, calling of procedures, returning
values

c) Now contains support for main GUI components and
their properties changing ability, setting properties
initially

d) Now has support for actions
e) Now has support to target other components within a

specific action
f) Support for other actions will be present in next

prototype
g) Better error reporting facilities - quoting line, column

numbers, error reasons and also the number of errors
found

h) Error reporting is not finished and the full scale error
reporting will be present in prototype 4

Prototype 4:

a) Added support for ChangeListener which is from
Swing Event Model

b) Partial completion of error reporting, only done in
definitions file

c) Errors report full information that is helpful to the
user

d) New GUI components added, listboxes,
comboboxes, popup menus, sliders

e) JWindow bugs discovered, fixed fully

VII. SYSTEM DESIGN

Fig3: Use Case Diagram

VIII. COMPILER CONSTRUCTION FUNDAMENTALS

Programming languages are often divided, somewhat
artificially, into compiled and interpreted languages,
although the boundaries have become blurred. The concepts
discussed here apply equally well to compile as well as
interpreted languages.
Compilers have to perform three major tasks when
presented with a program text (source code):

1. Lexical analysis
2. Syntactic analysis
3. Code generation or execution
The bulk of the compiler's work centers on steps 1 and 2,
which involve understanding the program source code and
ensuring its syntactical correctness. We call that process
parsing, which is the parser's responsibility.

Lexical analysis (lexing)

Lexical analysis takes a cursory look at the program source
code and divides it into proper tokens. A token is a significant
piece of a program's source code. Token examples include
keywords, punctuation, literals such as numbers, and strings.
Nontokens include white space, which is often ignored but
used to separate tokens, and comments.
Syntactic analysis (parsing)
During syntactic analysis, a parser extracts meaning from the
program source code by ensuring the program's syntactical
correctness and by building an internal representation of the
program.
Code generation or execution

Once the parser successfully parses the program without error,
it exists in an internal representation that is easy to process by
the compiler. It is now relatively easy to generate machine
code (or Java bytecode for that matter) from the internal
representation or to execute the internal representation
directly. If we do the former, we are compiling; in the latter
case, we talk about interpreting.

JavaCC

JavaCC, available for free, is a parser generator. It provides a
Java language extension for specifying a programming
language's grammar. JavaCC was developed initially by Sun
Microsystems, but it's now maintained by MetaMata. Like any
decent programming tool, JavaCC was actually used to specify
the grammar of the JavaCC input format.
Moreover, JavaCC allows us to define grammars in a fashion
similar to EBNF, making it easy to translate EBNF grammars
into the JavaCC format. Further, JavaCC is the most popular
parser generator for Java, with a host of predefined JavaCC
grammars available to use as a starting point.

JavaCC: Grammar Files

This section contains the complete syntax of Java Compiler
grammar files with explanations of each construct.
Tokens in the grammar files follow the same conventions as
for the Java programming language. Hence identifiers, strings,
characters, etc. used in the grammars are the same as Java
identifiers, Java strings, Java characters, etc.
White space in the grammar files also follows the same
conventions as for the Java programming language. This
includes the syntax for comments. Most comments present in
the grammar files are generated into the generated
parser/lexical analyzer.
Grammar files are preprocessed for Unicode escapes just as
Java files are (i.e., occurrences of strings such as \uxxxx -
where xxxx is a hex value - are converted to the corresponding
Unicode character before lexical analysis).
Exceptions to the above rules: The Java operators "<<", ">>",
">>>", "<<=", ">>=", and ">>>=" are left out of JavaCC’s
input token list in order to allow convenient nested use of

token specifications. Finally, the following are the additional
reserved words in the Java Compiler Compiler grammar files.
EOF IGNORE_C

ASE

JAVACODE LOOKAH
EAD

MORE PARSER_B
EGIN

PARSER_END SKIP

SPECIAL_T
OKEN

TOKEN TOKEN_MGR_
DECLS

Any Java entities used in the grammar rules that follow appear
italicized with the prefix java_ (e.g., java_compilation_unit).

javacc_input ::= javacc_options

 "PARSER_BEGIN" "(" <IDENTIFIER>
")"

 java_compilation_unit
 "PARSER_END" "(" <IDENTIFIER> ")"
 (production)*

 PARSER_END(parser_name)
JavaCC does not perform detailed checks on the compilation
unit, so it is possible for a grammar file to pass through JavaCC
and generate Java files that produce errors when they are
compiled.
If the compilation unit includes a package declaration, this is
included in all the generated files. If the compilation unit
includes imports declarations, this is included in the generated
parser and token manager files.
The generated parser file contains everything in the
compilation unit and, in addition, contains the generated parser
code that is included at the end of the parser class. For the
above example, the generated parser will look like:
 . . .
 class parser_name . . . {
 . . .
 // generated parser is inserted here.
 }
 . . .
javacode_production ::= "JAVACODE"
 java_access_modifier

java_return_type java_identifier
"(" java_parameter_list ")"

 java_block
The JAVACODE production is a way to write Java code for
some productions instead of the usual EBNF expansion.
bnf_production ::= java_access_modifier java_return_type

java_identifier "(" java_parameter_list
")" ":"

 java_block
 "{" expansion_choices "}"

The BNF production is the standard production used in
specifying JavaCC grammars. Each BNF production has a left
hand side which is a non-terminal specification. The BNF
production then defines this non-terminal in terms of BNF
expansions on the right hand side. The non-terminal is written

exactly like a declared Java method. Since each non-terminal
is translated into a method
in the generated parser, this style of writing the non-terminal
makes this association obvious. The name of the non-terminal
is the name of the method, and the parameters and return value
declared are the means to pass values up and down the parse
tree. The default access modifier for BNF productions is
public.

There are two parts on the right hand side of a BNF production.
The first part is a set of arbitrary Java declarations and code
(the Java block). This code is generated at the beginning of the
method generated for the Java non-terminal. Hence, every
time this non-terminal is used in the parsing process, these
declarations and code are executed. The declarations in this
part are visible to all Java code in actions in the BNF
expansions.

XUL

XUL (pronounced zool) was created to make development of
the Mozilla browser easier and faster. It is an XML language
so all features available to XML is also available to XUL.
Most applications need to be developed using features of a
specific platform making building cross-platform software
time-consuming and costly. A number of cross-platform
solutions have been developed in the past. Java, for example,
has portability as a main selling point. XUL is one such
language designed specifically for building portable user
interfaces. It takes a long time to build an application even for
only one platform. The time required for compiling and debug
can be lengthy. With XUL, an interface can be implemented
and modified quickly and easily.
XUL has all the advantages of other XML languages. For
example XHTML or other XML languages such as MathML
or SVG can be inserted within it. Also, text displayed with
XUL is easily localizable, which means that it can be
translated into other languages with little effort.

XUL provides the ability to create most elements found in
modern graphical interfaces. Some elements that can be
created are:

• Input controls such as textboxes and checkboxes
• Toolbars with buttons or other content
• Menus on a menu bar or pop up menus
• Tabbed dialogs
• Trees for hierarchical or tabular information
• Keyboard shortcuts

IX. ADVANTAGES:
1. Reduces programming effort
2. Increased maintainability
3. Easy error detection and correction
4. Multi target

CONCLUSION

The system produced satisfies the requirements outlined at an
early stage in the project.The system is able to successfully
convert MAGIC Script into target language specified. The
target languages used are Java AWT, Java Swing, and XUL
and C #.Net.MAGIC Script is able to fulfill its role of an
intermediary between basic programming constructs and high
level programming constructs which most of the user are
unaware off. It also provides support to a relatively newer
language XUL whose constructs are still unknown to most of
the user.The IDE provides required help in form of auto
generated MAGIC Script on a single click of mouse.The
compiler generated is truly scalable and can incorporate newer
languages just by adding some new files.

REFERENCES

 [1.] Andrew Appel, Jens Palsberg: Modern Compiler
Implementation in Java. Cambridge University Press, 2nd
edition, 2003.

[2.] Keith Cooper, Linda Torczon: Engineering A Compiler.
Morgan Kaufmann, 2004.

[3.] Niklaus Wirth: Compiler Construction. Addison-Wesley,
1996.

[4.] Michael Morrison: Java, Second Edition

[5.] Bruce Eckel: Thinking in JAVA

[6.] Adrian Kingsley-Hughes: C# 2005 Programmer’s
 Reference. Wiley Publishing Inc.
[6] Amruta Mukund Talathi, 2013 A Java Based 4th
Generation Multi-Targeted User Interface Compiler (JUICE)
International Journal of Innovations in Engineering and
Technology (IJIET)

[7.] Java.net: JavaCC [tm]: Grammar Files

[8.] XulPlanet.com: XUL Tutorial

ACKNOWLEDGEMENT

 Pankaj P. Babhare and Khushbu W.Patre presenting
International Paper in December 19,2013 at KITS, Ramtek on
topic Magic: Multitarget Graphical user Interface Compiler.

Pankaj P. Babhare presenting International Paper in January
13,2014 at P.R. Pote Patil College of engineering Amrawati s
on topic Magic: Multitarget Graphical user Interface
Compiler.

Pankaj Babhare and Khushbu Patre presented so many
national level paper presentation.

